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Abstract

Analysis of idealised thin single-crystal wires under torsion based on the continuum theory of
dislocations gives results in accordance with the critical thickness theory. The dislocation-free
zone near the wire surface and the nearly-zero stress around the wire axis are predicted by
both the continuum dislocation theory and critical thickness theory. It is demonstrated that
the size effect at the onset of yielding, the distributions of stress and geometrically necessary
dislocations in the thin wires in torsion, simply result from the critical thickness effect. A
continuous increase of plastic strain from the neutral axis toward the wire surface is
indicated. The plastic strain becomes (nearly) flat around the wire surface. Such a
phenomenon is attributed to the fact that this is the region in which dislocations sources can
operate, to provide the geometrically necessary dislocations required by the plastic strain
gradient beneath. The results of continuum dislocation theory quantitatively elucidate the
critical thickness phenomenon occurred in single-crystal wires under torsion. This links the
continuum dislocation theory to the underlying physical picture of Matthews’ critical

thickness theory.

Keywords: Dislocations; Critical thickness; Size effects; Strain gradient plasticity; Torsion
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1. Introduction

The size-dependent plasticity of micron-dimensioned metallic wires, i.e. the flow stress of
metallic wires increasing with decreasing diameter, has attracted tremendous attention since
the seminal work by Fleck et al. [1]. Torsion of thin metallic wires has been recognized as a
benchmark experiment for exploring the strain-gradient effect at small scales [1-6] since it
provides both the most sensitive and the most wide-ranging data in studies of the size effect
in confined plasticity. In wire torsion, twist angle can be measured much more accurately
than changes in length in tension or compression experiments [7, 8], or indentation depth in
hardness testing [9]. Consequently, torsion experiments can readily span a range of strain
from microstrain to more than unity, and have been crucial in revealing the size effect in soft
metals in the yield strength and in the flow stress over at least six orders of magnitude in
strain [1-3, 6, 10].

Conventional theories of plasticity are unable to predict the size-dependent phenomena
since they do not involve any material length scales. Generally, the size effect associated to
the non-uniform plastic deformation is attributed to the presence of geometrically necessary
dislocations (GNDs [11, 12], sometimes they are called misfit dislocations [13], excess
dislocations [14, 15], or non-redundant dislocations [16]). The size effect in the torsion of
thin metal wires has been analyzed by using various theories, for examples, strain gradient
plasticity (SGP) theories [1, 2, 17-27], stress gradient plasticity theory [28, 29], critical
thickness theory (CTT) [3, 30, 31], continuum dislocation theory (CDT) [15, 16, 32, 33], and
by molecular dynamics (MD) and discrete dislocation dynamics (DDD) simulations [34-40].
The dislocation configuration in a single-crystal thin wire undergoing torsion was firstly
studied by Eshelby [41] in 1953 which is now referred to as the Eshelby twist. The author
analyzed a screw dislocation lying along the axis of a thin rod (e.g. crystal whisker) which
gives rise to the Eshelby twist. Gao et al. [17] considered a range of screw dislocations
parallel with the wire axis as the admissible bundle of GNDs. Weertman and his co-workers
[16, 42] and Duan et al. [43] concluded that the screw GNDs should lie in the planes

orthogonal to the cylinder axis. Weertman [16] showed that it is impossible in plastically
2
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isotropic metals for the anomalous hardening to result from twist boundaries formed by
combining GNDs that are parallel to the wire axis and GNDs that are perpendicular to the
wire axis because the sign of the GNDs in one set of dislocations of a cross-grid is opposite
that of the other.

In conventional plasticity, for wire torsion, the onset of plasticity starts near the wire
surface while no plasticity is developed in the center of wire. However, contradicting the
classic plasticity, Dunstan and Bushby [30] predict a dislocation-free thickness near the
surface of a wire under torsion according to Matthews’ critical thickness theory [13]. Such a
critical-thickness phenomenon has been further confirmed by latter MD and DDD
simulations [36, 38, 44, 45], by theoretical analysis based on the continuum dislocation
theory [15, 32, 46], and has also been observed in recent torsion experiment on
bamboo-structured gold micron-scale wires [47]. Ziemann et al. [47] measured the evolution
of plastic deformation along the radial direction within twisted bamboo-structure Au wires of
diameter 25 um, using Laue microdiffraction. They found that the misorientation
continuously increases from the wire axis toward the wire surface, and that the highest
density of GNDs appears in the neutral center of wire. Therefore, the critical thickness effect
happens for the defect-free single-crystal wire where dislocations can move freely inward the
wire. Moreover, when a wire is under torsion, screw dislocations can escape from the wire
surface if the surface is traction-free. So, there must be a dislocation-free zone near the wire
surface for the wire to be at equilibrium.

Experimental data from wire torsion yields only torque-twist curves which do not
necessarily discriminate adequately between different theories of the size effect [1-3]. It is
valuable to be able to complement experimental data with the DDD or MD simulations and
with the theoretical prediction based on CDT, which are capable of providing the distribution
of dislocations in twisted wire. In particular, one can see directly how the GNDs required by a
plastic strain gradient arrange themselves in the DDD simulation [34, 35] or in the analysis
based on continuum dislocation theory [15, 16, 32, 33]. This information is crucial in deciding
among the different theories of the size effect and in understanding plasticity in constrained

volumes.
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In a previous paper [44], we have shown that in the bending of thin foils the GNDs
collected in the vicinity of the neutral plane, and accordingly this is the region in which there
is a plastic strain gradient. Between this region and the free surfaces of the foil, the plastic
strain is nearly constant so this region is GND-free. The elastic strain gradient here is close to
the gradient of the applied (total) strain. Results were quantitatively in agreement with CTT
[13, 48-52], according to which dislocation sources can only be operated in the GND-free
region and the strain-thickness product (integral) in this region is a constant determined by
the need to operate sources (for example, Frank-Read, spiral, or single-armed source) [30, 50,
52]. In this work, we address the additional complexities of the dislocation distribution in
thin crystal wires under torsion, and perform a comparison between the prediction of CTT
and CDT.

The current paper is organized as follows. In Section 2, critical thickness theory is revisited.
Key predictions for the problem of torsion of thin metal wires are given based on CTT. In
Section 3, the framework of the continuum dislocation theory is summarized. In Section 4,
the elasto-plastic torsion of the single-crystal wires under zero dissipation is analyzed based
on the continuum dislocation theory. In Section 5, the main results for the problem of wire
torsion given by the CTT and by the continuum dislocation theory are compared and

discussed. Finally, conclusions are drawn in Section 6.
2. Critical thickness phenomenon in wire under torsion

2.1 Physical picture of the critical thickness theory

Matthews’ critical thickness theory is based on the idea, firstly addressed by Frank and van
der Merwe [53], that misfitting epitaxial layers would be elastically strained if the
introduction of a dislocation that reduces the elastic misfit strain nevertheless increases the
total energy. Since the energy of a strained layer is proportional to the layer thickness, while
the energy of a dislocation varies with the logarithm of the thickness, a critical thickness can
be determined above which plastic relaxation is expected [54]. The required dislocations are

referred to as misfit dislocations or GNDs, since they are due to the misfit between the layer
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and the substrate, and the introduction of these dislocations leads to a plastic strain gradient
or discontinuity for which the presence of the dislocations is necessary from geometrical
arguments. There are plenty of references on the calculation of critical thickness for epitaxial
layers [13, 48, 50-52, 54]. According to CTT, dislocation sources can only operate in the
GND-free region and the strain-thickness integral in this region is a constant. The Matthews’

critical thickness equation [30] gives

h, = A—b n£ (1)
g Bb

where A and B are two constants, g, the misfit strain, b the value of the Burgers

vector of the misfit dislocations. This equation predicts the critical thickness h_. at which

misfit dislocations (GNDs) may be generated by extending existing dislocations for relieving

the elastic strain in a simple layer with misfit strain g . Experimentally and theoretically, Eq.
(1) is very close to h_g, =Db. For a linearly graded strained epitaxial layer, it allows the

mismatch strain in the growth of structures advance linearly. That is ¢ (Z) = yz, where
¥ is the strain gradient along the growth direction Z . The strain-thickness integral
(product) can be calculated by integrating 80(2) over the thickness. In significant
relaxation, the condition is determined by the need to operate dislocation sources [30, 50].

In this case, a relaxation critical thickness hr is needed. For structures of InGaAs [55], it

requires the value of h, to meet the condition h.&, ~5b. The factor of five is a reasonable

approximation for the Frank-Read sources [49]. For graded layers [55],
h, 5
IO (9(Z)d2=7;(hr ~5b ~0.8nm. (2)
We now focus on the torsion of wires, which is analogous to the growth of the graded
layer that has been well studied by using CTT [44, 56]. For both cases, plastic strain gradients
are necessarily present. The solution to the graded-layer problem is illustrated in Fig. 1 (a).
We denote the thickness of the layer as h which is increased with the growth of the layer. If

h>h,, the material is completely relaxed plastically from h—h, to the substrate, which

5
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generates the plastic strain gradient ){P; while the domain from h—h, to the surface at
h has no GNDs. Above the thickness h—h., a depth h, is entirely strained elastically,

having the lattice constant at h—h,. As growth of the graded layer advances, the added

stress is relieved by the glide of dislocations, whereas at the top of the layer at h the

elastically-strained thickness (i.e. hr ) is changeless. The solution for the wire under torsion

is illustrated in Fig. 1 (b). This is very similar to the thin foil under bending [44], and to the
growth of graded layer mentioned above. The neutral axis plays the same role as the
substrate, and from the neutral axis to the free surface the wire behaves in the same manner
as a graded layer. The difference is only that, for the graded-layer problem, the plastic strain
gradient remains constant and the thickness of layer rises during growth. While for the wire
under torsion, the thickness (wire radius) is constant and the plastic strain gradient rises with
torsion. However, for any given thickness and strain gradient, the solution (Eq.(2)) is still valid
if the critical condition of Eq. (2), at which GNDs initiates, is satisfied. It is significant to realize

that, for the graded-layer problem, plastic deformation continues from the surface down to
h—hr, which leaves a plastic strain gradient in the range z e((),h—hr). For the wire
under torsion, in the similar way, plastic deformation proceeds from the surface to the axis of
the wire, but produces a plastic strain gradient simply in the range r e (0, I’C). Here, a—r,
represents the critical thickness for plastic relaxation of wire torsion, and a is the radius of
the wire. Yet, hr is constant, I'—TI, decreases with torsion. In the following, we test the

prediction that at the surface of the wire under torsion there is a region depleted of GNDs;
the onset of yielding and the strain distributions in elastic-plastic deformation agree with the

idea.
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(a) Graded layer (b) Wire torsion

. . .
.
o ar .®
o ~—Misfit strain
.

Strain

Strain

I a
radius, »

e h, : - h-h, .

Height from substrate z

Fig. 1. Diagram of the critical thickness phenomenon for (a) the growth of graded layer and

(b) the wire under torsion. In (a), the misfit strain (the dotted line) is linear with height. For

thickness h < hr , the elastic strain (thick solid line) is equal to the misfit strain, the dotted
line coincides with the thick solid line. When thickness hZh,, the elastic strain from

h—h, to h (thick solid line) keeps the same slope as the dotted line and the triangular

area below it stays constant. In (b), the total strain is illustrated by the red dotted line going
through the origin. The area of the red triangle under the thick solid line (elastic strain) is the
constant strain-thickness integral. After more torsion, the total-strain line is the steeper
dotted blue line through the origin, and the elastic strain is the parallel solid blue line

delimiting steeper triangles of the same area as the red shaded triangle.

2.2 The Matthews’ CTT applied to wire torsion

Now we apply Matthews’ ideas directly to a thin crystal wire under torsion (see Fig. 2).
We firstly consider the Matthews CTT for epitaxial layers, as shown in Fig. 2(a). The
pre-existing dislocation (1) necessarily extends into the epitaxial layer as growth starts. As

growth continues, the dislocation curves sideways by the epitaxial strain (2). When the layer

thickness is above h_, the dislocations lengthen indefinitely (3) creating a misfit dislocation.

In Fig. 2(b), a threading dislocation on a diameter of the wire follows the same evolution (1),
curving on a slip plane passing through the axis by torque (2). When the critical condition is
met, it prolongs indefinitely (3). Figure 2(c) shows the evolution of a well-placed spiral source
through the series of position 1-2-3-4. The critical condition for operation of the source is
that the stress isufficient to swing the section 2 through 180° and the section 4 through 90°.

7
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Fig. 2. The Matthews mechanism for critical thickness is illustrated for epitaxial layers (a) and
wires in torsion (b) (After Dunstan [49]). The initial state in both cases is labeled (1): A
threading dislocation which necessarily extends into the epitaxial layer as growth starts (a) or
an initial dislocation on a diameter of the wire at zero torque (b). As growth continues in (a)
the dislocation curves under the layer stress (2), while in (b) the dislocation curves on a slip
plane containing the axis (2) under the increasing torque. When the critical condition is
exceeded, the dislocations extend indefinitely (3) creating a misfit dislocation in (a) and an
axial dislocation giving Eshelby twist in (b). In (c) a well-placed spiral source is illustrated

which evolves through the series of positions 1-2—-3-4.

Following Matthews [13], one can determine the total elastic energy with and without the
axial screw dislocation. As indicated by Dunstan et al. [3], the critical values of torsion angle

or wire diameter can be calculated by equating these two energies. Let the axis be the

z-direction. The only nonvanishing component of the strain tensor is &,, = kT, where x

is the twist per unit length. The shear strain induced by the screw dislocation is b/(27rl’)
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with b being the magnitude of the Burgers vector. We may subtract this from the torsion

strain field and symmetrise the strain tensor before integrating for the elastic energy. In
order to avoid the divergence as I — 0, a core cutoff radius I, as the lower integral limit

in the integrals is introduced. So, without the dislocation, the elastic energy of the wire per

unit length is

Y, 2%/1 r0a27rr(1<r)2 dr :%ﬂ/mz (a“ - r04) (3)

where 4 is the shear modulus, a is the radius of the wire. The energy with the

dislocation is

{ e b\ 1 2b(a2—r02) b’In(a/r,)
=gl 2on{ =5 ] ar =g () - R

Equating energies W, and ¥, , we solve the critical value of «,

b a b a
K-c:—ln—z—zln— (5)
2r(a’-r7) ', 27a’ b

Here, I, ~b and a> b are used for giving the approximate expression. The core energy

of the dislocation, typically taken to be %,ubz, is usually accounted for by an additive (or

multiplying) factor within the logarithmic term. The formula Eq. (5) is useful because it
implies that the geometrical theory of critical thickness developed for flat surfaces [48] can
be used for curved surfaces as in wire under torsion.

The strain-thickness product or integral S is an important quantity in the Matthews
theory. If a misfit dislocation is terminated by a section rising to the free surface, it is the
value of S which determines the force on the termination. If this force is equal to the line
tension of the dislocation, the critical condition is satisfied. The force is independent of the
shape of the termination (roughly a quarter-circle for a simple epitaxial layer) and it is also
independent of the distribution of the strain within the thickness. Consequently, S
provides a simple measure of the critical condition for more complicated problems [56] such
as, here, a strain rising linearly from the neutral axis to the surface. The critical value of S

is
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a b a
S. =], Krdre—n (6)

Using the typical values a=1pm, b=0.256nm, r,=Db, we obtain S  =0.17nm. This is

close to the approximate value for epitaxial layers [3, 48]. Correspondingly, the critical

stress-thickness product or integral is just S_ times the relevant elastic modulus. When the
critical torsion is achieved, the curvature of the dislocation is sufficient to take it through a
right angle between the axis and the surface of the wire, see the dislocation thread (3) of Fig.
2(b).

The strain-thickness product is also very useful for determining the critical condition for

the operation of dislocation sources. All that is necessary is the topology of the source. The

value of S, is then multiplied by the number of quarter-circle equivalents that the source

requires to fit into the space available, for example, five for a Frank-Read source or three for

a spiral source in an epitaxial layer [50, 52, 57]. For the single-crystalline copper wire studied
here, an optimally-placed source may thus requirea S_ value of 0.45-0.75nm, see Fig.2 (c).

Therefore, the radius beyond which the excess strain-thickness integral is about 5b. So,

S::Lj/crdrzéic(a—rc)Z:Sb:rc:a— % (7)

gty 10 ®)
a ya

where y =xa is the surface shear strain. If I, =0, one can obtain the critical value of &

Then the ratio

for the operation of dislocation sources. Taking a=1um, b=0.256 nm, we have
7. =k,a=0.00256 . At the onset of yield, GNDs will first be situated at the radius .
Under further torsion, these GNDs will be in a range from I, to I,, where I <r <I,.
With increasing torsion, I, increases further, and the additional stress related to the region

I, <r<a moves outward and enhances its contribution to the torque.

10



10

11

12

13

14

In Fig. 3, we compare the predictions of CTT for the form of the stress distributions with

the predictions of other plasticity theories. In the absence of any plasticity we take the stress

as proportional to I'. Then in the absence of a size effect, for perfect plasticity o(&,) =0,

we expect stress distributions of the form of Fig. 3(a). For critical thickness theory with no
bulk strength (size effect only), we expect the form of Fig. 3(b). If there is a bulk strength as
well as the size effect, we expect the form of Fig. 3(c) [30]. For the mechanistic
strain-gradient plasticity theory of Nix and Gao [28] we may write,

EptE ol

Ponp € 0,&p 9)

&g L/ Paenp

and solving for &; with the boundary condition &, |r:0 =0 we obtain &, oc tanhr asin

Fig. 3(d). One can see that the prediction of CTT (Fig. 3(c)) is a good approximation of the

prediction given by Nix-Gao model.

(a) L (b)

(c) ()

Fig. 3. The distribution of stress for a wire under torsion with some plastic deformation. (a)

perfect plasticity in continuum mechanics with a yield strength of o, = 0.5; (b) critical

11



10

11

12

13

14

15

16

17

18

19

20

21

22

thickness theory with o, = 0; (c) critical thickness theory with o, = 0.5; and (d) the

strain-gradient theory of Eq. (9) with the constants of proportionality set to 1.
3. Framework of continuum dislocation theory

3.1 Dislocation density tensor in single crystal

We consider a crystal with one slip system. The total strain of the crystal is the summation

of the elastic strain and the plastic strain. The plastic strain is

gil; Z%(ﬂij+ﬂji) (10)
where ,Bij is the plastic distortion. The elastic strain is obtained by subtracting the plastic
strain from the total strain,
& =&;—&; =%(u.,.+ujwi)—gil; (11)
where U; is the displacement vector. For single slip system, the plastic distortion is
expressed by

B; :ﬂ(x)simj (12)
where S, is the slip direction vector, M, the normal vector to the slip plane, and ,B(x)

is an amount of slip on the corresponding active slip system. For the crystal with n-number of

n
slip systems, the plastic distortion can be expressed as ﬂij =Zﬂ<a) (X) Si(a)m(ja)

a=1

with o

denoting the slip systems. Generally, the continuous plastic distortion does not change the
volume, so we have [, =0. Itis obvious from Eq. (10) that the plastic distortion is exactly
the gradient of the plastic displacement field,

By =ui; (13)
The plastic distortion tensor can also be written by

B = gi? + a’.? (14)

12
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where gi? and a)i]; =%(ﬂij —,Bji) are the symmetric and antisymmetric parts of /;,
respectively. Nye’s dislocation-density tensor [11] is given by

a; :ejkllBil,k (15)
where € s the (Levi-Civita) permutation symbol. We consider a; as the fundamental

measure of the density of GNDs. For a crystal deforming in single slip, the density of GNDs

can be expressed as [58]

Lo

:%‘ejk,ﬁkm,nj‘. (16)

where N, is the outward normal of the cut surface of the crystal, and b the magnitude of

Burgers vector.

3.2 Theoretical framework revisited

We analyze the torsion of thin single-crystalline wires by means of the continuum theory
of dislocation proposed by Berdichevsky [59, 60]. The main results of the continuum

dislocation theory are summarized here. In this theory, the free energy density is the sum of

E

ij » and the energy density

the elastic energy density depending on the elastic strain tensor &
of microstructure depending on the dislocation density tensor a; - It can be expressed as
[60, 61]

v (o) =%’1(ngk )2 + gy +v, (ay) (17)
where A and u are the Lamé constants. The first two terms in Eq. (17) denote the
macroscopic elastic strain energy density of the crystal, and the term (aij) represents
the energy of dislocation network [46, 60]. In the case of single crystal with single slip system,

this energy density can be expressed as

w,, = pkln ——— (18)
l_p/ps

13
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where p s the scalar dislocation density, p, the saturated dislocation density, and k a
material constant. As indicated by Berdichevsky [60], the logarithmic term guarantees that

the energy increases linearly for the small dislocation density p, and y, —> as

L — p, . Therefore, this form of energy provides an energy barrier to avoid over-saturation.

For small density to moderate density of dislocations, the logarithmic term in Eq. (18) has

the following asymptotic formula

2
1 1
1n_z£+_(£J . (19)
I=p/p; p, 2\ p
Alternatively, other forms of the defect energy have been proposed by Forest and
Guéninchault [62], Groma [63], Bardella and Panteghini [25].

Let QO be a domain occupied by the crystal in the initial state. The energy functional of

the crystal in the domain Q is

E :J‘l//(gi}z,p)dv (20)

Q

where dV =dx,dx,dX, represents the volume element. If energy dissipation is neglected,

the variational principle of the theory states that the true displacement field and the plastic
distortion in the final equilibrium state minimize the energy functional. That is

O0E=0. (21)
4. CDT applied to wire torsion

4.1 Energy functional

The problem of wire torsion has been studied by Kaluza and Le [32] based on CDT. We now
focus on the problem by comparing the results with those given by CTT. Consider a
single-crystalline wire of circular cross-section of diameter 2a under monotonic torsion.

The wire is of length L and under twist & at its end. The Cartesian reference system

(XI,XZ,X3) is set such that the X, and X, axes lie on the cross section of the wire, while

14
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the X; axis is the axis of the wire. A cylindrical coordinate system (I’,l9,2) is also
introduced for convenience, with Z =X,. We also assume that the active slip planes are
perpendicular to the vectors e, in the cylindrical coordinate system, while the slip

directions and the dislocation lines are parallel to the X, axis. Actually, this assumption

cannot be met for any single crystal. However, since the Burgers’ vector is parallel to a screw

dislocation, any crystallographic plane containing the dislocation is a possible slip plane [32].

For screw dislocations in the slip planes perpendicular to the vector e,, the only

nonvanishing component of plastic distortion is f3,, = . Considering the symmetry of the

problem, we assume that £ only depends on r. So, the non-zero components of the

plastic strain are

P P 1
£ =60 =—p(1) (22)

Actually, for torsion of the rod here, ,B(I’) equals to the plastic shear strain }/p (r) since
&g, = €1y =577 () . The displacement field is
u,=xzr, u,=u,=0 (23)

r z

Therefore, the non-vanishing components of the elastic strain tensor are

B g1 1
€0, :gzezg(ue,z_ﬂ)zz(’(r_ﬁ) (24)

From Eq. (15), the only non-vanishing component of Nye’s tensor is

a,=p"+p/r (25)

where (-) i%. Such a component of Nye’s tensor is associated with the density of the

pure screw GNDs lying parallel to the axis of wire. From Eq. (16), the density of GNDs is

1
p=ﬂﬂ#ﬂﬂh (26)
According to Eqgs. (17), (19), (24), and (26), one can obtain the energy functional

15
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2k
+—

! ﬂ
bp, -

r

+£j rdr. (27)

)= 3(er-1) oy 7

This energy functional was firstly derived by Kaluza and Le[32]. In what follows, we study it
further to give more results for comparing with the results obtained by CTT.
The density of GNDs must be a finite value at =0, then, according to Eq. (26), we

obtain the regularity condition

B(0)=0 (28)

which implies that the neutral axis of the wire should be seen as an obstacle hindering the
motion of dislocations. So, the screw dislocations pile up around the neutral axis in
equilibrium. This phenomenon is in agreement with the DDD simulation [64] and the
prediction of CTT [3]. If we neglect the resistance to the dislocation glide, i.e. the dissipation

is taken to be zero, the true plastic distortion (i.e. the plastic shear strain here) minimizes the
energy functional (27) among all admissible function ﬁ(X) satisfying the regularity

condition Eq. (28).

4.2 The onset of yielding and the expression of torque

For convenience, we introduce the following non-dimensional variables

_r k 7%
Fr=—, y=ka, n=—-—
a v n

, F= 5 (29)
abp, 2mua

Here, the variable T € [O, 1]. The functional (27) is then reduced to be

s +n—2(ﬁ’+éj }Tdf (30)

p+=
-

2 2k

F(Nﬂ)ﬂ;{l(ﬁ—ﬂ)zw

We minimize the functional (30) among the function ﬂ(r) with the regularity condition

,B(O)=0. At T =1, it is traction-free and the dislocations can be annihilated, so there
should be a dislocation-free zone near the free surface of the wire, as we discussed above.

Therefore, the density of GNDs is zero, i.e. ﬂ'+ﬂ/T=0. This condition can be met if
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S =p3,/T,where f3, is constant. This leads to the following assumption

B(F) forTe(0,&)

B, [T forTe(&1) (31)

B (T)={
where & is an unknown critical normalized radius, 0<£<1, and ﬂ(§)=ﬂ0/§ Next,

we try to determine /fl(r) and the constants S, and &. We assume ﬁ'+,3/T20

when T € (0, f) for the positive torsion x . Then, the Eq. (30) becomes

F= J{ T—13) +77(/31' rlj (/31 flj}rdr+;;(yr ~B,JF)FdF (32)

Varying the functional (32) with respect to ﬂl (T), one can obtain the corresponding

Euler-Lagrange equation in therange T € (0,5), i.e

1 k 1 Kry
"= - —+— =— (33)
ﬂl Fﬂl (772 rzjﬂl 772
The variation of Eq. (32) with respect to & and f, gives two additional boundary

conditions at T =&, namely

(ﬂll + 131 /F) =

(34)

and

\/_—%i (1-£)-BImé=0 (35)

Eq. (33) is a non-homogeneous second-order modified Bessel differential equation. Its

general solution can be obtained as [65]

ﬂl(r)—g(r)+[Clll(7r)+CzKl(7r)} (36)
where the expression in the square brackets is the general solution of the homogeneous

modified Bessel differential equation, C, and C, are two constants to be determined by
boundary conditions, |n(°) represents the modified Bessel function of the first kind of

order n, Kn (°) denotes the modified Bessel function of the second kind of order n, and
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g(T) is a particular solution of Eq. (33). We can easily find a form of g(T), e.g.

g(F)=T7/. Since K, (%T) is singular at T =0, the condition ﬂl(O)ZO implies

C, =0.5So,
B(T)=Ty+C1,(Lr) (37)
Using (B/+ f3,/T)|;_.= 0, we obtain
_ 2y
C ——m (38)
Since ﬂ():é‘ﬂ](f),we have
L(5¢)
By=—7=E7 (39)
D L4

Substituting Eq. (39) into Eg. (35) leadsto

N
f—%%( —&)- IE géﬂné 0 (40)

This is a transcendental equation for determining & in terms of constants K, 77 and 7.
The threshold value of surface shear strain, 7, , is obtained when B, — 0.For y>y_,

Eq. (40) has one root. Thus, substituting £, =0 into Eq. (40) and considering & <1 at

the onset of dislocation nucleation, we obtain

2n
Ve =10 =z n (41)
In terms of the original variables, we have
2k 2k
Veno = T = Koy = 37— (42)

abp, a’bp,

For y <y,, no dislocations are nucleated and the plastic distortion S =0. Actually, y,,

is the surface shear strain at initial yielding. The value of y_ s inversely proportional to the

wire radius, which shows an obvious size effect.
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It is interesting to give the expression of torque for the torsion problem investigated here.

The torque can be derived by integrating the shear stress over the cross section of the wire,
_ a 20 M =~ S\ 2 4
Q_2nyj0(xr—ﬁ(r))r dr =27ua jo(yr - B(T))rdr (43)
. . . _ 1 3 . .
For y <y,., the plastic distortion =0, so Q=3mua’y. For y >y, , substituting Eq.

(31) into Eq. (43), we obtain

S e e el TS| R

L(3¢)

where 0|E1 denotes the regularized confluent hypergeometric function. Alternatively, Eq.

g

i

Q‘%

(44) may be derived by differentiating the strain energy J-Vl//(ﬂ)dv with respect to «
since the torque Q is the work conjugate to k. The torque can be rewritten in the

non-dimensional form Q, i.e.

% fory <y,
Q:,UQc'f B Y | ca K ( £2 0 ~1(;3’%) 4 )
5 |¢ [2+W(f ‘lﬂ (e +(1-¢") fory>7.,

Evidently, the magnitude of Q depends on the value of y_ . The value of y  is

inversely proportional to the wire radius, which suggests that the non-dimensional torque

increases with decreasing the wire radius.

5. Results and discussions

In order to perform the calculation, we take the following parameters: b=0.256nm,

k=10", o =3.05x10"m™, and a=1um. Note that the values of kK and p, are
assumed by equating k,, in CDT (Eq. (42))to x, inCTT (Eq. (7)). From Egs. (29); and (42),

we have 77=0.00128, y, =y, =0.00256.
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5.1 The prediction of critical thickness

The trends of the critical radius & (= rc/a) with increasing the surface shear strain

predicted by CTT and CDT are compared in Fig. 4. In both theories, if y <y, , the critical

radius is zero. After that, the critical radius increases as the surface shear strain increases.

Accordingly, the dislocation-free zone decreases with increasing the surface shear strain. If
we take values of K and p, by assuming y. =y,, the critical radius given by CDT

increases with the surface shear strain more quickly than that of CTT, as shown in Fig. 4.

1.0 e
2
>t
gosf ~
© )
-]
= 0.6 oA
2
]
Soat E
[ 1]
N T
® 02} —e—CDT _
g ——CTT
S
2
U-O PRI S U T T [T S T A [T S S S N1 P -
0.00 0.02 0.04 0.06 0.08 0.10

Surface shear strain, y

Fig. 4. The ratio of &= rc/a as a function of surface shear strain 7 in CTT and in CDT. The

lower curve is based on Eq. (8); the upper curve is based on Eq. (40).
The critical radii predicted by CTT (Eq. (8)) and CDT (Eq. (40)) at four values of surface
shear strain, ¥ =0.00256, 0.005, 0.01 and 0.02, are given in Table 1. At a prescribed value of

7, the critical radius predicted by CDT is larger than that given by CTT. However, the

difference can be reduced by choosing another values of of K and Ps -

Table 1. Normalized critical radius & predicted by CDT and CTT at different values of surface

shear strain.

Surface shear strain 0.00256 0.005 0.01 0.02
Critical radius by CTT (um) 0 0.28 0.49 0.64
Critical radius by CDT (um) 0 0.68 0.85 0.93
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The distribution of the plastic shear strain along the wire radius predicted by CTT and CDT

are shown in Fig. 5. Below the threshold value of surface shear strain y, =y ~0.00256,

the plastic shear strain along the wire radius is zero. With the further increase of the surface

shear strain, the critical radius increases. In the range I € (0, rc), for CTT, the plastic shear
strain increases linearly with the wire radius; while for CDT, the plastic shear strain increases
linearly with the wire radius at the beginning, and then tends to a plateau around r =Tr_.In
the range I € (rc,a), for the CTT, the plastic shear strain keeps a constant; while for CDT,

the plastic shear strain decreases with the wire radius.

(a) 0.016 r T T (b) 0.016 r T T
—a—=(,00256 CTT prediction —=—y=0.00256 CDT prediction
——y=0.005 ——={),005

£ opizfp T 9-01 £ o012} —-—y=nnl|

B —— =00 B ——=0.02

w ]
3 3
2 o008 2 oo08}
w ]
L 2
g E
o 0.004 o 0.004
0.000 0.000

i i i i L i i i i L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Radius (um) Radius (pm)

Fig. 5. The distribution of plastic shear strain along the wire radius at different values of
surface shear strain. (a) Prediction by critical thickness theory; (b) Prediction by continuum

dislocation theory.

The distributions of the elastic shear strain 7" across the radius of the wire at different
torsion are plotted in Fig. 6. When y >y, , it is seen that the elastic shear strain nearly

vanishes at TG(O,K;‘). Accordingly, the shear stress is also nearly-zero in this range, i.e.

around the neutral axis of the wire. The strain-thickness product in CTT, the area of the
shaded part below the solid line, is a constant about 0.00128 um, while the strain-thickness
product in CDT changes from 0.00128um to 0.00109um with increasing torsion from

v=0.00256 to 0.02. Yet, the predictions given by CCT and CDT are in qualitative agreement
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with each other.

(a) 0.008 . : - : (b) 0.008 . T . :
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—— y=0.005
£ 0.008 £ 0.006 - ——1=0.01 |
[ © —— =002
® ]
1) )
o o
2 2
< 0.004 £ 0.004 -
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Fig. 6. The distribution of the elastic strain with the radius of wire at different surface shear
strain: (a) Prediction by CCT, the predicted strain-thickness is 0.00128um; (b) Prediction by
CDT, the predicted strain-thickness is 0.00128, 0.000925, 0.000866 and 0.00109um for

v=0.00256, 0.005, 0.01 and 0.02.

5.2 The density of GNDs

The CTT does not provide a direct approach for calculating the density of GNDs. However,

Nye [11] and Ashby [12] proposed a relation between the density of GNDs and the effective
plastic strain gradient y".Thatis puyp = é’;{p/b , where ¢ is the Nye’s factor introduced

by Arsenlis and Parks [66] to characterize the scalar density of GNDs related to the

macroscopic plastic strain gradients. For torsion of FCC polycrystals, the Nye factor is found

to be ¢ =1.93 [66]. Following Liu et al. [2], we assume for wire torsion P, =2k/b

when T e [O, I’C], and pPgp =0 when re [rc,a] . The distributions of GNDs predicted by

CTT are illustrated in Fig. 7(a). One can see that the density of GNDs vanishes in the elastic

zone near the surface of the wire.

The distributions of GNDs in the range r € [0, a] for three different values of surface

shear strain are shown in Fig. 7(b). One can see that p, is mostly flat over a range near
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the neutral axis, having an obvious transition to a dislocation-free zone outwards the wire
surface. The dislocation-free zone decreases as the surface shear strain increases. It is worth
mentioning that an increasing number of the dislocations accumulating in this configuration

are geometrically necessary. Clearly, the surface depletion of density of GNDs is

demonstrated.
(a) 20 T T T T T (b) 20 T T T T
CTT prediction —=(.005 CDT prediction — 0,005

L — =01 L — =001
£ 6L — =002 | E s — 002 |
@ ©
- =
X L
2 12F 5 & 12 L
& =
=4 (=
[ [
- =
c 8 e c 8 E
2 2
£ -
3 g
a o

u L A L i D L

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Radius (um) Radius (pm)

Fig. 7. The dislocation density of GNDs as a function of radius I at the surface strain: (a)

Prediction given by CCT; (b) Prediction given by CDT.

5.3 Size effect in the torsion of thin wires by CDT

A

According to CDT (Eq. (45)), the non-dimensional torque Q versus the surface shear

strain of wires with different diameters is plotted in Fig. 8. One can see that the
non-dimensional torque increases with decreasing wire radius, which indicates a strong
influence of wire radius on torsional response. The smaller is the wire radius, the stronger is

the non-dimensional torque. The theoretical curves show a work hardening around the
onset of yield due to the dislocation pile up around the neutral axis when y > y,_ . After the

work-hardening range, there is a strange softening behaviour followed by a further
work-hardening region. The softening phenomenon is more significant than in the case with
dissipation, as discussed by Le and Piao [15]. It should be mentioned that, since the
resistance to the dislocation motion is neglected here, the deformation can be completely
recoverable when the wire is unloaded. During unloading, the GNDs will move toward the

free surface upon decreasing the shear stress, and finally slip out from the surface of the
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Fig. 8. Non-dimensional torque versus surface shear strain of wires with various diameters

under elasto-plastic torsion.

6. Conclusions

The results of CDT quantitatively elucidate the critical thickness phenomenon appearing in
single-crystalline wires under torsion. The size effect in the initial yielding, the stress
distribution and the distribution of GNDs in the torsion of thin wires, are demonstrated. The
dislocation-free zone near the wire surface and the nearly-zero stress (elastic strain) around
the neutral axis predicted by CDT are in agreement with the results of the CTT. Analysis of
wires in torsion based on CDT shows, as CTT predicts, similar behaviour as in graded-layer
problem, i.e. dislocation sources operate in a GND-free domain near the free surface. This is
the stressed domain, but the GNDs accumulate near the neutral axis. Simulation of
single-crystalline copper wires under torsion based on CDT gives a critical strain-thickness
product around 0.001 um for different torsion, which is close to the predicted
strain-thickness product of 0.00128 um by CTT.

Strain-thickness products and GND distributions are the key quantities which distinguish
between different theories. The most striking thing about the plots of elastic strain as a
function of position on the cross-sections of the various simulations based on CDT is that
these plots remain very similar. They all show, more or less, a centre region with very little

elastic strain as well as the stress. A fortiori, this is where the plastic strain gradient and the
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density of GNDs are at a maximum. They all show an outer region in which the elastic shear

strain rises in proportion to the radius. Here the plastic strain gradients and the density of

GNDs are small or vanish. This is the region where dislocation sources need to be operated.

In summary, we find that:

e Both CTT and CDT given above are sufficient to give a full quantitative explanation /
understanding of the yield point and early plasticity. GNDs are of course generated and
stored, and pile-ups do occur around the neutral axis, but pile-ups are not the
fundamental explanation of the size effect observed in experiments. A dislocation-free
zone near the wire surface is predicted in both theories.

e In agreement with bending of foils [44], number (not density) of dislocations determines
what happens, and the size of the specimen determines the stress at which it happens.

e The size effect at onset of yielding, the distributions of stress and GNDs in the torsion of
thin wires, are simply attributed to the critical thickness effect. A threshold value of
surface shear strain for the dislocation nucleation is indicated in both theories, which is
inversely proportional to the wire radius. If the torsion exceeds the threshold, GNDs
appear to minimize the energy. The size effect in the initial yielding is actually due to the

constraint the geometrical size puts on dislocation curvature.
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