Optical (and radio) polarisation of NLSy1s and rotation candidates in gamma-ray emitting ones

E. Angelakis

Max-Planck-Institut für Radioastronomie, Auf dem Huegel 69, Bonn 53121, Germany

S. Kiehlmann, I. Myserlis, V. Karamanavis, D. Blinov, J. Eggen, R. Itoh, S. Komossa, N. Marchili, J. A. Zensus

MAX-PLANCK-GESELLSCHAFT

für Radioastronon

radio jet emission

Angelakis et al., 2015, A&A, 575, A55

- 10 radio frequencies 2.6 143 GHz
- ~1-month cadence, over ~5 years
- radio monitoring of the 4 NLSy1s
 detected by Fermi at the time
- typical blazar phenomenology but
 lower flux densities
- Doppler factors below 10: moderately relativistic jets
- jet power comparable to the least energetic blazars (BL Lac objects)

radio jet emission

Angelakis et al., 2015, A&A, 575, A55

- 10 radio frequencies 2.6 143 GHz
- ~1-month cadence, over ~5 years
- radio monitoring of the 4 NLSy1s
 detected by Fermi at the time
- typical blazar phenomenology but
 lower flux densities
- Doppler factors below 10: moderately relativistic jets
- jet power comparable to the least energetic blazars (BL Lac objects)
- intense spectral evolution: particle acceleration events (e.g. shocks)

jet kinematics: 1H 0323+342

Fuhrmann et al., 2016, RAA, 16, 176F

multi-epoch 15 GHz VLBA images (MOJAVE) & F-GAMMA data:

- 6 moving components and one quasistationary feature
- → apparent speeds ranging 0.93 6.92 c
- → δ_{var} ~ 5.2
- viewing angle towards 1H 0323+342: θ_{var} ≤ 4°−13°: validating the aligned geometry scenario

optical polarisation variability

Angelakis et al., in prep.

scope:

- study the polarisation variability
- search for rotations of the PA

sample:

- 10 Radio Loud NLSy1s
- → 5 detected by *Fermi*

dataset:

- RoboPol, KANATA, Perkins & Steward

ID	Survey ID	Redshift	$M_{ m BH}$	R	Notes
ID J0324+3410 J0849+5108 J0948+0022 J1305+5116 J1505+0326 J1548+3511	Survey ID 1H 0323+342 SBS 0846+513 PMN J0948+0022 WISE J130522.75+511640.3 PKS 1502+036 HB89 1546+353	Redshift 0.062900 ¹ 0.584701 ² 0.585102 ² 0.787552 ² 0.407882 ² 0.479014 ²	$M_{\rm BH}$ $2 \times 10^{7} \text{ A}$ $0.8 - 9.8 \times 10^{7} \text{ B,C,D}$ $0.4 - 8.1 \times 10^{8} \text{ E,F}$ $3.2 \times 10^{8} \text{ J}$ $0.04 - 2 \times 10^{8} \text{ G,H,5,I}$ $7.9 \times 10^{7} \text{ J}$	<i>R</i> 318 ^O 1445 ^J 355 ^J 223 ^J 1549 ^J 692 ^J	Notes Fermi detected ⁵ Fermi detected ⁶ Fermi detected ⁷ Optical spec. indicates strong outflow. Fermi detected ⁵ Evidence for past radio variability.
J1628+4007	RX J16290+4007	0.272486 ²	$3.5 \times 10^{7 \text{ L}}$	29 ^N	Optically variable.
J1633+4718	RX J1633 3+4718	0.116030 ⁴	$3 \times 10^{6 \text{ K}}$	166 ^J	Evidence for past radio variability.
J1644+2619	FBQS J1644+2619	0.145000^{-3}	2.1×10 ^{8 M}	447 ^N	Fermi detected ⁸
J1722+5654	SDSS J172206.02+565451.6	0.425967^{-2}	2.5×10 ^{7 J}	234 ^J	Evidence for high-amplitude optical variability.

optical polarisation: fraction

Angelakis et al., in prep.

Rice distribution:

de-biassing recipe:

 $\hat{p} = \begin{cases} 0 & \text{for } p/\sigma_p < \sqrt{2} \\ \sqrt{p^2 - \sigma_p^2} & \text{for } p/\sigma_p \ge \sqrt{2} \end{cases}$

$$F(p \mid p_0)dp = \frac{p}{\sigma_p} \exp\left[-\frac{p^2 + p_0^2}{2\sigma_p^2}\right] I_0\left(\frac{pp_0}{\sigma_p^2}\right) \frac{dp}{\sigma_p}$$

Kanata

Perkins

RoboPol

Steward

+↓ <u>∎</u>

↓ ↓ ↓

0.06

0.05

0.04

0.02 0.01 0.00 1000

800

م.0.03

J0324+3410

optical polarisation: fraction

Angelakis et al., in prep.

polarisation fraction:

0.16

0.14

0.12

0.10

0.04

0.02

0.00 700

600

200

100 55600

¢،0.08 0.06 Ŧ

Ŧ

Perkins

RoboPol

J1505+0326

56000

56200

55800

- 7 of 10 RL NLSy1s show phases of significant polarisation ($\hat{p}/\sigma_p \geq 3$)
 - 3 of 7 have maximum: $\hat{p} \leq 0.05$
 - 1 of 7 has maximum $\,: 5 < \hat{p} \leq 0.1$
 - 3 of 7 have maximum: $0.1 < \hat{p}$

ΙŦ

Ī

56400

I

 $JD - 2\,450\,000$

56600

56800

optical polarisation: fraction Angelakis et al., in prep.	JD	<i>p̂</i>	σ_p	χ (°)	σ_{χ} (°)	
	J1305+5116					
polarisation fraction:	2457209.285 2457240.322	0.011 0.008	$0.008 \\ 0.007$	-29.6 -8.9	21.2 23.7	
- 7 of 10 RL NLSy1s show phases of	J1548+3511					
significant polarisation ($\hat{p}/\sigma_p \geq 3$)	2457209.367	0.000	0.013	47.9	61.4	
- 3 of 7 have maximum: $\hat{p} \leq 0.05$	2457240.364 2457264.291	$0.021 \\ 0.058$	0.011 0.016	-10.8 -32.9	16.5 8.0	
- 1 of 7 has maximum $:5<\hat{p}\leq 0.1$	J1628+4007					
- 3 of 7 have maximum: $0.1 < \hat{p}$	2457209.405 2457254.323	$0.000 \\ 0.000$	0.008 0.009	-25.0 -45.3	61.4 61.4	
		J1633+4718				
	2457209.425 2457228.395 2457240.384 2457254.345	0.021 0.030 0.019 0.027	0.005 0.005 0.006 0.005	-8.1 -5.6 3.7 -3.1	7.0 5.2 9.2 5.0	
		J1644+2619				
	2457209.445 2457230.387 2457240.404 2457254.358	0.039 0.000 0.031 0.012	0.008 0.011 0.006 0.012	-24.2 -32.5 -16.8 -34.8	5.8 61.4 6.0 28.8	
		J1722+5654				
	2457228.434 2457240.429	$0.000 \\ 0.000$	0.014 0.015	-33.2 -37.7	61.4 61.4	

optical polarisation: angle

Angelakis et al., in prep.

polarisation angle:

- significant variability
- possible angle rotations similar to those in blazars

polarisation angle of J1505+0326

Angelakis et al., in prep.

- 5 periods of significant continuous variability (coloured connecting lines)
- 2 of 5 are **long rotations** because:
 - include more than three points
 - exceed 90°

Angelakis et al., in prep.

observed parameters:

- length: $\Delta \chi \approx -309.5^{\circ}$
- rate: $\Delta \chi / \tau \approx -3.7 \ {\rm deg/d}$

Angelakis et al., in prep.

is the rotation reliable?

- sparse sampling and large angle uncertainties make the direction uncertain
- very large number of uncertain points (red), hence: the rotation is uncertain

is the rotation **reliable**?

- uncertainties in measured Stokes q and u make the rotation uncertain
- yet, probability of rotation over angle within 1.0 sigma of observed value: ~23%

Angelakis et al., in prep.

can measurement **uncertainties fake** a **rotation**?

- assume no intrinsic rotation $d\chi/dt = 0$
- we count "full rotations" (i.e. cover the entire dataset)

rence

56840JD $- 2\,450\,000$

rotation?

- we find:

P (full rotation; $|\Delta \chi_{\text{intr}}| \ge 309.5^{\circ}| d\chi_{\text{intr}}/dt = 0) = 6 \times 10^{-4}$

56860

56880

 fairly improbable: hence there must be intrinsic variability

Angelakis et al., in prep.

most probable intrinsic parameters:

- assume constant rate ($d\chi_{intr}dt=const$)
- for a full rotation over an angle within
 1σ of the observed one:
 - most probable rate: -3.1±0.1 deg d⁻¹ probability ~ 13%
- hence: the observed angle is consistent with an intrinsically constant rotation
- conclusion: it is much more likely that an intrinsic EVPA rotation (with pseudo-variability from uncertainties) is causing the observed event

optical polarisation variability

Angelakis et al., in prep.

main conclusions

- significant angle variability
- long rotation candidates detected
- poor sampling and measurement uncertainties make the events uncertain
- pure noise can induce rotations but very improbable
- most likely there are intrinsic events happening

Myserlis et al., in prep.

Very Preliminary

- likely below our detection limit
- multi-band polarisation
- indications for long EVPA rotations
- periods of significant Circular
 Polarisation
- ➡ more to come …

thank you

E. Angelakis

Max-Planck-Institut für Radioastronomie, Auf dem Huegel 69, Bonn 53121, Germany

S. Kiehlmann, I. Myserlis, V. Karamanavis, D. Blinov, J. Eggen, R. Itoh, S. Komossa, N. Marchili, J. A. Zensus

MAX-PLANCK-GESELLSCHAFT Max-Planck-Institut für Radioastronomie