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Today scenario, we live in the data age and a key metric of existing 

times is the amount of data that is originates ubiquitously around us. At 

present-time intense increase in the number of Internet subscriber and 

connected devices, as well as rising of the IoT. As an outcome, 

quantities of data are originated (so called Big Data), such as user data 

(structured, unstructured, or semi structured), sensor data and log files. 

It is an increasingly business for companies to collect and analysis Big 

Data and provides insights to their client. In general processing such 

spacious amount of data with multifarious formats can be time 

consuming. The Hadoop is an open source framework that is used to 

process spacious amounts of data in an economical and proficient way, 

and job scheduling has become a significant factor to attain high 

performance in Hadoop cluster. The job scheduling algorithms are 

essential for efficient make use of cluster resources and executing them 

in short time. The fundamental purpose of this paper is to present a 

classification of Hadoop schedulers along with their existing 

scheduling algorithm in Hadoop territory. In addition, this paper 

paraphrases the features, advantages, disadvantages, and limitations of 

several Hadoop scheduling algorithms. 
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Introduction:- 
Nowadays, Big Data is very popular, because it has proved to be much success in many fields such as social media, 

transactions, banking, [1] online and on-site purchasing, E-commerce, healthcare, astronomy, oceanography, finance 

and business, engineering, and many other fields. Big data depict the tools and technologies expected to store, 

distribute, capture, manage, [2] and analyze petabyte or enormous sized datasets having various structures with a 

high momentum. In this new era with the advancement in the technological world the data storage, analysis becomes 

a major problem. Although the availability [3] of different data storage component like electronic storage such as 

hard drive or virtual storage such as cloud still the problems remains. The major issue is processing the data because 

usually the data have been in several formats and size. Hadoop system is used to process large datasets. The Hadoop 

is an open, sources Java based [4] framework which can run applications in the cluster that consist of reasonably 

priced hardware, for processing and storing large amount of data in a distributed computing environment [5]. The 

data sets are very complex and growing day by day in humongous volume. Raw data are continuously generated 

from social media, online transactions, etc [6]. Due to continuous increase in volume, velocity and variety, 

complexity increases, it induces lots of difficulties and challenges in data processing. Big Data becomes a complex 

process in terms of correctness, transform, match, relates, etc. 
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The min aim of scheduling algorithms in the Big Data processing is to plan the processing and completion of as 

many tasks as possible by handling and altering data in a proficient way with a minimum number of changes [4]. 

Hadoop with job scheduling plays a vital role to achieve the performance in Big Data. Hadoop allows the user to 

configure the job, submit it, control its execution, and query the state. Every job consists of independent tasks [7], 

and all the tasks need to have a system slot to running. Again Hadoop all scheduling and allocation verdict are made 

on a job and node slot level for both the map and reduce phases. When a user submits a transaction, Hadoop will 

create a job and put it in the queue of jobs waiting for the job scheduler to dispatch it [8]. Then, the job will be 

divided into a series of tasks, which can be executed in parallel. The task scheduler is responsible for dispatching 

tasks by certain task [9] scheduling algorithm. In this paper, we present a comprehensive study of all Hadoop 

schedulers in the Big Data Territory. This paper will be useful for both beginners and researchers in understanding 

Hadoop job scheduling algorithms in the Big Data processing. 

 

II. The Primary Challenges of Scheduling in Big Data Environments 

There is a requirement for efficient scheduling algorithms on the handle of big data on different nodes in Hadoop 

clusters [10]. There are different factors that influence the performance of scheduling policies like as speed (data 

velocity), security, data volume (storage), the format of data sources (data variety), and privacy, connectivity, data 

sharing and cost. To instate better utilization of resources and handling of the big data, scheduling policies are 

designed [11][12]. The primary challenges related to job scheduling in big data in a nutshell as follows. 

 

Data Diversification: The majority of the datasets is different semantics, type, granularity, homogeneous as well as 

heterogeneous in structure, organization and accessibility. A skilled data presentation should be designed to replicate 

the structure, hierarchy and diversity of the data and an unification technique should be designed to enable efficient 

operations across various datasets. 

 

Data Storage and Handling: Primarily big data are dependent on comprehensive storage capacity and data 

volumes grow exponentially, the present data management systems cannot propitiate the exigency of big data due to 

limited storage capacity. Another vital issue of big data is that it is very enormous and includes data that is in an 

unstructured format, which makes it rigorous to organize the data for analysis. The storage of unstructured data is 

not a simple task. Therewith, not an effortless task to store data effectively in view of the fact that the homogeneous 

as well as the heterogeneity of big data. 

 

Rapidity: At present, everybody expects everything to be done instantaneously. Nowadays, hyper-competitive 

business environment, companies not only have to discover  and analyze the episodic data they expected, they must 

discover it rapidly. Again, visualization helps organizations perform analyses and make decisions much more fastly, 

but the challenge is going through the sheer volumes of data and accessing, the level of detail be expected and all of 

a high motion. The motion is a foremost issue in big data. The   motion of big data is restricted by several 

difficulties, namely actual time & offline difficulty, statistical analysis difficulty, import & export difficulty,  and 

query & retrieval difficulty. 

 

Data Processing and Analysis: The data are ubiquitously and are not ever presented in the same manner every 

database has its personal format. For some experts, the big difficulty in big data is more one of processing than of 

volume. The query response time is an important difficulty in big data, as adequate time is required when traversing 

data in a database and performing actual time analytics. A resilient and reconfigured grid along with the bigdata 

preprocessing increase and consolidation of application and data parallelization strategy can be more influential 

approaches to quotation more meaningful knowledge of the given data sets. 

 

Energy Management: The data transmission, storage and processing will unquestionably consume more energy, as 

data volume and analytics demand increases. The energy consumption of huge scale computing systems has 

attracted greater anxiety from environmental and economic perspectives and to endow extensibility and accessibility 

system level power control and management mechanisms must be considered in a big data system. 

 

Expense: The cost is also main matter in big data. The cost up-gradation matter in big data are cost comparison 

between alteration of nodes, make better, and master and slave nodes. 

 

Data Privacy and Security: Data privacy and security is one of the biggest matter for big data since the host of data 

or other critical operations can be performed by third-party services or infrastructures, security matter is witnessed 
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with respect to big data storage and processing. The present technologies used in data security are mainly static data-

oriented, albeit big data entails the dynamic transformation of current and extra data or variations in attributes. In 

Privacy-preserving data mining without the show up sensitive personal information is another challenging field to be 

calibrate. Today scenario increasing of online services and mobile phones, privacy and security concerns regarding 

accessing and analyzing personal information are growing. It is rigorous to understand what support for privacy 

must be provided at the platform level to remove privacy leakage. We necessity to consider all the data privacy and 

security rules. 

 

Syncing Across Data Sources: On one occasion you import data into big data platforms you may also realize that 

data copies transmigration from a wide range of sources on various rates and schedules can expeditiously get out of 

the synchronization with the originating system. This allude that the data coming from one source is not out of date 

as compared to the data coming from another source. It also signifies the concepts, commonality of data definitions, 

metadata and the like. The conventional data management and data warehouses, the sequence of data alteration, 

extraction and transmigration all arise the circumstance in which there are hazards for data to become 

unsynchronized. 

 

Approximate Analytics: The analysis of thorough dataset is becoming more rigorous as data sets grow and the 

actual time requirements become stricter. One solution to extricate this difficulty is to endow estimated outcome by 

means of estimate query. The estimate query has two dimensions such as that the accuracy of the outcome and the 

groups leave out from the output. 

 

Scalability:  In scalability is the primary challenge with the big data. You want to be able to scale very 

expeditiously and elastically, whenever and wherever you want. There is a requirement of powerful solution to 

enable the processing of the enormous volume of data,  scalable storage, feasible and cost-effective. 

 

Connecting Social Media and Data Sharing: The social media have peerless properties such as elaboration, 

statistical redundancy and the availability of user response. To recognize references from social media to distinguish 

product names, locations or human beings on websites, several extraction techniques have been successfully used. 

The applications can instate high levels of precision and well-defined points of view by connecting inter-field data 

with social media. In data sharing are still matters that requirement to be considered. There are different dispute in 

big data related to data sharing namely interfaces and data criterion, shared protocols, and access authorization etc. 

 

Additional Miscellaneous Challenges: Additional challenges may occur while incorporating big data. Some of the 

challenges include unification of data, the volume of data, expertise availability, solution cost,  the rate of alteration 

of data, truthfulness and legitimacy of the data. The capacity to intermingle data that is not similar in source or 

structure and to do so at a rational cost and in time. It is also a challenge to process an enormous amount of data at a 

rational speed so that information is available for the data client when they exigency it. The legitimacy of data set is 

also fulfilled while relocating data from one source to another or to clients as well. 

 

III. A Necessity for Scheduling Algorithm in Big Data Environments 

 

The common necessity for scheduling in big data platforms define the functional and nonfunctional specifications 

for a scheduling service. The below common requirements are as follows. 

 

Cost Efficiency: The scheduler should bottommost the total cost of execution by decreasing the total number of 

resources used and respect the total money budget. This aspect expects efficient resource usage.  

 

Elasticity and Scalability: A scheduling algorithm must take into contemplation the peta-scale data volumes and 

hundred thousand of processors that can be associated with the processing job. The scheduler must be conscious of 

the execution environment transformed and be able to adapt to workload transformation by provisioning resources. 

 

Usual Intention: A scheduling method should make assumptions about and have few restrictions to different types 

of applications that can be carried out. Interactive jobs, parallel and distributed applications, as well as non-

interactive batch tasks should all be supported by high performance.  
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Disinterestedness: The job sharing resources among users in a fair way to assure that each user receive resources on 

demand and in a pay-per-use model in the cloud, a cluster of resources can be allocated dynamically or can be 

reserved in advance. 

 

Time Management Ability: The scheduler should make better the performance of scheduled jobs as much as 

possible using various heuristics and state estimation appropriate for specific job models. Multitasking systems can 

process several data sets for multiple users simultaneous by mapping the tasks to resources in a way that make the 

best their use. 

 

Dynamicity: The scheduling algorithm should make use of the full extent of available resources and may transform 

its behavior to cope.  The scheduler exigency to continually adapt to resource availability alteration, paying special 

attention to cloud systems and HPC clusters, as authentic solutions for big data [13]. 

 

Load Balancing: This is used as a scheduling procedure to share the load among all receivables resources. There 

are classical method like round-robin scheduling, but also, the new method that cope with huge scale and 

heterogeneous systems were proposed such as slow start time, agent-based adaptive balancing , minimal connection. 

 

Endorsement of Data Heterogeneity and Various Processing Models: By managing several concurrent input 

streams, unstructured content and structured, multimedia content, and state-of-the-art analytics. 

 

Unification with Shared Distributed Middleware: The scheduler must think about different systems and 

middleware frameworks, namely the sensor integration in any place following the IOT instance, or even mobile 

cloud solutions that use offloading techniques to scrimp energy. 

 

Based Upon Resource Availability: Primarily, this scheduling action plan is based on the resource requirement of 

the job. Under this action plan, resource utilization namely I/O, , disk storage, memory utilization, and CPU time, 

after that  job performance is excellent. 

 

IV. Taxonomy for Hadoop Scheduling Used in Big Data  

The Hadoop job schedulers are designed for superior utilization of resources and performance enlargement. It is also 

a confer promise capacity to production job and superior response time to interactive jobs while allocating resources 

impartially between client. The taxonomy for Hadoop scheduling shown in figure 1. The Hadoop job scheduler can 

be classified in terms of the following parameters such as environment, priority, energy, resource awareness, namely 

free slot, disk space, CPU time, I/O utilization, time, and action plan [5]. The usual goal of scheduling algorithms is 

to alleviate the execution time of parallel applications and also to extricate matter related to data processing. The 

primary consideration behind scheduling is to keep down overhead, resources, and completion time, and to make as 

large throughput by allocating jobs to the processor. At this place, the classification of schedulers is based on the 

obtainable resources efficient and effective, scheduling action plan, resource availability, and moment [14][15][16]. 

 

Static Scheduler Policy 

In static scheduling policy to job allocation in processors, it is attaining before the program to begin the job running 

time, in ending time. The processing resource and job running time are recognized only at the time of ending. The 

main aim of static scheduling is to keep down the overall execution time of existing programs [17]. 

 

Dynamic Scheduler Policy 

In dynamic scheduling policy for allocation of jobs to the processors is done during execution time. The scheduler 

has some understanding about the resource before execution, but the environment in which the job [18] will be 

executed is totally unacquainted, and the job will be executed during their lifespan. Meanwhile a job is executed, a 

decision is made and dynamic environment applies to the processes [19]. 

 

Based on Available Resource Scheduler Policy 

Fundamentally, this scheduling policy is based on the resource requirement of the job [19]. This scheduling is to 

ameliorate the job performance and resource utilization. The resources can be I/O, disk storage, memory, CPU time 

[20]. 
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Time Based Scheduler Policy 

This scheduling policy is based on time therein, job ending depends on the user provided finishing date. In this 

scheduling policy, there is a time limit within which the job must be done. The user specified ending date, then 

scrutinize whether the job is [21] finished within the given limit or not. The finishing date can be specified by the 

user and then it can examine whether job executes within that finishing date or not. 

 

 
Figure 1:- The Taxonomy for Hadoop Scheduling Policy 

 

V. The Hadoop Scheduling Algorithm 

The scheduling algorithm is one of the basic technologies of Hadoop platform, its primary function is to manage the 

order of job execution and assign the user’s job to execute upon resources. Familiar with that Hadoop is a general-

purpose system that empower high-performance processing of data over a set of distributed nodes. However, 

according to this definition is the fact that Hadoop is a multi-tasking system that can process several data sets for 

several jobs for several users simultaneously.This ability [22] of multi processing means that Hadoop has the chance 

to more optimally map jobs to resources in a way that renovate their use. Afterwards, Hadoop jobs are sharing the 

cluster resources with scheduling policy based on the scheduling contrivance when and where jobs have to be 

running. Not only numerous types of application on Hadoop platform shared among several users are growing more, 

therewith also combination of batch long jobs and interactive short ones which access identical data set has become 

a typical way of job running. Here upon, in a homogeneous environment, the main intention of multi-user 

scheduling algorithm [23] is to fulfill the balance between proficiency of Hadoop cluster and the dexterity of 

resource allocation among jobs. The purpose of scheduling is to reduce the closure time, enhanced throughput, 

reduce overhead, and balance available resources of a parallel application by appropriately allocating the jobs to the 

processors. Many of them get [24] focus to reform data locality and many of them implements to confer 

synchronization processing. Because the pluggable scheduler was implemented, many scheduler algorithms have 

been developed for it. In this section, we will investigate the different algorithms available and when it makes sense 

to use them. 

 

Longest Approximate Time to End (LATE) Scheduling Algorithm 

The Longest Approximate Time to End (LATE) algorithm is based on three theories make a priority task to 

conjecture, choose fast nodes to execute on, and cap imaginary tasks to inhibit thrashing. The Zaharia , Konwinski et 

al. introduced Longest Approximate Time to End (LATE) [25] scheduler to robustly make better performance by the 

deficiency overhead of speculation execution tasks. The primary goal of LATE scheduler is to optimize the 

performance of jobs and to reduce job response time. When short jobs are executing, the response time is fast, which 
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is very vital. In spite of, it executes long jobs very stilly due to many matters, namely huge number of background 

processes, stilly background process, inaccessibility of resource, CPU load etc. LATE algorithm is robust to node 

heterogeneity, because only some of the sluggish speculative tasks are restarted. This technique does not break the 

synchronization phase between the map and reduce phases, but only takes steps on suitable stilly tasks. 

 

FIFO Scheduling Algorithm 

The primary goal of the FIFO scheduler to schedule jobs based on their priorities in first-come, first serve basis and 

Hadoop by default uses the FIFO scheduling algorithm.  FIFO stands for first in, first out which at its Job Tracker 

pulls longstanding job first from job queue and it doesn't be interested in priority or the size of the job. According to 

the priority level and the time sequence when they are put forward, the entire job queues are scanned, and then a 

tolerable [26] job is choosing to execute. The FIFO scheduling strategy is used when the order of execution of jobs 

has no significance and this scheduling algorithm is straightforward, but there are a lot of restrictions. It is invented 

only for a single type of job, so when multiple users at the same time run multiple types of jobs, performance will be 

relatively minimal.  As the usage rate of Hadoop platform is progressively high, the demand is also extended [26].  

This  algorithm  tends  to  reduce the  overall performance  of  the  platform  and  the  utilization  of  system  

resources,  and  infrequently even  influence the  implementation  of  jobs. 

 

Hybrid Scheduling Algorithm 

The H. Nguyen, T. Simon et al. introduced Hybrid Scheduler algorithm to robustly renovate response time for multi-

user hadoop environments [27]. The primary aim of  Hybrid Scheduler algorithm based on dynamic priority in order 

to lower the delay for variable length concurrent jobs, and relax the order of jobs to sustain data locality. 

Additionally, it’s endows a user-defined service level value of quality  of  service [27]. This algorithm is designed 

for data profound workloads and tries to sustain data locality during job execution. Their  trust, average response 

time for the workloads almost 2.2x faster over the Hadoop Fairs with a criterion deviation of 1.4x. It attains this 

excellent response time by means of relaxing the rigid proportional fairness with a simple exponential strategy 

model. This algorithm is an intense and resilient scheduler that ameliorates response time for multi-user Hadoop 

territory. 

 

Fair Share Scheduling Algorithm 

The Fair scheduling is a hand over resources to jobs, namely on average, all jobs avail, an equal share of resources 

during a time. The fair scheduler was introduced by Facebook. The core thinking behind the fair share scheduler was 

to assign resources [28] to jobs, namely on average over time, each job gets an equal share of the resources at hand. 

The outcome is that jobs that need less time are able to access the CPU and ending intermixed with the execution of 

jobs that need more time to execute. Again, this ongoing permit for few interactivity among Hadoop jobs and assent 

greater accountability for the Hadoop cluster to the diversify of job types produced.  

 

The situation of the Fair scheduling algorithm is to do an identical distribution of computing resources among the 

users & jobs in the system. The scheduler typically organizes [29] jobs by resource pool, and shares resources fairly 

among these pools. The fair allocation of resources among the pools with the MapReduce task slot. If any pool is 

free i.e. there are not being used, then their inactive slots will be used by the other pools. Supposing the similar user 

or same pool sends too several jobs , then the fair scheduler can limit these jobs by marking the jobs as not 

executable [29]. Fair share scheduling algorithm endorsement job taxonomy scheduling, so that   various types of 

jobs receive various resources, thereby  the  quality  of  service is refined and  paralleling number  is  [29] 

dynamically  adjusted. In as much as, it  makes  the  job fully   use   system   resources,  [28] and   refine the 

utilization  degree  of  the system. You configure fair share in the mapred-site.xml file. This file explains the 

properties that collectively govern the behavior of the fair share scheduler.  An XML file designated to by the 

property mapred.fairscheduler.allocation.file explain the allocation of shares to each pool and improve for job size, 

you can set the mapread.fairscheduler.sizebasedweight to hand over shares to jobs as a function of their size. 

 

Self-Adaptive MapReduce (SAMR) Scheduling Algorithm 

The Q. Chen, D. Zhang et al. proposed Self-Adaptive MapReduce (SAMR) scheduling algorithm to reduction the 

execution time of [30] MapReduce jobs, in particular distinct environments. The primary aim of SAMR scheduling 

algorithm ameliorates MapReduce by saving execution time and system resources. It defined intense nodes and 

stilly nodes, to be nodes, which can ending a task in a concise time and longer time than most other nodes. The 

process of SAMR algorithm includes reading the historical information and tuning parameters, updating the 
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historical information, discovery the stilly tasks,  launching backup tasks, collecting outcome and discovery the 

stilly Task Tracker. 

 

Accordingly, it gets the progress of each task correctly and quest which tasks requiring for backup tasks. What’s 

more, it identifies stilly nodes and classifies them into the sets of stilly nodes dynamically [31]. In pursuance of the 

information of these sluggish nodes, SAMR will not launch backup tasks on them, ensuring the backup tasks will 

not be sluggish tasks any more. It gets the final outcome of the fine-grained tasks when either sluggish tasks or 

backup tasks completion first.  

 

 
Figure 2:- The Process of Using and Updating the Historical 

 

The figure 2 shows the process of using and updating the historical information in SAMR. First, Task Tracker read 

historical information from the nodes where they are execution of. These historical information includes historical 

values of M1, M2, R1, R2 and R3. Now TTs tune M1, M2, R1, R2 and R3 according to historical information and 

information collected from the current running system. Hence, TTs collect values of M1, M2, R1, R2 and R3 

according to the real running information after the tasks ended. In the end, TTs write these updated historical 

information into the xml file in every of the nodes. 

 

Capacity Scheduling Algorithm 

The capacity scheduler is designed to execute [29] Hadoop applications as a shared, multi-tenant cluster in an 

operator- matey fashion while maximizing the throughput and the utilization of the cluster. The capacity scheduler 

was basically developed by Yahoo. The primary goal of this scheduler is to maximize the utilization of resources 

and throughput in a cluster environment. The capacity scheduler shares some of the principles of the fair scheduler, 

but has segregate dissimilarity, too. First, capacity scheduling was defined for huge clusters, which may have 

several, self-sufficient consumers and target applications. For this cause, capacity scheduling provides greater 

control as well as the capability to provide a least capacity assurance and share excess capacity among users. Its uses 

queue instead of the pools distinct fair scheduler. Every queue is stipulated to an organization and resources are 

divided among these queues. That is to say, capacity scheduling algorithm puts jobs into several queues in 

accordance with the conditions, and allocates certain system capacity for each queue. If a queue has bulky load, it 

seeks unallocated resources, then makes unnecessary resources allocated evenly to each job. For maximizing 

resource utilization, if a queue is not dissipated its allocated capacity, this surplus capacity can be nonce allocated to 

other queues. When new jobs come in a queue, the resources are [29] allocate back to the foregoing queue after 

ending of the currently running jobs. Another distinction of fair scheduling is the potential to prioritize jobs within a 

queue. Normally, jobs with a topmost priority have access to resources sooner than bottommost priority jobs. If you 

need to configure the capacity scheduler within multiple Hadoop configuration files the queues are defined within 

hadoop-site.xml, and the queue configurations are set with capacity-scheduler.xml. You can also configure ACLs 

within mapred-queue-acls.xml. 

 

 



ISSN: 2320-5407                                                                                      Int. J. Adv. Res. 6(3), 241-258 

248 

 

Delay Scheduling Algorithm 

This Delay scheduling is introduced by applying transformation to MapReduce with data locality to obtain better 

performance and least response time for the map task. The Facebook uses the same waiting technique to obtain 

locality in the Hadoop cluster. The M. Zaharia, D. Borthakur et al. proposed a straightforward algorithm which 

named delay scheduling to address the clash between locality and fairness.  Delay scheduler uses the expectant 

technique for magnify the locality [32]. The Delay scheduling is used to ameliorate data locality by asking jobs to 

wait for its turn for scheduling on a node with local data. When a node appeal a task and if the head-of-line job 

cannot launch a local task, then it is omitted and looked at next jobs. But if a job has been omitted for long enough, 

then non-local tasks are permitted to launch to prevent starvation. In this algorithm in spite of the first slot given for 

a job is not likely [33] to have data for it, but tasks come to an end very hastily that some other slot accommodate 

data for it will free within a small period of time. Delay scheduler endeavor to obtain fairness with locality. This 

scheduler relaxes harsh job order for the task, handing over. 

 

Context Aware Scheduling Algorithm 

The K.A Kumar, V.K Konishetty et al.  introduced a context-aware scheduler [34]. This algorithm uses the current 

heterogeneity of most clusters and the workload amalgam, offer optimizations for jobs using the same dataset. The 

scheduler must gather context information i.e. available resources on the nodes to find out dynamic transformation. 

In slave JobTrackers must in contact periodically with the master TaskTrackers to keep up-to-date information and 

let the scheduler prepare to the new context. The design is based on two key expedients. First, a huge percentage of 

Map Reduce jobs execute periodically and roughly have [35] the same essential quality relating to network 

requirements, CPU, disk. Second, in a Hadoop cluster, the nodes become heterogeneous over time due to lack of 

success, when newer node replacement old ones. Supposing Hadoop does not perform preemption & migration of 

tasks, the participation of speculative tasks and context aware scheduler may contribute to avoid the bottlenecks 

caused by the resources mutability. 

 

Deadline Constraint Scheduling Algorithm 

The Deadline Constraint Scheduler addresses the matter of time limit, but focuses more on increasing system 

utilization. The user specified time limit constraints at the time of scheduling the jobs make sure of that the jobs 

scheduled for execution meet the time limit [36]. It attention on the matter of deadlines and raise system utilization. 

It deals with the time limit requirement by the cost model of job execution, which considers parameters, namely the 

input size of data, map and reduce execution time, data distribution etc. While any job is scheduled, it is examined 

by the scheduler whether it will be ended within the time specified by the time limit or not. Deadline Constraint 

Scheduler demonstrated the following statements firstly multiple source of independent aperiodic tasks can be 

considered estimated to a single one and secondly,  when the number of approximate resources go beyond a data 

center capacity, the tasks migration between various regional centers is the appropriate solving a problem with 

respect to the global deadline and lastly in a heterogeneous data center, we requirement higher number of resources 

for the same request with respect to the deadline limitation [37].  

 

Resource Aware Scheduling Algorithm 

The Polo J, Castillo C et al. evolved resource-aware scheduling technique for Map Reduce with multi-job workloads 

that objective to enhance resource utilization across machines while observing closure time [38]. The resource-

aware scheduling dynamically ascertain the number of job slots, and their position in the cluster at execution time. 

The resource-aware scheduling endows scheduler with the adaptability necessity to respond to transposition 

conditions in resource requisition and availability. In this scheduling different resources like CPU utilization, I/O 

utilization, network utilization, memory utilization, and disk utilization are shared more desired result. In this 

strategy, the scheduling is accomplished by two nodes named Master Node and Work Node, which are also known 

as Job Tracker and Task Tracker, systematically. The Job Tracker handles lists of tasks allocated to each Task 

Tracker, states of Task Trackers in the cluster, and the queue of the currently execution jobs, while the Task Tracker 

is accountable for the execution of each task configured with the utmost number of obtainable slots. 

 

Matchmaking Scheduling Algorithm 

The C. He, Y. Lu, et al. evolved a new matchmaking algorithm to refine the data locality rate and the average 

repercussion time of MapReduce clusters [39]. Matchmaking scheduling, attention on the improvement of data 

locality of map tasks. The main opinion behind this technique is to give every slave node a fair opportunity to grab 

local tasks prior to any non-local tasks are allocated to them.  A task is called local task when it is running on the 

node where its data is obtainable. This scheduler discovers for matches, for instance, in the case when the slave node 
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holds some input data, each Map task is not allocated. Every node is marked by a locality marker to reaffirm that 

every node gets equal chance to seize local tasks. This scheduling has the smallest reaction time, but the towering 

data locality for map tasks. In the end, all slave nodes’ locality markers will be cleared when a  new  job  is  added  

to  the  job  queue.  So far as a  new  job  may  [39] comprise  new  local  tasks  for  some  slave  nodes,  upon  the   

new job’s coming, our algorithm resets the status of all nodes  and  again  starts  the  all-to-all  task-to-node  

matchmaking   process. 

 

Enhanced Self Adaptive MapReduce Scheduling Algorithm 

The Enhanced Self-Adaptive MapReduce scheduling algorithm to do better for the speculative re-execution of 

sluggish tasks in MapReduce. In ESAMR, in order to recognize sluggish tasks accurately, [40] we differentiate 

historical platform weights information on every node and divide them into K clusters using a K-means clustering 

algorithm and when running a job’s tasks on a node. ESAMR categorize the tasks into one of the clusters and uses 

the cluster’s weights to guess the running time of the job’s tasks on the node. ESAMR steerage to the smallest error 

in task execution time guess and know sluggish tasks most as a matter of fact. Again, ESAMR uses a machine 

learning technique to classify the historical information stored on every node into k clusters. Supposing a running 

job has completed some map tasks on a node, then ESAMR records the job’s nonpermanent map phase weight on 

the node according to the job’s map tasks endowed on the node and uses the nonpermanent weight to discover the 

cluster whose weight is the nearest. 

 

Combination Re-Execution Scheduling Algorithm 

The L. Lei, T. Wo,  et al. evolved amalgamation Re-Execution scheduling algorithm for assistance in increased 

running time for speculative map tasks and reduce the response time of MapReduce jobs [41]. The primary goal 

behind this is executed repeatedly the amalgamation of tasks on couple of nodes may outcome in quicker progress 

compared to subjecting a task directly and he target node, due to data locality. The assessment conducted 

demonstrates that CREST can decrease the running time of speculative Map tasks by 75% on the best cases and 55% 

on average, compared to LATE. This amalgamation Re-Execution scheduling algorithm is superior than LATE and 

brings reform by re-executing an amalgamation of tasks on a group of nodes. 

 

Locality-Aware Reduce Task Scheduling Algorithm 

The Locality-aware reduce task scheduling algorithm introduced by M. Hammoud, M. Sakr, et al [42]. This 

technique to keep away from scheduling lateness, scheduling skew, substandard system utilization, and a small 

degree of parallelism. The Locality-aware reduce task scheduling employs a relaxed policy and fragments, some 

reduce tasks among many cluster nodes. This algorithm uses a practical policy that leverages network locations and 

sizes of partitions to exploit data locality. The reduce phase scheduling is improved to become aware of the split, 

locations, and size, of deficiency network traffic. Again, this algorithm incorporates network locations and sizes of 

diminishing split in its scheduling decisions in order to alleviate network traffic and ameliorate MapReduce 

performance. 

 

MAESTRO Scheduling Algorithm 

The Maestro is a replica aware scheduler algorithm introduced by S. Ibrahim, H. Jin, et al. This technique defers the 

difficulty of non-local tasks that depend on replica of map tasks [43]. The Maestro keeps track of the chunks and 

duplicate locations, along with the number of other chunks hosted by each node. This will assistance maestro to 

launch the map tasks without making an impression other nodes’ tasks as well as depending on the number of map 

tasks that are hosted and on their input data duplicate scheme it fills the empty slots of the node. The likelihood of 

queuing a map task based on duplicate of the tasks on the given machine, execution scheduling is calculated. It does 

the work in two ripple firstly stow the empty slots of each data node based on the number of hosted map task and on 

the duplicate scheme for their input data. Secondly execution scheduling takes into account the likelihood of 

scheduling a map task on a given machine depending on the duplicate of the task's input data. These two ripples lead 

to higher locality in the running of map tasks. 

 

MapReduce with Communication Overlap Scheduling Algorithm 

The MapReduce with communication overlap scheduling algorithm initiate by F. Ahmad, S. Lee, et al. MapReduce 

with communication overlap scheduling to instate nearly full overlap through the modern scheme of including the 

sort and reduce in the overlap [44]. The elementary Hadoop data flow was modified assent the operation of Reduce 

tasks on fractional data. MapReduce with communication overlap breaks make smaller into many smaller 

invocations on fractional data from some map tasks, and a concluding reducing step re-reduces all the fractional 
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reduce outputs to produce the concluding output. MapReduce with communication overlap approach  of  hiding  the  

latency  of the   on a mandatory basis high   shuffle   volume   of   shuffle-heavy Map Reductions are elemental for 

attaining performance. 

 

Center-of-Gravity Reduce Scheduling Algorithm 

The M. Hammoud, M. Rehman, et al. developed Center-of-Gravity Reduce Scheduling Algorithm [45]. This 

technique to designs a locality-aware, skew-aware reduce task scheduler for stop MapReduce network traffic. The 

Center-of-Gravity reduce task scheduling effort to schedule every reduce job, at its center-of-gravity node 

determined by the network position of alimentation nodes and the skew in the sizes of  alimentation map tasks split. 

The network is normally a congestion in MapReduce-based systems and scheduling reducers at their center-of-

gravity nodes, we dissert for reduced network traffic, which can perchance permit more MapReduce jobs to stick 

together on the same system. Center-of-Gravity reduce task scheduling controllably cast aside scheduling skew, a 

circumstance where some nodes receive more reduce tasks than others, and encourage pseudo-asynchronous map 

and reduce phases and in scheduling reducers at their nodes, they dissert for diminishing network traffic, which may 

perchance assent more MapReduce task  to stick together on the identical system. 

 

Self-Adaptive Reduce Scheduling Algorithm 

The Z. Tang, L. Jiang, et al. introduced Self-Adaptive Reduce scheduling algorithm. The most important aim of  

Self-Adaptive Reduce scheduling algorithm analyses the map and reduce phases in detail and it is capable of [46] 

determine dynamically the start time of the decrease task depending on the size of the output of map tasks. The Self-

Adaptive Reduce scheduling algorithm rise the resource utilization rate by keeping down reduce tasks expectant 

time. In this algorithm, firstly by keeping down tasks read the each map output from data blocks. This is copy phase. 

Secondly,  these outputs from map phase are ordered and combine. This data are split into two types, one is data in 

memory and other is data in the circular buffer. The memory that is assigned to decrease tasks is limited, which is 

why the buffer data must be written to disk regularly. In exterior sorting, the new data must combine with data on 

the disks frequently. Supposing there are a huge number of map tasks or huge sized map tasks, exterior sorting must 

be done many times as well as copy stage and sort stage together is called shuffle stage. This algorithm proved that 

the average reaction time has fallen 12% to 30% when SARS algorithms are applied conventional job scheduling 

algorithm such as that capacity scheduler, FIFO and fair scheduler.   

 

COSHH Scheduling Algorithm 

The A. Rasooli, D.G. Down, et al. developed new scheduling algorithm that called COSHH, which is implemented 

and executed for Hadoop, it contemplate heterogeneity at both cluster and application levels [47]. The most 

important goal of COSSH uses system information and takes scheduling judgment which enhance the performance 

of the overall system. The two main steps in COSSH are, assign to the job in a suitable queue when the new job 

coming and allocate job to free resource upon receiving a heartbeat. The scheduler triggers the routing process to 

allocate a job to the existing free resource. This COSHH algorithm is proposed to ameliorate the mean ending time 

of jobs. 

 

Weighted Round-Robin Scheduling Algorithm 

The Y. Zhang, P.G. Harrison, et al. evolved Weighted Round-Robin scheduling algorithm [48]. The main concept of 

our weighted round-robin policy is to assign a weight to each queue, then scheduling tasks of various sub-queue 

according to weight. In respect of Weighted Round-Robin scheduling algorithm, it can endow better fairness when 

the size of each task is same. Forasmuch, it will bring unfairness for the smaller queues if the size of the task is 

incompatible. The algorithm is simple to be implemented with a small cost and appropriate for the Hadoop platform. 

 

 

Natjam Scheduling Algorithm 

The B. Cho, M. Rahman, et al. developed new scheduling algorithm that called Natjam [49]. The most important 

aim of Natjam endows random job priorities, arduous actual time scheduling and more efficient misappropriation for 

MapReduce clusters those are resource constrained.  In the MapReduce skeleton jobs comes with arduous priority, 

high priority job (small closure time) and small priority jobs(long closure time) the traditional way to extricate the 

issue of priority is setting various clusters, which later lead to the incapacitated resource utilization and long job 

closure time. The algorithm goal, firstly to execute all the types of job, regardless of priority, closure time in the 

same MapReduce cluster. Secondly  achieve a less closure time for higher priority jobs and thirdly optimizing 
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closure times of bottommost priority jobs. The Natjam perform superior than current viewpoint for a diversification 

of clusters, under actual workloads and sizes. 

 

DynMR Scheduling Algorithm 

The J. Tan, A. Chin, et al. introduced new scheduling algorithm that called DynMR [50]. The primary goal of 

DynMR is used to enhance the performance of MapReduce. The consequential issue that persists in the current 

MapReduce implementation. Firstly the problem in selecting par excellence performance parameters for a single job 

in a fixed, committed environment, and lack of ability to configure parameters that can perform optimally in a 

dynamic, multi-job cluster; secondly  the long job execution resulting from a task long-tail effect, often caused by 

reduce task data skew or heterogeneous computing nodes and thirdly ineffectual use of hardware resources. The 

DynMR uses the interleave way of execution where many partially accomplished reduce tasks and map tasks 

executes. It be made up of three components. Firstly a running reduce task uses a detection algorithm to recognize 

resource underutilization during the shuffle phase. It then gives up the assign hardware resources efficiently to the 

next task. Secondly a number of reduce task is gradually amassed in a progressive queue, according to a flow control 

algorithm in runtime. These tasks execute in an interleaved staggering. Moreover reduce task can be put adaptively 

to the progressive queue if the full fetching capacity is not attainable. Thirdly merge threads of each decrease task 

are extracted out as standalone services within the associated JVM. This design permits the data segments of several 

partially-complete reduce task to live in the same JVM heap. 

 

Throughput Driven Task Scheduling Algorithm 

The X. Wang, D. Shen, et al. evolved Throughput Driven Task Scheduler algorithm [51]. In view of the fact that, 

task scheduling in MapReduce is very vital for the job execution and has a marked influence on the system 

performance. To the best of our comprehension, the foregoing scheduling algorithms rarely consider the job-

intensive environments and are not able to provide high system throughput. Here  this Scheduler algorithm offers a 

way for enhancing throughput using job intensive scheduling. A latest job scheduling technique is offered, 

throughput driven task scheduler for obtaining high system the throughput in the job intensive MapReduce 

environment and this algorithm abbreviate many aspects which can influence the throughput of a job intensive 

MapReduce environment.  

 

CooMR Scheduling Algorithm 

The X. Li, Y. Wang, et al. developed new scheduling algorithm that called CooMR. The main goal of cross-task 

coordination CooMR is designed for efficient data management in MapReduce programs. The CooMR be made up 

of three component schemes [52] including cross-task opportunistic memory sharing and log-structured I/O 

consolidation, which are designed to make easier task coordination, and the key-based in-situ merge algorithm 

which is designed to make able the merging & sorting of Hadoop intermediate data without in fact moving the <key, 

value> pairs. The CooMR leads to enhancement task coordination, intensify system resources throughput and 

outstandingly ameliorate the process time of MapReduce jobs. 

 

ARIA Scheduling Algorithm 

The B A. Verma, L. Cherkasova, et al. introduced new algorithm that called ARIA [53]. The matter in the shared 

MapReduce cluster is to keep track of the resource allocation of various applications for attaining their performance 

aim. The  connatural Hadoop scheduler, no such job scheduler is present that can suitably allocate the resources for 

the job once given a job closure deadline. The primary aim of Natjam endows AIRA deals with the above mentioned 

difficulty. ARIA be made up of three interrelated components. At the beginning, a job that is continuously executed 

on a new dataset, job profile is maintained, which contains the info about Map and Reduce tasks. Eventually, the 

MapReduce performance model is made in estimating the amount of resources for job ending. 

 

HScheduler Scheduling Algorithm 

The W. Tian, G. Li, et al. presented HScheduler algorithm [54]. The most important aim of HScheduler is to design 

the MapReduce scheduler, which detract the make span of the jobs. The MapReduce cluster, the running time of the 

job depends on the way the map task is scheduled, the overall make span and the resource utilization depends on the 

scheduling of the map and reduce tasks and via comprehensive actual data tests, the HScheduler has superior 

performance than the best-known technique by 10.8–11.9 % on average for offline scheduling and 9–11 % on 

average for online scheduling. The HScheduler can be applied to ameliorate accountable time, energy dexterity in 

cloud computing and throughput. 
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VI. The Optimization Techniques for Scheduling 

The scheduling in big data platforms is the primary building block for making data centers more available to 

applications and user group. An instance of optimization is multiobjective and multiconstrained scheduling of many 

tasks in Hadoop or improve small jobs with Hadoop. The optimization policy for scheduling are specific to each 

model and for every type of application [55]. The most used techniques for scheduling optimization are as follows.  

 

Linear Programming: Linear programming is the process of taking different linear inequalities relating to some 

circumstance, and discovers the best value obtained under those conditions. In real life, linear programming is part 

of a very vital area of mathematics called optimization techniques. This field of study is used every day in the 

organization and allocation of resources. Linear programming permits the scheduler to discover the appropriate 

resources or cluster of resources, based on defined constraints. 

 

Dynamic Splits: Dynamic splits divided intricate applications in a cluster of tasks and schedule every cluster with a 

specific scheduling algorithm. 

 

The Combinatorial Optimization: The Combinatorial optimization techniques are the discovery for maxima or 

minima  of an objective function whose domain is a discrete unless huge configuration space as opposed to an N-

dimensional continuous space and its discover an optimal allocation solution for a finite set of resources. This is a 

time-consuming technique, and it is not suitable for real-time processing. 

 

Task-Oriented Optimization: Task-oriented optimization considers the task’s properties, coming time (slack 

optimization), and frequency (for periodic tasks). 

 

Stochastic Optimization: Stochastic optimization uses random variables that become visible in the formulation of 

the optimization issue itself and are used especially for applications that have a deterministic behavior, that is, a 

normal distribution (for periodic tasks) or Poisson distribution (for sporadic tasks). 

 

Resource-Oriented Optimization: Resource-oriented optimization considers ending time constraints while making 

the decision to maximize resource utilization. 

 

Evolutionary Optimization: Evolutionary optimization goal to discover an optimal configuration for a specific 

system within specific constraints and consists of specific bio-inspired techniques, namely ant and bee computing, 

particle swarm optimization, immune and genetic algorithms. These techniques normally explore a near-optimal 

solution for the scheduling issue. 

 

VII. The Comparative Analysis Various Scheduling Algorithms in Big Data Territory 

In this section, we are comparative analysis various scheduling algorithms in the Big Data territory has shown in 

below table1, table2, and table 3. In addition, this paper paraphrases the Strengths, Weaknesses, and Environment of 

scheduling algorithms on Big Data. 
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Table 1:- The Comparative Analysis Various Scheduling Algorithms 
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Table 2:- The Comparative Analysis Various Scheduling Algorithms 
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Table 3:- The Comparative Analysis Various Scheduling Algorithms 
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Conclusion:- 
Today, almost everyone is connected to the Internet and uses different Cloud solutions to deliver, store, and process 

data. The rapid growth of data volume requires processing of petabytes of data per day. Many applications generate 

big data, like social networking and social influence programs, Cloud applications, public websites, scientific 

experiments and simulations, data warehouses, monitoring platforms, and e-government services. To process big 

data proper scheduling is required to achieve greater performance. The main purpose of scheduling in big data 

platforms is to the processing and completion of as numerous tasks as possible by managing and transforming data 

in a potential way with a less number of transmigration. There are various factors that affect the performance of 

scheduling policies such as data volume, format of data sources, data velocity, security and privacy, cost, 

connectivity, and data sharing. The aim of scheduling of jobs is to enable faster processing of jobs and to reduce the 

response time as much as possible by using better techniques for scheduling depending on the jobs, along with the 

best utilization of resources. We explained several popular scheduling algorithms in this field. In the end, in this 

paper, we are extensive overview of job scheduling, classification of the scheduler, and comparison of various 

existing algorithms with benefit, deficiency, limitations in the big data territory. 
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