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Laplace’s equation, boundary conditions, and the trace theorem

Define u ∈ H1
g (Ω) ≡W 1,2

g (Ω) such that∫
Ω

gradu · grad v dx = 0 ∀ v ∈ H1
0 (Ω)

where H1
g = {u ∈ L2 | gradu ∈ L2 | tru = g}

In what sense is u solving

−∆u = 0 in Ω,

u = g on ∂Ω,

... in terms of continuity, differentiability ...?

For Ω ⊂ Rd (d > 1), u ∈ H1
g need not be

continuous; e.g.

u(x, y) =
√
− ln(x2 + y2) ∈ H1(Ω ⊂ R2)

Theorem (Trace theorem)

Assume that Ω is bounded and Lipschitz. There
exists a linear operator tr : W 1,p(Ω)→ Lp(∂Ω)
such that for 1 6 p <∞

tru = u|∂Ω, ∀ u ∈W 1,p ∩ C(Ω̄),

‖ tru‖Lp(∂Ω) . ‖u‖W1,p(Ω) ∀ u ∈W 1,p(Ω).
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When are traces with higher dimensional gaps well-defined?

Consider a submanifold Λ ⊂ Ω of dimension d− 2.

When is u|Λ well-defined and in what sense?

Theorem (Sobolev embedding theorem–)

If Ω ⊂ Rd is Lipschitz, then for p ≥ d
2

,

W 2,p(Ω) ⊆ C(Ω̄).

Theorem (Morrey’s inequality–)

If Ω ⊂ Rd is Lipschitz, then for p > d,

W 1,p(Ω) ⊆ C(Ω).
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Systems of elliptic equations coupled between d× (d− 2)D domains

Example: tissue perfusion

Consider steady perfusion in a biological tissue
represented by Ω and an embedded network of
topologically one-dimensional blood vessels Λ.

Define spatial coordinates: x ∈ Ω ⊂ Rd and
s ∈ Λ ⊂ R.

Find u : Ω→ R and û : Λ→ R such that

−div(k gradu)− f(u, û) = 0 in Ω,

−∂s(k̂∂sû) + f̂(u, û) = 0 in Λ.

Here, k and k̂ are the respective hydraulic
conductivities, and f and f̂ represent the flux into
Ω from Λ and into Λ from Ω, respectively.

f̂(u, û) = β(û− ū), ū = ‖∂C‖−1

∫
∂C

u dθ,

f(u, û) = f̂(u, û)δΛ.

[D’Angelo and Quarteroni (2008)]
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https://www.worldscientific.com/doi/abs/10.1142/S0218202508003108


[Zebrafish vasculature, Eunice Kennedy Shriver National Institute of Child Health and Human Development]
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[Lymphatic vessels, William Cruikshank, Wellcome Library, London]
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[Pepper roots, New York Times Illustration, Jonathan Bartlett (Dec 14 2020)]
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https://www.nytimes.com/2020/12/14/science/roots-competition-game-theory.html


[Perivascular spaces, NIH Research Matters Graphics, Maiken Nedergaard (Oct 28 2013)]
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The D’A-Q. 3D-1D equations are well-posed in weighted Sobolev spaces (only)
[D’Angelo and Quarteroni (2008)]

Find u : Ω→ R and û : Λ→ R such that

− div(k gradu)− β(û− ū)δΛ = 0 in Ω, (3a)

−∂s(k̂∂sû) + β(û− ū) = 0 in Λ, (3b)

where ū is a circumferential average:

ū(s) = (2πR)−1

∫ 2π

0

u(s,R, θ) dθ, s ∈ Λ.

Introduce weighted Sobolev spaces α ∈ (−1, 1):

L2
α(Ω) = {u |distαu ∈ L2(Ω), dist(x) = dist(x,Λ)}

H1
α(Ω) = {u ∈ L2

α(Ω) | gradu ∈ L2
α(Ω)d}

Idea: Analyze the decoupled elliptic problem with
(low regularity) line measure terms: given û, find
u : Ω→ R solving (3a).

[Stampacchia (1965), Brezis and Strauss (1973), Scott (1973), Casas (1985)]

What are U, V such that u ∈ U solves

(k gradu, grad v)Ω + (βū, v)Λ = (βû, v)Λ, (4)

for all v ∈ V ? (Not H1(Ω)!)

Theorem (Well-posedness, D’A & Q (2008))

There exists 0 < α < 1 such that (4) with
U = H̊1

α(Ω), V = H1
−α(Ω) is well-posed.

Proof.

Via a generalized Lax-Milgram theorem, continuity and
coercivity in the weighted spaces.
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ū(s) = (2πR)−1

∫ 2π

0

u(s,R, θ) dθ, s ∈ Λ.

Introduce weighted Sobolev spaces α ∈ (−1, 1):

L2
α(Ω) = {u |distαu ∈ L2(Ω), dist(x) = dist(x,Λ)}

H1
α(Ω) = {u ∈ L2

α(Ω) | gradu ∈ L2
α(Ω)d}

Idea: Analyze the decoupled elliptic problem with
(low regularity) line measure terms: given û, find
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Coupling over the interface surface gives well-posedness in standard Sobolev spaces
[Köppl, Vidotto, Wohlmuth, Zunino (2018) (d = 2)]

Consider the curve Λ, the cylinder surface Γ, and
the embedding domain Ω ⊂ Rd.

Q1 Existence and uniqueness of solutions?

Q2 How are these equations derived?

Q3 What is the modelling error?

Q4 What is the approximation error?

New idea: Analyze the decoupled 3D problem
with (not line but) surface measure terms: given
ũ : Γ→ R, find u : Ω→ R such that

−div(k gradu)− β(ũ− ū)δΓ = 0 in Ω.

What are U, V such that u ∈ U solves

(k gradu, grad v)Ω + (βū, v)Γ = (βũ, v)Γ, (5)

for all v ∈ V ?

Theorem (Well-posedness, KVWZ (2018))

For R sufficiently small, (5) is well-posed for
U × V = H1

0 (Ω)×H−1(Ω), and

u ∈ H1
0 (Ω) ∩H

3
2
−ε

Proof.

Lax-Milgram with tailored trace inequality.
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(k gradu, grad v)Ω + (βū, v)Γ = (βũ, v)Γ, (5)

for all v ∈ V ?

Theorem (Well-posedness, KVWZ (2018))

For R sufficiently small, (5) is well-posed for
U × V = H1

0 (Ω)×H−1(Ω), and

u ∈ H1
0 (Ω) ∩H

3
2
−ε

Proof.

Lax-Milgram with tailored trace inequality.

12 / 36



Coupling over the interface surface gives well-posedness in standard Sobolev spaces
[Köppl, Vidotto, Wohlmuth, Zunino (2018) (d = 2)]

Consider the curve Λ, the cylinder surface Γ, and
the embedding domain Ω ⊂ Rd.

Q1 Existence and uniqueness of solutions?

Q2 How are these equations derived?

Q3 What is the modelling error?

Q4 What is the approximation error?

New idea: Analyze the decoupled 3D problem
with (not line but) surface measure terms: given
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How well do coupled 3D-1D elliptic problems approximate their 3D-3D counter parts?

The original 3D-3D elliptic problem over Ωs × Ωv:
find us : Ωs → R, uv : Ωv → R:

− div k gradus = 0 in Ωs,

− div k graduv = 0 in Ωv,

k grad(us + uv) · n = 0 on Γ,

−k graduv · n = β(uv − us) on Γ.

The surface-coupled 3D-1D elliptic problem over
Ω× Λ: find û : Λ→ R, u : Ω = Ωs ∪ Ωv → R:

−div k gradu− β(û− ū)δΓ = 0 in Ω,

−∂sk̂∂sû+ β(û− ū) = 0 on Γ.

How large are the modelling errors:

‖uv − û‖X(Ωv) 6 . . . ,

‖us − u‖Y (Ωs) 6 . . . ?

[Köppl, Vidotto, Wohlmuth, Zunino (2018), Laurino and Zunino (2019)]

Example (KVWZ, Fig. 2): Numerical modelling errors
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Molecular transport via perivascular pathways underpins human brain clearance

[Mestre et al, Nat. Comms, 2018 (Movie S2)]
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https://stm.sciencemag.org/content/4/147/147ra111


[[Simons Foundations Illustration of the glymphatic theory, Dan Xue (Dec 10 2020)]]
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Time-dependent transport by convection and diffusion in moving perivascular spaces
[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Consider a generalized annular cylinder Ωv(t)
with center line Λ representing a perivascular
space (PVS) and its outer surroundings Ωs(t),
and their interface Γ.

The net velocity ũi = ui − w is the convective
velocity ui relative to domain velocity w
(i ∈ {v, s}).

3D-3D PVS-tissue transport

Find the concentrations cv(t) : Ωv(t)→ R and
cs(t) : Ωs(t)→ R such that

∂tcs − div(Ds grad cs − uscs) = fs in Ωs(t)

∂tcv − div(Dv grad cv − uccv) = fv in Ωv(t)

− (Dv grad cv − ũvcv) · nv − ζ(cv − cs) = 0 on Γ(t),

+flux balance at Γ, boundary and initial conditions.

Theorem

Under natural assumptions on the geometry,
there exists a unique solution (cv(t), cs(t)) ∈W
that is uniformly bounded in terms of the data.

Proof.

Use abstract framework for parabolic PDEs on evolving
surfaces (Alphonse et al, 2015).
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3D perivascular transport is described by 1D axial transport for constant cross-sections
[Masri, Zeinhofer, Kuchta, Rognes (2023)]

The perivascular space

Ωv(t) = {λ(s) + r cos(θ)N(s) + r sin(θ)B(s),

0 < s < L, 0 6 θ < 2π,R1 < r < R2}

where R1 = R1(s, t, θ), R2 = R2(s, t, θ).

For each cross-section Θ(s) with area A(s), outer
boundary ∂Θ2 and perimeter P (s), define

〈f〉(s) =
1

A(s)

∫
Θ(s)

f (cross-section average)

f̄(s) =
1

P (s)

∫
∂Θ2(s)

f (circumf. average)

If cv(t) : Ωv(t)→ R solves

∂tcv − div(D grad cv − uvcv) = f in Ωv, (7)

(D grad cv − ũcv) · n+ ζ(cv − cs) = 0 on Γ,
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then ĉ(t) : Λ→ R satisfies:

∂t(Aĉ)−∂s (DA∂sĉ−A〈uv,s〉ĉ)+Pζ(ĉ−c̄s) = A〈f〉.

Proof.
Integrate (7) over segment S of Ωv(t), s ∈ (s1, s2) e.g.∫

S
∂tcv = ∂t

∫
S
cv −

∫
∂S

cvw · n

=

∫ s2

s1

∂t(A〈cv〉)−
∫
∂S

cvw · n.

18 / 36



3D perivascular transport is described by 1D axial transport for constant cross-sections
[Masri, Zeinhofer, Kuchta, Rognes (2023)]

The perivascular space

Ωv(t) = {λ(s) + r cos(θ)N(s) + r sin(θ)B(s),

0 < s < L, 0 6 θ < 2π,R1 < r < R2}

where R1 = R1(s, t, θ), R2 = R2(s, t, θ).

For each cross-section Θ(s) with area A(s), outer
boundary ∂Θ2 and perimeter P (s), define

〈f〉(s) =
1

A(s)

∫
Θ(s)

f (cross-section average)

f̄(s) =
1

P (s)

∫
∂Θ2(s)

f (circumf. average)

If cv(t) : Ωv(t)→ R solves

∂tcv − div(D grad cv − uvcv) = f in Ωv, (7)
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Coupled 3D-1D perivascular transport equations are well-posed over H1(Ω)×H1(Λ)

[Masri, Zeinhofer, Kuchta, Rognes (2023)]
Surface coupling: Observe that (after i.b.p.):∫

Γ

(cs − cv)v =

∫
Λ

∫
∂Θ2

(cs − cv)v

≈
∫

Λ

∫
∂Θ2

(c̄s − c̄v)v̄ =

∫
Λ

P (c̄s − ĉ)v̄

Introduce bounded extension E : X(Ωs)→ Y (Ω).

Coupled 3D-1D perivascular transport equations

Find c : (0, T )×Ω→ R and ĉ : (0, T )×Λ→ R s.t.

〈∂tc, v〉+ aΩ(c, v) + bΛ(c̄− ĉ, v̄) = 〈Ef, v〉 ∀ v,
〈A∂tĉ, v̂〉+ aΛ(c, v) + bΛ(ĉ− c̄, v̂) = 〈f̄ , v̂〉 ∀ v̂.

The bilinear forms:

aΩ(c, v) = (EDs grad c− Eusc, grad v)Ω,

aΛ(ĉ, v̂) = (DvA∂sĉ−A〈uv,s〉ĉ, ∂sv̂)Λ + (∂tAĉ, v̂)Λ,

bΛ(c, v) = (Pζc, v)Λ

Theorem

Assuming uniformly bounded data (A, 〈uv,s〉, Eus,
EDs), the coupled 3D-1D perivascular transport
equations is well-posed over

{c ∈ L2(0, T,H1
0 (Ω)), ∂tc ∈ L2(0, T,H−1(Ω))}×

{ĉ ∈ L2(0, T,H1
A(Λ)), ∂tĉ ∈ L2(0, T,H−1

A (Λ))}

Proof.

Use J.-L. Lions theorem over H1
0 (Ω)×H1

A(Λ) and
show that the coupled variational form is continuous and
satisfies a Gårding-type inequality.
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A(Λ)), ∂tĉ ∈ L2(0, T,H−1

A (Λ))}

Proof.

Use J.-L. Lions theorem over H1
0 (Ω)×H1

A(Λ) and
show that the coupled variational form is continuous and
satisfies a Gårding-type inequality.

19 / 36



Coupled 3D-1D perivascular transport equations are well-posed over H1(Ω)×H1(Λ)

[Masri, Zeinhofer, Kuchta, Rognes (2023)]
Surface coupling: Observe that (after i.b.p.):∫

Γ

(cs − cv)v =

∫
Λ

∫
∂Θ2

(cs − cv)v

≈
∫

Λ

∫
∂Θ2

(c̄s − c̄v)v̄ =

∫
Λ

P (c̄s − ĉ)v̄
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{ĉ ∈ L2(0, T,H1
A(Λ)), ∂tĉ ∈ L2(0, T,H−1

A (Λ))}

Proof.

Use J.-L. Lions theorem over H1
0 (Ω)×H1

A(Λ) and
show that the coupled variational form is continuous and
satisfies a Gårding-type inequality.

19 / 36



o
o
f

¥÷*¥¥¥.÷¥¥÷÷÷÷÷÷☒
Foot

÷÷:÷É÷¥÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷¥ .
Perivascular flow underlying perivascular transport
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What are the mechanisms underlying perivascular flow
[Daversin-Catty, Vinje, Mardal, Rognes (2020)]

Incompressible Stokes flow (low Reynolds, low Womersley numbers)
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Rigid motions, arterial wall pulsations and a static pressure gradient induced PVS
transport in agreement with experimental findings
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Rigid motions, arterial wall pulsations and a static pressure gradient induced PVS
transport in agreement with experimental findings

Wall pulsation frequency: 2.2 Hz. Static pressure gradient: 1.46 mmHg.
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Motion- and pressure-driven perivascular flow is well-approximated by 1D models
[Daversin-Catty, Gjerde, Rognes (2022)]
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Can 3D-1D models quantify perivascular flow and transport?
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Will the 3D-3D and 3D-1D perivascular transport models agree for infinitely thin vessels?
[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Target: To quantify the modelling errors in the
PVS:

‖cv − ĉ‖L2(0,T,L2(Ωv)),

and in the surroundings

‖cs − c‖L2(0,T,L2(Ωs)).

cs, cv (3D-3D) c, ĉ (3D-1D)

3D-3D model

cs(t) : Ωs(t)→ R, cv(t) : Ωv(t)→ R solve:

∂tcs − div(D grad cs − ucs) = f in Ωs,

∂tcv − div(D grad cv − ucv) = f in Ωv,

(D grad cv − ũcv) · n+ ζ(cv − cs) = 0 on Γ,

+flux balance at Γ, boundary and initial conditions.

3D-1D model

c(t) : Ω→ R, ĉ(t) : Λ→ R solve:

∂tc− div(ED grad c− Euc) + ζ(c̄− ĉ)δΓ = Ef in Ω

∂t(Aĉ)− ∂s (DA∂sĉ−A〈us〉ĉ) + Pζ(ĉ− c̄) = A〈f〉
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Quantifying how the modelling error in perivascular spaces (PVS) depend on their width ε
[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Proof (w = 0, D = 1, ζ = 1, f = 0).

Introduce PVS modelling error e = cv − ĉ.

(I) Introduce a dual problem,

− 〈∂th, φ〉+ (gradh, gradφ) + (h, φ)Γ

− (u gradh, φ) = (g, φ) ∀ φ ∈ H1(Ωv),

that is stable in L = L2(0, T, L2(Ωv))

‖h, gradh‖L + · · · . ‖g‖L.

(II) Use duality (g, φ = e) to obtain error identity

‖e‖2L =

∫ T

0

((uv−ûv)ĉ, gradh)+(cs, h)Γ−(P c̄, h̄)Λ

+ (〈h〉 − h̄, c̄− ĉ)Γ + (e(0), h(0))) + . . .

.

Recall that

〈v〉 = 1
A

∫
Θ

v, v̄ = 1
P

∫
∂Θ2

v.

(III) Bound each term e.g.

(〈h〉 − h̄, c̄− ĉ)Γ 6 ‖〈h〉 − h̄‖Γ‖c̄− ĉ‖Γ
6 ‖〈h〉 − h‖Γ‖c̄− ĉ‖Γ

For v ∈ H1(Ωv),

‖〈v〉 − v‖2Γ =

∫
Λ

‖v − 〈v〉‖2∂Θ2
6 . . . ?

Trace inequality?
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((uv−ûv)ĉ, gradh)+(cs, h)Γ−(P c̄, h̄)Λ

+ (〈h〉 − h̄, c̄− ĉ)Γ + (e(0), h(0))) + . . .

.

Recall that

〈v〉 = 1
A

∫
Θ

v, v̄ = 1
P

∫
∂Θ2

v.

(III) Bound each term e.g.
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6 ‖〈h〉 − h‖Γ‖c̄− ĉ‖Γ
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(I) Introduce a dual problem,

− 〈∂th, φ〉+ (gradh, gradφ) + (h, φ)Γ

− (u gradh, φ) = (g, φ) ∀ φ ∈ H1(Ωv),

that is stable in L = L2(0, T, L2(Ωv))

‖h, gradh‖L + · · · . ‖g‖L.

(II) Use duality (g, φ = e) to obtain error identity

‖e‖2L =

∫ T

0
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(〈h〉 − h̄, c̄− ĉ)Γ 6 ‖〈h〉 − h̄‖Γ‖c̄− ĉ‖Γ
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The trace inequality in non-convex domains and dependence on the domain size
[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Lemma (Trace versus PVS)

For an annulus Θ with diameter ε = 2R2, the
following trace inequality holds, with K
independent of ε, for v ∈ H1(Θ)

‖v‖2L2(∂Θ) 6 K
(
ε−1‖v‖2L2(Θ) + ε‖ grad v‖2L2(Θ)

)
Proof.

Use similar argument as standard result for convex
domains and e.g. circles, argue for smooth functions
and use density in H1(Θ).

Lemma (Trace versus surroundings)

For a domain Ωs penetrated by a cylinder Σ with
boundary Γ and with cross-section diameter ε, the
following trace inequality holds, with K
independent of ε, for v ∈ H1(Ωs)

‖v‖2L2(Γ) 6 Kε| ln ε|‖v‖2H1(Ωs)
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domains and e.g. circles, argue for smooth functions
and use density in H1(Θ).

Lemma (Trace versus surroundings)

For a domain Ωs penetrated by a cylinder Σ with
boundary Γ and with cross-section diameter ε, the
following trace inequality holds, with K
independent of ε, for v ∈ H1(Ωs)

‖v‖2L2(Γ) 6 Kε| ln ε|‖v‖2H1(Ωs)
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Quantifying how the modelling error in perivascular spaces (PVS) depend on their width ε
[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Proof (w = 0, D = 1, ζ = 1, f = 0).

Introduce PVS modelling error e = cv − ĉ.

(I) Introduce a dual problem,

− 〈∂th, φ〉+ (gradh, gradφ) + (h, φ)Γ

− (u gradh, φ) = (g, φ) ∀ φ ∈ H1(Ωv),

that is stable in L = L2(0, T, L2(Ωv))

‖h, gradh‖L + · · · . ‖g‖L.

(II) Use duality (g, φ = e) to obtain error identity

‖e‖2L =

∫ T

0

((uv−ûv)ĉ, gradh)+(cs, h)Γ−(P c̄, h̄)Λ

+ (〈h〉 − h̄, c̄− ĉ)Γ + (e(0), h(0))) + . . .

.Recall that

〈v〉 = 1
A

∫
Θ

v, v̄ = 1
P

∫
∂Θ2

v.

(III) Bound each term e.g.

(〈h〉 − h̄, c̄− ĉ)Γ 6 ‖〈h〉 − h̄‖Γ‖c̄− ĉ‖Γ
6 ‖〈h〉 − h‖Γ‖c̄− ĉ‖Γ

For v ∈ H1(Ωv),

‖〈v〉 − v‖2Γ =

∫
Λ

‖v − 〈v〉‖2∂Θ2
6 . . . ?

Trace inequality?
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For v ∈ H1(Ωv),

‖〈v〉 − v‖2Γ =

∫
Λ

‖v − 〈v〉‖2∂Θ2

6
∫

Λ

K
(
ε−1‖v − 〈v〉‖2Θ + ε‖ grad v‖2Θ

)
Poincaré inequality?

29 / 36



The Poincaré inequality in non-convex domains and dependence on the domain size

Lemma (Poincaré inequality over an annulus)

For an annulus Θ of diameter ε, there exists a
constant K independent of ε such that

‖v−〈v〉‖L2(Θ) 6 Kε‖ grad v‖L2(Θ), ∀ v ∈ H1(Θ)

Proof.

Lack of convexity is not a problem here, see
e.g. Guermond and Ern (2021).

Kε depends linearly on ε = 2R2, both as R1 → 0, and
R1 → R2.
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Quantifying how the modelling error in perivascular spaces (PVS) depend on their width ε
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(〈h〉 − h̄, c̄− ĉ)Γ 6 ‖〈h〉 − h̄‖Γ‖c̄− ĉ‖Γ
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For v ∈ H1(Ωv),

‖〈v〉 − v‖2Γ =

∫
Λ

‖v − 〈v〉‖2∂Θ2

.
∫

Λ

ε−1‖v − 〈v〉‖2Θ + ε‖ grad v‖2Θ

.
∫

Λ

ε‖ grad v‖2Θ . ε‖v‖2H1(Ωv).
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The modelling error in the perivascular spaces decays as (ε| ln ε|)1/2 modulo non-axial data
[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Theorem (Model error in the perivascular space)

Let cv, cs be weak solutions to the coupled 3D-3D
perivascular transport problem and assume that
cv(0) ∈ H1(Ωv). Let c, ĉ be the weak solutions to
the reduced coupled 3D-1D perivascular transport
problem.

Then, for ε = max diam Θ(s, t)

‖cv − ĉ‖L2(0,T ;L2(Ωv))

. ε+ ε1/2 + (ε| ln ε|)1/2

+ ‖uv,r, uv,θ‖+ max ∂s|R1, R2|

Here, the inequality constant(s) depend on the
data, parameters and the solutions c, ĉ, and cs,
but are bounded independently of ε.

cs, cv (3D-3D) c, ĉ (3D-1D)

(hmax ≈ 0.02)

2ε Ev rate

0.1 4.39× 10−4 -
0.05 5.26× 10−5 3.06

0.025 1.41× 10−5 1.90
0.0125 7.90× 10−6 0.84
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The modelling error in the surroundings decays as (ε| ln ε|)1/2 for regular solutions
[Masri, Zeinhofer, Kuchta, Rognes (2023)]

Theorem (Model error in the surroundings)

Let cv, cs be weak solutions to the coupled 3D-3D
perivascular transport problem and assume that
cv(0) ∈ H1(Ωv). Let c, ĉ be the weak solutions to
the reduced coupled 3D-1D perivascular transport
problem. Let Ω be convex.

Then, for ε = max diam Θ(s, t)

‖cs − c‖L2(0,T ;L2(Ωs(t)))

. ε2/3 + ε| ln ε|+ (ε| ln ε|)1/2.

Here, the inequality constant(s) depend on the
data, parameters, and solutions c, cs and cv, but
are bounded independently of ε.

cs, cv (3D-3D) c, ĉ (3D-1D)

(hmax ≈ 0.02)

2ε Es rate

0.1 4.43× 10−4 -
0.05 1.38× 10−4 1.69

0.025 3.64× 10−5 1.92
0.0125 9.74× 10−6 1.90
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Yes, 3D-1D models can quantify perivascular flow and transport!
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Core message

Mathematical models can give new insight into
medicine, – and the human brain gives an
extraordinary rich setting for mathematics and
numerics!
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