International Journal of Computational Research and Development (IJCRD) Impact Factor: 5.015, ISSN (Online): 2456 - 3137 (www.dvpublication.com) Volume 3, Issue 1, 2018

SOME COMMON FIXED POINT THEOREMS IN B-METRIC SPACES

Kalishankar Tiwary*, Krishnadhan Sarkar** & Tarun Gain***

Department of Mathematics, Raiganj University, Raiganj, West Bengal

Cite This Article: Kalishankar Tiwary, Krishnadhan Sarkar & Tarun Gain, "Some Common Fixed Point Theorems in B-Metric Spaces", International Journal of Computational Research and Development, Volume 3, Issue 1, Page Number 128-130, 2018.

Abstract:

In this paper we prove some common fixed point theorems for four mappings using some control functions in b-metric spaces.

1. Introduction and Preliminaries:

After Banach contraction theorem [4] many generalizations of this principle were introduced in metric spaces [10]. Also, in recent years some important generalizations of usual metric spaces have been defined. *b*-metric space [3, 5] is one of them. Also several interesting results about the existence and uniqueness of fixed point were proved in *b*-metric spaces [2, 3, 5, 6, 8, 9]. To complete the paper we collect the following definitions: The following definition is introduced in Bakhtin [3] and Czerwik [5].

Definition 1 [3, 5]:

Let X be a (nonempty) set and $s \ge 1$ be a given real number. A function $d:X \times X \to [0, \infty)$ is a *b*-metric on X if, for all x, y, $z \in X$, the following conditions hold:

 $\checkmark \quad d(x, y) = 0 \text{ if and only if } x = y,$

 $\checkmark \qquad d(x, y) = d(y, x),$

✓
$$d(x, z) \leq s[d(x, y) + d(y, z)]$$
.

In this case, the pair (X, d) is called a *b*-metric space (metric type space). It should be noted that, the class of *b*-metric spaces is effectively larger than that of metric spaces, every metric is a *b*-metric with s = 1, while the converse is not true.

We Collect the Following Example from [10]:

Let (X, d) be a metric space and $\rho(x, y) = (d(x, y))^p$, where p > 1 is a real number. Then ρ is a *b*-metric with $s = 2^{p-1}$.

However, if (X, d) is a metric space, then (X, ρ) is not necessarily a metric space.

For example, if $X = \mathbb{R}$ is the set of real numbers and d(x, y) = |x - y| is usual Euclidean metric, then $\rho(x, y) = (x - y)^2$ is a *b*-metric on \mathbb{R} with s = 2. But is not a metric on \mathbb{R} .

Definition 2 [6]:

- Let $\{x_n\}$ be a sequence in a *b*-metric space (X, d).
- $\{x_n\}$ is called *b*-convergent if and only if there is $x \in X$ such that $d(x_n, x) \to 0$ as $n \to \infty$.
- ✓ { x_n } is a *b*-Cauchy sequence if and only if $d(x_n, x_m) \rightarrow 0$ as $n, m \rightarrow \infty$.

A *b*-metric space is said to be complete if and only if each *b*-Cauchy sequence in this space is *b*-convergent.

It is to be noted that in a b-metric space every convergent sequence has a unique limit and also every convergent sequence is Cauchy but it is remarkable to note that b-metric is not continuous while metric space is continuous [6].

Definition 3 [cf.10]:

Let (X, d) be a *b*-metric space. A subset $Y \subset X$ is called closed if and only if for each sequence $\{x_n\}$ in *Y* which *b*-converges to an element *x*, we have $x \in Y$.

Aamri and Moutawakil [1] introduced (E.A)-property. In this paper, we prove a common fixed point theorem for two pairs of mappings which satisfy the b-(E.A) property in b-metric spaces [8].

Definition 4 [7]:

- Let (X, d) be a *b*-metric space and *f* and *g* be self mappings on *X*.
- ✓ *f* and *g* are said to compatible if whenever a sequence $\{x_n\}$ in *X* is such that $\{fx_n\}$ and $\{gx_n\}$ are *b*-convergent to some $t \in X$, then $\lim_{n\to\infty} d(fgx_n, gfx_n) = 0$.
- ✓ f and g are said to non compatible if there exists at least one sequence $\{x_n\}$ in X is such that $\{fx_n\}$ and $\{gx_n\}$ are *b*-convergent to some $t \in X$, but $\lim_{n\to\infty} d(fgx_n, gfx_n)$ is either nonzero or does not exist.
- \checkmark f and g are said to satisfy the b-(E.A) property[8] if there exists a sequence $\{x_n\}$ such that

$$\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = t$$
, for some $t \in X$.

Remark:

Noncompatibility implies *b*-(*E*.*A*)-property.

Ozturk Turkoglu [8] have shown with the example that there are mappings which satisfy (E-A) condition but they are non- compatible.

We collect the following definition from the Jungck [7]:

Definition 5[7]:

f and g be given self-mappings on a set X. The pair (f, g) is said to be weakly compatible if f and g commute at their coincidence points (i.e. fgx = gfx whenever fx = gx).

2. Main Results:

Theorem 1:

Let(X, d) be a b-metric space withs > 1 and f, g, S, T:X \rightarrow Xbe a mappings with $f(X) \subseteq T(X)$ and $g(X) \subseteq S(X)$ such that

$$s^{\varepsilon}d(fx, gy) \leq \emptyset(d(Sx,Ty), d(fx,Sx), d(gy,Ty), d(fx,Ty), \frac{d(Sx,gy)}{s})$$
 for all x,y in X

 $\varepsilon > 1$ is a constant and where $\emptyset: R_+^5 \to R_+$, R_+ is the set of all non negative real numbers and $\emptyset(\xi, \xi, \xi, \xi, \xi) \le \xi$ for $\xi > 0$, \emptyset is non decreasing in each coordinate and upper semi continuous. Suppose that one of the pairs (f, S) and (g, T) satisfy the b-(E.A)-property and that one of the subspaces f(X), g(X), S(X) and T(X) is b-closed in X. Then the pairs (f, S) and (g, T) have a point of coincidence in X. Moreover, if the pairs (f, S) and (g, T) are weakly compatible, then f, g, S and T have a unique common fixed point **Proof:**

We suppose that the pair (f, S) satisfies the *b*-(*E*.*A*)-property, there exists a sequence $\{x_n\}$ in *X* satisfying

$$\lim_{n} f x_n = \lim_{n} S x_n = q$$

for some $q \in X$. As $f(X) \subseteq T(X)$ there exists a sequence $\{y_n\}$ in X such that $fx_n = Ty_n$. Hence $\lim_{n\to\infty} Ty_n = q$. We wish to show that $\lim_{n\to\infty} gy_n = q$.

If T(X) is closed subspace of X, then there exists a $r \in X$, such that Tr = q. We shall show that gr = q. Indeed, we have

By (1),

$$s^{\varepsilon}d(fx_n, gy_n) \leq \phi(d(Sx_n, Ty_n), d(fx_n, Sx_n), d(gy_n, Ty_n), d(fx_n, Ty_n), \frac{d(Sxn, gyn)}{s})$$

$$= \emptyset(\operatorname{d}(\operatorname{Sx}_n,\operatorname{fx}_n),\operatorname{d}(\operatorname{fx}_n,\operatorname{Sx}_n),\operatorname{d}(\operatorname{gy}_n,\operatorname{fx}_n),\operatorname{d}(\operatorname{fx}_n,\operatorname{fx}_n),\frac{d(\operatorname{Sx}_n,\operatorname{gy}_n)}{s})\} \leq \emptyset(\operatorname{d}(\operatorname{Sx}_n,\operatorname{fx}_n),\operatorname{d}(\operatorname{fx}_n,\operatorname{Sx}_n),\operatorname{d}(\operatorname{gy}_n,\operatorname{fx}_n),\operatorname{d}(\operatorname{fx}_n,\operatorname{fx}_n),\operatorname{d}(\operatorname{$$

In (2), on taking limit superior, we obtain

 $\lim_{n} \sup s^{\varepsilon} d(fx_{n}, gy_{n}) \leq \emptyset (0, 0, \lim_{n} \sup d(gy_{n}, fx_{n}), 0, \lim_{n} \sup d(gy_{n}, fx_{n}))$ because $d(Sx_{n}, fx_{n}) \to 0$ as $n \to \infty$. Since $s^{\varepsilon} > s > 1$, we have $\lim_{n} \sup d(gy_{n}, fx_{n}))=0,$ that is, $\lim_{n\to\infty} d(gy_{n}, fx_{n}))=0$. Further, we have

$$d(q, gy_n) \le s [d(q, fx_n) + d(gy_n, fx_n)] \to 0 \text{ as } n \to \infty. Hence, gy_n \to q.$$

$$d(q, gr) \le s [d(q, fx_n) + d(gr, fx_n)].....$$
(3)

Now,

$$s^{\varepsilon}d(fx_n, gr) \leq \emptyset(d(Sx_n, Tr), d(fx_n, Sx_n), d(gr, Tr), d(fx_n, Tr), \frac{d(Sxn, gr)}{s})$$

= $\emptyset(d(Sx_n, q), d(fx_n, Sx_n), d(q, qr), d(fx_n, q), \frac{d(Sxn, q) + d(q, gr)}{s})$ (4)

Using (3) and (4) and letting $n \to \infty$,

$$s^{\varepsilon} d(q, gr) \leq \emptyset (0,0, d(q, gr), 0, d(q, gr))$$

$$(5)$$

From (3) and (5), we have

$$d(q, gr) \leq s[0 + \frac{\emptyset(0,0,d(q,gr),0,d(q,gr))}{s^{\varepsilon}}]$$

i.e., d(q, gr) = 0. Hence, q = gr. Hence, q=gr=Tr. As $g(X) \subseteq S(X)$, there exists a point $z \in X$ such that q = Sz. We claim that Sz = fz.

By (1), we have

$$s^{\varepsilon}d(fz, gr) \le \emptyset(\mathbf{d}(\mathbf{S}z, \mathbf{T}r), \mathbf{d}(fz, \mathbf{S}z), \mathbf{d}(gr, \mathbf{T}r), \mathbf{d}(fz, \mathbf{T}r), \frac{\mathbf{d}(\mathbf{S}z, gr)}{s})$$
$$= \emptyset(0, \mathbf{d}(fz, \mathbf{q}), 0, \mathbf{d}(fz, \mathbf{q}), 0)$$

Implies d(fz, q) = 0 i.e., fz = q.

Thus fz = sz = q. Therefore, fz = Sz = Tr = gr = q

By the weak compatibility of the pairs (*f*, *S*) and (*g*, *T*), we obtain that fq = Sq and gq = Tq. We will show that *q* is a common fixed point of *f*, *g*, *S* and *T*. Using (1), we get $s^{\varepsilon}d(fq, q) = s^{\varepsilon}d(fq, gr) \le \emptyset(d(Sq,Tr), d(fq,Sq), d(gr,Tr), d(fq,Tr))$

$$\leq \emptyset(d(fq,q), 0, 0, d(fq,q), \frac{s[d(sq,fq)+d(fq,qr)]}{s})$$

= $\emptyset(d(fq,q), 0, 0, d(fq,q), 0) i.e.,$
 $d(fq,q) \leq 0$ implies $fq = q$.

Hence, fq = Sq =q. Similarly it can be shown that gq = Tq =q.

We now prove the unicity of the common fixed point. If possible let p be another common fixed point of f,S.g.T. Using (1), we get,

$$s^{\varepsilon}d(fp, gq) \leq \emptyset(d(\operatorname{Sp}, \operatorname{Tq}), d(fp, \operatorname{Sp}), d(gq, \operatorname{Tq}), d(fp, \operatorname{Tq}), \frac{a(sp, gq)}{s})$$

$$\emptyset(d(p,q), 0, 0, d(p,q), d(p,q))$$

Implies $s^{\varepsilon}d(fp, gq) \le d(p,q)$ i.e., $d(p,q) \le 0$ i.e., p=q.

This completes the proof of the theorem.

Corollary 1:

Let(X, d) be a b-metric space and f, $T:X \to X$ be mappings such that

 $s^{\varepsilon}d(fx, gy) \le \emptyset(d(Tx,Ty), d(fx,Tx), d(fy,Ty), d(fx,Ty), \frac{d(Tx,fy)}{s})$ for all x, y in X

where $\varepsilon > 1$ is a constant. Suppose that the pair (f, T) satisfies the b-(E.A)-property and T(X) is closed in X. Then the pair (f, T) has a unique point of coincidence in X. Moreover, if the pair (f, T) is weakly compatible, then f and T have a unique common fixed point.

Corollary 2:

Let (X, d) be a b-metric space and f, T: $X \rightarrow X$ be mappings such that

$$s^{2}d(fx, fy) \le M_{s}(x, y)$$
 for all $x, y \in X$,

where $\varepsilon > 1$ is a constant and s²d(fx, fy) $\leq \emptyset(d(Tx,Ty), d(fx,Tx), d(fy,Ty), d(fx,Ty), \frac{d(Tx,fy)}{s})$ for all x,y in X Suppose that the pair (f, T) satisfies the b-(E.A)-property and T(X) is closed in X. Then the pair (f, T) has a unique point of coincidence in X. Moreover, if the pair (f, T) is weakly compatible, then f and T have a unique common fixed point.

3. Conclusion:

In this paper, we have proved fixed point theorems for mappings satisfying b-(E.A)-property in b-metric spaces. Our results extended b-(E.A)-property results in the literature.

4. References:

- 1. Aamri M, El Moutawakil D. Some new common fixed point theorems under strict contractive conditions. J Math Anal Appl. 2002; 270:181–188.
- 2. Aghajani A, Abbas M, Roshan JR. Common fixed point of generalized weak contractive mappings in partially ordered *b*-metric spaces. Math Slovaca. 2014; 4:941–960.
- 3. Bakhtin IA. The contraction principle in quasimetric spaces. Funct Anal. 1989; 30:26–37.
- 4. Banach S. Sur les opérations dans les ensembles abstraits et leur application aux equations intégrales. Fundam Math. 1922; 3:133–181
- 5. Czerwik S. Contraction mappings in *b*-metric spaces. Acta Math Inform Univ Ostrav. 1993; 1:5–11
- 6. Jovanović M, Kadelburg Z, Radenović S. Common fixed point results in metric-type spaces. Fixed Point Theory Appl. 20107.
- 7. Jungck G. Compatible mappings and common fixed points. Int J Math Sci. 1986; 9:771–779.
- 8. Ozturk V, Turkoglu D. Common fixed point theorems for mappings satisfying (*E.A*)-property in *b*-metric spaces. J Nonlinear Sci Appl. 2015; 8(1):127–1133.
- 9. Ozturk V, Turkoglu D. Fixed points for generalized $\alpha \psi \alpha \psi$ -contractions in *b*-metric spaces. J Nonlinear Convex Anal. 2015; 16(10):2059–2066.
- 10. Ozturk V, Radenovic S, Some remarks on b-(E-A) property in b-metric spaces, spring Plus, 2014
- 11. Rhoades, B.E., Tiwary, Kalishankar, Singh, G.N., A common fixed point for compatible mappings, Indian Journal of pure and appl.math,1995,26,403-409.