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Summary 8 

In recent decades, research on model organisms have significantly increased our 9 

understanding of core biological processes in plant science. However, this focus has 10 

created a substantial knowledge bottleneck due to the limited phylogenetic and 11 

ecological spectrum covered. Gymnosperms, especially conifers, represent a molecular 12 

and ecological diversity hotspot among seed plants. Despite their importance, research 13 

on these species is notably underrepresented, primarily due to a slower pace of 14 

investigation resulting from a lack of community-based resources and databases. To fill 15 

this gap, we developed P(inus)ra(diata)-G(ene)E(xpression)-ATLAS, which consists of 16 

several tools and two main modules: transcriptomics and proteomics, presented in this 17 

work for the forestry commercial and stress-sensitive species Pinus radiata. We 18 

summarised and centralised all the available information to provide a comprehensive 19 

view of the gene expression landscape. To illustrate how applications of the database 20 

lead to new biological insights, we integrated multiple regulatory layers across tissues 21 

and stressors. While stress favors the retention of small introns, harmonised alternative 22 

splicing analyses reveal that genes with conifers’ iconic large introns tend to be under 23 

constitutive regulation. Furthermore, the degree of convergence between stressors 24 

differed between regulatory layers, with proteomic responses remaining highly distinctive 25 

even through intergenerational memory tolerance. Overall, Pra-GE-ATLAS aims to 26 

narrow the distance between angiosperms and gymnosperms resources, deepening our 27 

understanding of how characteristic pine features have evolved. Pra-GE-ATLAS is 28 

available at https://rocesv.github.io/Pra-GE-ATLAS. 29 
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Introduction 32 

Model organisms have played a crucial role in deepening our understanding of core 33 

biological processes, shaping research topics in plant sciences. However, there is a 34 

strong bias in the taxa studied, with angiosperms, particularly Magnoliopsida, 35 

representing 93 % of the records (Shiu and Lehti-Shiu, 2023). This creates a huge 36 

knowledge bottleneck, mainly due to the narrow phylogenetic and ecological spectrum 37 

covered. Gymnosperms and angiosperms are the two major groups of extant seed 38 

plants, exhibiting extreme differences in life spans, species diversity and reproductive 39 

biology. Moreover, gymnosperms are an ancient clade that represents four of the five 40 

main lineages of seed plants and dominate boreal and temperate forests. Despite this, 41 

gymnosperms remain largely underrepresented in plant research, specially in molecular 42 

biology (Leebens-Mack et al., 2019; Niu et al., 2022). Therefore, the establishment of 43 

model organisms in gymnosperms becomes crucial, as minimal efforts could be 44 

translated into maximal plant community benefits, leveraging the evolutionary and 45 

ecological properties of this clade. 46 

Among gymnosperms, conifers represent the most diverse group, comprising 47 

approximately 615 species that contribute to 39 % of the world's forests. Pinus, with 113 48 

species, is the largest clade and one of the most important genus of trees (Jin et al., 49 

2021), serving as a relevant model for exploring molecular divergence in seed plants. 50 

However, pines molecular evolutionary features pose a double-edge sword. While they 51 

provide valuable ecophysiological insights, their slow growth, long-lived nature, giant 52 

genomes and high repetitive elements content are far from those attributes proper of 53 

model species (De La Torre et al., 2020). Although recent incredible genomics efforts 54 

(Niu et al., 2022), the current post-genomic era has laid the groundwork for the 55 

emergence of other “-omics” and has challenged traditional views on how genes encode 56 

phenotypes, moving beyond a genic-centered perspective. Taking advantage of this data 57 

explosion, systems biology has gained relevance for its holistic approach to modeling 58 

complex biological processes (Argelaguet et al., 2020). Multi-omics profiling is becoming 59 

quite common, promising insights into the characterisation of unexplored species lacking 60 

reference genomes. In addition, recent RNA sequencing (RNA-seq) studies indicate that 61 

transcriptomes are often underestimated, even in model organisms (S. Zhang et al., 62 

2020). Large-scale functional genomics data, such as transcriptomics and proteomics, 63 

can provide direct evidence for a high-resolution gene expression landscape. 64 

Nonetheless, the generation of curated databases and resources derived from 65 

cumulative research outputs becomes crucial to address the focus gap in this genus and 66 

facilitate future investigations. 67 
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To tackle these challenges, we constructed P(inus)ra(diata)-G(ene)E(xpression)-68 

ATLAS, the most extensive pine multi-omics database to date, designating the forestry 69 

commercial and stress-sensitive species Pinus radiata as reference. We generated new 70 

datasets and centralised all the available transcriptomics and proteomics information in 71 

a single hub, encompassing various dimensions. To showcase how the results derived 72 

from the generated resources could be used to gain biological insights, we conducted in-73 

depth characterisation and integrated multiple regulatory layers across tissues and 74 

stressors. Constitutive regulation of long introns was observed, while stress favoured the 75 

retention of smaller introns. Additionally, the agreement between stress responses 76 

varied between regulatory layers, with proteomics revealing highly unique responses 77 

maintained through intergenerational effects, potentially mediated by the translation of 78 

specialised members of gene families. We believe that Pra-GE-ATLAS will be a valuable 79 

database, not only supporting conifers research but also contributing to the assessment 80 

of the conservation of molecular plant discoveries across a broad range of dissimilar 81 

taxa. 82 

Results 83 

Construction and overview of Pra-GE-ATLAS 84 

To gain a comprehensive understanding of P. radiata expression landscape, we 85 

obtained, uniformly processed and integrated multi-omics data, encompassing 86 

transcriptomics and proteomics, sourced from research articles and public repositories 87 

(fig. 1, supplementary fig. S1). The consolidated datasets, totaling 990 Gb and 1.89 88 

billion high-quality reads from 141 RNA-seq transcriptomic samples, and 160 Gb and 89 

202 RAW files from 155 MS-based proteomics samples, were analysed and summarised 90 

in the P(inus)ra(diata)-G(ene)E(xpression)-ATLAS database. 91 

We generated a high quality reference transcriptome for P. radiata. The Benchmarking 92 

Universal Single Copy Ortholog (BUSCO) detected high completeness (>96 %) when 93 

compared against Embryophyta (supplementary table S1). This quality metric, 94 

comparable to other de novo high quality gymnosperms transcriptomes (Visser et al., 95 

2023), alongside an average of 80 % reads mapping back, indicate a high-quality 96 

reference appropriate for downstream analyses. The final assembly served as database 97 

for the identification and quantification of proteins. A total of 7697 proteins met all the 98 

criteria for further characterisation (see Methods), significantly suparssing the number 99 

reported by previous proteomics studies in this organism (Pascual et al., 2016; Pascual 100 

et al., 2017; Escandón et al., 2017; Lamelas et al., 2020; Amaral et al., 2021; García-101 
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Campa et al., 2022; Lamelas et al., 2022), and reinforcing the need for high-quality 102 

species-specific databases in proteomic approaches (Romero-Rodríguez et al., 2014). 103 

In summary, Pra-GE-ATLAS database was constructed based on two modules, 104 

transcriptomics and proteomics, containing the largest amount of P. radiata – related 105 

data up to date. It provides access to various common online tools, enabling the 106 

extrapolation of findings from other species to our reference and establishing a 107 

foundation for in-depth research on this pine species. 108 

Transcriptomics module: Core genes transcriptionally regulated and 109 

associated regulatory features 110 

We characterised transcriptional module grouping changes in alternative splicing (AS) 111 

and gene expression (GE) into three core sets (see Methods): constitutively-alternative 112 

spliced/expressed (Pan), stress-specific (Stress), and tissue-specific (Tissue) 113 

events/genes. 114 

Global differences between GE and AS regulation were observed based on the number 115 

of shared genes/events between core sets (fig. 2A). PanGE, TissueGE, and their 116 

overlap constituted the biggest intersections, while most stress genes were shared with 117 

other sets. Conversely, each AS set specific events formed the largest intersections and 118 

the most substantial overlap occurred between StressAS and TissueAS. These findings 119 

suggested that GE could be the primary transcriptional mechanism, while AS seem to 120 

be more finely tuned in its regulatory role. Further inspection of AS sets trends was 121 

performed, checking the proportions between different AS types (fig. 2B). Consistent 122 

with previous studies (Martín et al., 2021), IR and AltAD were the most prevalent type of 123 

genome-wide AS. Nevertheless, the only prevalent type particularly enriched compared 124 

to Genome background was AltAD in AS-NR and PanAS. Thus, emphasising potential 125 

differences in functional impact and/or regulatory features associated with AS sets and 126 

types. Examining gene-level intersections (fig. 2C), the only set demonstrating a greater 127 

number of genes regulated by AS than GE, and with a lower overlap with the latter, was 128 

Stress. 129 

To assess the functional relevance of AS, we researched their predicted impact on the 130 

canonical ORF (fig. 2D). Notably, for IR and AltAD events, we observed a significant 131 

enrichment in cases predicted to disrupt ORF for PanAS. Additionally, StressAS and 132 

TissueAS sets were predicted to significantly alter not-CDS regions, such as 133 

untranslated regions. Altogether, AS regulation appeared to be more linked to expression 134 

regulation and protein remodelling rather than functional variation in protein sequence. 135 
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To investigate genomic features related to AS regulation and type, exon and intron 136 

features were computed for each AS set (see Methods, fig. 2E). Genomic features 137 

showed a low degree of convergence across sets, with the unique exception of AltAD 138 

events significantly preferring smaller transcripts. IR PanAS events were enriched in 139 

transcripts with more and longer introns, higher upstream splice site GC content, and 140 

smaller flanking exons. Conversely, IR StressAS and TissueAS were preferentially 141 

presented in transcripts with less and smaller introns, and lower upstream GC content. 142 

In the case of ES, PanAS depicted the main hallmarks of exon definition, such as smaller 143 

target exons with longer upstream introns. Additionally, ES PanAS and TissueAS events 144 

presented lower transcript lengths, and lower and higher GC content in the target and 145 

downstream exon, respectively. Curiously, ES and AltAD exons across stresses and 146 

tissues were mainly located in the first exons. Overall, the different patterns emerged 147 

suggest that genomic features could be crucial for explaining specific regulation in 148 

splicing patterns in Pinus. 149 

To provide a biological interpretation, functional enrichment analyses were conducted 150 

(fig. 2F). The functional terms covered by AS core sets exhibited a limited spectrum of 151 

pathways. PanAS and StressAS were the sets that shared most of the functional terms, 152 

emphasising RNA processing as an autoregulatory process. Remarkably, TissueAS 153 

showed enrichment only in redox homeostasis, representing the most divergent 154 

functional profile among sets. In contrast, GE sets included a broad range of functions, 155 

including terms essential for all types of regulation, such as phytohormones action. 156 

Briefly, the terms validated expected biological insights, such as photosynthesis enriched 157 

in PanGE and TissueGE, and secondary metabolism and redox homeostasis enriched 158 

in TissueGE and StressGE. In this case, PanGE stood out as the set with the most 159 

divergent profile. 160 

Given the potential primary role of GE, we conducted a WGCNA (fig. 2F). In total, 20 co-161 

expressed modules were identified and correlated with design factors. The largest 162 

modules tended to be related to tissues. This was illustrated by M03, which showed a 163 

positive correlation with bud and vascular tissues, and M04/M06 highlighting needle 164 

identity with some signals related to P. pluvialis/F. circinatum, respectively. However, 165 

stress-specific modules were also elucidated. Examples include M07, M09 and M10 166 

representing F. circinatum stress. Using the previously introduced modules, both bud-167 

vascular M03 and F. circinatum M10 revealed functional terms inherent to those design 168 

factors that were not represented in TissueGE and StressGE, such as DNA damage 169 

response, chromatin organisation and cell division. 170 
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Proteomics module: The landscape of protein information 171 

The proteomic data generated in this study enabled us to inspect tissue signatures (fig. 172 

3A-C). Enrichments of differential proteins revealed pathways involved in the functioning 173 

of each tissue, such as photosynthesis in needles, and RNA processing in buds (fig. 174 

3A). Furthermore, attending to the size of the intersection between differential proteins, 175 

a decreasing trend was detected following the order needle>bud>root. These 176 

discoveries suggested that these tissues had different degrees of identity. Tissue 177 

hallmarks were complemented by volcano analyses (fig. 3B). The most relevant proteins 178 

remained consistent across comparisons and expanded previous mentioned pathways 179 

for roots and buds. Root tissue was mainly linked to energy metabolism (e.g ATP 180 

SYNTHASE SUBUNIT B). While functions in buds highlighted their role as a 181 

differentiating tissue with regulatory capabilities, the strongest markers were related to 182 

defense responses (e.g TERPENE SYNTHASE). Lastly, an evolutionary evaluation of 183 

protein abundance constraints was performed using Proteome Age Index (PAI) (fig. 3C). 184 

Although no differences were exhibited in root and bud, needles presented smaller PAI 185 

values, indicating a greater abundance of proteins with older evolutionary origins. 186 

The stress diversity compiled in the proteomics module (fig. 3D,E) allowed the 187 

identification of shared functions across environmental clues, underscoring protein 188 

homeostasis and biosynthesis (fig. 3D). The largest intersections, which consisted of 189 

stress-stress rather than stress-control comparisons, revealed a low degree of 190 

convergence across stress proteins. Despite some common pathways being regulated 191 

for most stresses, the primary protein effectors appeared to diverge across conditions. 192 

Most relevant proteins in volcano analyses (fig. 3E) pointed to potential master features 193 

that were not significantly/consistently enriched at the pathway level, such as chromatin 194 

organisation (e.g HISTONE H2A) and RNA processing (e.g SM-LIKE PROTEIN LSM). 195 

A total of 12 modules were detected by WGCNA, clustering proteins abundance across 196 

all conditions (fig. 3F). The largest module, M01, was related to tissues. M01 unveiled 197 

previously exposed functions and new ones such as vesicle trafficking and 198 

multiprocess/external-stimuli response (fig. 3G). The high resolution of protein modules 199 

revealed unknown stress dynamics. Heat stress presented modules related to each 200 

subcellular location and M09 correlating responses across nucleus and chloroplast. 201 

Nevertheless, UV stress was more specific, differing between chloroplast response and 202 

chloroplast response negatively correlated with nucleus, illustrated by M03 and M05. 203 

Despite both modules represented UV chloroplast response, their different relationship 204 

with the nucleus was also supported by the implication of distinct pathways such as 205 

protein translocation. 206 
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Application 1: Exploring unique and shared sources of transcriptional 207 

variation across multiple tissues and stressors 208 

To exemplify applications of the generated resources, we investigated into the 209 

coordination of GE and AS in defining tissues using multi-omics factor analysis (MOFA) 210 

(fig. 4). Overall, MOFA inferred eight latent factors (LFs), with GE contributing to the 211 

majority of the total variance (fig. 4A). We examined the variance explained by the LFs 212 

and identified LF1 and LF3 as the most biologically relevant to discriminate between 213 

tissues (fig. 4B). Briefly, LF1 variance, mainly constituted by GE but also including 214 

remarkable AS variation, differed between needles and the rest of the tissues, while the 215 

GE-dominant LF3 variance mostly described the differences between buds/needles and 216 

vascular-related tissues. 217 

These interpretations were supported by the top absolute loadings in each factor (fig. 218 

4C). LF1 needle identity was reflected by photosynthetic required genes such as 219 

RIBULOSE-PHOSPHATE 3-EPIMERASE (RPE). LF3 bud/needle identity was illustrated 220 

by cuticle related genes such as CUTIN SYNTHASE2 (CUS2). Interestingly, LF1 specific 221 

enriched functions differed between regulatory layers and included cellular respiration 222 

and external stimuli response at the GE level, and redox homeostasis and secondary 223 

metabolism within AS layer (fig. 4D). LF3 specific enriched terms pointed to key 224 

divergent functions between xylem/phloem and needle/bud such as lipid metabolism and 225 

plant reproduction. From an evolutionary perspective, it seems that tissue identities 226 

described in LF1 had older origins than the distinctions covered by LF3 (fig. 4D). This 227 

was illustrated by enrichments in genes with younger origins (Phylostratum (PS), lower 228 

and higher PS denote older and younger origins) at the GE level in LF3 and very young 229 

gene family founder events (Phylostratum Family (PSF)) at the AS level. Additionally, 230 

these findings were further confirmed by Transcriptome Age Index (TAI) profiles which 231 

detected increasing TAI values across tissues, from older to younger origins, following 232 

the order needle>bud>xylem>phloem (supplementary fig. S2A). 233 

Finally, to demonstrate that applications derived from Pra-GE-ATLAS could be translated 234 

into new biological insights, we evaluated splicing of potential isoform markers across 235 

tested tissues with different ages in an exploratory fashion (fig. 4E). Three genes were 236 

chosen based on differential contributions: SIGNAL RECOGNITION PARTICLE 43 KDA, 237 

CHLOROPLASTIC (CAO), SUGAR TRANSPORTER ERD6 (ERD6), and COMPONENT 238 

OF CIRCADIAN EVENING COMPLEX CLOCK ELF4 (ELF4-like). All genes 239 

preferentially expressed the smallest isoforms in adult needles. While the largest CAO 240 

and medium-sized ERD6 isoforms were common for buds and juvenile needles, most of 241 

the medium-sized CAO isoforms were juvenile-specific and large ERD6 isoform was 242 
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juvenile needle-specific. Lastly, while the ELF4-like bud isoform diversity did not reflect 243 

a clear pattern, large ELF4-like isoforms appeared to be juvenile-specific. 244 

Next, we employed MOFA multigrouped framework to evaluate the degree of 245 

convergence in P. radiata transcriptional responses to multiple stressors (fig. 4F-H). Due 246 

to a stress-related higher prevalence of particular types, such as IR (Laloum et al., 2018), 247 

we decided to split AS by type. A total of eight LFs were detected, with most of them 248 

being uniquely related to GE, the layer contributing to the majority of variance (fig. 4F). 249 

We identified the top three LFs as biologically relevant (fig. 4G). LF1 exhibited significant 250 

GE activity across all biotic stimuli, primarily associated with high stress damage. This 251 

was illustrated by high positive scores in most susceptible genotypes and stress samples 252 

under severe D. septosporum/F. circinatum and P. pluvialis, respectively. LF2 showed 253 

remarkable GE activity across D. septosporum, F. circinatum and heat, linked to control-254 

stress differences. LF3 captured F. circinatum–specific susceptible-resistant genotype 255 

and stress-control variation for samples without genotype information. Furthermore, LF3 256 

detected changes across all molecular layers, with higher variance explained by AS than 257 

GE. 258 

The provided definitions were affirmed by the top loadings and functions for each LF (fig. 259 

4H,I). For enrichment analyses, IR was selected as the AS representative (fig. 4I). LF1 260 

shared biotic stress damage, represented by fungal-specific factors such as 261 

ENDOCHITINASE 2 (CHTB2) (fig. 4H), and specifically enriched in redox homeostasis 262 

at both transcriptional levels (fig. 4I). Due to the control samples tissue composition, 263 

some of the genes illustrated by LF2 were shared with tissue LF3 bud/needle (fig. 4C). 264 

However, new genes exclusively linked to LF2 cross-stress control-associated variation 265 

were also suggested, such as TRANSCRIPTION FACOR BHLH62 (BHLH62). LF3 266 

stress/susceptible-genotype vs control-damaged/resistant-genotype pointed to different 267 

members of CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASE (CRK) stress-268 

responsive family (Y. Zhang et al., 2023). Evolutionary-related analyses revealed that 269 

LF2 was significantly enriched in younger phylostrata than LF1 at the GE level (fig. 4I). 270 

This notion was further inspected by TAI profiles (supplementary fig. S2B), which 271 

detected significantly younger transcriptomes in earlier stress phases for heat and D. 272 

septosporum. 273 

Given that GE dominant role in transcriptional variation could mask AS differential 274 

contributions between tissues and stressors, we compared the relative PSI variation of 275 

stress versus tissues in our reference, P. radiata, and in A. thaliana, D. melanogaster 276 

and H. sapiens data produced by Martín et al. (2021) (see Methods, supplementary 277 
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fig. S2C). Strikingly, we observed a contribution skewed towards stress and tissues in 278 

plant and metazoan species, respectively. 279 

Application 2: Uncovering proteomic cross-talk among stresses, 280 

subcellular locations, and intergenerational memory 281 

Using MOFA, we identified shared and unique sources of proteomic variation across 282 

stressors (fig. 5A-D), subcellular locations (fig. 5E-H), and intergenerational memory 283 

(fig. 5I-L). 284 

In the cross-stress total proteomes framework, four LFs were identified, all considered 285 

biologically meaningful (fig. 5A). These LFs disentangled stress-specific variance, with 286 

heat-specific LF1 discriminating between the earliest stress timepoint, and heat-specific 287 

LF2, F. circinatum-specific LF3, and UV-specific LF4 showing control/recovery-stress 288 

differences (fig. 5B). These results were supported by top absolute loadings (fig. 5C). 289 

Examples include several proteome remodelling features for LF1 and LF4, 290 

photosynthetic proteins and chaperones reflecting high temperatures main targets for 291 

LF2, and defense mechanisms illustrated by OXALATE OXIDASE 1 (OXO1) for LF3. 292 

The model captured common functions such as protein biosynthesis-homeostasis, 293 

chromatin organisation and photosynthesis (fig. 5D). Despite non meaningful 294 

constrained abundance patterns detected by PAI profiles (supplementary fig. S2D), 295 

enrichments revealed shared evolutionary origin signatures among abiotic stressors, 296 

with LF4 UV-related features being relatively younger at the gene level (fig. 5D). 297 

Next, we integrated abiotic stressors total, nucleus and chloroplast proteomes and 11 298 

LFs were identified. We selected LF2, LF6, LF7 and LF9 for further biological description 299 

(fig. 5E). LF2 explained the most variance and was associated with stress-independent 300 

subcellular location, highlighting functions such as protein modification and chloroplast-301 

localised features through RHO-N DOMAIN-CONTAINING PROTEIN 1, 302 

CHLOROPLASTIC (RHON1) (fig. 5F-H). UV-specific LF6 characterised chloroplast 303 

response, while heat-specific LF7 and LF9 involved nucleus- and chloroplast-specific 304 

stressess, respectively. Stress- and localisation-specific LFs expanded previous 305 

pathways considering subcellular information. UV-specific LF6 unveiled chloroplast 306 

protein synthesis through ATP-DEPENDENT CLP PROTEASE ADAPTER PROTEIN 307 

CLPS1, CHLOROPLASTIC (CLPS1). Heat-specific LF7 and LF9 reflected nucleus 308 

coordination and chloroplast response with HEAT SHOCK FACTOR-DNA BINDING 309 

(HSF-DNA BIND) domains, and a wide set of small heat shock proteins, respectively. 310 

Stress-specific LFs responses still shared above mentioned terms and new ones, for 311 

instance RNA processing. PAI profiles did not detect constrained abundance patterns, 312 
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but trends were appreciated when considering PAI profiles and enrichments together 313 

(fig. 5H, supplementary fig. S2E). The biggest differences between PAI values were 314 

observed between subcellular locations instead of stress timepoints. Additionally, the 315 

subcellular location with the younger profile also diverged between stressors, being the 316 

nucleus for heat and the chloroplast for UV. The latter was further emphasized with 317 

younger gene origins and family founder events enriched in UV-specific LF6 compared 318 

to heat-specific LF9. 319 

Lastly, we interrogated whether shared cross-stress intergenerational memory variation 320 

could be detected at the protein level. To answer this, we integrated abiotic stressors 321 

chloroplast-enriched proteomes from two populations with similar genetic-backgrounds 322 

but different local-environment histories (supplementary fig. S2F) (García-Campa et 323 

al., 2022; Lamelas et al., 2022). Among six LFs, LF2, LF3, LF5 and LF6 were retained 324 

for subsequent analyses (fig. 5I). LF2 explained shared variance across populations but 325 

was only associated with UV (fig. 5I,J). Furthermore, LF2 displayed population-specific 326 

differences, as population E (PopE) could discriminate between all intensities, while 327 

samples under more severe conditions were merged for population T (PopT). While heat-328 

specific LF3 also explained shared variance for both populations, LF3 did not detect 329 

population differential contributions because both populations mainly discriminated 330 

between control and severe heat intensities. Following the same pattern, LF5 and LF6 331 

were UV- and heat-specific, respectively, discriminating the earlier timepoints in both 332 

cases. However, UV-specific LF5 reflected population differences mainly linked to earlier 333 

stress samples in PopE. Top absolute loadings (fig. 5K) and functional enrichments (fig. 334 

5L) validated the results, illustrating protein homeostasis term shared among all LFs, 335 

and LF3 features being equivalent to previous abiotic stressors LF9 (fig. 5G). Since 336 

differential contributions to populations could reveal clues into intergenerational memory, 337 

we further inspected UV-specific LFs loadings. Interestingly, loadings highlighted a 338 

protein that could interact with RNA POLYMERASE SIGMA FACTOR (SIGA), essential 339 

for photosystem stoichiometry, and lignin biosynthesis reflected by CYNNAMYL 340 

ALCOHOL DEHYDROGENASE 3 (CAD3) (Bateman et al., 2021). Meaningful 341 

constrained patterns were not detected by PAI profiles (supplementary fig. S2G); 342 

however, UV-specific LFs enrichments uncovered slightly younger originated gene 343 

families in LF2 compared to LF5. 344 

Discussion 345 

In this study, we constructed Pra-GE-ATLAS, the most extensive pine multi-omics 346 

database to date (fig. 1). Despite pine species constituting a clear hotspot of plant 347 
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molecular diversity, their research remains largely underrepresented (De La Torre et al., 348 

2020; Shiu and Lehti-Shiu, 2023). To fill this gap, Pra-GE-ATLAS offers data resources 349 

and tools aimed not only to assist P. radiata research but also to determine the extent of 350 

plant biology discoveries considering more dissimilar taxa. 351 

Our research presents the most exhaustive AS analysis conducted in a pine species so 352 

far. Despite the divergent genomic architecture of conifers, characterised by long introns 353 

(Niu et al., 2022), IR is the most prevalent AS type, consistent with prior studies (Laloum 354 

et al., 2018) (fig. 2B). Notably, non-IR events, such as AltAD, underrated in plant 355 

science, are identified as widespread and overrepresented in more sets than IR, 356 

indicating potentially greater functional relevance (fig 2B, D). Overall, AS sequence 357 

variation appears to play a more significant role in regulating gene expression and 358 

protein abundance than introducing functional sequence changes. In line with earlier 359 

research indicating that pine genes with longer introns are constitutively expressed (Niu 360 

et al., 2022), the specific genic structure of conifers seems related to their AS regulation. 361 

Long introns surrounded by small exons and small exons surrounded by long introns are 362 

preferentially retained and skipped, respectively, in constitutively alternatively spliced 363 

transcripts (fig. 2E). Conversely, stress-induced IR appears to affect small introns at the 364 

beginning of the transcript. These observations highlight the innovative molecular 365 

strategies adopted by conifers to keep transcription efficacy. Finally, leveraging the 366 

phylogenetic position of pines, we extend the previously reported favoured regulation of 367 

AS under stress in A. thaliana (Martín et al., 2021) as a potential general feature in seed 368 

plants, contrasting with animal AS controlled in a tissue-specific manner 369 

(supplementary fig. S2C). 370 

To illustrate applications of the generated resources, we integrated multiple regulatory 371 

layers across tissues and stressors. Tissue emerged as the primary driver of variation in 372 

the data. Our analyses revealed distinctive patterns according to tissues’ evolutionary 373 

origin, following the order from more to less conserved: needle>bud/root>xylem/phloem 374 

(fig. 3C and fig. 4D; supplementary fig. S2A). This trend aligns with the notion of 375 

needle identity being more constrained, supporting expected tissue-function acquisition 376 

during plant evolution (first photosynthesis), land colonisation (roots, tissue-transitions), 377 

and radiation of vascular plants (xylem/phloem) (Clark et al., 2023). Next, we examined 378 

tissue AS patterns, given the limited exploration of this aspect in plants. While GE 379 

predominantly dictated tissue variation and could differentiate between heterogeneous 380 

tissues on its own, splicing is required to distinguish between more dynamic definitions 381 

(fig. 4A, B). Additionally, we evaluated the splicing patterns of selected potential isoform 382 

markers across tissues with different ages. Interestingly, our observations extended 383 
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beyond tissue-specific patterns to include age-specific trends, such as adult tissues 384 

preferentially expressing fewer and lower isoforms (fig. 4E). This highlights differences 385 

in the regulation of tissue-related functions, such as photosynthesis, CAO, solute 386 

transport, ERD6, and environmental perception, ELF4-like, through AS. Our findings 387 

underscore how the resources provided by Pra-GE-ATLAS can be utilised to generate 388 

novel biological insights. 389 

Stress biology is a crucial aspect of plant science; however, the convergence among 390 

stress mechanisms remains poorly characterised. The transcriptional integration 391 

revealed shared variation across stressors (fig. 4F,G), while the proteomic integration 392 

depicted highly unique responses (fig. 5). A thorough examination of total proteomes 393 

revealed evolutionary signatures shared among abiotic stressors, including similar gene 394 

family founder events. The only shared proteomic variation across abiotic stressors 395 

described stress-independent subcellular locations, with stress-linked variation 396 

remaining highly distinctive. Despite the absence of recent whole-genome duplications 397 

in pines, large-scale dispersed duplications are prevalent, and expanded gene families 398 

are associated with stress responses (Niu et al., 2022). Considering the distinct stress 399 

compositions between both modules, our discoveries suggest that the higher 400 

transcriptional convergence may be explained because transcription, as one of the 401 

closest regulatory levels to the genome, lacks direct functional effects, and its variation 402 

is associated with response, duplication-derived redundancy and stochastic stress 403 

reprogramming. In contrast, proteins, being functional components, are modulated only 404 

in specialised members of gene families due to the expensive energy investment in 405 

translation. Shared variance across stressors was exclusively linked to GE, as AS only 406 

explained variance associated with resistant/susceptible genotypes under F. circinatum 407 

(fig. 4F-H). This underscores the relevance of AS in detecting stress-related changes at 408 

smaller scales, such as genotypes, suggesting the CRK family, known for anti-fungal 409 

activity, as novel targets for F. circinatum tolerance (Amaral et al., 2022; Y. Zhang et al., 410 

2023). Considering a broader evolutionary context, our data supported the hypothesis 411 

that earlier/mild timepoints/intensities could be related with the regulation of younger 412 

genes (fig. 4F and fig. 5J; supplementary fig. S2B). However, these effects are 413 

partially masked by stronger constraints detected in tissues and subcellular locations. 414 

P. radiata, due to its long-lived nature, provides an ideal example to explore 415 

intergenerational memory. To disentangle memory, we integrated two independently 416 

published matched assays describing chloroplast-enriched proteomes under heat and 417 

UV in two populations with similar genetic-backgrounds but different local-environmental 418 

histories (García-Campa et al., 2022; Lamelas et al., 2022) (fig. 5I-L). Thus, variation 419 
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with differential contribution among populations could be defined as intergenerational 420 

memory consequences. We found memory evidence only under UV, associated with a 421 

higher sensitivity of PopE. Two potential non exclusive hypothesis could be highlighted. 422 

On one hand, chloroplasts could be more responsive to UV than heat stress, illustrated 423 

by younger PAI profiles and a greater variation explained by LF6 than LF9 (fig. 5E-F; 424 

supplementary fig. S2E, G). Therefore, depending on the organelle, certain stress 425 

modifications may be more proned to be remembered. On the other hand, given the 426 

specificity of proteomic responses, it is probable that UV range across locations was 427 

more divergent and/or plants were more sensitive to those changes (supplementary 428 

fig. S2F). The elevation range, which is related with UV exposure, have been described 429 

as a selective pressure on pine evolution, shifting their distribution and species diversity 430 

(Jin et al., 2021). Hence, our results suggest that the intergenerational features detected 431 

among populations may be originated from a greater susceptibility to elevation range 432 

rather than a cross-stress memory. 433 

While we expect Pra-GE-ATLAS to be useful, we acknowledge certain limitations. As 434 

pines are considered non-model species, datasets covered a wide temporal range. 435 

Therefore, newly reported datasets, taking advantage of recent technological 436 

improvements, increased analytical resolution of MS and enhanced performance of 437 

sequencers, will significantly improve the resources presented, owing to higher 438 

throughputs. The results promoted the potential application of Pra-GE-ATLAS to test 439 

new hypothesis in both intra-species, breeding targets, and inter-species, evolutionary 440 

stress studies, contexts. Here, we focused on transcriptomics and proteomics, which are 441 

closely linked to gene expression. Given the increasing availability of -omics data, the 442 

utility of Pra-GE-ATLAS will continue to grow, providing long-term support with annual 443 

updates. Our next steps involve the establishment of variation and metabolomic 444 

modules, and, once the genome of P. radiata is released, compute high-quality gene 445 

models. In summary, Pra-GE-ATLAS aims to narrow the distance between angiosperms 446 

and gymnosperms resources and designates the commercial and stress-sensitive 447 

species P. radiata as a reference for understanding the intriguing evolutionary features 448 

of pines. 449 

Experimental procedures 450 

An overview of the bioinformatic workflow used in this study is shown in supplementary 451 

fig. S1. 452 
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Plant materials 453 

To generate the tissues proteomic dataset, we sampled seedlings (one year-old) and 454 

adult trees which are maintained under routine management at Plant Physiology 455 

Laboratory of the University of Oviedo. Roots (growing tips), young (growth period one 456 

cm length) and adult (> 12 cm, mature) needles, and stem (less lignified and mature), 457 

apical floral buds were collected. Three biological replicates for each tissue were 458 

constituted pooling two different plants. 459 

Protein extraction, digestion, fractionation and MS acquisition 460 

Protein extraction was performed following phenol-sodium dodecyl sulfate (SDS) 461 

protocol according to Valledor et al. (2014). Initial amount varied from 75 to 250 mg of 462 

fresh weight depending on the processed tissue. As protein samples were dissolved with 463 

the detergent SDS, sixty µg of proteins were in gel fractionated and digested as 464 

described by Valledor and Weckwerth (2014). Peptides were cleaned, extracted and 465 

desalted as previously described (Valledor and Weckwerth, 2014). Peptides were 466 

analysed in a HPLC-MS/MS Orbitrap Fusion spectrometer (ThermoFisher Scientific), 467 

employing a 60-min gradient starting with 0.1 % formic acid and with 80 % acetonitrile 468 

as the mobile phase. 469 

RT-PCR analysis 470 

Total RNA was extracted following Valledor et al. (2014). RNA concentration was 471 

determined by a Navi UV/Vis Nano Spectrophotometer and its integrity was checked by 472 

agarose gel electrophoresis. Next, cDNA was obtained by RevertAid kit (ThermoFisher 473 

Scientific) using random hexamers as primers following manufacturer's instructions. RT-474 

PCR was performed with BesTaq polymerase (supplementary table S2). Primers for 475 

each AS event were designed to amplify multiple splice variants in a single reaction. 476 

Data collection 477 

We collected all transcriptomic data from P. radiata (term: “Pinus radiata”) available from 478 

the NCBI Short Read Archive with associated published reference to ensure high quality 479 

data (supplementary table S1, last: February 2022). The transcriptomic data collection 480 

covered five tissues (bud, xylem, phloem, needle and megagametophyte), one abiotic 481 

stress (heat), and three biotic stresses (Fusarium circinatum, Dothistroma septosporum 482 

and Phytophthora pluvialis). 483 

We collected all proteomic data from P. radiata (term: “Pinus radiata”) available based 484 

on PRIDE and PubMed search. Publication was required to ensure high quality data 485 

(supplementary table S3, last: October 2023). The proteomic data collection covered 486 
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three tissues generated in this study (root, needle and bud), one biotic stress (F. 487 

circinatum), and two abiotic stresses (heat and ultraviolet (UV)) over three different 488 

subcellular locations (total proteins, nucleus and chloroplast). 489 

Transcriptomics data processing 490 

Trimmomatic v0.39 (Bolger et al., 2014), SortMeRNA (Kopylova et al., 2012) and 491 

Rcorrector (Song and Florea, 2015) were applied to remove adapters and low-quality 492 

reads, filter rRNA and correct sequencing errors, respectively. Fusarium circinatum 493 

reads were discarded mapping to FSP34 genome using bowtie2 (Langmead and 494 

Salzberg, 2012). Each condition was assembled independently and reads were 495 

normalised for those conditions exceeding 200 million reads using Trinity v2.15.1 496 

(Grabherr et al., 2011). Cleaned reads were assembled using Trinity v2.15.1 and 497 

rnaSPADES v3.14 (Bushmanova et al., 2019). Lastly, assemblies were concatenated 498 

through EvidentialGene tr2aacds v2017.12.21 pipeline to reduce redundancy and select 499 

for the optimal assembled transcripts. The consensus assembly, based on 500 

EvidentialGene primary transcripts, was evaluated using BUSCO v5.2.2 (Simão et al., 501 

2015), Trinity v2.15.1 Ex90N50, and backmapping (supplementary table S1). 502 

For subsequent procedures, a final assembly was created concatenating EvidentialGene 503 

primary transcripts with alternate transcripts. This was achieved after applying cd-hit -c 504 

0.905 (Fu et al., 2012) within the alternate set. The final assembly was functionally 505 

annotated by EggNOG-mapper v2 (Cantalapiedra et al., 2021), Mercator4 v6 (Schwacke 506 

et al., 2019), Interproscan v5.44.79 (Jones et al., 2014) and dammit v1. 507 

Salmon v1.5.2 (Patro et al., 2017) was employed to quantify expression levels against 508 

Pinus taeda v2.0.1 (the closest species with an available genome), obtained from 509 

TreeGenes (Falk et al., 2018; Jin et al., 2021). De novo splicing events were identified, 510 

classified, and quantified using KisSplice v2.6.2 (-k 51 -C 0.05) (Sacomoto et al., 2012), 511 

Kiss2refgenome v2.0.8, and kissDE v1.4.0, respectively. sva v3.48.0 (Leek et al., 2012) 512 

was employed to remove raw counts unwanted variation derived from study/sequencing-513 

type. GenEra v1.4 (Barrera-Redondo et al., 2023) was then applied to identify gene 514 

families, their founder events, and determine the ages of P. taeda genes. NR database 515 

was completed adding gymnosperms data (Abies alba, Ginkgo biloba, Gnetum 516 

montanum, Picea abies, Pinus lambertiana, Pseudotsuga menziesii and 517 

Sequoiadendron giganteum; TreeGenes). 518 
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Definitions of core AS and GE sets 519 

Gene expression (GE) and alternative splicing (AS) trends were grouped into three core 520 

sets. To define the three core sets, we followed a similar approach as described by 521 

Martín et al., (2021): 522 

Pan core set referred to genes/events that are expressed/alternatively spliced across 523 

most sample types. For PanAS set, we required sufficient read coverage in at least 20 524 

% of the total samples. AS read coverage was defined based on kissDE default. We then 525 

defined the PanAS events as those with a Percent-Splice-In (PSI) between 0.1 and 0.9 526 

(alternatively spliced) in > 70 % of samples with sufficient read coverage. For PanGE set 527 

only genes with an expression level of at least 20 normalised counts in at least 70 % of 528 

samples were considered. 529 

Tissue core set referred to genes/events that are up/down regulated across tissues. 530 

Megagametophyte was excluded and phloem-xylem samples were grouped as vascular 531 

tissue due to the low number of samples. TissueAS required events with sufficient read 532 

coverage in at least two replicates for all tissue types, and the absolute difference in PSI 533 

between the target tissue and the average of the other tissues must be of at least 0.25. 534 

Then, genes with a median expression level of at least 5 normalised counts in at least 535 

one tissue type and a fold change of at least 3 in the same direction with related to all 536 

other tissues types were kept as TissueGE. DESeq2 v1.40.1 (Love et al., 2014) was 537 

applied to compute fold change. 538 

To identify stress-regulated AS and GE, each stress experiment was compared against 539 

its respective matched control. Since the majority of the stress transcriptomic and 540 

proteomic experiments involved sampling similar phases, we uniformly renamed the 541 

different time points based on stress duration/intensity. AS events needed to have 542 

sufficient read coverage in at least two stress and control replicates for each of the five 543 

stress experiments studied. Then, only events with an absolute PSI difference of at least 544 

0.15 in the same direction between stress and control conditions for at least two out of 545 

five stress experiments were retained as StressAS. Regarding StressGE, the same 546 

criteria was required considering at least 5 normalised counts and a fold-change of at 547 

least 2 as coverage and magnitude thresholds, respectively. Thus, ensuring that features 548 

are expressed/spliced and avoiding ambiguous regulation across stresses in opposite 549 

directions. 550 

We established control groups for set comparison: background (Genome) and non-551 

regulated (NR). Genome comprised events and genes that met the same coverage 552 

criteria and filters as those used to define each core set, but without any PSI-/fold 553 
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change-related requirements. AS-NR group was determined on basis of each AS core 554 

set. For TissueAS, AS-NR events were those alternatively spliced and with an absolute 555 

PSI difference <0.05 for each tissue versus the rest. For StressAS, AS-NR events were 556 

those alternatively spliced in at least one sample and with an absolute PSI difference 557 

<0.05 in at least one stress experiment. Finally, to obtain a common AS-NR, we retained 558 

events that were part of both AS-NR sets. The intersections between genes and events 559 

were assessed using nVennR v0.2.3 (Pérez-Silva et al., 2018). 560 

Predicted protein impact and genomic regulatory feature analysis 561 

Splicing variation effect were determined using custom scripts employing the following 562 

approach: (i) Kiss2refgenome v2.0.8 coordinates and GTF annotations were used to 563 

determine if the variation occurred inside/outside of coding-sequence (CDS), (ii) CDS-564 

affecting isoforms were examined to detect if variation led to the introduction of 565 

premature termination codons (PTCs), (iii) CDS-affecting isoforms without PTCs 566 

underwent further evaluation to check if the variation disrupted the open reading frame 567 

(ORF) frameshift. 568 

To compare exon and intron features associated with different AS core sets, Matt v1.3.1 569 

(Gohr and Irimia, 2019) was employed. Briefly, Matt cmpr_introns, for intron retention 570 

(IR) events, and cmpr_exons, for exon skipping (ES) and alternative acceptor/donor site 571 

(altAD, both 5’ and 3’), commands were employed to extract and compare multiple intron 572 

and exon genomic features associated with AS regulation. Statistical significance was 573 

addressed by comparing each set to Genome. 574 

Proteomics data processing 575 

Proteome Discoverer 2.2 (Thermo Fisher Scientific, USA) along with the Sequest-HT 576 

and MS-Amanda algorithms, were employed for peptide processing, and protein 577 

identification-quantification, establishing at least one high-confidence unique peptide 578 

umbral for protein identification and one peptide (unique/razor) per protein for label-free 579 

quantification. The final assembly underwent six-frame translation, and peptides 580 

exceeding 50 amino acids were retained and used as database. 581 

Each proteome underwent preprocesing using pRocessomics v.0.1.13 582 

(github.com/Valledor/pRocessomics). In summary, missing values and additional 583 

replicates for the Fusarium circinatum, heat stress total, and UV nucleus proteomes, 584 

were imputed using random forest method, with a threshold of 34 %. Variables present 585 

in less than 50 % of samples were dropped out. Abundance values were normalised by 586 

sample-centric approach and multiplied by the average intensity of all samples. Protein 587 

abundances were transformed with a log10(+1.1) for subsequent analyses. sva v3.48.0 588 
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was employed to remove abundance unwanted variation. GenEra v1.4 was employed, 589 

as mentioned above, using P. radiata proteins as query. 590 

Proteins differential analyses 591 

Statistical analyses of protein-level differential abundance were carried out using the sva 592 

v3.48.0 coupled to limma v3.56.2 (Ritchie et al., 2015) employing FDR < 0.05 as 593 

threshold. For volcano, proteins were required to exhibit a log2(fold change)>1.5 to be 594 

considered biologically relevant. The intersections between differential proteins were 595 

assessed using UpSetR v1.4.0 (Conway et al., 2017). 596 

Co-expression network analyses 597 

Weighted Gene Co-expression Analysis (WGCNA) was conducted using WGCNA v1.72-598 

1 (Langfelder and Horvath, 2008) to identify highly co-expressed genes (DESeq2 VST) 599 

and proteins (log10(+1.1)). A signed-hybrid type of adjacency matrix was constructed, 600 

with β = 7/9 for proteins/genes, using biweight midcorrelation. Hierarchical clustering was 601 

performed, and co-expression modules were identified using dynamic tree cut height of 602 

0.3 and a minimum module size of 30. Modules were named based on their size. Module 603 

eigengenes were employed to compute correlations between modules and design 604 

factors (traits). Only correlations with an adjusted-P<0.05 were considered. Module 605 

membership was computed based on the correlation between genes and module 606 

eigengenes for each module. 607 

Enrichment analyses 608 

Enrichment analyses using Mercator4 terms were conducted using fgsea v1.26.0. 609 

Briefly, for the transcriptomics module, we applied an overrepresentation analysis 610 

(adjusted-P < 0.1). Meanwhile, for the proteins, gene set enrichment analyses (adjusted-611 

P < 0.1) were performed using limma-derived statistics and modules membership. 612 

Evolutionary transcriptomics and proteomics 613 

To investigate the potential existence of evolutionary constraints, we employed myTAI 614 

v0.9.3 (Drost et al., 2018). For evolutionary transcriptomics analyses, P. taeda gene ages 615 

and VST expression data were employed. For evolutionary proteomics analyses, P. 616 

radiata protein ages and log10(+1.1) abundance data were used. In both cases, the 617 

Transcriptome/Proteome Age Index (TAI/PAI) approach was followed for gene/protein 618 

age evaluation. The significance of evolutionary constraint was assessed using the 619 

FlatLineTest. 620 



19 
 

Relative contribution of tissues and stress conditions to global PSI variation 621 

For the comparisons of the relative contribution to the total PSI variation of tissue versus 622 

stress, we adopted a similar approach as described by Martín et al. (2021). We 623 

incorporated data from Martín et al. (2021) for Arabidopsis thaliana, Drosophila 624 

melanogaster and Homo sapiens. Due to the limited number of abiotic stress 625 

transcriptomic experiments in P. radiata and to find general stress trends, we chose to 626 

merge abiotic and biotic experiments. We required that AS events must have read 627 

coverage in all tissue types and three stress experiments, with a global PSI variation 628 

exceeding 10. 629 

Inference of hidden factors from multiple stresses and tissues sources 630 

The Inference of sources of variation was carried out using MOFA2 (docker latest image: 631 

2e858d684c5f) (Argelaguet et al., 2020). To characterise transcriptional variation in 632 

tissues, an ungrouped framework was executed, considering expression (VST) and 633 

splicing (PSI) as two distinct regulatory layers. Only the top 10,000 features with the 634 

highest variance (HVF) were considered. For the assessment of transcriptional variation 635 

between stresses, a grouped framework was employed, splitting AS by type and 636 

considering the top 10,000 and 5,000 HVFs for expression and splicing-related layers, 637 

respectively. To evaluate proteomic (log10(+1.1)) variation between stresses, three 638 

different grouped frameworks were computed, removing low variance features in each 639 

model. In all cases, model training was performed with maxiter = 100,000 and 640 

convergence_mode = “slow”. Each biologically relevant latent factor underwent 641 

enrichment analysis (adjusted-P < 0.1). 642 

Database resource 643 

We developed P(inus)ra(diata)-G(ene)E(xpression)-ATLAS database, a comprehensive 644 

multi-omics hub aimed to provide public access to the information generated in this work. 645 

Pra-GE-ATLAS features three main tools: 1) Search section with interactive tables and 646 

heatmaps for quick retrieval of protein-, transcript-, splicing event-information. 2) 647 

Diamond BLASTP sequence alignment (Buchfink et al., 2021). 3) Shiny-application to 648 

compute P. radiata orthologs based on our consensus assembly using orthologr (Drost 649 

et al., 2015). Pra-GE-ATLAS is available at https://rocesv.github.io/Pra-GE-ATLAS. 650 

Accesion numbers 651 

All the data generated in this study are available at Pra-GE-ATLAS database 652 

https://rocesv.github.io/Pra-GE-ATLAS and https://doi.org/10.5281/zenodo.10494507. 653 

The code used in this work is available at https://github.com/RocesV/Pra-GE-654 

https://rocesv.github.io/Pra-GE-ATLAS
https://rocesv.github.io/Pra-GE-ATLAS
https://doi.org/10.5281/zenodo.10494507
https://github.com/RocesV/Pra-GE-ATLAS_manuscript
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ATLAS_manuscript. The mass spectrometry data have been deposited to the 655 

ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2022) partner 656 

repository with the dataset identifier PXD047869 (Reviewer account details: Username: 657 

reviewer_pxd047869@ebi.ac.uk; Password: wL7XdldN). 658 
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Short legends for Supporting Information 663 

Figure S1. Overview of the methods workflow. 664 

Figure S2. Evolutionary transcriptomics and proteomics patterns, tissues vs 665 

stress contribution to global PSI variation in different species and populations 666 

experimental design. A) Transcriptomic Age Index (TAI) of tissues corresponding high 667 

values to younger genes. Flat line test p-value < 0.05 highlights a significant evolutionary 668 

pattern. B) Transcriptomic Age Index (TAI) corresponding high values to younger genes. 669 

HS = heat; DO = Dothistroma; PH = Phytophthora; FU = Fusarium. Individual stress 670 

experiments with significant evolutionary patterns are highlighted with “*”. C) Comparison 671 

of the relative contribution to the total PSI variation of the tissue samples vs stress 672 

experiments in each species. The total PSI variation for each AS event is calculated as 673 

the sum of two relative contributions: (i) the PSI range across tissues, (ii) the maximum 674 

difference between PSI among stress experiments (see Methods). Colours represent 675 

the number of AS events found on each intersection between the relative contributions 676 

(in percentage) for each set of samples. D) Proteomic age index (PAI) of all stresses 677 

total proteomes corresponding high values to younger protein genes. E) Proteomic age 678 

index (PAI) of abiotic stresses all proteomes corresponding high values to younger 679 

protein genes. F) Intergenerational stress populations experimental design. The 680 

divergent local-environment conditions involved, setting Population T as reference, +50 681 

meters elevation, +44 mm mean rainfall, and +1.72 mean ºC. Nevertheless, PopE plants 682 

were fertirrigated during the dry months. G) Proteomic age index (PAI) of abiotic stresses 683 

chloroplast proteomes corresponding high values to younger protein genes. 684 

Table S1. Transcriptomic data collection and consensus assembly evaluation. 685 

Table S2. Primers used for the validation of tissues/age-induced alternative 686 

splicing. 687 
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Table S3. Proteomic data collection. 688 
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Figure legends 851 

Figure 1. Overview of Pra-GE-ATLAS. Pra-GE-ATLAS is a refined multi-omics platform 852 

compiling the largest transcriptomics and proteomics collections to date for P. radiata. 853 

Pra-GE-ATLAS provides user-friendly search functionalities and tools to explore and 854 

analyse processed tissue- and stress-related changes, as well as to extrapolate data 855 

from other species to this reference. Pra-GE-ATLAS DB is available at: 856 

https://rocesv.github.io/Pra-GE-ATLAS/. 857 

Figure 2. Transcriptional module global description. A) Venn diagrams showing all 858 

intersections between gene expression (GE, upper) and alternative splicing (AS, lower) 859 

core sets (see Methods). Pan = genes/events that are expressed/alternatively spliced 860 

in the vast majority of samples; Stress = genes/events that are up/down regulated in 861 

stress experiments; Tissue = genes/events that are up/down regulated across tissues. 862 

B) Proportion of each type of AS event in each AS core set (see Methods). NR = non-863 

regulated; Genome = background set constituted by events that passed the same 864 

coverage criteria and filters; IR = intron retention; ES = exon skipping; AltAD = alternative 865 

splice acceptor/donor sites; AS-Unknown = events that passed coverage criteria and 866 

filters without classification. Significant enrichment compared to genome background are 867 

marked with “*”. C) Venn diagrams showing intersections between gene expression (GE, 868 

left) and alternative splicing (AS, right) genes for each core set. D) Percentage of intron 869 

retention (first), exon skipping (second) and alternative splice donor and acceptor sites 870 

(Alternative A/D, third) events belonging to the different AS core sets located out/in CDS 871 

regions. Among the latter category (in CDS regions), the percentage of events with 872 

potential effects in protein levels are indicated. Gen. = genome background; Not-CDS = 873 

outside CDS regions; PTC = sequence variation inside CDS regions introduce premature 874 

termination codons; Disrupt = sequence variation inside CDS regions force out of frame 875 

reading; Change = sequence variation inside CDS change CDS region sequence. 876 

Significant enrichment compared to genome background are marked with “*”. E) 877 

Schematic representation of genomic regulatory features associated with each AS core 878 

sets for introns (first) and exons (second and third). Only features with statistical 879 

significant differences for each AS core set were represented. Arrows summarise which 880 

features show significant differences respect to Genome background and the direction 881 

of these differences (higher-red or lower-blue). “X” indicates no statistically significant 882 

https://rocesv.github.io/Pra-GE-ATLAS/
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difference. Intron features (first) include (from top to bottom and left to right): length of 883 

the upstream (UP) exon, target intron, polypyrimidine tract (PT) and downstream (DO) 884 

exon; GC content of the upstream 5’ splice region; number of introns; distance between 885 

branch point (BP) and 3’ splice site (ss); score of the polypyrimidine tract; rank and/or 886 

position of the target intron. Exon features for exon skipping (second) include (from top 887 

to bottom and left to right): length of the upstream exon, upstream intron, upstream 888 

polypyrimidine tract, target exon, downstream intron, downstream exon and transcript; 889 

GC content of the target exon, 5’ splice region and downstream exon; score of the 890 

upstream branch point, polypyrimidine tract, 5’ splice region and downstream branch 891 

point; rank and/or position of the target exon. Exon features for alternative acceptor 892 

donor site (third) include (from top to bottom and left to right): length of the downstream 893 

exon and transcript; GC content of the upstream 5’ splice region, target exon and 894 

downstream exon; score of the upstream and downstream branch points; rank and/or 895 

position of the target exon. F) Heatmaps depicting significant overrepresented Mercator 896 

functional categories (p-value adjusted < 0.1; -log10(p-adjusted)) and network modules-897 

trait correlations (p-value adjusted < 0.05; pearson). Biosynthe = biosynthesis; hom = 898 

homeostasis; CHO = carbohydrate; met = metabolism; reg = regulation; org = 899 

organisation; PS = photosynthesis; resp = response; cellular resp = cellular respiration; 900 

transloc = translocation; mod = modification; dmg = damage. 901 

Figure 3. Protein module global description. A) From left to right: heatmaps showing 902 

Mercator functional categories normalised enrichment scores (NES, first), significance 903 

(p-value adjusted < 0.1, second) and matrix layout (third) for all intersections of 904 

differential proteins between tissues. Letters in significance heatmap highlight for which 905 

tissue the functional term is significantly enriched. B = Bud; N = Needle. B) Summary of 906 

volcano analyses (see Methods) indicating top marker proteins for each differential 907 

contrast between tissues. C) Proteomic Age Index (PAI) corresponding high values to 908 

younger protein genes. Flat line test p-value < 0.05 highlight a significant evolutionary 909 

pattern. D) From left to right: heatmaps showing Mercator functional categories 910 

normalised enrichment scores (NES, first), significance (p-value adjusted < 0.1, second) 911 

and matrix layout (third) for all intersections of differential proteins between stress 912 

experiments. Letters in significance heatmap highlight for which condition the functional 913 

term is significantly enriched. H = Heat; U = UV; C = Control; R = Recovery. E) Summary 914 

of volcano analyses (see Methods) indicating top marker proteins for each differential 915 

contrast between stress conditions. F) Heatmap depicting significant network modules-916 

trait correlations (p-value adjusted < 0.05; Pearson). T1-T4 correspond to low-very high 917 

stress intensities. FU = Fusarium. G) From left to right: heatmaps showing Mercator 918 
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functional categories normalised enrichment scores (NES, first) and significance (p-919 

value adjusted < 0.1, second) for all network modules. “*” in significance heatmap 920 

highlights for which particular module the functional term is significant. Met = metabolism; 921 

hom = homeostasis; resp = response; cellular resp = cellular respiration; mod = 922 

modification; reg = regulation; org = organisation; PS = photosynthesis; act = action; dmg 923 

= damage. 924 

Figure 4. Identification of the main transcriptional sources of variation in tissues 925 

and stresses. A) Percentage of explained variance (%) by each latent factor (LF) and 926 

regulatory layer (gene expression, GE; alternative splicing, AS) for ungrouped tissues 927 

framework. B) Scatter plot of latent factor 1 (x-axis) and latent factor 3 (y-axis) illustrating 928 

the variation described. Samples are coloured according to tissues. C) Table showing 929 

top absolute loading genes for latent factors 1 and 3. D) Heatmaps depicting significant 930 

(FDR < 0.1, -log10(FDR)) enriched Mercator functional terms (green), genes ages 931 

(purple) and family founder events ages (blue) for each regulatory layer. PS/F = 932 

gene/family-founder phylostratum. Lower phylostratum values correspond to genes with 933 

older origins. E) Experimental validation of tissues/age-induced AS events by RT-PCR. 934 

The primers used allow the amplification of multiple splice variants (see Methods). F) 935 

Percentage of explained variance (%) by each latent factor (LF) and regulatory layer 936 

(gene expression, GE; intron retention, IR; exon skipping, ES; alternative acceptor donor 937 

site, Alt; alternative splicing without classification, AS) for grouped stress framework. G) 938 

Scatter plots of latent factors 1, 2 and 3 illustrating the variation described. Colours 939 

denote stress treatments. Different figures denote genotypes. DO = Dothistroma; FU = 940 

Fusarium; HS = heat; PH = Phytophthora; dmg = damage. T1-T4 correspond to low-very 941 

high stress intensities. H) Table showing top absolute loading genes for latent factors 1, 942 

2 and 3. I) Heatmaps depicting significant (FDR < 0.1, -log10(FDR)) enriched Mercator 943 

functional terms (green), genes ages (purple) and family founder events ages (blue) for 944 

gene expression and intron retention regulatory layers. PS1 = cellular organisms; PS2 = 945 

Eukaryota; PS3 = Viridiplantae; PS4 = Streptophyta; PS5 = Streptophytina; PS6 = 946 

Embryophyta; PS7 = Tracheophyta; PS8 = Euphyllophyta; PS9 = Spermatophyta; PS10 947 

= Acrogymnospermae; PS11 = Pinidae; PS12 = Pinaceae; met = metabolism; CHO = 948 

carbohydrate; org = organisation; resp = response; reg = regulation; hom = homeostasis; 949 

mod = modification; transloc = translocation; PS = photosynthesis; biosynthe = 950 

biosynthesis. 951 

Figure 5. Characterisation of shared and unique sources of stress variation at 952 

protein level. Due to the high complexity of proteomics data four LFs were selected to 953 

perform in-depth characterisation. A) Percentage of explained variance (%) by each 954 
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latent factor (LF) for grouped all stresses total proteomes framework. FU = Fusarium; 955 

HS = heat. B) Scatter plots of latent factors 1, 2, 3 and 4 illustrating the variation 956 

described. Colours denote stress treatments. R = Recovery. T1-T4 correspond to low-957 

very high stress intensities. C) Table showing top absolute loading proteins for latent 958 

factors 1, 2, 3 and 4. D) Heatmaps depicting significant (FDR < 0.1, -log10(FDR)) 959 

enriched Mercator functional terms (green), genes ages (purple) and family founder 960 

events ages (blue). PS/F = gene/family-founder phylostratum. Lower phylostratum 961 

values correspond to genes with older origins. E) Percentage of explained variance (%) 962 

by each latent factor (LF) for grouped abiotic stresses all proteomes framework. F) 963 

Scatter plots of latent factors 2, 6, 7 and 9 illustrating the variation described. Colours 964 

denote stress intensity. Figures denote subcellular location. Chloro = chloroplast. G) 965 

Table showing top absolute loading proteins for latent factors 2, 6, 7 and 9. H) Heatmaps 966 

depicting significant (FDR < 0.1, -log10(FDR)) enriched Mercator functional terms 967 

(green), genes ages (purple) and family founder events ages (blue). I) Percentage of 968 

explained variance (%) by each latent factor (LF) for grouped abiotic stresses chloroplast 969 

proteomes framework. LF1 was excluded because it only represented study batch effect. 970 

PopE = population E (non-stressed); PopT = population T (stressed) (see 971 

supplementary fig. S2F). J) Scatter plots of latent factors 2, 3, 5 and 6 illustrating the 972 

variation described. Colours denote stress intensity. Figures denote stress type. E = 973 

population E; T = population T. K) Table showing top absolute loading proteins for latent 974 

factors 2, 3, 5 and 6. L) Heatmaps depicting significant (FDR < 0.1, -log10(FDR)) 975 

enriched Mercator functional terms (green), genes ages (purple) and family founder 976 

events ages (blue). PS1 = cellular organisms; PS2 = Eukaryota; PS3 = Viridiplantae; 977 

PS4 = Streptophyta; PS5 = Streptophytina; PS6 = Embryophyta; PS7 = Tracheophyta; 978 

PS8 = Euphyllophyta; PS9 = Spermatophyta; PS10 = Acrogymnospermae; PS11 = 979 

Pinidae; PS12 = Pinaceae; met = metabolism; CHO = carbohydrate; org = organisation; 980 

resp = response; reg = regulation; hom = homeostasis; mod = modification; transloc = 981 

translocation; PS = photosynthesis; biosynthe = biosynthesis. 982 
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