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Laplace’s equation, boundary conditions, and the trace theorem
Define u € H,(Q) = W, *(Q) such that
/ gradu - gradvdz =0 Vv e Hé(Q)
Q

where Hy = {u € L*| gradu € L? | }
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continuous; e.g.
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... in terms of , differentiability ...?

For @ ¢ R* (d > 1), u € H, need not be
continuous; e.g.

u(z,y) = /—In(2? + y2) € H'(Q C R?)

Theorem (Trace theorem)

Assume that Q) is bounded and Lipschitz. There

exists a linear operator tr : W"?(Q) — L” ()

suchthatforl1 <p< oo
tru = ulaq,

ltrullzeee) < lullwise) ¥ue W "(Q).

YueWwh?nC(),
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When are traces with higher dimensional gaps well-defined?

Consider a submanifold A C Q of dimension d — 2.

When is well-defined and in what sense?
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When are traces with higher dimensional gaps well-defined?

0 R

Consider a submanifold A C € of dimension d — 2. Theorem (Sobolev embedding theorem-)

, . . 4 js Lj i > d
When is well-defined and in what sense? f$y € R% is Lipschitz, then for p >

3
W2P(Q) C C(Q).
Theorem (Morrey’s inequality-)

IfQ c R? is Lipschitz, then for p > d,
whr(Q) C C(Q).
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Systems of elliptic equations coupled between d x (d — 2)D domains

Find and such that

\ —div(kgradu) — f(u, @) =0 in€Q,
~85(kdst) + f(u,@) =0 in A.

Here, k and k are the respective hydraulic
conductivities, and f and f represent the into
Q from A and into A from €, respectively.

fnd)=pa—g), a=[oc|” /@c“dg’

) L ) ) ) u, ) = f u, W)OA.

Consider steady perfusion in a biological tissue flu @) = fu,@)

represented by Q and an embedded network of [D'Angelo and Quarteroni (2008)]
topologically one-dimensional blood vessels A.

Example: tissue perfusion

Define spatial coordinates: = € Q& ¢ R? and \ : \ ( I\
se ACR.
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https://www.worldscientific.com/doi/abs/10.1142/S0218202508003108
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[Zebrafish vasculature, Eunice Kennedy Shriver National Institute of Child Health and Human Development]
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https://www.nytimes.com/2020/12/14/science/roots-competition-game-theory.html

[Perivascular spaces, NIH Research Matters Graphics, Maiken Nedergaard (Oct 28 2013)]
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The D’A-Q. 3D-1D equations are well-posed in weighted Sobolev spaces (only)

[D’Angelo and Quarteroni (2008)]

Findu: Q — Rand4: A — R such that
—div(kgradu) — 3 =0 inQ, (3a)
—0,(k0sa) + f(—u) =0 inA, (3b)
where @ is a circumferential average:
27

ﬂ(s):(QﬂR)_l/O u(s,R,0)d6, scA.

S N> W e
e y A &
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https://www.worldscientific.com/doi/abs/10.1142/S0218202508003108
http://www.numdam.org/item/AIF_1965__15_1_189_0/
https://link.springer.com/article/10.1007/BF01436386
https://link.springer.com/article/10.1007/BF01389461

The D’A-Q. 3D-1D equations are well-posed in weighted Sobolev spaces (only)

[D’Angelo and Quarteroni (2008)]

Findu: Q — Rand 4 : A — R such that Idea: Analyze the elliptic problem with
) ) (low regularity) line measure terms: given 4, find
—div(kgradu) — =0 inQ, (33 u: Q — R solving (3a).

—0,(k0sa) + f(—u) =0 inA, (3b)

[Stampacchia (1965), Brezis and Strauss (1973), Scott (1973), Casas (1985)]
where @ is a circumferential average:

o What are U, V such that u € U solves
als) = (27rR)_1/ u(s,R,0)d6, scA.
0 (kgrad u, gradv)o + (B4, v)a = (B4,v)a, (4)

L)l
A forallv € V? (Not H (Q)!)
.———4—’/’ ﬁ;/

e y A &
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The D’A-Q. 3D-1D equations are well-posed in weighted Sobolev spaces (only)

Findu: Q — Rand 4 : A — R such that
—div(kgradu) — =0 inQ, (3a)
—0,(k0sa) + f(—u) =0 inA, (3b)

where u is a circumferential average:

27
ﬂ(s):(QﬂR)_l/ u(s,R,0)d6, scA.
0

B A S
Ve y N %

Introduce weighted Sobolev spaces o € (—1,1):
L2(Q) = {u]dist®u € L*(Q), dist(z) = dist(z, A)}
HY(Q) = {u € L2(Q) | gradu € L2(Q)"}

[D’Angelo and Quarteroni (2008)]

Idea: Analyze the elliptic problem with
(low regularity) line measure terms: given 4, find
u : Q — R solving (3a).

[Stampacchia (1965), Brezis and Strauss (1973), Scott (1973), Casas (1985)]

What are U, V such that u € U solves

(kgrad u, gradv)o + (B4, v)a = (B4,v)a, (4)
forallv € V? (Not H'(Q)!)
Theorem (Well-posedness, D’A & Q (2008))
There exists 0 < a < 1 such that (4) with
U=H(Q),V =H"(Q) is well-posed.

Proof.

Via a generalized Lax-Milgram theorem, continuity and

coercivity in the weighted spaces. E\Wae


https://www.worldscientific.com/doi/abs/10.1142/S0218202508003108
http://www.numdam.org/item/AIF_1965__15_1_189_0/
https://link.springer.com/article/10.1007/BF01436386
https://link.springer.com/article/10.1007/BF01389461

Coupling over the interface surface gives well-posedness in standard Sobolev spaces

[Képpl, Vidotto, Wohimuth, Zunino (2018) (d = 2)]

Consider the curve A, the cylinder surface T, and
the embedding domain 2 ¢ R%.
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New idea: Analyze the decoupled 3D problem
with (not line but) surface measure terms: given
4: I — R, find u: Q@ — R such that
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What are U, V such that « € U solves
(k gradu, grad v)o + (S, v)r = (B4, v)r, (5)
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Theorem (Well-posedness, KVWZ (2018))
For R sufficiently small, (5) is well-posed for
UxV=H)Q) x H(Q), and
3
we Hy(Q)NH2™¢
Proof.

Lax-Milgram with tailored trace inequality. O
12/36



Coupling over the interface surface gives well-posedness in standard Sobolev spaces

Consider the curve A, the cylinder surface T, and
the embedding domain 2 ¢ R%.

Q1 Existence and uniqueness of solutions?
Q2 How are these equations derived?

Q3 What is the modelling error?

Q4 What is the approximation error?

[Képpl, Vidotto, Wohimuth, Zunino (2018) (d = 2)]
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How well do coupled 3D-1D elliptic problems approximate their 3D-3D counter parts?

How large are the modelling errors:

@) ) )
luw — il x@,) <---,

”~
Wy U Wy W llus — ully@y <-.o ?

[K&ppl, Vidotto, Wohlmuth, Zunino (2018), Laurino and Zunino (2019)]
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How well do coupled 3D-1D elliptic problems approximate their 3D-3D counter parts?

- @

”~N
Wy U Uy W

The original 3D-3D elliptic problem over 2, x Q,:

find us : Qs = R, uy : Qp — R:
—divkgradus =0 inQs,
—divkgradu, =0 inQ,,
kegrad(us +uy) -n=0 onT,

—kgradu, -n = [f(uy, —us) onT.

The surface-coupled 3D-1D elliptic problem over
AQxA:finda: A =R u:Q=Q,UQ, — R:

—divkgradu — (4 —@)or =0 inQ,
—0skdsti+ (4 —a) =0 onT.

How large are the modelling errors:

luw — il x@,) <---,

lus = ully @) < ...

[K&ppl, Vidotto, Wohlmuth, Zunino (2018), Laurino and Zunino (2019)]
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N
Wy U Uy W

The original 3D-3D elliptic problem over 2, x Q,:

find us : Qs = R, uy : Qp — R:
—divkgradus =0 inQs,
—divkgradu, =0 inQ,,
kegrad(us +uy) -n=0 onT,
—kgradu, -n = f(uy, —us) onT.
The surface-coupled 3D-1D elliptic problem over
AQxA:finda: A =R u:Q=Q,UQ, — R:
—divkgradu — 3(4 —@)dr =0 inQ,
—0skdsti+ (4 —a) =0 onT.

How large are the modelling errors:

luw — il x@,) <---,

lus — ully @, <.

[K&ppl, Vidotto, Wohlmuth, Zunino (2018), Laurino and Zunino (2019)]

Example (KVWZ, Fig. 2): Numerical modelling errors

‘—R:O 1==R=0.05 = R=0.025 ==R=0.0125 R=0.00625==R=0 003125‘

~—
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Molecular transport via perivascular pathways underpins human brain clearance

[Mestre et al, Nat. Comms, 2018 (Movie S2)]

-
respiration
(arbitrary)

= [ L

time (s)

40 pm, 00:07.9
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https://stm.sciencemag.org/content/4/147/147ra111

Perivascular spaces

Perivascular
spaces Interstitial fluid

[Simons Foundations lllustration of the glymphatic theory, Dan Xue (Dec 10:2020)]

lliff et al, 2012
Louveau et al., 2015
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https://www.simonsfoundation.org/2020/12/10/the-good-kind-of-brainwashing/

Time-dependent transport by convection and diffusion in moving perivascular spaces

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Consider a generalized annular cylinder €., (t)
with center line A representing a perivascular
space (PVS) and its outer surroundings (),
and their interface T'.

N

s

=
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Time-dependent transport by convection and diffusion in moving perivascular spaces

Consider a generalized annular cylinder €., (t)
with center line A representing a perivascular
space (PVS) and its outer surroundings (),
and their interface T'.

N

s

@*9/\ Qv

The net velocity @; = u; — w is the convective
velocity u; relative to domain velocity w

(2 € {v, s}).

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

3D-3D PVS-tissue transport

Find the concentrations ¢, (t) : — Rand

cs(t) — R such that
cs — div(Ds grad cs — 1.cs) = fsin Q4(t)
¢y — div(Dy grad ¢y — t.cy) = fuin Qy(t)

—(Dygradcy — 1,¢y) -y — C(cy —cs) =0 on ['(¢t),

+flux balance at ", boundary and initial conditions.
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space (PVS) and its outer surroundings (),
and their interface T'.

N

s

@*9/\ Qv

The net velocity @; = u; — w is the convective
velocity u; relative to domain velocity w

(2 € {v, s}).

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

3D-3D PVS-tissue transport

Find the concentrations ¢, (t) : — Rand

cs(t) — R such that
cs — div(Ds grad cs — 1.cs) = fsin Q4(t)
¢y — div(Dy grad ¢y — t.cy) = fuin Qy(t)

—(Dygradcy — 1,¢y) -y — C(cy —cs) =0 on ['(¢t),
+flux balance at ", boundary and initial conditions.

Theorem
Under natural assumptions on the geometry,

there exists a unique solution (c,(t),cs(t)) € W
that is uniformly bounded in terms of the data.

Proof.

Use abstract framework for parabolic PDEs on evolving
surfaces (Alphonse et al, 2015). O
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3D perivascular transport is described by 1D axial transport for constant cross-sections

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

N B

The perivascular space

Qu(t) = {A(s) + rcos(0)N(s) + rsin(0)B(s),
0<s<L,0<0<2m R <7< Ra}

where Ry = R1(S, t, 19), Ry = Rz(s,t, 9)
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3D perivascular transport is described by 1D axial transport for constant cross-sections

N B

AN
S /\

The perivascular space
Qu(t) = {A(s) + rcos(0)N(s) + rsin(0)B(s),
0<s<L0<K<O<2m R <r <Ry}

where Ry = Ri(s,t,0), R2 = Ra(s,t,0).

For each cross-section ©(s) with area A(s), outer
boundary 90, and perimeter P(s), define

(H)(s)

1 .
— f (cross-section average)
A(s) o(s)
1

f(s) P0s) /892(5)]‘ (circumf. average)

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

If cu(t) : Qu(t) — R solves

Orcy — div(D grad ¢, — upcy) = f iN Qy, (7)
(Dgradc, — icy) n+C(cy —cs) =0 onT,

and is constant on each cross-section

co(t, s,m,0) = () (t, 8),
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(Dgradc, — icy) n+C(cy —cs) =0 onT,

and is constant on each cross-section
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then é(t) : A — R satisfies:

01(AG)—0a (DADSE — Alun, o) E)+PC(6—8o) = Af).
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3D perivascular transport is described by 1D axial transport for constant cross-sections

The perivascular space
Qu(t) = {A(s) + rcos(0)N(s) + rsin(0)B(s),
0<s<L0<K<O<2m R <r <Ry}
where Ry = Ri(s,t,0), R2 = Ra(s,t,0).

For each cross-section ©(s) with area A(s), outer
boundary 90, and perimeter P(s), define

(H)(s)

f (cross-section average)

1
A(s) o(s)
1 / ,
= — f (circumf. average)
P(s) Jaoy,(s)

F(s)

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

If cu(t) : Qu(t) — R solves

Orcy — div(D grad ¢, — upcy) = f iN Qy, (7)
(Dgradc, — icy) n+C(cy —cs) =0 onT,

and is constant on each cross-section
Cv(tv S, T, 0) = <Cv>(t7 5)7
then é(t) : A — R satisfies:

01(AG)—0a (DADSE — Alun, o) E)+PC(6—8o) = Af).

Proof.
Integrate (7) over segment S of Q,(t), s € (s1, s2) €.0.

/8tcvzaz/cv—/ Cow M
S S oS

:/ ou(Ale)) = [ ewn
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Coupled 3D-1D perivascular transport equations are well-posed over H'(92) x H*(A)

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Surface coupling: Observe that (after i.b.p.):

/(csfcv)v://aez(csfcv)v &;F;oi@
//692*—5”@ /P —e) A
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Coupled 3D-1D perivascular transport equations are well-posed over H'(92) x H*(A)

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Surface coupling: Observe that (after i.b.p.):

[emen=] [ JORISE Cl—
z/j\/m(@_a@)@:/AP(@—e) A

Introduce bounded extension £ : X(Q,) — Y (Q).
Coupled 3D-1D perivascular transport equations
Findc: (0,T)x Q2 —Randé: (0,7) x A - Rs.t.
<6tC,U>+aQ( )+bA(E 1_}) = <5fvv> Vo,
(ADe,0) 4 an(c,v) +ba(é — & 0) = (f,d) V.
The bilinear forms:
aq(c,v) = (EDs grad ¢ — Eusc, grad v)q,
ap (é, 'lA)) = (DuAasé - A<uv,s>éy as{))/\ + (atAév ,{))A7 O
ba(c,v) = (PCe,v)a
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Coupled 3D-1D perivascular transport equations are well-posed over H'(92) x H*(A)

Surface coupling: Observe that (after i.b.p.):

/(Cs —cy)v = /A/a%(cs —Co)v
z//\/@@z(és—év)@:/AP(és—é)

Introduce bounded extension £ : X(Q,) — Y (Q).

Coupled 3D-1D perivascular transport equations

Findc: (0,T)x Q2 —Randé: (0,7) x A - Rs.t.
(0rc,v) +aalc,v) +ba(c— ¢,0) = (£f,v) Vv,
(ADe,0) 4 an(c,v) +ba(é — & 0) = (f,d) V.

The bilinear forms:

aq(c,v) = (EDs grad ¢ — Eusc, grad v)q,
an(é,0) = (DyAdsé — Aty s)¢, 0s0)a + (OLAE, D)a,
ba(c,v) = (PCe,v)a

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

——10)
A

Theorem

Assuming uniformly bounded data (A, (uv,s), Eus,
ED;), the coupled 3D-1D perivascular transport
equations is well-posed over

{c € L*(0,T, Hy(Q)),drc € L*(0,T, H ()} x
{é € L*(0,T, Hi(N)),de¢ € L*(0,T, Hy (M)}

Proof.

Use J.-L. Lions theorem over HJ(Q) x H} (A) and
show that the coupled variational form is continuous and
satisfies a Garding-type inequality. O
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What are the mechanisms underlying perivascular flow

[Daversin-Catty, Vinje, Mardal, Rognes (2020)]

— 250

Velocity magnitude (um/s)

Pressure (Pa)

Incompressible Stokes flow (low Reynolds, low Womersley numbers)
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https://doi.org/10.1371/journal.pone.0244442

Rigid motions, arterial wall pulsations and a static pressure gradient induced PVS
transport in agreement with experimental findings
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Rigid motions, arterial wall pulsations and a static pressure gradient induced PVS
transport in agreement with experimental findings

B)so ol

-——- p2

60| --- p3
— inlet

outlet

Position (pm)
B
(@]

N
o

Time (s)

Wall pulsation frequency: 2.2 Hz. Static pressure gradient: 1.46 mmHg.
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Motion- and pressure-driven perivascular flow is well-approximated by 1D models

[Daversin-Catty, Gjerde, Rognes (2022)]

pressure (Pa) )
cross-section flux (JUL/s)

o2 0.002
—01 0.001
—00 — 0.000
velocity (mm/s) -0.001
— 03 [
o2 -0.002
— 01 /)\
—00 &4 ¢ ¢
7 ’
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Will the 3D-3D and 3D-1D perivascular transport models agree for infinitely thin vessels?

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Target: To quantify the modelling errors in the
PVS:

llew — é”Lz(O,T,Lz(QU))y

and in the surroundings

lles — C”L2(0,T,L2(Qs))-

¢s, cv (3D-3D) ¢, & (3D-1D)

0.00 0.03
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Will the 3D-3D and 3D-1D perivascular transport models agree for infinitely thin vessels?

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Target: To quantify the modelling errors in the

PVS: 3D-3D model

llew = el L2 0,1, 2(920))5
L2(0,T,L2(2)) cs(t) 1 Qs(t) = R, ¢y(t) : Qu(t) — R solve:

and in the surroundings
Orcs —div(Dgrad cs — ucs) = f in Q,
Orcy —div(D grad ¢y, — ucy) = f in Qo
(Dgradc, — ticy) *n+¢(co —c.) =0 onT,

lles — C”L2(0,T,L2(Qs))-

cs, ¢y (3D-3D) ¢, ¢ (3D-1D) +flux balance at ', boundary and initial conditions.

3D-1D model
c(t): Q = R, é(t) : A — R solve:

Orc —div(EDgradec — Euc) + (¢ —é)or =Ef inQ
0:(Aé) — 05 (DADsé — Alus)é) + P¢(é— ) = A(f)

0.00 0.03
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Quantifying how the modelling error in perivascular spaces (PVS) depend on their width e

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Proof (w=0,D=1,( =1, f =0).

Introduce PVS modelling error e = ¢, — ¢.
(1) Introduce a dual problem,

- <aih7 ¢> + (gradh7 grad ¢) + (h7 ¢)T
— (ugradh,¢) = (g9,¢) Vo€ Hl(ﬂv),

that is stable in L = L*(0, T, L*(2,))

[k, grad bllz +- - < [lgllz-
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(I1) Use duality (g, ¢ = e) to obtain error identity

e
lellf = [ (s =.)é. rad )+ B —(Pe ) .
i N

+ ((h) = h,& = &)r + (e(0), h(0))) + . ..
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The trace inequality in non-convex domains and dependence on the domain size

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

3
S

//’

Lemma (Trace versus PVS)

For an annulus © with diameter e = 2R-, the
following trace inequality holds, with K
independent of ¢, forv € H'(©)

2 —1 2 2
lollz200) < K (€ [vll72(0) + €l grad v||z2(e))

Proof.

Use similar argument as standard result for convex
domains and e.g. circles, argue for smooth functions
and use density in H1(©). O
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For an annulus © with diameter e = 2R-, the
following trace inequality holds, with K
independent of ¢, forv € H'(©)

2 —1 2 2
lollz200) < K (€ [vll72(0) + €l grad v||z2(e))

Proof.

Use similar argument as standard result for convex
domains and e.g. circles, argue for smooth functions
and use density in H1(©). O

[Masri, Zeinhofer, Kuchta, Rognes (2023)]
Lemma (Trace versus surroundings)

For a domain Qs penetrated by a cylinder > with
boundary T' and with cross-section diameter ¢, the
following trace inequality holds, with K
independent of ¢, forv € H"(Q5)

2 2
lollz2ry < Kellnelllvllzq,)

0.32||—~R\/®
— R

0.3

0.28

0.26

0.24

0.22

0.2

I I
0 0.05 0.1 0.15 0.2 0.25

0.02 0.03 0.04 0.05 0.06
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Quantifying how the modelling error in perivascular spaces (PVS) depend on their width e

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Proof (w=0,D=1,(=1,f=0). Recall that

Introduce PVS modelling error e = ¢, — ¢é. 1 _ 1
(v) = v, v=3 v.
S) ISP

(1) Introduce a dual problem,
(1) Bound each term e.g.

— (Och, ¢) + (grad h, grad ¢) + (h, ¢)r
- (Ugradh7¢) = (97 ¢’) v d’ S Hl(Qv):

that is stable in L = L*(0, T, L*(2,))

((R) = h,e = &)r < [[{h) = Rlirlle — ¢lIr
< [IKh) = Rllrfle = éllr

Forv e H'(Q,),

h, grad hl[ +--- < [lgllz- ) ,
o) = ot = [ o= (o)ley <. 2
(I1) Use duality (g, » = e) to obtain error identity

O
lell2 = / (o —i10)é grad h)-+(cs, h)r—(PE, h)a
+ ((h) — h,¢— é)r + (e(0),h(0))) + ...
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Quantifying how the modelling error in perivascular spaces (PVS) depend on their width e

Proof (w=0,D=1,( =1, f =0).

Introduce PVS modelling error e = ¢, — ¢é.
(1) Introduce a dual problem,

- <ath7 ¢> +
— (ugradh, ¢) =

(grad h, grad ¢) + (h, $)r
(9.9) VoeH (Q),

that is stable in L = L*(0, T, L*(2,))

7, grad [z +--- < gl

(I1) Use duality (g, » = e) to obtain error identity

T
ndﬁ:1A (o —1)2, grad h)+(cs, h)r— (P2, 7).

+ ((h) = hye = &)r + (e(0),h(0))) + ...

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Recall that

(1) Bound each term e.g.

((h) = h,e = &)r < [[(h) — hllr|lc — é]lx

< [IKh) = Rllrfle = éllr

Forv e H'(Q,),

wfmﬁ:/nwww%%
< [ (o= 0l + el arad o)
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The Poincaré inequality in non-convex domains and dependence on the domain size

Lemma (Poincaré inequality over an annulus) 3L
For an annulus © of diameter ¢, there exists a 0.9
constant K independent of ¢ such that

0.7
lv—=(0) |2y < Kellgradv| 120, Vv e H' () 2F

0.5
Proof.
Lack of convexity is not a problem here, see 1 0.3
e.g. Guermond and Ern (2021). O

0.1

2 | | | |
1.5 2 2.9 3 Ri/R,
o &
/ Ke depends linearly on € = 2R», both as R; — 0, and

R1 — Ro.
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Quantifying how the modelling error in perivascular spaces (PVS) depend on their width e

Proof (w=0,D=1,( =1, f =0).

Introduce PVS modelling error e = ¢, — ¢é.
(1) Introduce a dual problem,

- <ath7 ¢> +
— (ugradh, ¢) =

(grad h, grad ¢) + (h, $)r
(9.9) VoeH (Q),

that is stable in L = L*(0, T, L*(2,))

7, grad [z +--- < gl

(I1) Use duality (g, » = e) to obtain error identity

T
ndﬁ:1A (o —1)2, grad h)+(cs, h)r— (P2, 7).

+ ((h) = hye = &)r + (e(0),h(0))) + ...

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Recall that

(1) Bound each term e.g.

((h) = h,e = &)r < [[(h) — hllr|lc — é]lx

< [IKh) = Rllrfle = éllr

Forv e H'(Q,),

wfmﬁ:/nwww%%
< [ (o= 0l + el arad o)
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Quantifying how the modelling error in perivascular spaces (PVS) depend on their width e

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Proof (w=0,D=1,(=1,f=0). Recall that

Introduce PVS modelling error e = ¢, — ¢é. 1 _ 1
(w)y=+% [ v, v=3 v.
S) ISP

(1) Introduce a dual problem,
(1) Bound each term e.g.

— (Och, ¢) + (grad h, grad ¢) + (h, ¢)r
- (Ugradh7¢) = (97 ¢’) v d’ S Hl(Qv):

that is stable in L = L*(0, T, L*(2,))

((R) = h,e = &)r < [[{h) = Rlirlle — ¢lIr
< [IKh) = Rllrfle = éllr

Forv e H'(Q,),
I, gradhlls + - < llgll-
o) — vlf? = / o — ()2,

(I1) Use duality (g, » = e) to obtain error identity
S [ Mo )l + el grad ol
A

T
lell?. = / (o —1)2, grad h)-+(cs, B)r— (P&, F)

) < / el grad o]3 < ellolZa,). O
+ (B = Bz — O)r + (e(0), h(0))) + ... A
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The modelling error in the perivascular spaces decays as (¢| In¢|)'/? modulo non-axial data

Theorem (Model error in the perivascular space)

Let ¢y, cs be weak solutions to the coupled 3D-3D
perivascular transport problem and assume that
¢, (0) € H'(Q,). Let ¢, ¢ be the weak solutions to
the reduced coupled 3D-1D perivascular transport
problem.

Then, for e = max diam ©(s, t)

llew — é||L2(0,T;L2(Q,,))
<e+ 1?4 (¢|1n e\)]"ﬂu
+ Huv,7‘~, Uy, H + max as ‘ Rl: RZ‘
Here, the inequality constant(s) depend on the

data, parameters and the solutions ¢, ¢, and cs,
but are bounded independently of e.

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

¢s, ¢y (3D-3D)

¢, & (3D-1D)

0.00 0.03
2¢ | E, rate
01 | 4.39 x 107* -
(hmax 7 0.02) 005 | 526 x 107° 3.06
0.025 | 1.41 x10° 1.90
0.0125 | 7.90 x 107% 0.84
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The modelling error in the surroundings decays as (e| In ¢|)'/? for regular solutions

Theorem (Model error in the surroundings)

Let ¢, cs be weak solutions to the coupled 3D-3D
perivascular transport problem and assume that
c(0) € H'(Q,). Let ¢, ¢ be the weak solutions to
the reduced coupled 3D-1D perivascular transport
problem. Let Q2 be convex.

Then, for e = max diam ©(s, t)
lles — ellLz(o,m:22 0. (1))
<y ellne| + (c/lne))' /"

Here, the inequality constant(s) depend on the
data, parameters, and solutions c, c¢s and c,,, but
are bounded independently of e.

[Masri, Zeinhofer, Kuchta, Rognes (2023)]

¢s, ¢y (3D-3D)

¢, & (3D-1D)

0.00 0.03
2¢ | E, rate
01 | 443 x 107* -
(hmax ~0.02) 0,05 | 1.38x 107* 1.69
0.025 | 3.64x107° 1.92
0.0125 | 9.74 x 10~ 1.90
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