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Abstract

This thesis aims to understand more about the developmental histories of

galaxies and their internal components by studying the wavelength dependence

of their spatial structure. I use a large sample of low-redshift galaxies with

optical–near-IR imaging from the GAMA survey, which have been fitted with

Sérsic and Sérsic + exponential functions in nine wavebands simultaneously,

using software developed by the MegaMorph project.

The first section of this thesis examines how the sizes and radial profiles of

galaxies vary with wavelength. To quantify the wavelength dependence of ef-

fective radius I use the ratio, R, of measurements in two restframe bands. The

dependence of Sérsic index on wavelength, N , is computed correspondingly.

I show that accounting for di↵erent redshift and luminosity selections partly

reconciles variations between several recent studies. Dividing galaxies by vi-

sual morphology confirms the behaviour inferred using morphological proxies,

although our quantitative measurements allow me to study larger and fainter

samples. I then demonstrate that varying dust opacity and disc inclination can

account for features of the joint distribution of R and N for late-type galax-

ies. However, dust does not appear to explain the highest values of R and

N . The bulge-disc nature of galaxies must also contribute to the wavelength-

dependence of their structure.

The second section of this thesis studies radial colour gradients across the

galaxy population. I use the multi-wavelength information provided by Meg-

aMorph analysis of galaxy light profiles to calculate intrinsic colour gradients,

and divide into six subsamples split by overall Sérsic index (n) and galaxy

colour.

continued



x

I find a bimodality in the colour gradients of high- and low-n galaxies in all

wavebands which varies with overall galaxy luminosity. Global trends in colour

gradients therefore result from combining the contrasting behaviour of a num-

ber of di↵erent galaxy populations. The ubiquity of strong negative colour

gradients supports the picture of inside-out growth through gas accretion for

blue, low-n galaxies, and through dry minor mergers for red, high-n galaxies.

An exception is the blue high-n population which has properties indicative of

dissipative major mergers.

In the third section of this thesis I apply bulge-disc decompositions to my

sample of galaxies, in order to discover the structural origin of the wavelength

dependences found in the previous two chapters. I find that most galaxies with

a substantial disc, even those with no discernible bulge, display a high value of

N . The increase in Sérsic index to longer wavelengths is therefore intrinsic to

discs, apparently resulting from radial variations in stellar population and/or

dust reddening. Similarly, low values of R (< 1) are found to be ubiquitous,

implying an element of universality in galaxy colour gradients. I also study

how bulge and disc colour distributions vary with galaxy type. I find that,

rather than all bulges being red and all discs being blue in absolute terms,

both components become redder for galaxies with redder total colours. I even

observe that bulges in bluer galaxies are typically bluer than discs in red galax-

ies, and that bulges and discs are closer in colour for fainter galaxies. Trends

in total colour are therefore not solely due to the colour or flux dominance of

the bulge or disc.



Published work

Much of the work in this thesis has been previously presented in several papers:

I Kennedy, R., Bamford, S. P., Baldry, I., Häußler, B., Holwerda, B. W.,
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III Kennedy, R., Bamford, S. P., Häußler, B., Brough, S., Holwerda, B. W.,

Hopkins, A. M., Vika, M. and Vulcani, B., 2016, “Galaxy And Mass

Assembly (GAMA): Galaxy colour gradients versus colour, structure and

luminosity”, A&A, 2016, 593, A84

Paper I contains the work detailed in chapter 3 of this thesis. Paper II describes

the work presented in chapter 5. Just to mix things up a bit, Paper III contains

most of the work presented in chapter 4.

The vast majority of the work presented in this thesis was performed by the

author, with advice from the paper coauthors listed above. Where the material

presented is the result of more collaborative work, this is mentioned at the

beginning of the relevant chapter.

xi



Chapter 1

Introduction

1.1 Motivation

This thesis aims to understand more about the developmental histories of

galaxies. The stars within a given galaxy have typically formed over a range

of times and through di↵erent mechanisms. The formation history of a galaxy

is recorded in the age, metallicity and phase space distributions of a galaxy’s

stellar population. The observed spatial structure of galaxies, and their wave-

length dependence, can therefore be used to learn how galaxies have formed

and evolved.

1.2 Galaxy Formation

Our current picture of the history of the Universe begins with a ‘Big Bang’

approximately 13.8 billion years ago. For a fraction of a second after the big

bang the Universe expanded and cooled extremely quickly, during a period

called ‘inflation’.

As the Universe continued to cool after inflation, protons and neutrons were

able to bind together to form atomic nuclei. After further cooling, electrons

bound to these nuclei to form neutral atoms during ‘recombination’. At this

point, 380,000 years after the big bang, photons were able to free stream

throughout the Universe, making it transparent. This is known as the ‘sur-

face of last scattering’, which we can observe today as the Cosmic Microwave

1



1.3. Galaxy Evolution 2

Figure 1.1. The anisotropies of the Cosmic microwave background (CMB) as
observed by Planck (2013).

Background (CMB), see Fig. 1.1.

The variations in temperature we see on the CMB were created by quantum

fluctuations before inflation, and formed the basis for the large scale structure

we see in the universe today. Initially the growth of structure was dominated

by dark matter in the standard model, which was first proposed by Zwicky

(1933). Dark matter, as its name suggests, cannot be seen because it does

not interact with the electromagnetic field, and only interacts with gravity.

Dark matter halos attracted baryonic ‘light’ matter, i.e. visible matter. As

clouds of protogalactic gas slowly cooled they began to collapse, and as they

collapsed they began to rotate, causing the gas to settle into a rotating disc

which became dense enough for the first stars to form. These stars, and their

resulting supernovae, became the building blocks for the first galaxies. The

scenario of hierarchical structure formation (Lacey & Cole 1993) in which

smaller dark matter halos coalesce to make larger halos, which have a greater

gravitational potential, allowing them to attract more galaxies, causing further

merging events, is responsible for the evolved galaxies we observe today.

1.3 Galaxy Evolution

Galaxies today form a bimodal distribution in colour-mass space, with a di-

vide between the blue cloud (which contains a young, star forming population),

and the red sequence (which contains older, quenched galaxies) (Strateva et al.
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2001). The space between these populations is referred to as the ‘green val-

ley’. The red and blue populations have been modelled as separate Gaussian

distributions (Baldry et al. 2004), implying that these green valley galaxies are

outliers of the red sequence and blue cloud rather than being a distinct popu-

lation. Other studies (e.g. Mendez et al. 2011) support this theory by finding

that the green valley contains a mix of populations in terms of (amongst other

descriptors), morphological type. It is also well documented that many mem-

bers of the green valley population are dusty, highly-inclined systems (e.g.

Morselli et al. 2016 and references therein).

A galaxy’s evolution is closely linked to its morphology (Smethurst et al. 2015);

some late-type star-forming galaxies quench on very short timescales and join

the red sequence, whilst other late-type galaxies retain their discy morphology

and experience a much slower decline in star formation (see Schawinski et al.

2014).

After its formation a galaxy can undergo a number of processes throughout its

lifetime which will shape its individual characteristics. However, we can often

only see the signatures of a galaxy’s latest evolutionary process, so we may

never be able to fully understand the full formation history of a population

of galaxies without the use of simulations. In this section I therefore discuss

evidence from both observations and simulations.

The processes a↵ecting a galaxy’s evolution can generally be split into two

categories, which are detailed below: internal processes, and environmental

(external) processes. I then go on to discuss in more detail some of the pre-

vailing theories of how the types of galaxies studied in this project may have

evolved.

1.3.1 Internal processes

Inside-out disc growth Spiral galaxies are thought to grow through the in-

fall of gas from within the dark matter halo of a protogalaxy (first intro-

duced by Fall & Efstathiou 1980). As the gas is accreted onto the growing

disc, it gains angular momentum and forms an exponential profile, with

a mass and angular momentum proportional to the corresponding prop-

erties of the dark matter halo in which it resides (Mo, Mao & White
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1998).

Star-formation feedback Supernovae are able to heat large amounts of their

surrounding ISM, preventing the collapse of more gas, which in turn reg-

ulates the star formation rate (Efstathiou 2000). Stellar winds are also a

significant feedback mechanism; low-mass stars (i.e. below ⇠ M�) return

large quantities of their mass to the surrounding interstellar medium dur-

ing their lifetime, leaving behind white dwarf remnants (Stinson et al.

2006).

Radio jets Star formation within a galaxy may be shut o↵ when a black

hole at its centre expels powerful jets, which prevents the cooling of hot

halo gas, thus halting star formation (see Fabian 2012 for a review).

Simulations of radio jets emerging from black holes support this theory

(Gabor et al. 2011), and help to explain why the products of major

mergers (discussed in Section 1.3.2) don’t have renewed star formation

after the gas heated by the merger has naturally cooled.

Secular bulge growth Whereas classical bulges may be the products of merg-

ers, pseudo-bulges are more likely to have formed via disc instabilities

(Kormendy & Kennicutt 2004). Boxy bulges are thought to have formed

from bars which have buckled, leaving a central component which looks

boxy when viewed edge-on. In this scenario, the structure of the pseudo-

bulge is likely to be younger than its stars, which originally part resided

in the inner disc (see Combes et al. 1990 and references therein). Discy

pseudo-bulges are thought to form when angular momentum transport

via bars drives material into the centre of a galaxy, forming a bulge-like

structure (Kormendy 1993).

1.3.2 Environmental processes

External processes are numerous and varied, and are particularly prevalent in

galaxies within clusters and groups. It has been demonstrated that low-mass

galaxies within clusters and groups are significantly more likely to be quenched

compared to field galaxies at a given stellar mass (Baldry et al. 2006; Slater &

Bell 2014), and that quenching occurs on shorter timescales than morpholog-

ical transformations (Bamford et al. 2009). At higher masses Dressler (1980)
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showed a remarkable relationship between local density and galaxy type, with

ellipticals preferentially residing in the densest regions. This environmental

dependence is particularly important at more recent times: both the median

star formation rate (SFR) and the specific star formation rate (sSFR) de-

pend on environment below z <1, but are independent of environment above

z = 1 (Darvish et al. 2016). Below I provide an overview of the environmen-

tal processes which can alter galaxies. Although evidence has been found for

particular mechanisms to be prevalent in particular environments, this does

not mean that other mechanisms aren’t also at play; multiple mechanisms can

(and do) act simultaneously on a galaxy.

Harassment Or ‘tidal interactions’; when two galaxies interact gravitation-

ally without merging. This can result in (amongst other things) tidal

tails, asymmetry, and bars (Moore et al. 1996), and can have a similar

e↵ect to ram pressure stripping, described below (see e.g. Willman et al.

2004; Bahé & McCarthy 2015 and references therein). The main evidence

for harassment comes from the observation that clusters at higher red-

shifts contain many discy galaxies, while clusters at low redshift primarily

contain redder, quenched galaxies. Modelling these systems reproduces

observations, with the modelled galaxies having undergone multiple ha-

rassment events during the simulation (Moore et al. 1996).

Accretion E.g. in binary systems, or gas from the IGM accreting onto galax-

ies (see e.g. Rees & Ostriker 1977). In the latter scenario, gas is accreted

along filaments of the cosmic web, providing ample cool gas to fuel star

formation (Stewart et al. 2011). In practice these cool flows are di�cult

to observe, but the presence of multiple bursts of star formation in dwarf

galaxies provides indirect evidence for their existence (see Tolstoy, Hill &

Tosi 2009 for an overview of star formation histories in dwarf galaxies).

Galaxy mergers Two or more galaxies colliding and subsequently merging

through dynamical friction. Mergers between galaxies of very di↵erent

masses are classed as minor mergers, whilst mergers between galaxies

of similar massess are classed as major mergers. If both galaxies are

gas-rich, this is classed as a wet merger and is likely to produce lots of

star formation (Bekki & Shioya 1998). Dry mergers, between older, gas-
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poor galaxies, have little e↵ect on star formation rate (Bekki 1998). It is

widely postulated that major mergers at higher redshift are a likely for-

mation mechanism for older, quenched red sequence galaxies; the discs

of the merging galaxies are disrupted and the gas reservoirs are quickly

destroyed, halting star formation. Similar conclusions are found in simu-

lations, which can trace the merging of disc-dominated systems to create

the spheroidal galaxies we observe today, with one final burst of star

formation during the merger (Steinmetz & Navarro 2002).

Ram pressure stripping Explains the absence of late-type galaxies in the

centre of clusters (see e.g. Gunn & Gott 1972). As a galaxy falls inwards

towards the centre of a cluster, the pressure of the intracluster medium

strips the galaxy of its gas. Simulations have shown that ram pressure

stripping can be responsible for the loss of around half the cool gas within

a galaxy (Bahé & McCarthy 2015).

Strangulation In which the gas supply to a galaxy is shut o↵, but the gas

reservoir is not removed (as it would be in ram pressure stripping).

This allows the galaxy to continue forming stars for some time using its

available gas, thereby increasing its stellar mass and metallicity (Peng,

Maiolino & Cochrane 2015).

1.3.3 Size Evolution

Studying galactic size evolution is an important step in understanding the for-

mation history of galaxies and the dark matter halos in which they reside.

van der Wel et al. (2014) find over a redshift range of 0 <z <3, early-type

galaxies are, on average, smaller than late-type galaxies. They also find a

significantly di↵erent rate of average size evolution at fixed galaxy mass, with

fast size evolution for the early-type population, and moderate evolution for

the late-type population. These findings for the late-type population, partic-

ularly below z = 1, are consistent with the work of Barden et al. (2005), who

demonstrate that the size evolution of disc galaxies is decoupled from the size

evolution of the dark matter halos in which they reside. The size evolution

of late-types is therefore thought to be due to the inside-out growth of their

discs, which is discussed in section 1.3.1.
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Previous studies have shown that compact passive galaxies, or ‘red nuggets’

were significantly more prevalent in the early universe compared to the present

day (see e.g. Daddi et al. 2005; Longhetti et al. 2007; Cimatti et al. 2008; Hop-

kins et al. 2009; Cassata et al. 2010; Szomoru, Franx & van Dokkum 2012;

Davari et al. 2017). The fast size growth of early-type galaxies has been pos-

tulated as being due to tidal disruption of satellite galaxies leading to gradual

stellar accretion in the outskirts of early-types. Both simulations (e.g. Naab,

Johansson & Ostriker 2009 and references therein) and observations (see e.g.

van Dokkum et al. 2010; Davari et al. 2017 and references therein) corroborate

this theorised inside-out evolution process via minor mergers, particularly in

low-mass systems (Hopkins et al. 2010). These processes are not thought to

be responsible for the growth of discy galaxies; too few late-types are found in

simulations, having undergone mergers which destroy their discs (Steinmetz &

Navarro 2002).

1.4 Galaxy Morphology

Historically, galaxies were visually classified as elliptical (‘E’), lenticular (‘S0’)

or spiral (‘S’) in morphology (Hubble 1936 , see Fig. 1.2). Elliptical galaxies

are traditionally characterised by their one-component spheroidal shape. They

are thought to be the product of early and/or dry mergers, and therefore

predominantly contain older, redder stars (Dressler et al. 1997; Kau↵mann

et al. 2003; Brinchmann et al. 2004). Many of the objects initially classified

as ‘elliptical’ were later found to have a disc component (Kormendy & Bender

1996), which led to the introduction of the ‘ES’ classification for galaxies lying

between ellipticals and lenticulars on the Hubble tuning fork diagram (Liller

1966). They have since been referred to as E/S0 galaxies and discy ellipticals

(Nieto, Capaccioli & Held 1988; Simien & Michard 1990). This view was

later augmented to include parallel sequences for spirals and lenticulars, with

‘early’ and ‘late’ types described by their disc-to-bulge ratios (van den Bergh

1976). As the quality of observational data improved over time, the need for a

continuum of bulge-to-disc ratios in early-type galaxies also became necessary

(Capaccioli, Piotto & Rampazzo 1988). This version of the Hubble diagram

was then extended to include spheroidal galaxies at the end of the S0a-S0b-S0c
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Figure 1.2. Hubble’s tuning fork diagram, published in ‘The realm of the nebulae’,
(Hubble 1936).

sequence, as shown in Fig. 1.3 (Cappellari et al. 2011).

Apparent visual morphology is strongly dependent on inclination; for example,

face-on S0s are commonly mis-classified as ellipticals, whilst it is di�cult to

ascertain whether an edge-on spiral has a bar or not. To resolve this, Graham

(2014) uses both bulge-to-disc flux ratio and Hubble type in conjunction with

one another in order to minimise the e↵ect of the random orientation of a

galaxy’s disc on its morphological classification.

The colour of a galaxy and its components can be used as a proxy for mor-

phology to aid di↵erentiation between early and late types, however Conselice

(2006) and Bamford et al. (2009) caution against using color as a sole clas-

sifier. The colour cut used varies between studies, but is commonly defined

at around u � r = 2.22, regardless of magnitude (e.g. Strateva et al. 2001).

u � r versus g � i colour space has also been found as an e↵ective proxy for

classifying galaxies in the Sloan Digital Sky Survey (SDSS) as either early- or

late-type. The location of a galaxy in this colour space also reflects the degree

and locality of star formation activity (Park & Choi 2005), and correlates well

with stellar population age.

Structural classifications based on kinematics are more sensitive to the pres-

ence of discs than any photometric attempt (e.g. Emsellem et al. 2007; Cap-

pellari et al. 2011). For example, work based on ATLAS-3D data finds that

discs are common in all but the most massive galaxies (Emsellem et al. 2011).

Kinematics can also distinguish between, for example, fast and slow rotating
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Figure 1.3. Cappellari’s updatedtuning fork diagram, which extends Hubble’s
tuning fork diagram to include spheroidal galaxies at the end of the S0a-S0b-S0c
sequence (Cappellari et al. 2011).

early-type galaxies, which can shine a light on both their underlying stellar

structure, and their possible formation mechanisms (e.g. Emsellem et al. 2011;

Krajnović et al. 2011; Krajnovic et al. 2013 and references therein).

1.4.1 Measuring structural properties

Radial luminosity profiles of galaxies, and their components, are commonly

described by a Sérsic function, which models the variation in the projected light

distribution with radius. These are typically defined on elliptical isophotes

(Sérsic 1963; Graham & Driver 2005):

I(r) = Ie

(
�bn

"✓
r

Re

◆ 1
n

� 1

#)
(1.1)

where n is the Sérsic index, which controls the shape of the profile, I(r) is

the surface brightness at a given radius, Re is the e↵ective radius (the radius

containing half of the model light), Ie is the intensity at the e↵ective radius,

and bn is a function of Sérsic index such that �(2n) = 2�(2n, bn), where �

and � represent the complete and incomplete gamma functions, respectively

(Ciotti 1991). The shape of the Sérsic function for a range of Sérsic indices is

shown in Fig. 1.4.

Elliptical galaxies are typically well-described by a single Sérsic profile. The
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Figure 1.4. The Sérsic function for a range of Sérsic indices, where Re and bn are
held fixed (Peng et al. 2010).

index is often taken to be fixed at n = 4 (de Vaucouleurs 1948), although it

has been shown to vary from n . 2 at low masses to n & 4 for high mass

ellipticals (Hodge 1971; Caon, Capaccioli & D’Onofrio 1993; Graham 2013).

Spiral galaxies, on the other hand, generally require a superposition of two

di↵erent Sérsic profiles. Some studies also account for the presence of a bar,

commonly with a third Sérsic profile (Gadotti 2011). The discs of spirals (and

lenticulars) can usually be accurately described by an exponential (n = 1)

profile (e.g., Kormendy 1977, Allen et al. 2006). Bulges are often described

by a de Vaucouleurs (n = 4) profile. As with elliptical galaxies, this is usually

not accurate (Andredakis, Peletier & Balcells 1995; Graham & Prieto 2001;

de Souza, Gadotti & dos Anjos 2004), so recent studies (including the work

described in this thesis) tend to adopt a general Sérsic profile, where n is

not fixed. In fact, it is rare to find bulges with n > 3 (Balcells et al. 2003),
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and the bulges of many spiral galaxies (particularly intermediate-type discs)

exhibit the exponential profiles of pseudo bulges and are supported by rotation

(Andredakis & Sanders 1994; Carollo 1999; de Jong et al. 2004; Gadotti 2009;

McDonald et al. 2011).

Pseudo-bulges generally have younger stellar populations than classical bulges,

and are likely formed by secular processes. Due to their flattened light profiles

they are often di�cult to detect at high inclination (Carollo et al. 1997; Kor-

mendy et al. 2006; Drory & Fisher 2007; Gadotti 2009). Conversely, early-type

spiral galaxies by definition appear to have significantly bigger and brighter

bulges than late-type spiral galaxies, which tend to have small, faint bulges

(Graham & Prieto 2001; Möllenho↵ 2004). A possible reason for this di↵erence

in bulge size and luminosity with morphology is that in late-type spirals the

bulge is ‘submerged’ in the disc, masking some of the bulge light (Graham &

Prieto 2001). This is consistent with the Hubble sequence pattern of increasing

D/T flux ratio for later-type spirals (de Lapparent, Baillard & Bertin 2011).

It should be noted that using a single Sérsic fit as an indicator of whether a

galaxy is early- or late-type can sometimes be misleading, due to the intrinsic

variations in n and measurement uncertainties (Binggeli & Jerjen 1998; Gra-

ham & Guzman 2003; Krajnovic et al. 2013). Elliptical galaxies commonly

have discs (e.g. Kormendy & Bender 1996 and references therein), or disc-like

structures (Emsellem et al. 2007; Krajnović et al. 2011; Emsellem et al. 2011;

Cappellari et al. 2011), and can exhibit a large range of disc-to-total (D/T)

flux ratios (Krajnovic et al. 2013), with D/T ⇠ 0.4 typical. This calls into

question the tradition of classifying galaxies by their Sérsic index or visual

morphology (Vika et al. 2015).

1.4.2 Wavelength dependence of structural parameters

Previous studies have shown a strong relationship between measured sizes of

galaxies and wavelength: on average, galaxies of all morphologies are found

to be smaller in redder wavebands (Evans 1994; La Barbera et al. 2010b;

McDonald et al. 2011; Kelvin et al. 2012; Vulcani et al. 2014 (hereafter V14);

Kennedy et al. 2015; Lange et al. 2015). Sérsic index is also known to change

with wavelength; Sérsic index measured in the NIR is generally significantly
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larger than in the optical for low-n galaxies, with high-n galaxies exhibiting

a similar, if less pronounced, trend (Taylor-Mager et al. 2007; Kelvin et al.

2012; V14, Vika et al. 2015). These trends, and their implications for galaxy

structure, are discussed in more detail in Section 3.1.

Variations in structural properties with wavelength directly imply that the

colour of a galaxy must change with distance from its centre. This can be

measured as a colour gradient, or the radial change in colour. As a non-

parametric way of quantifying galaxy properties, this can be instrumental in

characterising the stellar populations within a galaxy.

1.4.3 Colour gradients

The existence of negative colour gradients (i.e. redder in the centre and bluer in

the outskirts) in elliptical galaxies is well-documented (see Peletier, Valentijn &

Jameson 1990; Gonzalez-Perez, Castander & Kau↵mann 2011 and references

therein). La Barbera et al. (2010a) find that these colour gradients can be

linked to the overall colour and luminosity of an early-type galaxy (ETG);

steeper negative colour gradients are more commonly found in bluer or more

luminous ETGs. Steep negative colour gradients have also been observed in

late-type galaxies (LTGs) and are thought to indicate the presence of young

stars in their outer regions (Gonzalez-Perez, Castander & Kau↵mann 2011).

There are, however, inherent di�culties in measuring consistently accurate

stellar population colours in LTGs due to interstellar extinction caused by

dust. This dust extinction is most problematic in optical wavebands (see

de Jong & van der Kruit 1994 and references therein). Moving to longer

wavelengths combats this problem as observations in the near-infrared (NIR)

are less a↵ected by dust. The NIR is also better able to measure the older

stellar populations within a galaxy, which contain most of the stellar mass

(de Jong & van der Kruit 1994).

Recently, advances have been made in using colour information to constrain

age and metallicity gradients in ETGs (e.g. La Barbera et al. 2010a; Carter

et al. 2011). Fewer studies of a similar nature have been attempted for spi-

ral galaxies, partly due to their increased dust content compared to elliptical

galaxies, and partly due to their more complex structure. Bell & de Jong
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(2000) find that the inner regions of most low-inclination spiral galaxies are

older and more metal-rich than their outskirts which supports inside-out for-

mation, although age gradients do not necessarily correlate with metallicity

gradients (e.g. Tortora et al. 2010; Sánchez-Blázquez et al. 2014 and refer-

ences therein). Similarly, g � r and g � i rest-frame global colours are mainly

related to the age of the galaxy, and do not depend strongly on metallicity

(Gonzalez-Perez, Castander & Kau↵mann 2011).

1.5 Stellar populations

In order to draw meaningful conclusions about a galaxy’s formation history

from its current colour information, one must consider stellar population mod-

els and their connection to observed colours. Stellar population synthesis (SPS)

models can be used to derive the likely spectral evolution of a stellar population

as a function of its metallicity and age, given an initial mass function (IMF)

(e.g. see Taylor et al. 2011 for an overview). The SPS modelling procedure

implemented for this thesis is described in more detail in Chapter 6.

We can use a galaxy’s spectrum to tell us about its past and present star for-

mation, because transitions in the star formation rate within a galaxy leave

marked signatures in the light of its stellar population. Dust, and the inter-

stellar medium, can also a↵ect the properties observed, so these must be taken

into account when making inferences about a galaxy’s stellar populations. In

Chapter 3 I study the e↵ect of dust on galaxy properties, and show that dust

alone cannot account for the trends observed. This leaves age and metallicity

to drive the wavelength dependence of galaxy properties for the sample studied

in this thesis, as described in the following section.

The age of a stellar population, commonly measured in Gyr, describes the

time since its formation. The oldest stellar populations in the universe reside

in giant elliptical galaxies, which had a very early formation time and have been

aging ever since (Bruzual 2000). Younger stellar populations are formed when,

for example, two galaxies have undergone a recent interaction and a burst of

star formation occurs, or in galaxies which have ongoing star formation (as

described in section 1.2).



1.5. Stellar populations 14

Figure 1.5. The 3/2 age-metallicity degeneracy as presented in Worthey (1994).
This figure considers an isochrone of 5 Gyr age (left-hand panel), with a metallicity
slightly lower than solar abundance. Isochrones of three times the age or twice the
metallicity have nearly identical spectra (right-hand panel).

The fraction of a galaxy’s mass which is in the form of metals (i.e. not hydrogen

or helium) is referred to as it’s ‘metallicity’ (Z). As the universe ages, and stars

age, lighter elements synthesise to produce heavier elements (see Bruzual 2000

for an overview). In spiral galaxies there are generally two types of stellar

population: Population I and Population II. Population I stars make up the

disc of the galaxy and are young, blue, and metal-rich. Population II stars

usually make up the central bulge, have very low metallicities, and are redder

in colour.

1.5.1 Age-metallicity degeneracy

Age and metallicity are degenerate properties, and their e↵ects are easily con-

fused with one another; a combination of the two can be used to describe

almost any galaxy colour and spectral index. Plotted against one another, the

slope in the �log(age) vs � log(Z) = 3/2, or ‘the 3/2 degeneracy’ (Worthey

1994, 1999). This degeneracy is neatly demonstrated in Figure 1.5 which is

taken from Worthey (1994). The isochrones show that a 30% change in age

can compensate for a -20% change in metallicity, and vice versa.

One way in which this age-metallicity degeneracy can be broken is by us-

ing spectroscopy; di↵erent spectral lines have di↵erent sensitivities to age and

metallicity. For example, the absorption of radiation from metals in stellar
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atmospheres, and the absence of hot, blue stars, causes a clear signature in

the SED of a galaxy. This feature therefore occurs most strongly in elliptical

galaxies, and less commonly in spiral galaxies. The 4000Åbreak is a spectral

feature which tells us about the luminosity-weighted mean stellar age of a pop-

ulation, and the fraction of stars formed in recent bursts (< 1Gyr) (Poggianti

& Barbaro 1997).

More recently, colours have been used to derive the age and metallicity of

stellar populations (e.g. Li & Han 2007). This technique has a number of

advantages over spectral analysis; colours are more widely available for large

numbers of galaxies, and are independent of a galaxy’s distance. However, this

technique has been shown to be particularly sensitive to the presence of young

stellar populations, which can obscure the detection of and older, more metal-

rich stellar population. Principle Component Analysis (PCA, e.g. Wild et al.

2007) is a technique that aims to circumvent both the problems with using a

stellar population model (not every stellar population will have a good fit to

a model), and using colours alone (young stars tend to dominate the light).

PCA compares the output of stellar population models to the eigenspectra of

particular features, in order to combine the wide availability of colours with

known spectral features.

In this study I use the methods of Taylor et al. (2011) to derive ages and

metallicities for the galaxies in my sample. This is discussed in more detail in

section 6.2.
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1.6 Structure of thesis

This thesis aims to understand more about the developmental histories of

galaxies and their internal components by studying the wavelength dependence

of their spatial structure. I use a large sample of low-redshift galaxies with

optical–near-IR imaging from the GAMA survey, which have been fitted with

Sérsic and Sérsic + exponential functions simultaneously in nine wavebands

using software developed by the MegaMorph project.

I begin by describing the origin of the data used in this project, and the

structural analysis methods that have been employed.

Chapter 3 of this thesis investigates how the sizes and radial profiles of galaxies

vary with wavelength, as well as how this behaviour varies with luminosity and

the robustness of these trends to the e↵ects of redshift.

Chapter 4 of this thesis studies radial colour gradients across the galaxy popu-

lation. I use the multi-wavelength information provided by MegaMorph anal-

ysis of galaxy light profiles to calculate intrinsic colour gradients, and divide

into six subsamples split by overall Sérsic index (n) and galaxy colour.

In Chapter 5 of this thesis I apply bulge-disc decompositions to my sample of

galaxies, in order to discover the structural origin of the wavelength depen-

dences found in the previous two chapters.

Finally, in Chapter 7, I present an overview of the work conducted in this

thesis, and I discuss my results in the context of contemporary studies.



Chapter 2

Data and methods

2.1 Galaxy And Mass Assembly (GAMA)

2.1.1 Overview

The Galaxy And Mass Assembly (GAMA; Driver et al. 2009, 2011; Liske

et al. 2015) is the largest homogeneous, multi-wavelength dataset currently

available for the low-redshift Universe. Its aim is to exploit the latest gen-

eration of space- and ground-based survey facilities to study cosmology and

galaxy formation and evolution. Primarily, this involves the study of structure

on scales of 1 kpc to 1 Mpc, which includes galaxy clusters, groups, mergers

and coarse measurements of galaxy structure (i.e. bulges and discs).

The imaging data GAMA has assembled, from both SDSS (York et al. 2000)

and UKIDSS (Lawrence et al. 2007), provides a consistent set of pixel-registered

multi-wavelength data, covering the (ugriz) optical bands and the (Y JHK)

near-infrared (NIR) bands, respectively (Hill et al. 2011). It has been demon-

strated that these data have su�cient depth and resolution to allow Sérsic

profiles to be fit to large samples (Kelvin et al. 2012; Häußler et al. 2013).

The current GAMA survey (GAMA-II) consists of three equatorial regions,

each of 72 deg2, and two regions in the south, each of 85.8 deg2 (see Fig. 2.1).

Redshifts and spectra have been obtained for 238,000 objects, down to a lim-

iting magnitude of r <19.8 using the AAOmega spectrograph on the Anglo-

Australian Telescope. The redshift completeness is 98.3%. The majority of the

17
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Figure 2.1. GAMA-II survey area shown in orange, versus lookback time. Credit:
ICRAR/GAMA.

GAMA database is publicly available at http://www.gama-survey.org, with

catalogues which are accessible via a schema browser.

In addition to the optical and NIR bands, GAMA has also collated data from

a number of independent surveys, in order to build an imaging database which

spans a wide wavelength range of 1nm - 1m. The depth and completeness of the

spectroscopy means that group and environment have also been characterised;

this is documented in more detail in Robotham et al. (2011).

2.1.2 Data management

The data included in the GAMA survey is stored in Data Management Units

(DMUs), which are ‘packets’ containing the result of some specific data reduc-

tion or analysis. Each DMU stands alone, and no data should be repeated in

multiple DMUs. This allows users to easily access the GAMA database to find

data products relevant to their science.

Each DMU must contain the information necessary for a fellow researcher

to use it without any additional comments or tools. Catalogues must be in
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the form of FITS-plus files and contain no repeated information (with the

exception of a unique identifier for each row in the table), and no entries may

be left blank; null or missing information must follow GAMA’s convention

for ‘dummy values’. Meta data must be included in the DMU in the form

of a .par file containing each column name, number, unit (if applicable), and

brief description. Additionally, a .notes file is necessary which should include

a detailed description of how the data products in the DMU were derived, and

which data products served as inputs to this DMU.

Before a DMU is ‘published’ to the database it must undergo quality control

(QC) which is undertaken by both fellow team members and a dedicated QC

team. As a member of the GAMA team, I performed a round of quality control

for the SIGMA structural decomposition catalogue (Kelvin et al. 2012), and

also compiled the MegaMorph DMU (see section 2.2).

2.2 MegaMorph

The MegaMorph project uses galapagos-2

1 with galfitm

2 to fit a single

wavelength-dependent 2D model to many images of a galaxy simultaneously.

Fitting in multiple wavebands simultaneously increases the accuracy of mea-

sured parameters, and avoids the number of ‘failed’ fits which occur in single-

band fitting by allowing smooth, physically meaningful, transitions between

wavebands.

The present catalogue was primarily produced to examine the pros and cons

of multi-band fitting in a large galaxy survey. To limit the required computing

requirements, initially only G09 GAMA I region was considered (Fig. 2.2).

The single-Sérsic results were originally presented in Häußler et al. (2013) and

studied further in Vulcani et al. (2014) and Kennedy et al. (2015, 2016b); the

latter two papers forms the basis of Chapters 3 and 4 of this thesis. The bulge-

disc results are to be presented in Häußler et al. (in prep.) and are studied

further in Kennedy et al. (2016a), which is presented in Chapter 5 of this

1Multi-band version of galapagos: Galaxy Analysis over Large Areas: Parameter As-
sessment by GALFITting Objects from SExtractor. Code designed by Barden et al. (2012)
to automate source detection, two-dimensional light-profile Sérsic modelling and catalogue
compilation in large surveys

2
galfitm: A multi-wavelength extension to galfit3 (Peng et al. 2002; Peng et al. 2010)
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thesis. The data used in this thesis is from a previous run on SDSS+UKIDSS

which was completed before the start of my PhD. I have since repeated this

process on the new SDSS+VIKING data, using the techniques described in

Section 2.3.

galfitm is a modified version of galfit 3 (Peng et al. 2010) which replaces

each single waveband parameter with a wavelength-dependent function. In the

data presented in this thesis, the wavelength dependent parameters are mag-

nitude, Sérsic index, e↵ective radius, position, axis ratio and position angle.

The degrees of freedom a↵orded to each of these parameters is set by a set of

Chebyshev polynomials chosen by the user.

In this work, galaxy magnitudes are allowed to vary freely, while Sérsic index

and e↵ective radius are modelled as quadratic functions of wavelength. All

other parameters are not permitted to vary with wavelength. galfitm ac-

counts for seeing by convolving the model with a PSF (produced by Kelvin

et al. 2012) before comparing to the data.

To test the reliability of this new fitting technique, simulated galaxies were

created which closely matched the distribution of galaxy parameters expected

of a sample such as the GAMA G09 region (Häußler et al. 2013). Whilst these

simulated images are an idealised case which assumes that real galaxies are well

represented by perfect Sérsic profiles, they are suitable for giving a lower limit

on the error bars for real data. Poisson noise was added to each galaxy in the

simulated catalogue, and they were then placed onto an empty sky image from

real GAMA imaging. Having been fitted using exactly the same setup as would

be used for the real data, Häußler et al. (2013) could compare the recovered

values to the known input parameters. It was found that, compared to single-

band fitting, this new multi-band fitting technique performed particularly well

for galaxies which had low signal-to-noise wavebands, allowing meaningful fits

for a much larger sample, and at fainter magnitudes, than before.
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Figure 2.2. G09 region of the GAMA-II survey marked as a red rectangle overlaid
on the observed fields from 2dF/AAOmega. The colour represents the number of
fields covering a given position, from fewest (n = 1, shaded blue) to most (n =
15, shaded red). For G09, the average number of fields, n, is 10.9, whilst the total
number of fields, N , is 230 (Liske et al. 2015).

2.3 Sérsic modelling and bulge-disc decompo-

sition

The following procedure applies to both the data set used in this thesis, and

the new catalogue I created using the new SDSS-VIKING data which will soon

be available for future work. Wherever images and figures are presented, these

are from the SDSS-VIKING fits I performed.

• I use the entire GAMA G09 field (129 deg < RA < 141 deg and -

1 deg < Dec < 3 deg). This area was cut out from the original GAMA

SWARP mosaic, see Fig. 2.2.

• The point spread functions (PSFs) used are those obtained by Kelvin

et al. 2012 (for the SDSS data) and Lange et al. 2015 (for the VIKING

data, using the methods of Kelvin et al. 2012). galapagos chooses

the closest PSF to the targeted object for the fit. I add a background

pedestal so that GALFIT can construct correct sigma images, in order

to determine the ‘reliability’ of flux in a given region. For each band, I
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Figure 2.3. Ellipses showing the sources identified by the hot mode of SExtrac-
tor; this mode fits sources in more detail, and is able to pick out faint sources
within the outskirts of brighter sources.

simply use a typical background value from the original SDSS imaging.

I also cut the images into overlapping tiles, which makes the data easier

to handle in galapagos.

• I then use SExtractor (Bertin & Arnouts 1996) to identify sources us-

ing a co-added image of all bands, in order to detect sources with extreme

colours that would be missed if only one band were used for detection.

This is a 2-stage (hot + cold) process, which allows SExtractor to

distinguish between bright objects, and fainter objects which may be at

risk of being lost in the outskirts of brighter objects. The hot mode is

more able to separate out smaller clumps within a galaxy, or pick out

faint galaxies from the outskirts of a nearby bright galaxy (see exam-

ple in Fig. 2.3), whilst the cold mode takes broader strokes and lumps

multiple clumps together as one single object (see example in Fig. 2.4).

Fine-tuning both these modes to make sure that all galaxies are detected,

without clumpy galaxies being detected as multiple sources, is key. A

segmentation map (see example in Fig. 2.5) is also produced which shows

which pixels are attributed to which object.
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Figure 2.4. Ellipses showing the sources identified by the cold mode of SExtrac-
tor; this mode uses ‘broad strokes’ to identify sources, and avoids over-fitting lumpy
objects

Figure 2.5. Example segmentation map from one tile of the GAMA G09 region.
This shows which pixels have been attributed to each source. In the centre there
are some pixels which contain light from two sources, so these have been flagged
accordingly.
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• A postage stamp is cut out around each object, to speed up the fitting

process and to reduce the memory required at a given time. This also

means that the fitting process can be parallelised, and multiple sources

can be fitted simultaneously.

• A skymap is created, which estimates the local sky level around an ob-

ject and excludes other nearby sources. This will later allow galfit to

remove model profiles for nearby sources when fitting a given object.

• galfit allows various parameters to be constrained in a setup file for

single-Sérsic fits; for this project we restrict the e↵ective radius to be

no larger than 400 pixels, and the Sérsic index should fall within the

range 0.2 <n <8. I also constrain the wavelength dependence of certain

parameters (x, y, mag, Re, n, AR, PA) using Chebyshev polynomials,

which are discussed in more detail in Section 2.2, and the minimum

number of wavebands required for each fit, which in this case is six. An

example of the image, model and residual in each band for a single-Sérsic

fit is given in Fig. 2.6.

• While most of the setup for the bulge-disc decomposition is analogous to

the single-Sérsic setup – e.g. I use the same postage stamps, masks, PSFs

and deblending decisions and wavelengths to be given to galfitm– some

additional issues have to be considered when carrying out bulge/disc

decompositions. Most importantly, the user is able to decide on the

order of the polynomial used in the B/D decomposition and the starting

values for the fit itself. Whilst in principle colour gradients could exist

within individual components, we expect the colour di↵erences between

components as a whole to be greater. I therefore choose to initially allow

no wavelength variation of n and Re, whilst leaving the SEDs of the

bulges and discs to vary as eighth-order polynomials. The Sérsic index

of the discs are set to n = 1. Variation in bulge and discs structural

parameters with wavelength will be tested and studied in future work. An

example of the image, model and residual in each band for a bulge+disc

fit is given in Fig. 2.7
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2.4 Data used in this thesis

The galaxy measurements used in this thesis have previously been presented

in Häußler et al. (2013) (hereafter H13), and a subsample of these were studied

in Vulcani et al. (2014) (hereafter V14). A detailed description of the selection

criteria, robustness of fits and properties of the sample can be found in those

papers; here, we only give a brief overview.

As in V14, the data we use in this chapter are limited to the G09 region of

GAMA. I therefore only utilise approximately one-fifth of the area covered by

GAMA II. For e�ciency, we chose to focus on a single region for our initial

exploration of multi-band fitting techniques with GAMA. The application of

MegaMorph methods to the full GAMA dataset, with UKIDSS-LAS replaced

by VISTA-VIKING data, are ongoing.

Restframe values of Sérsic index and e↵ective radius for each wavelength have

been obtained from the polynomials returned by galfitm. For the magni-

tudes, k-corrections have been performed using InterRest (Taylor et al. 2009).

I take the galapagos-2 output catalogue; however not every fit was neces-

sarily accurate or meaningful, so a number of cleaning criteria were applied

to eliminate galaxies for which the fit has violated my criteria in one or more

bands. These criteria are identical to those used in H13 and V14, with the

exception of Sérsic index which is limited to 0.201 < n < 7.75. I have reduced

the upper limit on Sérsic index to avoid including suspected poor fits, with

final parameters close to the fitting constraint (objects with very high n are

typically poor fits, often to point sources, and are therefore removed). Note

that the cleaning described above removes only 0.42 / 0.39 per cent of the V14

/ low-redshift samples.

In this thesis I use two di↵erent volume-limited samples to avoid selection

e↵ects, which are illustrated in Fig. 2.8. For studying variation in galaxy

properties with redshift, a first volume-limited sample of 13,871 galaxies is

taken with z < 0.3, Mr < �21.2, in line with V14.

For studying variation in galaxy properties with absolute magnitude, Mr, a

second volume-limited sample (z < 0.15, Mr < �19.48) of 5331 galaxies is

used, allowing galaxies to be considered over a wider range of absolute magni-



2.4. Data used in this thesis 28

Figure 2.8. Absolute r-band magnitude versus redshift for my parent sample,
with our volume-limited selection boxes overlaid. The red curved line indicates the
primary apparent magnitude limit of the GAMA II redshift survey, r < 19.8. This
corresponds to an absolute magnitude of Mr = �21.2 at z = 0.3 and Mr = �19.48
at z = 0.15.

tude.

One of the aims of this thesis is to study how galaxy properties vary as a

function of wavelength. It is expected that di↵erent types of galaxies will

behave in di↵erent ways, so I subdivide the samples by both colour and Sérsic

index. The number of galaxies in each subsample are given in Tables 2.1 &

2.2 for both volume-limited samples, after basic cleaning has been applied.

Initially the samples are divided into ‘red’ and ‘blue’ at (u � r) = 2.1. I also

want to separate the bluest galaxies, which may contain starbursts, so I further

divide this ‘blue’ sample at (u� r) = 1.6 into ‘green’ and ‘blue’. Note that the

‘green’ sample corresponds to the main population of star-forming galaxies,

not the green valley. I have confirmed that altering these colour cuts does not
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nr < 2.5 nr > 2.5
Colour no. % no. %

Blue: (u� r) < 1.6 1380 9.9 322 2.3
Green: 1.6 < (u� r) < 2.1 3311 23.9 1047 7.5
Red: 2.1 < (u� r) 2523 18.2 5288 38.1

Table 2.1. Number count and fraction of the z < 0.3, Mr < �21.2 volume-limited
sample (total = 13871 galaxies), for di↵erent combinations of colour and Sérsic
index.

nr < 2.5 nr > 2.5
Colour no. % no. %

Blue: (u� r) < 1.6 1323 24.8 134 2.5
Green: 1.6 < (u� r) < 2.1 1417 26.6 245 4.6
Red: 2.1 < (u� r) 994 18.6 1218 22.8

Table 2.2. Number count and fraction of the z < 0.15, Mr < �19.48 volume-
limited sample (total = 5331 galaxies), for di↵erent combinations of colour and
Sérsic index.

a↵ect my results. The galaxy sample is also split by Sérsic index, in an attempt

to separate discy galaxies from ellipticals, at nr = 2.5. These divisions can be

seen in Fig. 2.9.

The analysis has been carried out using a cosmology with (⌦m,⌦⇤, h) =

(0.3, 0.7, 0.7) and AB magnitudes.

2.4.1 Two-component fits

In addition to the single-Sérsic fits presented previously, two-component fits

have also been performed by the MegaMorph project, comprising independent

Sérsic and exponential (a Sérsic profile with n = 1) components (Häußler et

al., in prep), the Sérsic index and e↵ective radius of which is constant with

wavelength. This fitting procedure followed the steps outlined in Section 2.2,

which I have since performed on SDSS+VIKING data. Various tests have been

performed to ensure that the fits consistently move away from their starting

parameters, and converge on final solutions that are generally independent of

these initial values. The robustness of these decompositions will be discussed

in depth in Häußler et al. (in prep.). The two components are intended to

model the bulge and disc structures seen in many galaxies, and I will often

use these labels for convenience, although the interpretation of the two com-
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Figure 2.9. (u-r) rest frame colour vs. nr for the galaxies in our two samples.
Lines illustrate the cuts we apply to divide the galaxies by colour and Sérsic index.

ponents may vary for galaxies that do not correspond to this simple structural

approximation.

I acknowledge that there may not be statistical evidence for choosing a 2-

component fit over a single-Sérsic fit. However, one of the problems involved

with choosing a 1- or 2-component model is that this builds a dichotomy into

the data. One of the strengths of fitting every object with 2 components is that

I give consistent treatment to the whole sample, and don’t introduce a bias of

deciding which fit is more appropriate on a case-by-case basis. Nowadays we

know that the vast majority of galaxies are multi-component. Forcing them

to be fit by a single component model introduces a bias. The distributions

of component properties I find in Chapter 3 strongly support the assumption

of multiple components. This is particularly true for the red galaxies; with

single-band fits these can often be well-fit by single-component models, but

these multi-band fits clearly indicate a preference for two components with

di↵erent colours.

To obtain rest-frame colours for the bulge and disc components of both sam-

ples, K-corrections have been performed using the SED fitting code of Duncan
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et al. (2014). Following a method similar to that of Blanton & Roweis (2007),

stellar population synthesis models from Bruzual & Charlot (2003) are fit to

the decomposed bulge and disc photometry and the rest-frame colours taken

from the best-fit model for each component. The model stellar populations

are drawn from a wide range of ages, star-formation histories and metallici-

ties, with dust attenuation allowed to vary in the range 0  AV  4 assuming

the Calzetti et al. (2000) attenuation law.

I then apply the following criteria to select reliable fits:

• 0.201 < nB < 7.75, to eliminate values that lie very close to the fitting

boundaries.

• 0 < mB,D < 40 at all wavelengths, where mB,D is the total apparent

magnitude in each band for the bulge and the disc, respectively.

• m� 5 < mB,D < m+ 5, where m is the starting value of the magnitude

in each band. See Häußler et al. (2013) for more details.

• 0.301 < Re(B,D) < 399 pixels, which ensures bulge and disc sizes remain

in a physically meaningful range.

• 0.001 < qB,D  1.0, where qB,D is the axial ratio of the bulge and disc,

respectively.

• Position (x, y); positions are constrained to lie within a box of size 0.5Re

around the centre as defined by the single-Sérsic fit. Additionally, the

position of the disc and the bulge are constrained to be the same.



Chapter 3

Understanding the wavelength

dependence of galaxy structure

3.1 Overview

In this chapter I study how the sizes and radial profiles of galaxies vary with

wavelength, by fitting Sérsic functions simultaneously to imaging in nine opti-

cal and near-infrared bands.

Ideally we would be able to decompose galaxies into all their constituent struc-

tures. However, with limited physical resolution and signal-to-noise, even

bulge-disc decompositions can prove di�cult to perform robustly. Although

many galaxies comprise multiple components, fitting with a single Sérsic pro-

file can provide valuable insights into their structure, providing sizes, axial

ratios, rough morphological classifications and total photometry (e.g., Kelvin

et al. 2012).

Fitting Sérsic models to galaxy images in di↵erent wavebands allows one to

explore the dependence of galaxy structure on wavelength for large samples

in a homogeneous manner. Variation in a galaxy’s surface brightness profile

parameters with wavelength is qualitatively equivalent to a radial trend in the

colour of the galaxy. Such ‘colour gradients’ have been well-studied, usually by

measuring the surface brightness in a series of elliptical annuli. This approach

is usually limited by the seeing, and hence confined to relatively extended

objects. The result is a colour profile for the galaxy, usually summarised as the

32
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overall change in colour over some (logarithmic) radial range (e.g., Goudfrooij

et al. 1994; deJong 1996; Saglia et al. 2000; den Brok et al. 2011), as described

in Section 1.4.3.

The wavelength-dependence of Sérsic model parameters provides an alterna-

tive description. This is less detailed than a full colour profile, though more

robustly determined in typical survey imaging. In addition, as the PSF can

be easily accounted for when fitting the model, the results are not biased by

seeing.

Considering the wavelength-dependence of Sérsic parameters is more e�cient

than dealing with empirical colour profiles, while providing significantly more

general information than quoting a colour gradient over a single (or several)

radial ranges. Furthermore, the ubiquity of the Sérsic profile in describing

galaxy profiles, and the correlations between its parameters and other galaxy

properties, suggests that the profile and its parameters have a physical sig-

nificance. Expressing colour gradients in terms of the wavelength-dependence

of e↵ective (half-light) radius and Sérsic index naturally separates the pro-

portions associated with changes in size and profile shape, which may have

di↵erent physical drivers. However, the price of all this is the assumption of

a particular functional form for the surface brightness profile. When this as-

sumption is inappropriate (e.g., in merging galaxies, multi-component systems

or potentially very high redshift), it may result in biases or misinterpretations.

Some studies have chosen a compromise between performing a parametric fit

and directly measuring a colour profile. La Barbera & de Carvalho (2009) fit

independent Sérsic models in various wavebands and then use elliptical annuli

to measure colour profiles and gradients on the model images. This removes

the e↵ect of the PSF and reduces noise in the measurements.

Several groups have examined the trends of Sérsic model parameters with wave-

length. For a sample of bright elliptical galaxies, La Barbera et al. (2010b)

find that the mean e↵ective radius decreases significantly with increasing wave-

length from g to H, but that there is little variation in Sérsic index. Kelvin

et al. (2012) find similar behaviour in data from the Galaxy And Mass Assem-

bly survey (GAMA; Liske et al. 2015). They also consider late-types, finding

a substantial increase in Sérsic index, and decrease in e↵ective radius, across

the same wavelength range. Metallicity gradients and dust attenuation are
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proposed as reasons for these trends.

Lange et al. (2015) have recently extended the work of Kelvin et al. (2012),

replacing the GAMA infrared UKIDSS LAS imaging (Lawrence et al. 2007)

with deeper VISTA-VIKING data (Edge et al. 2013). They also separate the

galaxy population into early- and late-types using a variety of dividers, includ-

ing visual classification. Lange et al. find that their results are not sensitive to

the chosen divider, but show that the bimodality of galaxy structure becomes

less distinct at lower stellar masses. They confirm that galaxies appear more

compact at redder wavelengths, although this appears less dramatic than in

the previously mentioned studies. Lange et al. argue that these structural

variations with wavelength may arise from the two-component nature of many

galaxies, in which the bulge is observed in the redder wavebands whilst the

disc is observed in the bluer wavebands (also see Driver et al. 2007a). However,

they do not examine the dependence of Sérsic index on waveband.

The above studies fit the image in each filter-band independently. This model

freedom can be seen as an advantage. However, such an approach does not

utilise the expected strong correlations between structural parameters at neigh-

bouring wavelengths. In data with low signal-to-noise or poor resolution, using

these physical expectations can improve the reliability and precision of struc-

tural measurements. Furthermore, even in high-quality data, utilising available

colour information can improve the performance of decompositions. To address

these issues, the MegaMorph project (Bamford et al. 2012) has developed a

technique which fits a single, wavelength-dependent model simultaneously to a

set of imaging in di↵erent filter-bands. These developments have been imple-

mented in an extended version of galfit (Peng et al. 2002; Peng et al. 2010)

named galfitm (H13, Vika et al. 2013, 2014). galapagos (Barden et al.

2012), a software package dedicated to running galfit on large surveys, has

been similarly extended to become galapagos-2, which uses galfitm (H13).

Using MegaMorph multi-band techniques to perform single-Sérsic fits, V14

studied the wavelength dependence of galaxy e↵ective radius, R, and Sérsic

index, N , (see Fig. 3.1). They confirmed the trends described above, and

demonstrated that galaxies with contrasting total colours and Sérsic indices

display strikingly di↵erent behavior in terms of the wavelength dependence of

their e↵ective radii and Sérsic indices.
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Figure 3.1. Median nx/ng versus median Re(x)/Re(g) for galaxies in each
colour/Sérsic index subsample, from Vulcani et al. 2014. Multiple points of the
same symbol correspond to di↵erent wavebands, x. These consistently follow the
wavelength sequence from H on the left to u on the right. All the g-band points lie
at (1, 1) by definition.

V14 concluded that, regardless of overall u� r colour, low-n galaxies display a

very di↵erent behaviour to high-n galaxies, implying that both the wavelength

dependence of n and Re depend strongly on Sérsic index. They suggested that

low-n discy (two-component) galaxies show a large change in Sérsic index with

wavelength because in bluer wavebands the Sérsic index of the disc is being

measured, whereas in redder wavebands the Sérsic index of the bulge domi-

nates. High-n galaxies are, on the other hand, likely to be bulge-dominated

(closer to one-component), so there is little change in Sérsic index with wave-

length. There is, however, a large change in Re with wavelength for high-n

galaxies, which indicates that elliptical galaxies contain a number of di↵erent

pressure-supported stellar populations with di↵erent extent, possibly resulting
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from multiple minor merging events throughout a galaxy’s lifetime.

In this chapter I aim to gain a greater confidence in, and deeper understanding

of, the trends of galaxy structural parameters with wavelength as measured by

the various studies described above. This work will advise the application of

multi-band structural fitting to the full set of high-quality imaging currently

being assembled by GAMA, and my subsequent analysis. I build on the results

of V14, first ensuring they are robust to redshift e↵ects.

For the first time, I examine the wavelength-dependence of galaxy structure

as a function of luminosity. I also show that the measured trends persist for

selections based on visually classified morphology, rather than morphological

proxies. Next, I investigate the role of dust in driving the wavelength depen-

dence of late-type galaxy structure. The chapter is concluded by discussing

the various potential factors responsible for the variation of galaxy structural

parameters with wavelength. By taking the novel approach of considering the

joint wavelength dependence of Sérsic index and e↵ective radius, I can begin

to decouple the relationships between concentration, size and colour.

3.2 Data

The data used in this chapter is described in detail in Section 2.4. A summary

is provided here.

In this chapter I use two di↵erent volume-limited samples to avoid selection

e↵ects, which are illustrated in Fig. 2.8. For studying variation in galaxy

properties with redshift, a first volume-limited sample of 13,871 galaxies is

taken with z < 0.3, Mr < �21.2, in line with V14. For studying variation

in galaxy properties with absolute magnitude, Mr, a second volume-limited

sample (z < 0.15, Mr < �19.48) of 5331 galaxies is used, allowing galaxies to

be considered over a wider range of luminosities. Each galaxy has been fitted

with a wavelength-dependent model; magnitudes are allowed to vary freely,

whilst Sérsic index and e↵ective radius are modelled as quadratic functions of

wavelength.

Restframe values of Sérsic index and e↵ective radius for each wavelength have

been obtained from the polynomials returned by galfitm. For the magni-
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tudes, k-corrections have been performed using InterRest (Taylor et al. 2009).

I have divided each volume-limited sample by Sérsic index and colour to obtain

six subsamples which aim to separate out di↵erent galaxy populations.

3.3 Results

V14 examined the variation of n and Re with wavelength in order to reveal

trends of internal structure, and therefore formation history, for galaxies in

di↵erent subsamples (see Fig. 3.1). For consistency I continue to use the nota-

tion N x
g = n(x)/n(g) and Rx

g = Re(x)/Re(g), which express the variation for

a given waveband, x, versus that in the g-band. For simplicity, I will only con-

sider the ratio of H-band to g-band in this chapter, as V14 shows that there is

a consistent trend with wavelength and this pair has the longest robust wave-

length baseline. I omit the band labels from N and R when discussing their

general behaviour.

As will be shown in Chapter 4, if I convert my N and R trends to colour

gradients I find good agreement with previous work, e.g. red, high-n galaxies

show identical colour gradients to the passive, ‘early-type’ sample studied in

La Barbera et al. (2010a). I also see the same behaviour of colour gradient with

luminosity. However, here I focus on N and R, which allows me to decouple

variations in concentration and size with wavelength, which are combined in a

measurement of colour gradient alone.

3.3.1 Redshift e↵ects on galaxy structure

The sample used in V14 extends to Mr < �21.2, z < 0.3, so much of the

sample is faint and of small angular size. This selection was partly chosen

to demonstrate the power of multi-band fitting in this challenging regime.

V14 showed that the measured N and R correspond to di↵erences in the

visual appearance of the galaxies. However, before exploring the luminosity

dependence of these trends, I will further test the resilience of my NH
g and RH

g

measurements versus redshift.

I split my bright volume-limited sample (z < 0.3, Mr < �21.2) into three
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redshift bins: 0.0  z < 0.15, 0.15  z < 0.25 and 0.25  z < 0.3. These bins

were chosen to span the redshift range of my volume-limited sample, while

ensuring a similar number of galaxies in each bin to permit meaningful com-

parisons (see Table 2.1). The wavelength dependence of e↵ective radius is

shown in Fig. 3.2, for galaxies split by u� r colour, nr, and redshift. Galaxies

of all colours and Sérsic indices are typically found to have RH
g < 1, indicating

they are smaller at redder wavelengths, while RH
g = 1 (i.e. logRH

g = 0) cor-

responds to no variation in size with wavelength. Here, RH
g does not appear

to change substantially with redshift in any subsample. Kolmogorov–Smirnov

(KS) tests do indicate some significant di↵erences between the RH
g distribu-

tions in the di↵erent redshift samples. However, these di↵erences are generally

small, particularly in comparison with the width of each distribution and the

o↵sets between the low- and high-n subsamples. To determine whether an o↵-

set between subsamples can be considered ‘large’ or ‘small’ I sum the standard

deviations of the widest and narrowest distributions in quadrature. I then find

the di↵erence in the median value of log(RH
g ) in the highest and lowest redshift

bins, as a fraction of the summed standard deviation. Here, the average o↵set

is 15.5% of the distribution widths, which can be considered small.

What trends are present indicate that at lower redshift (higher S/N and better

resolution) I measure RH
g closer to unity for low-n galaxies. The departure of

RH
g from unity may therefore be slightly overestimated in V14. High-n systems

appear una↵ected, with perhaps the exception of blue, high-n galaxies. There

are, however, very few galaxies in this subsample as blue spheroids are uncom-

mon. I therefore consider my measurements of the wavelength dependence of

e↵ective radius to be robust out to z = 0.3.

NH
g is studied in the same manner. The wavelength dependence of Sérsic index

is shown in Fig. 3.3, for galaxies split by u � r colour, nr, and redshift bin.

Again, some small trends are visible. Galaxies at lower-z tend to display NH
g

further from unity. This is most significant for low-n galaxies, and suggests

that V14 may slightly underestimate the wavelength dependence of n for these

systems. Apart from this small e↵ect (approx. 18.5% o↵set in median values

compared to the width of the distributions, as described previously), we can

consider measurements of the wavelength dependence of Sérsic index to be

robust out to z = 0.3.
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Figure 3.2. E↵ective radii of galaxies binned by redshift, for colour and Sérsic
index subsamples. The left column shows low-n galaxies, the right column shows
high-n galaxies. The top, middle and bottom groups of four panels contain red, green
and blue samples, respectively. Within each group, the top panels show normalised
histograms, whilst the bottom panels present corresponding cumulative histograms
to better visualise subtle shifts in the distributions. In each panel lines in light
colours show galaxies in the low redshift bin (0  z < 0.15), mid-shades indicate the
intermediate redshift bin (0.15  z < 0.25), whilst the darkest colours show galaxies
in the high redshift bin (0.25  z < 0.3).
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Figure 3.3. Sérsic indices of galaxies binned by redshift, for colour and Sérsic index
subsamples. Panels and colours are chosen similar to Fig 3.2.
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As in Fig. 17 of V14, I summarise the relationship betweenNH
g andRH

g for the

three redshift bins in Fig. 3.4. The small trends with redshift, described above,

are again evident in this figure. However, for each subsample, the redshift bins

lie close to one another. In addition to observational e↵ects, redshift trends

may result from real changes in the galaxy population. However, given my

volume-limited, colour-selected samples, and the narrow range of redshift, I

do not expect evolution of the galaxy population to play a significant role in

these trends. I have determined that the di↵erences in N and R between

redshift bins are small relative to the di↵erences between galaxy types, and

thus my results are robust to the sample selection I have used. In particular,

the distinctions between high- and low-n systems are maintained independent

of redshift. The conclusions of V14 are thus robust. With that established, I

now move on to examining how the wavelength dependence of galaxy structure

varies with luminosity.

3.3.2 Luminosity dependence of galaxy structure

V14 specifically chose a volume-limited sample of bright galaxies with Mr <

�21.2. Here I investigate whether the conclusions drawn from their study

apply to a wider range of galaxy luminosities.

My sample is divided into three magnitude bins: �22.48  Mr < �21.48,

�21.48  Mr < �20.48 and �20.48  Mr < �19.48. These intervals ensure

similar numbers of galaxies in each bin, allowing for meaningful comparisons.

In Fig. 3.5 I present the wavelength dependence of e↵ective radius for subsam-

ples divided by u� r colour, nr and luminosity.

For high-n galaxies, there appears to be a consistent trend in the distribution

of RH
g with changing absolute magnitude. Fainter high-n galaxies have RH

g

closer to unity than brighter high-n galaxies. Their sizes therefore vary less as

a function of wavelength. The most luminous galaxies, such as those studied

by V14, display the strongest variation of their sizes with wavelength.

For the low-n samples, although K-S tests indicate some di↵erences between

the distributions in the luminosity bins, there is little obvious consistent vari-

ation. The blue sample displays similar trends to the high-n galaxies, while

typical green galaxies show no luminosity dependence. Red galaxies hint at an
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Figure 3.4. Median NH
g versus median RH

g for galaxies in each of my di↵erent
subsamples divided by colour, Sérsic index and redshift bin. Colours are the same
as in figure 17 of V14. Error bars show uncertainty on the median, estimated as
1.253�/

p
N , where � is the standard deviation about the median and N is the

number of galaxies in the sample. There are small trends with redshift due to
observational biases. However, the distinction between the subsamples, particularly
the contrast between low- and high-n, remains very clear.
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opposing behaviour, such that the most luminous bin displays less variation in

size with wavelength.

On average across all samples, the o↵set of the distributions with respect to

the standard deviation of the distributions is 27%, calculated as before, for the

redshift distributions.

I study NH
g in the same manner; Fig. 3.6 shows the wavelength dependence

of Sérsic index for the same subsamples as Fig. 3.5. There appears to be

a consistent positive trend in the distribution of NH
g with changing absolute

magnitude for both low- and high-n galaxies, i.e. the brightest galaxies exhibit

higher NH
g , with a 47% mean o↵set of the distributions, compared to the width

of those distributions. In the high-n sample, distributions for all luminosity

bins peak around one, supporting the conclusion of V14 that bulge-dominated

(and likely one-component) systems show little change in Sérsic index with

wavelength. Comparing cumulative distributions for the high-n samples, one

can see that bluer and less luminous samples tend to have slightly lower values

of NH
g , i.e. a decrease in n at longer wavelengths. Typical bright high-n

galaxies have NH
g very close to unity.

The low-n samples consistently display values of NH
g above one, indicating

an increase in Sérsic index with wavelength. This o↵set from unity strongly

increases with luminosity, such that the brightest low-n galaxies display the

greatest dependence of Sérsic index on wavelength.

In a similar manner to before, Fig. 3.7 shows the relationship between NH
g

and RH
g for our three magnitude bins. High Sérsic index galaxies show a

clear variation in e↵ective radius with luminosity (brighter galaxies showing

a greater decrease in Re with wavelength). Low Sérsic index galaxies show a

change in n with wavelength (brighter galaxies showing a greater increase in n

with wavelength). The overall e↵ect is that the di↵erences between low- and

high-n galaxies become more pronounced with increasing luminosity.

I have also performed all of the analysis in Sec. 3.3.1 and 3.3.2 using an optical

baseline (u–z), although using the same fits as for the full u–K dataset. As

one would expect, over this narrower wavelength range the di↵erences between

the samples narrow, though not in terms of significance, as the scatter shrinks

roughly in proportion. All of the behaviour seen in the g versus H plots is

qualitatively the same, and our inferences would be unchanged.



3.3. Results 44

Figure 3.5. E↵ective radii of galaxies binned by absolute magnitude, for colour
and Sérsic index subsamples. Panels and colours are chosen similar to Fig 3.2.
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Figure 3.6. Sérsic index of galaxies binned by absolute magnitude, for colour and
Sérsic index subsamples. Panels and colours are chosen similar to Fig 3.2.
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Figure 3.7. Median NH
g versus median RH

g for galaxies in each di↵erent subsample
divided by colour, Sérsic index and luminosity. Colours are the same as in figure 17
of V14.

In terms of overall colour, concentration and size, early- and late-type galaxies

become more similar with increasing luminosity. However, when one considers

the joint distribution of these three properties, as in this chapter, one instead

finds a divergence which widens with luminosity. The process by which late-

type (low-n) galaxies grow must promote the variation of profile shape with

wavelength. The growth of early-type (high-n) galaxies must also maintain a

radial segregation of their stellar populations, but crucially in terms of size, not

profile shape. Furthermore, any process which transforms late-types to early-

types must do so in a manner that erases the wavelength-variation of profile

shape, but enhances that of size. Realistic mechanisms for galaxy growth and

transformation must reproduce the trends we observe.
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3.3.3 Morphological classifications

The work of V14 assumes that one can perform a meaningful division of the

galaxy population using Sérsic index as a proxy for structure or morphology.

Typically nr < 2.5 galaxies are associated with structures with prominent

discs, whilst nr > 2.5 galaxies are thought to be spheroid-dominated. To ver-

ify that my results do not strongly depend on this assumption, I now examine

the distributions of NH
g and RH

g for samples selected by visual morphology.

In Figs. 3.8 and 3.9 I show the wavelength dependence of n and Re for galax-

ies separated by Hubble types from the GAMA Visual Morphology catalogue

(Kelvin et al. 2014). Note that visual morphologies are only available for galax-

ies with 0.025 < z < 0.06 and Mr < �17.4. Figure 3.8 shows only galaxies

within the overlapping redshift and magnitude regions, i.e. 0.025 < z < 0.06

& Mr < �21.2 (V14 sample) or Mr < �19.48 (low-z sample). Also plotted (as

triangles) are the median locations of the high- and low-n populations, selected

within the same redshift and absolute magnitude limits as the morphologically-

classified points. Background contours show the distribution of galaxies in each

of our volume-limited samples for which we do not have a visual morphological

classification.

Despite the severe limitation in sample size that the visual morphological clas-

sifications impose, they confirm the behaviour of our high- and low-n galaxy

samples. In both volume-limited samples one can see that the median loca-

tion of the high-n galaxies lies very close to the median point of the elliptical

sample, whilst the median of the low-n galaxies lies close to that of the Sab-

Scd galaxies. Vika et al. (2015) see identical behaviour for a sample of very

low-redshift galaxies, and show that this is robust against artificial redshifting.

Note that the o↵set between the late-type/low-n points at low-redshift and

the contoured distribution at higher redshifts appears to confirm the (small)

biases inferred in Section 3.3.1. At lower-redshift (i.e. in better quality data)

we measure slightly higher RH
g and NH

g for low-n galaxies. Previous results

therefore somewhat underestimate the di↵erence between the two galaxy pop-

ulations. However, even at z = 0.3 the contrast between their behaviour is

such that my conclusions are una↵ected.

The finer distinctions between the Hubble types reveal some further details
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in the NH
g –RH

g figures. Ellipticals and Sab-cd galaxies form the opposite

extrema of the distributions. S0-Sa galaxies are intermediate between the

two, but closer to the ellipticals. Perhaps surprisingly, late-type discs, Sd-Irr,

occupy the same intermediate region. This may be a result of their similar

one-component natures, with higher values of NH
g indicative of system with

comparable bulge and disc components. Note that R and N may be noisier

for systems that depart greatly from an elliptical Sérsic, and more di�cult

to interpret physically. Nevertheless, measuring these properties still gives

insight into their structure and allows us to make qualitative comparisons. So,

in Fig. 3.9 we see that, on average, Sd-Irr galaxies display properties similar

to late-spirals, but with less peakiness at longer wavelengths. It is also worth

noting that the presence of a bar does not appear to greatly alter the measured

wavelength dependence of galaxy structure.

3.3.4 The e↵ects of dust

Late-type galaxies contain significant quantities of dust, which can strongly

a↵ect their measured properties (e.g., Popescu et al. 2002; Pierini et al. 2004;

Holwerda et al. 2005, 2009; Möllenho↵, Popescu & Tu↵s 2006). The e↵ects

vary with the amount and distribution of dust within the galaxy, as well as

the observed inclination and wavelength.

A wide range of observations, together with detailed modelling (Popescu et al.

2000), have helped to establish a typical geometry for the distribution of dust

in the discs of star-forming galaxies (Tu↵s et al. 2004). When accounting

for attenuation, this dust model can be parametrised by a single dominant

parameter: the central face-on optical depth in the B-band, ⌧ , while remaining

widely applicable, at least to relatively massive spiral galaxies. It should,

however, be noted that in lower-mass galaxies the dust distribution may be

significantly di↵erent (Holwerda et al. 2012; Hinz et al. 2007). The Tu↵s et al.

(2004) model has been used to quantify, and potentially correct for, the e↵ect

of dust on galaxy structural parameters (Möllenho↵, Popescu & Tu↵s 2006;

Pastrav et al. 2013a,b).

Figure 3.10 shows the e↵ect of dust on NH
g and RH

g for pure discs fit with a

single-Sérsic profile, as determined by Pastrav et al. (2013a). Their results are



3.3. Results 49

Figure 3.8. NH
g versus RH

g for galaxies in my high-luminosity volume-limited
sample with Hubble type classifications in the GAMA visual morphology catalogue.
Median points for each Hubble type bin are plotted as stars, with associated error
bars (estimated as 1.253�/

p
N). Morphological classifications are only available

for a low-redshift subset of galaxies. For comparison, the median values for galaxy
samples with the same redshift limits, but separated by nr, are plotted as triangles.
The distribution of the full volume-limited sample (to the same luminosity limit,
but extending out further in redshift) is plotted as contours.
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Figure 3.9. NH
g versus RH

g for galaxies in the lower-luminosity volume-limited
sample. Points and shading are as described for Fig. 3.8

shown for a range of inclinations along loci corresponding to a wide variety of

central dust opacities. Typical spiral galaxies have ⌧ ⇠ 2–4 (Keel & White III

2001; Holwerda et al. 2005; Driver et al. 2007b; Masters et al. 2010). Projection

e↵ects, as defined and predicted in Pastrav et al. (2013a,b), are not considered

here, as their contribution is minimal compared to dust e↵ects. As the purpose

of this figure is illustrative, I have simply taken the published B and K-band

dust e↵ects from Pastrav et al. (2013a), without attempting the small inter-

polation to the g- and H-bands. These dust e↵ects are shown as applied to a

nominal ‘galaxy’ with (NH
g , RH

g ) = (1, 1), and for each ⌧ value I show how

NH
g & RH

g change with inclination. Fig. 3.10 shows that dust always acts to

decrease RH
g , i.e. increase e↵ective radius more at shorter wavelengths. It also

tends to increase NH
g , i.e. raise the Sérsic index with increasing wavelength,

except for at high opacities and close to edge-on inclinations.
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Note that the stellar disc emitting in the optical bands in the Tu↵s et al.

(2004) model actually has an intrinsic stellar population gradient, such that

the scale length of the old stellar disc decreases by ⇠30 percent from the B to

K bands, corresponding to RH
g ⇠ 0.7. Including this intrinsic RH

g would make

the loci overlap with the observed distribution in Fig. 3.10. One can see that

for a population of pure discs with a variety of opacities and inclinations, a

correlation in NH
g –RH

g would arise from their variation with inclination, while

a scatter about that correlation would be associated with variations in opacity.

However, as one would expect, dust e↵ects alone cannot account for the full

observed NH
g –RH

g distribution. Late-types extend to substantially greater NH
g

than can be attributed to dust, presumably as a result of the presence of a

central bulge that becomes more dominant at longer wavelengths. However,

there remains the possibility that more varied dust models may have more

success in reproducing this observed dependence of N and R. For example,

the dust within lower-mass galaxies is more likely to be vertically distributed

throughout the stellar disc, rather than concentrated in the central plane (Hol-

werda et al. 2012). On the other hand, early-types, which generally contain

little dust, must have stronger intrinsic stellar population gradients than those

in the discs.

3.4 Discussion

In this chapter I have studied how the wavelength dependence (from rest-

frame u- to H- bands) of galaxy structure varies for samples selected in a

variety of ways. As in V14, galaxy properties have been measured using Meg-

aMorph techniques to fit consistent, wavelength-dependent, two-dimensional

Sérsic profiles in multiple wavebands simultaneously. My results are sum-

marised in terms of the fractional variation in Sérsic index and e↵ective radius

between the g- and H-bands, which I denote NH
g and RH

g .

3.4.1 The physical meaning of R and N

Before discussing the implications of our results, and comparing to other stud-

ies, I first review the meaning of these quantities in terms of the appearance
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Figure 3.10. The e↵ect of dust on NH
g vs RH

g for discs. Underlayed are contours
for all galaxies in the V14 sample, as in Fig. 3.8. Overplotted are the mean locations
of low- and high-n galaxies within the V14 volume limited sample. Black lines show
model tracks for optically thin discs having a nominal value (NH

g ,RH
g )=(1,1), whilst

coloured lines correspond to model tracks for optically thick discs The intensity of
the colour in each line shows the inclination of the galaxy. Crosses indicate the point
at which (1� cos i) = 0.5.

and physical structure of a galaxy. A value around unity, for either quantity,

indicates that that particular aspect of structure does not vary with wave-

length. R gives the variation in galaxy size (Re) with wavelength. The vast

majority of galaxies are found to have R < 1, indicating that they are larger in

the blue. These galaxies therefore display redder colours in their centres, and

become bluer at larger radii. In the rarer case, R > 1, galaxies are larger in

the red, and hence bluer in the centre, becoming redder with increasing radius.

N indicates how a galaxy’s profile shape (n), or equivalently its central con-

centration, depends on wavelength. Galaxies with N > 1 have a high-n profile

in redder bands. They are therefore ‘peakier’ in their centres and have more

significant surface brightness at large radii. Galaxies with N > 1 are thus

expected to be redder in the centre and in their outskirts, and bluer at inter-

mediate radii (⇠ Re). In practice, the outermost red regions may be too faint
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to been seen in normal depth imaging, and so the visible outskirts of such a

galaxy may appear blue. However, the di↵erence with respect to R < 1 is

that the colour gradient should become shallower with radius. Galaxies with

N < 1 obviously show the opposite trend, appearing more strongly peaked at

bluer wavelengths.

Of course, both N and R may both depart from unity at the same time,

indicating variations in both size and profile shape with wavelength. In that

case, the resulting colour profile is a combination of the two behaviours. These

may, to a degree, counteract (if N and R are correlated) or reinforce (if anti-

correlated) one another. Indeed, some of the correlation in the N –R plane,

within subsets of the galaxy population, may be a result of this degeneracy.

I study the e↵ect of redshift on my ability to measure NH
g and RH

g in Sec-

tion 3.3.1. For low-n (i.e. typically late-type) galaxies I find a bias of RH
g

and NH
g to lower values (RH

g away from unity, NH
g toward unity) at higher

redshifts. However, these observed biases are significantly smaller than the

di↵erences between the galaxy subsamples, particularly for low- versus high-n

galaxies. The conclusions of V14 therefore are not significantly a↵ected by the

generous redshift limit adopted in that study. The quantitative results of V14

are also relatively robust and may be compared to other studies of comparable

galaxy populations in similar quality imaging. However, when comparing to

much lower redshift samples of late-types, e.g. in Fig. 3.9, one must bear in

mind the redshift bias.

In Section 3.3.2, the wavelength-dependence of both Re and n are found to de-

pend on luminosity, with brighter galaxies generally showing stronger trends

with increasing wavelength: to smaller sizes (especially for early-type galax-

ies) and higher-n (especially late-type galaxies). The contrast between the

behaviour of high- and low-n galaxies lessens with decreasing luminosity, sug-

gesting greater structural similarity between (Sérsic index selected) early- and

late-type galaxies at lower luminosities.
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3.4.2 Comparison of observed trends of R and N with

other studies

My work is consistent with that of La Barbera et al. (2010b). I find an ex-

tremely similar decrease in e↵ective radius for red, n > 2.5 galaxies at the

same luminosities. Furthermore, I have shown that this is robust to redshift

e↵ects and the use of visual morphology, rather than Sérsic index, to select

early-types. My results also agree with those of Kelvin et al. (2012) and Ko

& Im (2005), both of which find a nearly 40 per cent decrease in Re over the

corresponding wavelength range.

The existence of negative colour gradients in elliptical galaxies, particularly

strong in optical-NIR colours, has been known for a long time (e.g., Peletier,

Valentijn & Jameson 1990). La Barbera et al. (2010a) use their Sérsic models,

independently fit to each wavelength, to determine colour gradients for their

sample of early-type galaxies. They find that more optically-luminous galaxies

display stronger (negative) NIR-optical colour gradients. This agrees with our

finding that Re depends on wavelength more strongly for more luminous high-

n galaxies. However, La Barbera et al. (2010a) see little variation in colour

gradients with NIR luminosity or stellar mass. This is consistent with the

bluer stellar population being located at larger radii, and this feature being

more prominent in more luminous galaxies.

La Barbera et al. (2012) show that, compared to optical-NIR measurements,

colour gradients based only on optical bands are weaker. They are nevertheless

widely observed (e.g., Gonzalez-Perez, Castander & Kau↵mann 2011). Optical

gradients also do not show as much variation with luminosity, being strongest

for intermediate luminosities (La Barbera et al. 2012; Roche, Bernardi & Hyde

2010). Using stacked optical (SDSS) images, D’Souza et al. (2014) find strong

evidence for the presence of blue (in g� r) halo components in various galaxy

populations. This extended component can account for around half of the light

of a galaxy, being more prominent in higher-n and more luminous galaxies.

Even the majority of massive early-type galaxies at z ⇠ 1.5 are found to

display negative colour gradients (Gargiulo et al. 2012).

A small subset of local early-type galaxies display positive optical colour gra-

dients, due to the presence of blue cores associated with recent star-formation
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(Suh et al. 2010). These become more prevalent at higher redshifts (Ferreras

et al. 2005). Such galaxies correspond to my high-n, very blue, selection.

These galaxies display RH
g < 1, like other early-types, implying they are more

compact in the red. However, in contrast to my other subsamples, this is

combined with NH
g < 1, implying their profiles are more strongly peaked in

the blue. The intermediate and outer gradients of these galaxies are therefore

apparently like other ellipticals, but they must display a blue excess in their

cores.

Typical spirals (Sab-Scd) show less Re variation with wavelength, compared

to early-types, but it is still significant: a ⇠ 20 per cent decrease from g to H.

This value has little dependence on galaxy luminosity, at least over the range

we probe here. However, note that the wavelength variation of Re for late-types

is somewhat susceptible to being overestimated in lower-quality data. Both

early-discs (S0-Sa) and very late-types (Sd-Irr) display behaviour intermediate

between ellipticals and spirals.

In terms of Sérsic index, I find that early-type (high-n) galaxies show lit-

tle variation in n, while late-types substantially increase in n with increasing

wavelength. Again, early-discs (S0-Sa) and very late-types (Sd-Irr) fall be-

tween the two behaviours. My results for disc galaxies agree well with those

of Kelvin et al. (2012), who find that Sérsic indices almost double from u to

K, although most of the change occurs over the optical range.

Various studies have found the Sérsic indices of early-type galaxies to be gen-

erally unchanged with wavelength (Kelvin et al. 2012; La Barbera et al. 2010a,

2012), perhaps with a slight increase in n with wavelength. The estimated

changes in n and Re with wavelength for these, and other, studies are dis-

played in Table 3.1. I do not generally see such an increase, rather a small

decrease is more common in my early-type samples. However, redshift ap-

pears to have an e↵ect, as does luminosity. In my lowest-redshift, brightest

samples I find Sérsic indices that are constant, or slightly rising, with wave-

length. Visually-classified ellipticals also have NH
g very close to unity. On the

other hand, fainter and bluer high-n galaxies tend to display Sérsic indices that

decrease with wavelength, by several tens of per cent. La Barbera et al. (2012)

find that larger (and hence typically more luminous) early-type galaxies show

stronger trends of n increasing wavelength, matching the form of behaviour I
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‘Early type’ ‘Late type’ Notes
n Re n Re

LB10 1*" 28 # - - 5080 bright spheroids from
SPIDER, g- toK-band. (La
Barbera et al. 2010a)

Kel12 30 " 38 # 52 " 25 # 167,600 galaxies from
GAMA, g- to K-band.
(Kelvin et al. 2012)

V14 1*" 45 # 38*" 25 # 14,274 galaxies from
GAMA-II G09 region,
Mr < �21.2, z < 0.3, u- to
H-band.

L15: 109M� - - - 16 # 8399 galaxies from GAMA-
II, 0.01 < z < 0.1, g- to Ks-
band. (Lange et al. 2015)

L15: 1010M� - 13 # - 13 # As above.
L15: 1011M� - 11 # - - As above.

K15: Mr ⇠ �20 12 # 23 # 29 " 13 # 5331 galaxies from GAMA-
II G09 region, z < 0.15, g-
to H-band (this study).

K15: Mr ⇠ �21 5 " 25 # 40 " 15 # As above
K15: Mr ⇠ �22 5 " 33 # 55 " 12 # As above

Table 3.1. Comparison of results from previous studies. Each number shows the
percentage change in n and Re between the wavebands given under ‘notes’. " =
increase; # = decrease; * = value has been calculated from information given in the
paper; - = no data available...

see here.

The redshift biases and luminosity trends I have found allow me to, at least

partly, reconcile the dramatic wavelength-dependence reported by V14 with

the more modest behaviour seen by some other recent studies. Kelvin et al.

(2012) find slightly weaker trends than V14, but they use a magnitude-limited

sample, dominated by somewhat less luminous galaxies. When I adopt the

same selection, my results are in excellent agreement.

Lange et al. (2015) find a substantially weaker dependence of Re on wavelength,

though it is still significant. I have shown that dividing galaxies by visual

morphology (as in Kelvin et al. 2014) confirms the behaviour inferred from

selections based on colour and Sérsic index, but severely limits the usable

sample size.

For late-type galaxies, my results are actually in good agreement with Lange
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et al. (2015). If I consider my low redshift sample, I find a similar ⇠ 15 per

cent decrease in size. At higher redshifts I appear to slightly overestimate the

strength of the size decrease compared with Lange et al. (2015). However, for

early-types, there is a larger discrepancy, although the qualitative behaviour

is the same. Redshift (i.e. data-quality) appears to have little e↵ect on my

results. Considering my Mr ⇠ �20 (logM? ⇠ 10) selection I still find a ⇠ 25

per cent decrease in the e↵ective radii of red high-n galaxies. This is not

reduced if I limit my analysis to visually-classified ellipticals. The wavelength-

dependence results featured by Lange et al. (2015) are based on linear fits to the

Re–M? relation, and hence galaxies with relatively low masses, logM? ⇠ 10,

exert a strong influence. These di↵erent analyses may have something to do

with our disagreement. However, it may also be that the di↵erence in depth

between the UKIDSS LAS and VIKING VISTA NIR imaging is responsible,

as suggested by Lange et al. (2015). Many, but not all, of the studies that also

find strong trends for early-type galaxies, as mentioned above, are also based

on SDSS and UKIDSS LAS data and hence may be similarly a↵ected. In the

near future I will have the results of this methodology applied to the same

SDSS plus VIKING data set, so will be better placed to evaluate this issue.

3.5 Summary

The variation of galaxy structure with wavelength reveals the connections be-

tween the stellar populations within a galaxy and their spatial distributions.

Specifically, I consider the change in Sérsic index and e↵ective radius from g-

to H-band, which I denote N and R. As shown by V14, the majority of early-

type (high-n) galaxies show little variation in their Sérsic index with wave-

length (N ⇠ 1), but are significantly smaller at longer wavelengths (R < 1).

This behaviour is suggestive of a structure formed by similar (violent) mecha-

nisms being apparent at all wavelengths, but with a scale that strongly depends

on the colour of the stellar population. On the other hand, late-type galaxies

(low-n) display a substantial increase in Sérsic index with wavelength (N > 1),

suggesting a variation in the type of structure dominating the light at di↵erent

wavelengths, but less variation in size (R . 1). Very blue, high-n, galaxies

present an interesting contrast, having significantly higher Sérsic indices in the
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blue, indicating the presence of a peaky blue component.

In this chapter I have used optical-NIR imaging and redshifts from the GAMA

survey (Driver et al. 2009), with multi-band single-Sérsic fits performed using

tools developed by the MegaMorph project (Bamford et al. 2012), in order to

study four further aspects of the wavelength-dependence of galaxy structure. I

consider the distributions of N and R for a variety of volume-limited samples

subdivided by u�r colour, Sérsic index and morphology. The main conclusions

from my analysis are:

• I have verified that my measurements ofN andR are robust to the e↵ects

of redshift, strengthening the earlier results of V14. Early- and and late-

type galaxies (selected using Sérsic index) present strongly contrasting

behaviour in terms of the wavelength-dependence of their structure. Out

to z ⇠ 0.3 I see no substantial changes in R or N , particularly when

compared to the striking di↵erences between galaxy subsamples. What

small biases are present, suggest that at higher redshift (lower S/N and

poorer resolution) we may be slightly overestimating the o↵set of R from

unity, and underestimating the o↵set of N from unity, for low-n galaxies.

Both of these e↵ects act to reduce the apparent di↵erence between the

high- and low-n populations. The estimated contrast is therefore even

more pronounced than that determined by V14.

• The strengths of N and R depend on galaxy luminosity:

– High-n galaxies with lower luminosities have R closer to unity than

their brighter counterparts. Most high-n galaxies have N around

unity for all luminosities, supporting the suggestion of V14 that

these are single-component objects.

– Low-n galaxies display weaker, more mixed trends inR compared to

high-n galaxies. There is a striking trend in the N distributions of

low-n galaxies with luminosity: brighter objects display N further

from unity, for all colour subsamples.

• The interpretations of V14 are supported by visual morphological classi-

fications of a low-redshift subset of our sample from Kelvin et al. (2014);

my low-n samples share the same part of the N –R diagram as Sab/Scd
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galaxies, whilst the high-n samples follow the distribution of elliptical

galaxies. Both early- and late- disc galaxies occupy intermediate regions

of the N –R plane, confirming that the extreme values for intermediate

types are related to their two-component nature.

• Results from fitting dusty galaxy models (Pastrav et al. 2013a) indicate

that some of the wavelength-dependence of disc galaxy structure may be

attributable to dust. The natural distribution of disc inclinations may

account for the trend seen in the N –R plane, while varying central dust

opacities may account for the scatter in this relation. However, pure

dusty discs cannot reach the values of N observed for intermediate-type

spirals.

Further improving our understanding of the wavelength-dependence of galaxy

structure requires more detailed consideration of the two-component nature of

galaxies. These results are the subject of Chapter 5.



Chapter 4

Internal colour gradients of

galaxies

4.1 Overview

The wavelength dependence of structure that I measured in Chapter 3, i.e.

N and R, must be driven by radial variations in stellar populations and/or

dust extinction. For early-type galaxies, many studies have found that colour

gradients are caused by negative metallicity gradients. Age is generally fairly

constant with radius, or even slightly increasing, and hence acting against the

metallicity trend. The outskirts of massive early-type galaxies (ETGs) are

therefore typically more metal poor and older than their cores, with weaker

gradients for lower mass ETGs. (e.g., La Barbera et al. 2012, and references

therein).

Metallicity gradients are expected in models of monolithic collapse (Worthey,

Trager & Faber 1995), and this mechanism may be responsible for the gradients

in the centres of today’s galaxies. However, most massive galaxies are expected

to have experienced a major merger since their formation, which will have

partly erased these initial gradients. It has been discovered that early-type

galaxies must at least double in e↵ective radius between z ⇠ 2 and today (e.g.

van der Wel et al. 2014). Although various processes have been proposed,

the dominant mechanism appears to be minor mergers (Hopkins et al. 2009;

Lackner & Gunn 2012). The stellar material accreted in such mergers tends

60
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to contribute most significantly to the outskirts of the more massive galaxy,

building up an outer envelope (Huang et al. 2013). The e↵ect is to increase

e↵ective radius over time and produce stellar population gradients.

The increase I have measured in e↵ective radius toward shorter wavelengths,

which is stronger for more luminous systems, (RH
g ⇠ 0.55–0.75 from Mr ⇠

�22–�20), is consistent with observations of negative colour gradients and

extended blue components (La Barbera et al. 2012). The lack of variation in

Sérsic index with wavelength (N ⇠ 1) suggests that the extended profile of the

stellar populations seen in the blue is structurally consistent with the profile

traced by those stellar populations dominating at red wavelengths, possibly

indicative of a similar origin. Together, these observations are consistent with

a gradual build-up of massive early-type galaxies through accretion of low-mass

galaxies.

Lower-luminosity, and bluer, early-type (high-n) galaxies tend to show slightly

peakier profiles in the blue, which may be an indication of an additional blue

stellar component in their centres, possibly as a result of recent central star-

formation.

Dust in early-type galaxies is generally not expected to be present in su�cient

quantities to have a significant e↵ect on their observed structure. However,

Rowlands et al. (2012) do find that ⇠ 5 per cent of luminous early-type galaxies

are detected in the far-infrared, implying that they must contain significant

fractions of dust (also see Bendo et al. 2006). It is uncertain how this dust

impacts upon their measured structural parameters, but it may be responsible

for some of the scatter we see in N and R for my early-type samples.

In late-type galaxies, dust is likely to play a more dominant role. The apparent

di↵erences in optical structure in disc galaxies across the Hubble sequence is

largely determined by the presence of young stars and dust. The old stellar

discs of spiral galaxies, as seen in the NIR, are very similar at all Hubble types

(Block et al. 1999).

Modern studies of the opacity of spiral discs find that they su↵er from substan-

tial face-on and inclination-dependent extinction (e.g. Holwerda et al. 2005;

Masters et al. 2010). Testing the model of Tu↵s et al. (2004) with a large

galaxy sample, Driver et al. (2007b) find good agreement and infer that bulges

and the central regions of discs su↵er from substantial attenuation of their
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optical light. This has a significant impact on measurements of their struc-

tural parameters (Möllenho↵, Popescu & Tu↵s 2006; Pastrav et al. 2013a,b).

However, as I have shown in Section 3.3.4, dust alone cannot explain the

observed wavelength trends. It seems obvious that the two-component, bulge-

disc, nature of late-type galaxies, with their contrasting stellar populations

and structures, must have at least some impact on the wavelength-dependence

of their overall structure. I will investigate this further in Chapter 5.

In Chapter 3 I studied the wavelength dependence of galaxy structure to re-

veal the connections between the stellar populations within a galaxy and their

spatial distributions. I found evidence for multi-component structure in many

galaxies, even those visually classified as elliptical (see Chapter 5). This sug-

gests that considering structural variations with wavelength may provide fun-

damental insights into galaxy formation. Nevertheless, studying internal colour

gradients is a complementary and widely-used approach, and thus it is impor-

tant to understand how our results on the wavelength-dependence of structure

relate to more traditional colour gradients. In this chapter I study how colour

gradient varies with wavelength (from rg�r to rg�H) for six subsamples split

by overall Sérsic index and galaxy colour, and then consider the luminosity

dependence of these colour gradients.

4.2 Data

As in Chapter 3, the sample used in this chapter comes from the G09 region of

GAMA II (Driver et al. 2009, 2011; Liske et al. 2015). It is volume-limited to

Mr < �19.48 mag and z < 0.15 when studying trends with luminosity, which

gives a larger luminosity range but smaller sample of 5317 galaxies, with a

stellar mass limit of ⇠ 109M�. The sample is volume-limited to Mr < �21.2

mag and z < 0.3 elsewhere, which gives a larger sample of 13825 galaxies at the

expense of a smaller luminosity range with a stellar mass limit of ⇠ 1010M�.

galfitm (Häußler et al. 2013; Vika et al. 2013) has been used to fit a single-

Sérsic wavelength-dependent model to all bands simultaneously, and returns

(amongst other parameters) magnitude (m), Sérsic index (n), and e↵ective

radius (Re). For more information on the data used here, see Chapter 2.

As described in section 2.4 I divide my sample into high- and low-Sérsic index



4.2. Data 63

at nr = 2.5, and separate red and blue galaxies using a u � r = 2.1 colour

cut. I then separate the blue galaxies into green and blue at u � r = 1.6 in

an attempt to separate out the bluest, potentially starburst, population. Note

that the green population corresponds to the main population of star-forming

galaxies, not specifically the green valley.

In the previous chapter I measured the wavelength dependence of Sérsic index,

N = n(H)/n(g), and e↵ective radius, R = Re(H)/Re(g) between the H- and

g-bands. I saw that there is a striking di↵erence in the behavior of high-

n (nr > 2.5) and low-n (nr < 2.5) galaxies; high-n galaxies show a large

change in Re (R < 1) but little change in n (N ⇠ 1), whereas in low-n

galaxies show little change in Re with wavelength but a large change in n with

wavelength. Although N and R are useful for considering the dependence of

structure on wavelength, they are hard to compare to the literature. Here I

therefore convert these measurements into more traditional colour gradients

which describe a change in stellar population or dust with radius, rather than

a change in radial profile with wavelength.

The colour profile for each galaxy is computed over a range of radii using

the Sérsic formula, as seen in Fig. 4.1, for our six subsamples. The g � H

colour profiles of high- and low-n galaxies are shown as dashed and solid lines

respectively for red, green and blue galaxies, which are coloured accordingly.

In agreement with the literature, one can qualitatively see in Fig. 4.1 that the

majority of galaxies are redder in the centre than the outskirts. Note that the

blue, high-n subsample contains less than 3% of the full population.

I derive my colour gradients from these radial colour profiles using the loga-

rithmic slope of a galaxy’s radial colour profile between 0.1Re and 1Re,

rg�x =
d(g � x)

d(log⇢)
(4.1)

where g is the SDSS g-band, x = rizY JH, and ⇢ is the distance to the

galaxy centre, taking Re as the e↵ective radius in the r-band (see e.g. Peletier,

Valentijn & Jameson 1990; La Barbera et al. 2010a).

Recall that both the Sérsic index and e↵ective radius of a galaxy are allowed to

vary quadratically with wavelength during the two-dimensional Sérsic model

fit. As the colour gradient is measured over a radial range defined in a single
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Figure 4.1. Median g �H colour profiles of high- and low-n galaxies (dashed and
solid lines respectively) for red, green and blue galaxies, which are coloured accord-
ingly. The number of galaxies in each subsample is given on the plot. The colour
profile for each galaxy is computed from 0.1Re to 4Re using the Sérsic formula, and
the median is shown here. The colour profiles presented here diverge in the out-
skirts of each galaxy because the fit only constrains parameters to 1Re. Orthogonal
regression can then be used to convert these colour profiles into colour gradients.
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band (the r-band), both the variations of n and Re with wavelength contribute

to the measured colour gradients. I then use orthogonal regression to findrg�x,

the gradient of the best-fitting profile where x = rizY JH.

My large sample size allows me to study both early- and late-type galaxies in

7 wavebands. I can therefore provide a more complete picture of how colour

gradients - and hence stellar mass growth channels - vary across the galaxy

population. I am also able to extend the work in Chapter 3 to study in detail

the luminosity dependent colour gradients for my subsamples of galaxies.

4.3 Results

4.3.1 Variation in colour gradient with wavelength

The variation in colour gradient with wavelength is summarised in Fig. 4.2;

it can be seen that the majority of colour gradients are negative, i.e. appear

bluer at larger radii. I have also examined the redshift dependence of these

colour gradients in a similar manner to section 3.3.2, and find that they do

not change significantly. As one would expect, colour gradients are stronger

for more widely spaced waveband pairs. We can see a distinct di↵erence in

the colour gradients of low- and high-n galaxies, regardless of overall galaxy

colour. The low-n samples consistently have the strongest colour gradients. In

Chapter 5 I find these low-n samples to contain galaxies with more significant

disc components (i.e. a lower bulge/total flux ratio) than their high-n coun-

terparts, which is in agreement with Gonzalez-Perez, Castander & Kau↵mann

(2011) who find that steep negative gradients are more likely to be found in

late-types. We can also see that the red subsamples consistently have shal-

lower colour gradients than the blue and green subsamples; once again I am

in agreement with the conclusion of Gonzalez-Perez, Castander & Kau↵mann

(2011) that the redder a galaxy, the shallower its colour gradient. The red,

high-n sample is a reasonable proxy for early-type galaxies, and the mean

colour gradients I find (given in Table 4.1 for all subsamples) agree well with

the colour gradients found in La Barbera et al. (2010a) for their sample of

ETGs over the same range of wavebands. These values are shown later, in

Fig. 4.4. Within the uncertainties, the mean colour gradients of the low-n
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Figure 4.2. Distributions of rg�x for galaxies in each of the colour/Sérsic index
subsamples (see section 4.2 for more details), normalised to unit integral. Each panel
shows the distribution for a di↵erent pair of bands. The median of each distribution
is indicated by a vertical dashed line. These median values, and their uncertainties,
can be found in Table 4.1. A bimodality in colour gradients for high- and low-n
galaxies can be seen in all wavebands.

samples also agree with those of Taylor et al. (2005) for ‘mid-type’ (Sc) spiral

galaxies, and Gonzalez-Perez, Castander & Kau↵mann (2011) for late-type

galaxies in a similar magnitude range.

4.3.2 Luminosity dependence of colour gradients

I now proceed to examine how colour gradients depend on galaxy luminosity.

Fig. 4.3 shows the median colour gradients, rg�x, where x = rizY JH, of

the entire low redshift sample as a function of r-band absolute magnitude.

In all wavebands we observe shallower colour gradients for the brightest and

faintest galaxies, with the strongest colour gradients at around Mr ⇠ �21.25.

One must be mindful, however, that we are looking at many di↵erent galaxy

populations here, as my only selections are volume-limiting the sample, and

excluding the ⇠ 0.4% of objects for which the galapagos fits fail (H13, V14).
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Red, low-n Green, low-n Blue, low-n max. err.
µ � µ � µ � on µ

rg�r -0.22 0.24 -0.29 0.21 -0.24 0.23 0.01
rg�i -0.39 0.40 -0.51 0.35 -0.44 0.38 0.03
rg�z -0.54 0.50 -0.70 0.45 -0.63 0.51 0.04
rg�Y -0.64 0.54 -0.82 0.50 -0.76 0.57 0.05
rg�J -0.79 0.58 -0.99 0.54 -0.95 0.62 0.07
rg�H -0.95 0.61 -1.12 0.55 -1.11 0.68 0.08

Red, high-n Green, high-n Blue, high-n max. err.
µ � µ � µ � on µ

rg�r -0.04 0.16 -0.06 0.19 -0.03 0.25 0.01
rg�i -0.07 0.28 -0.12 0.35 -0.07 0.45 0.03
rg�z -0.12 0.40 -0.21 0.51 -0.17 0.72 0.04
rg�Y -0.16 0.46 -0.28 0.60 -0.29 0.92 0.05
rg�J -0.25 0.52 -0.44 0.71 -0.53 1.20 0.07
rg�H -0.40 0.52 -0.67 0.80 -0.79 1.44 0.08

Table 4.1. Mean colour gradients, µ, and standard deviations, �, for each of our
colour/Sérsic index subsamples. The final column gives the maximum uncertainty
on the mean values (�/

p
N), corresponding to the smallest subsample, blue high-n.

For the larger subsamples, this uncertainty is up to an order of magnitude smaller.

Figure 4.3. Median colour gradient, rg�x, where x = rizY JH, as a function
of r-band absolute magnitude, Mr, for the low redshift sample. Di↵erent colours
correspond to di↵erent wavebands, with g� r at the top to g�H at the bottom, as
indicated by the label to the left of each line. The standard deviation of each dis-
tribution (as shown by error bars on the faintest luminosity bin) is largely constant
with luminosity, and is comparable to the standard deviations given in Table 4.1.
Particularly at longer wavelengths we see a double-valued behaviour with the shal-
lowest colour gradients occurring at the brightest and faintest ends. This appears to
be due to the contribution of di↵erent galaxy populations, which is studied further
in Fig. 4.4.
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4.3.3 Origin of bimodality in luminosity dependence of

colour gradient

As seen in Fig. 4.2, di↵erent galaxy types (in this context, di↵erent n and

colours) display contrasting colour gradients. I therefore show in Fig. 4.4 how

colour gradients, rg�x where x = rizY JH, change with luminosity depending

on a galaxy’s overall u�r colour and Sérsic index. I perform this analysis over

two radial ranges: 0.1Re - Re, and 0.1Re - 2Re.

The variety of trends seen in each panel of Fig. 4.4 shows that the overall trends

seen in Fig. 4.3 are actually the result of a number of di↵erent populations.

Red, high-n galaxies dominate at bright magnitudes (i.e. there are only red,

high-n galaxies brighter than Mr ⇠ �22.5) whilst low-n galaxies dominate at

faint magnitudes. Note that colour gradients in high-n galaxies do not change

when measuring over a wider radius range (as previously found by La Barbera

& de Carvalho (2009) for ETGs, and shown as dashed lines in Fig. 4.4). Low-

n galaxies do show slightly flatter colour gradients between 0.1Re–2Re which

suggests that bright, low-n galaxies have stronger colour gradients towards

their centres. This is consistent with the presence of a bulge within a relatively

homogeneous outer disc, with the bulge being more significant in brighter

galaxies.

La Barbera et al. (2010a) find a ‘double-valued’ behavior in the rg�r colour

gradient with luminosity for their early-type galaxies. One can see in Fig. 4.4

that this double-valued behavior can actually be considered a combination of

the trends seen in the low- and high-n red populations. The colour gradients

seen in a population are sensitive to the selection criteria used to define that

population.

The red, high-n sample shows little change in colour gradient with luminosity

in optical wavebands, but at longer wavelengths the faintest galaxies have the

shallowest colour gradients. den Brok et al. (2011) study a sample of 142 ETGs

and find that the colour gradients of elliptical galaxies (shown in Chapter 5

to be analagous to the red, high-n population) become shallower at fainter

magnitudes, which is consistent with my results. Note that only the red, high-

n population has a significant number of galaxies brighter than Mr ⇠ �22.5

mag, so in Fig. 4.3 these galaxies dominate the brightest end of the sample.



4.3. Results 69

Tortora et al. (2010) use rg�i as a measure of colour gradient for a large

sample of SDSS galaxies, and find that colour gradients decrease with mass; i.e.

more massive, and therefore more luminous, systems have the weakest colour

gradients. This is consistent with my assumption that the high-n populations

contain elliptical galaxies, which tend to be larger and more massive than

spirals and S0s (Kelvin et al. 2012; Mo↵ett et al. 2016).

On the whole, the low-n subsamples show little change in colour gradient

vs. luminosity with wavelength (i.e. lines are approximately parallel to one

another). However, in the high-n subsamples the faintest galaxies show very

similar colour gradients, whilst the brightest objects show a larger change in

colour gradient with wavelength.

La Barbera et al. (2010a) find that the behavior of colour gradients with lu-

minosity depends on both the wavebands in which the colour gradient was

calculated, and the waveband in which the luminosity was determined.

Overplotted in grey in Fig. 4.4 are the colour gradients for samples from some

previous studies, in the panel to which their sample is most closely related.

In the red high-n panel I show rg�r for the La Barbera et al. (2005) sample

of luminous ETGs in clusters, which lies within the standard deviation (not

shown here, but can be inferred from Table 4.1) of the faint end of our rg�r

line. In this panel I also show, with open circles, rg�r for a larger sample

of ETGs with ugrizY JHK photometry from La Barbera et al. (2010a). The

rg�r luminosity dependence agrees well with my red, high-n sample, but sits a

little lower at intermediate magnitudes. This is likely due to the ETG sample

in La Barbera et al. (2010a) also containing galaxies which lie in my red, low-n

sample, which have stronger colour gradients than their high-n counterparts

at Mr ⇠ �22. The rg�i colour gradient for the Gonzalez-Perez, Castander &

Kau↵mann (2011) ETG sample lies directly on my rg�i line at that r-band

magnitude, whilst in the red, low-n panel I plot the Gonzalez-Perez, Castander

& Kau↵mann (2011) rg�i for their brightest late-type sample which again

agrees with my rg�i for more discy objects.
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4.3.4 Relationship between colour gradients and

wavelength dependence of n and Re

As discussed in Section 4.1, measuring both colour gradients and the wave-

length dependence of n and Re provide valuable insights into a galaxy’s stellar

populations. Whilst colour gradients provide a widely-used non-parametric

measure, measuring N and R allows us to separate the contributions of

changes in size and shape, which may have di↵erent physical drivers. In order

to draw meaningful conclusions between di↵erent studies it is important to

consider the relationship between traditional colour gradients and their para-

metric counterparts.

In Figure 4.5 I plot the median colour gradient, rg�x, as a function of NH
g

for the V14 sample. The strongest colour gradients are seen in galaxies with

the highest N ; in Chapter 3 and V14 these were generally found to be low-n

galaxies. This is consistent with what can be seen in Fig. 4.4, which shows

that low-n galaxies have steeper colour gradients than high-n galaxies. Over

the majority of the range of N this is consistent regardless of the bands in

which colour gradient is measured. However, at N ⇠ 0.7, galaxies exhibit

little or no colour gradient regardless of the band in which the colour gradient

is observed. It is also interesting to note that galaxies at N ⇠ 1, showing no

wavelength dependence of Sérsic index, nevertheless have measurable colour

gradients. This is due to their wavelength dependence of e↵ective radius, which

drives the colour gradients in these galaxies.

In Figure 4.6 I plot the median colour gradient, rg�x, as a function of RH
g

for my low redshift sample. One may have expected the low-n population

to exhibit stronger colour gradients and R closer to unity than the high-n

population (see Fig. 3.1). We actually see that colour gradient appears to be

largely constant with R, with double-valued behaviour, particularly at longer

wavelengths. This may, however, be due to the smaller numbers of galaxies

at the extremes of R. In any case, it is clear that there is a significant colour

gradient associated with R, since colour gradients at N ⇠ 1 are non-zero. This

colour gradient associated with R is similar for all galaxies, so any deviation

from this standard must be driven by N .
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Figure 4.5. Median colour gradient, rg�x, where x = rizY JH, as a function of
the wavelength dependence of Sérsic index between the H� and g�bands, NH

g for
my V14 sample. Di↵erent colours correspond to di↵erent wavebands, with g � r
at the top to g � H at the bottom, as indicated by the label to the right of each
line. Individual galaxies are plotted as scatter points under the median lines. The
strongest colour gradients are seen in galaxies with the highest N .

4.4 Discussion

I have measured radial gradients in six colours using multi-wavelength single-

Sérsic model fits to galaxies in the GAMA survey. These complement previous

studies (V14 and Chapter 3 of this thesis) on the variation of structural pa-

rameters with wavelength (N and R). My measurements correspond well to

those in the literature, supporting the reliability of my methods and earlier

conclusions regarding the wavelength-dependence of galaxy structure.

I find that galaxies with di↵ering Sérsic index and total colour display contrast-

ing behaviour in terms of both the distributions and luminosity dependence of
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Figure 4.6. Median colour gradient, rg�x, where x = rizY JH, as a function of
the wavelength dependence of e↵ective radius between the H� and g�bands, RH

g

for my V14 sample. Di↵erent colours correspond to di↵erent wavebands, with g� r
at the top to g�H at the bottom, as indicated by the label to the left of each line.
Individual galaxies are plotted as scatter points under the median lines. There does
not appear to be a strong dependence of colour gradient on R.

their colour gradients. This means that care must be taken when comparing

results for di↵erent sample selections.

The ubiquitous negative gradients that I find are indicative of stellar popula-

tions becoming younger and/or lower metallicity as one progresses from the

centres to the outskirts of galaxies. While this is consistent with simple models

of galaxy formation via early dissipative collapse (e.g. Pipino et al. 2010), in

our ⇤CDM Universe we expect the colour gradients of most galaxies to reflect

their long-term hierarchical growth.

Strong negative gradients in low-n systems are consistent with inside-out disc

formation via gradual accretion of gas to their outskirts, via smooth flows or

(gas-rich) minor mergers (e.g. Lemonias et al. 2011; Wang et al. 2011). Such



4.4. Discussion 74

gradients are present in blue, low-luminosity galaxies, which typically have

little in the way of bulge component (also see Chapter 5); they must therefore

arise from stellar population and/or dust gradients within the discs themselves.

Nevertheless, the presence of a substantially redder bulge in more luminous disc

galaxies (Chapter 5), appears to further enhance colour gradients, particularly

within 1Re.

The presence of gradients, even if weak, in bright, high-n systems argues

against these galaxies being the direct result of major mergers, since such

violent interactions should flatten colour gradients (see Kim & Im 2013 and

references therein). Instead, their gradients may either result from the fading

of bluer and/or lower-n galaxies (e.g. Bell et al. 2006), or from a reintroduc-

tion of metal-poor and/or younger stellar populations in the outskirts of these

galaxies, for example via dry minor mergers (Eliche-Moral et al. 2013). The

latter can also account for the rapid size evolution of passive galaxies (Oser

et al. 2010).

In contrast, lower-luminosity high-n galaxies with bluer colours display very

flat, or even slightly positive, colour gradients, especially in the optical. I infer

that this population is experiencing a period of central star-formation. These

galaxies account for 2.4% of my sample, which corresponds well with the local

major merger fraction: also ⇠ 2% across a wide range of galaxy masses (see

Khochfar & Burkert 2001; Keenan et al. 2014 and references therein). At

the luminosities of interest, major mergers are mostly mixed elliptical-spiral

interactions, and hence gas-rich (see e.g. Khochfar & Burkert 2003; Darg et al.

2010). With regards to the timescale of these events, Xu et al. 2012 find a

dynamical merger timescale of around 0.3 Gyr for low mass galaxies, so a

major merger driven starburst would only have to last a few hundred Myr to

maintain the size of the population we see in our blue low-n sample. I therefore

associate the blue high-n population with dissipative major mergers. However,

less violent causes of central star formation, such as bar instabilities and minor

mergers (see e.g. Kormendy & Kennicutt 2004 and references therein), may

also contribute. The rarity of these examples suggests their descendants will

re-acquire negative colour gradients, via fading of the central star-formation

and subsequent accretion.

The colour profiles of most galaxies therefore result from continued accretion,
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with the ratio of gas to stars in the incoming material varying from high: in

the case of lower-luminosity, lower-n and bluer galaxies; to low: for higher-

luminosity, higher-n and redder galaxies.

Possible applications for my colour gradient measurements include multi- wave-

length strong lensing (information about the likely internal colour gradient of

a galaxy will allow tighter constraints on mass models), and comparison with

galaxy simulations (colour gradients provide more information with which to

challenge models). My future work will use decomposed bulge and disc proper-

ties to further study the relationships between stellar populations and galaxy

structure. In particular, I will expand upon the present study by using multi-

band method to measuring colour gradients for individual galaxy components,

e.g. bulges and discs, separately. This is discussed further in Chapter 7.



Chapter 5

Understanding the wavelength

dependence of galaxy structure

with bulge-disc decompositions

5.1 Overview

In Chapter 3 we followed V14 in examining the variation of Sérsic index (n) and

e↵ective radius (Re) with wavelength in order to reveal the internal structure,

and therefore the formation history, of galaxies in their sample. As in Chap-

ter 3, I continue to use the notation NH
g = n(H)/n(g) and RH

g = Re(H)/Re(g)

to denote the ratio between the H- and g-bands. I omit the waveband labels

from N and R when discussing their general behavior. V14 speculates that

the variation in N reflects whether a system has one or two components; in

a high-N system we are observing the Sérsic index of a disc in bluer wave-

lengths and a bulge in redder wavelengths. Conversely, V14 suggests that for

one-component systems we see N closer to unity because we are measuring

the Sérsic index of just one component at all wavelengths, e.g. in the case of

elliptical galaxies. There is, however, a large change in Re with wavelength

for high-n galaxies, and corresponding colour gradients (see Chapter 4), which

shows that elliptical galaxies contain a radial progression of di↵erent stellar

populations, possibly resulting from multiple minor merging events through-

out the galaxy’s lifetime.

76
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Vika et al. (2015) found that by combining N with the colour information

of the galaxy we can separate elliptical galaxies from S0s more reliably than

other photometric classification methods.

V14 and Vika et al. (2015) suggest that inferences about a galaxy’s bulge-disc

nature can be made from single-Sérsic fits. In this chapter I use a large sample

of low-redshift galaxies to study whether there is a connection between bulge-

disc properties and single-Sérsic results. Using multi-wavelength bulge�disc

decompositions I also study the relationship between bulge and disc properties

in order to uncover information about the developmental histories of these

galaxies. As in Chapter 3 I first ensure that the recovered properties of my

bulges and discs are robust with redshift (Section 5.2.2), before studying the

wavelength dependence of n and Re as a function of bulge:total (B/T) flux

ratio, in order to determine whether V14’s inferences from single-Sérsic fits are

consistent with bulge-disc decompositions (Section 5.3.1). I go on to look at

the relative colours of bulges and discs for six subsamples (as defined in V14),

and what they (and their single-Sérsic colours) can tell us about their likely

formation histories (Section 5.3.2). I then explore the relative colours of these

components in the context of visual morphological type (Section 5.3.3), before

examining trends in physical properties as a function of luminosity (Section

5.3.4).

5.2 Data

As in previous chapters, I use two di↵erent volume-limited samples (see Fig.

2.8), which are determined by the the apparent magnitude limit of the GAMA

II redshift survey, r < 19.8 mag, at two di↵erent redshifts. When studying

variation in galaxy properties with redshift, a volume-limited sample is taken

with z < 0.3, Mr < �21.2 mag. When studying variation in galaxy properties

with absolute magnitude, Mr, a z < 0.15, Mr < �19.48 mag volume-limited

sample is taken. I also use a sample of morphologically classified galaxies from

Kelvin et al. (2014) with Mr < �17.4 mag and 0.025 < z < 0.06. The number

of objects, and ‘strong’ bulge and disc components (See section 5.2.1 for my

definition of ‘strong’), in each sample are given in Table 5.1.

I subdivide my sample by colour and Sérsic index as described in Section 2.4,
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Pre-
cleaning

Strong

bulges
Strong

discs
Strong bulge
& strong discs

V14 10491 5459 4456 1836
Low-z 4109 2342 1945 966
Vis. Morph. 1013 634 472 264

Table 5.1. Table showing the number of galaxies in each volume-limited sample.
V14 sample: z < 0.3, Mr < �21.2 mag; Low-z sample: z < 0.15, Mr < �19.48
mag; Vis. Morphology sample: 0.025 < z < 0.06, Mr < �17.4 mag. Cleaning is
applied in all bands simultaneously. The strong bulge category contains only bulges
which are no more than 3 magnitudes fainter than their corresponding disc (and vice
versa for the strong disc category). ‘Strong bulge & strong disc’ contains galaxies
which have both a bulge and disc within three magnitudes of one another, and are
therefore a subset of the previous two categories.

in concordance with Fig. 2.9 of this thesis.

5.2.1 Component selection

In this study I take a liberal attitude to what constitutes a ‘bulge’, not least

because the central component of many of our galaxies is not well resolved.

Thus, bars, lenses, pseudo bulges, classical bulges, and their superpositions,

are all swept up in this term. My primary aim is to distinguish the extended,

thin disc from more centrally concentrated stellar structures. I postulate that

the relative properties of these two components are responsible for much of

the observed variation in galaxy properties, particularly that correlated with

environment. I aim to test this claim in detail in this and future works.

Two-component models have been fit to all galaxies in my sample, regardless

of whether they are best modeled as one- or two-component systems. This

raises the issue that one of the components may be negligible, in respect of

the luminosity or structure of a galaxy. For example, a small fraction of the

light from a one-component elliptical galaxy may be attributed to a disc with

poorly-constrained properties, without a↵ecting the resulting model image. A

further issue is the potential for one component, or both, to be used to fit some

features of a galaxy that they are not intended to model; a false disc may help

reduce the residuals caused by an isophotal twist in a pure elliptical galaxy,

or a false bulge or a bar may attempt to fit to the arms in a spiral galaxy.

To avoid considering the properties of insignificant or incorrect components, I

have applied a cleaning process. Several cleaning methods are employed in the
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literature, including using a logical filter (e.g. Allen et al. 2006), visual inspec-

tion (e.g. Kelvin et al. 2012) and likelihood-ratio tests (e.g. Simard et al. 2011).

While useful, each of these approaches have their di�culties: visual inspection

is subjective and insensitive in certain circumstances, whereas goodness-of-fit

tests are often unable to eliminate physically meaningless fits.

In this thesis I take an extremely simple approach and consider the distri-

butions of component properties at face-value. I make no special attempt to

remove the objects for which a two-component fit is inappropriate, nor do I

substitute single-component measurements in any case. However, I do clean

my catalogue of galaxies that may be a↵ected by the constraints imposed on

the fit, and hence for which Sérsic profile measurements are unlikely to be

meaningful. These criteria are similar to those used in Chapter 3.

I do not consider the poorly-constrained properties of components that make a

negligible contribution to the luminosity of their galaxy. From an examination

of the fitting results, I choose to ignore components that are more than three

magnitudes fainter than their counterpart (i.e. bulges must have at least 6%

of the luminosity of the corresponding disc to be considered a trustworthy, and

therefore ‘strong ’ bulge, and vice versa), as in Vika et al. (2014). See Table 5.1

for the number of galaxies deemed to have a strong bulge, strong disc, or both

a strong bulge and strong disc.

When I use the term ‘bulges’ throughout this chapter I am referring to all

bulges which are no more than 3 magnitudes fainter than their corresponding

disc (i.e. this includes lone bulges/ellipticals AND the bulge components of 2-

component galaxies). When I use the term ‘only strong bulges’ I am referring

to bulges which do not have a significant disc. I similarly use the terms ‘disc’

and ‘only strong disc’ throughout the chapter.

5.2.2 Robustness of structural properties

In Figures 5.1 and 5.2 I present three-colour (Hzg) images, models and resid-

uals for typical galaxies in my six subsamples to show how well they are fit

by single-Sérsic and bulge-disc models respectively. By visually comparing the

residuals of Fig. 5.1 with Fig. 5.2 one can see that the bluer objects (partic-

ularly the ‘green’ high-n and ‘blue’ low-n) are slightly better fit by a bulge
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and a disc than by a single-Sérsic profile, which indicates that, as expected,

these galaxies can generally be thought of as two-component objects. The ‘red’

galaxies are well fit by either a single- or two-component model, but adding a

second component does improve the residuals. Although the residuals do not

all visibly improve in the cases shown, overall the two component fits better

represent most galaxies in all subsamples, as indicated by the consistent and

contrasting sizes, Sérsic indices and colours of the two components, as shown

in this Chapter.
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Previous tests (Häußler et al., in prep.) have demonstrated that the multi-

band fitting used by MegaMorph allows the SEDs of individual bulge and

disc components of simulated galaxies to be recovered for even faint objects

(mr < 20 mag in the GAMA data). Whereas single-band fitting is prone

to recovering the same SED for both the bulge and disc of a given galaxy,

MegaMorph’s multi-band fitting shows bulges and discs to have di↵erent SEDs,

even for faint galaxies.

In Chapter 3 I tested the single-Sérsic measurements in my volume-limited

samples for trends with redshift, which may arise due to biases with worsening

resolution or signal-to-noise ratios. Although I measured small changes in N
and R with redshift, I found that these were negligible compared to the di↵er-

ences between galaxy samples. Therefore, my results, including the strikingly

di↵erent behaviour of high- and low-n galaxies, are robust to redshift e↵ects.

Here I similarly test the resilience of bulge and disc properties considered in

this chapter.

Figure 5.3 demonstrates the redshift dependence of bulge and disc u�r colours.

The bulge and disc distributions are distinct in all redshift bins, with bulges

typically found to be redder than discs by 0.65 mag. At lower redshifts the

colours of bulges and discs become very slightly redder by ⇠ 0.1 mag, likely

due to aging stellar populations and declining star-formation rates over this 2

Gyr timescale. Kolmogorov–Smirnov (KS) tests indicate a significant di↵er-

ence between the colour distribution of both bulges and discs between redshift

samples, but these di↵erences can be considered small compared with the

width of the distributions. As in Chapter 3, to determine whether an o↵set

between redshift bins can be considered ‘small’ I sum the standard deviations

of the widest and narrowest distributions in quadrature. I then find the dif-

ference in the median value of u� r colour in the highest and lowest redshift

bins, as a fraction of the summed standard deviation. The o↵set is 17.5%

of the distribution widths, which can be considered small. Furthermore, the

colour separation between bulges and discs (shown by a black dashed line) is

maintained, strongly supporting the consistency of the decompositions over a

wide range of signal-to-noise and resolution. This is remarkable given that the

bulges are unresolved for many of the high-z objects (see Fig. 5.5).

I also test the dependence of B/T flux ratio on redshift. Normalised histograms
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Figure 5.3. The distributions of u� r colour for bulges (red, solid lines) and discs
(blue, dotted lines) in the cleaned V14 catalogue. Black dashed lines show B � D
colours, i.e. the di↵erence between the u� r colour of the bulge and the u� r colour
of the disc in a given galaxy. Each panel is restricted to Mr < �21.2 and di↵erent
redshift ranges, as labelled. Median u� r colours for each distribution are indicated
by vertical lines, with standard deviations marked as error bars. Overall, one can
see that the di↵erence between bulge and disc colours remains constant regardless
of redshift.

can be seen in the upper panels of Fig. 5.4, showing the distribution of B/T

for high- and low-n galaxies in three redshift bins. As seen in Chapter 3 for the

redshift dependence of galaxy properties, the two highest redshift bins exhibit

almost identical trends, whilst the lowest redshift bin shows slightly di↵erent

behaviour, with more low-n galaxies exhibiting B/T ⇠ 0.1 flux ratios than the

z > 0.15 samples. It should also be noted that these low-z bins contain far

fewer galaxies than the high-z bins.
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Figure 5.4. Redshift and luminosity dependence of B/T ratio for high- and low-n
galaxies. All galaxies which meet my basic cleaning criteria are shown here; this
includes discs with very faint bulges, and vice versa, to give an accurate impression
of the range of B/T ratios exhibited by the sample. For the majority of galaxies the
overall distribution of B/T flux ratios is similar at di↵erent redshifts. The B/T flux
ratio of high-n galaxies show no significant dependence on luminosity, whereas the
brighter the low-n galaxy, the lower its B/T flux ratio.

5.3 Results

To illustrate that the components from my bulge-disc decompositions generally

do correspond to the usual notion of ‘bulges’ and ‘discs’ I show their n and

Re distributions in Fig. 5.5. By definition the discs have a Sérsic index of 1,

whilst bulges adopt a much wider range of Sérsic indices. A large proportion

(32%) of the bulges in my low-redshift sample have lower Sérsic indices than

discs. This could be due to the largest, brightest galaxies being ‘over-fit’,

or galaxies with faint bulges being wrongly fitted (i.e. some disc light being

attributed to the bulge). The presence of bars could also be a factor here; I

do not correct for the possible presence of bars in my sample cleaning, which



5.3. Results 86

Figure 5.5. ngalaxy and Re(galaxy) distributions for bulges (red) and discs (blue)
in my ‘low-redshift’ sample (solid lines) and the V14 sample (dashed lines). The
resolution (Re & 1.5 pixels or 0.339 arcsec) is represented as a vertical dotted line
in the right-hand panel.

could have Sérsic indices as low as ⇠ 0.5 (Aguerri et al. 2005; Laurikainen

et al. 2007; Gadotti 2011). Di↵erent distributions for the V14 and low-redshift

samples are expected, since the two samples cover di↵erent magnitude ranges

and distances. The behaviour seen in this work does not change significantly

depending on the sample used.

The bulges and discs also cover the expected relative values of e↵ective radius;

there are few small discs, but many that extend out to large radii, whilst bulges

generally have smaller e↵ective radii (in ⇠ 90% of cases) and none extend as

far out as the largest discs.

To ascertain whether my subsample of n > 2.5 galaxies corresponds to bulge-

dominated galaxies (i.e. B/T > 0.5), I show in Fig. 5.6 the relationship

between Sérsic index and B/T flux ratio. Although there is a large scatter,

it can be seen that there is a positive correlation between the two properties,

implying that we can, to a certain extent, think of high-n galaxies as generally

being bulge-dominated, and vice versa.
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Figure 5.6. The relationship between nr(galaxy) and B/T for two-component
galaxies in the low-z sample (left-hand panel) and the V14 sample (right-hand
panel). Overplotted as grey dashed lines are the low-/high-n cut at nr = 2.5,
and the division between disc-/bulge-dominated galaxies at B/T = 0.5. Solid black
lines show the median fitted values whilst the shaded areas show the 1� dispersion.
One can see a positive correlation between B/T and Sérsic index, implying that we
can generally think of high-n galaxies as being bulge-dominated, and vice versa.

5.3.1 The wavelength dependence of single-Sérsic

models

In this section I compare the general structural parameters of my galaxy sam-

ple in order to determine whether the trends seen in V14 and Chapter 3 are

supported by bulge-disc decompositions. V14 observed a change in single-

Sérsic index with wavelength for low-n galaxies, and suggested that this may

be due to the lower Sérsic index of a galaxy’s disc being observed in bluer

wavebands, and the higher Sérsic index of its bulge being observed in redder

wavebands. Similarly, V14 postulates that the small change in N seen for

high-n galaxies may be due to the one-component nature of these objects,

while the change in R seen for this subsample could be due to a number of dif-

ferent stellar populations superimposed on one another, each with a di↵erent

e↵ective radius.
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The wavelength dependence of Sérsic index and e↵ective radius (N
& R) vs. B/T

In Fig. 5.7 I show the relationships between N and R versus the relative

luminosity, colour and size of the bulge and disc. Galaxies for which I have

strong measurements of both the bulge and disc (grey points) are distinguished

from those with only a strong disc (blue points) or only a strong bulge (red

points). See Section 5.2.1 for more details on this selection of ‘strong ’ galaxy

components. In Fig. 5.7(a) I show the relationship between N and r-band

bulge-to-total ratio, B/T . From the arguments in V14 one would expect that

galaxies with a high B/T (and particularly bulge-only galaxies) will display

N ⇠ 1, as they are dominated by a single component, containing one popula-

tion of stars. Panel (a) confirms that galaxies with B/T � 0.5 exhibit N ⇠ 1,

albeit with some scatter. Furthermore, V14 anticipate that galaxies with two

roughly equal components, corresponding to B/T ⇠ 0.5, should have N > 1,

as a result of the higher Sérsic index bulge becoming more dominant at redder

wavelengths. This is also supported by bulge-disc decompositions. However,

a deviation from the predictions of V14 comes with disc-dominated systems

(with low B/T ). Such galaxies were expected to exhibit N ⇠ 1, because they

are dominated by a single component. However, on the contrary, they consis-

tently display high values of N . The wavelength dependence of Sérsic index

appears to depend not on whether a system has one or two components, but

whether or not a significant disc is present.

Note that there are some galaxies with only a strong disc which appear to

have high B/T flux ratios, and some galaxies with only strong bulges which

have low B/T flux ratios. Such cases arise when the second component is

rejected due to the cleaning criteria in section 2.1. The classification of a

strong component requires a disc to be no more than three magnitudes fainter

than its corresponding bulge, or vice versa. This translates to the luminosity

of that disc being no less than 6% of the luminosity of the corresponding

bulge. Hence, it is possible to have galaxies containing strong bulges with

B/T > 0.06, or strong discs with B/T < 0.94, but which do not contain two

strong components due to the other being discarded where a component has

been discarded due to cleaning criteria detailed in section 5.2.1.

Similarly, the relationship between R and B/T ratio can be seen in panel
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Figure 5.7. Upper panels show variation in Sérsic index with wavelength; lower
panels show variation in e↵ective radius with wavelength, for the V14 volume-limited
sample. Overlaid in black on each panel is the median N or R trend for the whole
sample. Panels (a) & (b) show the relationship between N and R vs B/T flux ratio
in the r-band; grey points show galaxies that exhibit both a bulge and disc of similar
magnitudes; red points show galaxies that have only strong bulges; blue points show
galaxies that have only strong discs (see section 5.2.1 for more on this definition).
See section 5.3.1 for an explanation of why there are some ‘strong bulge’ galaxies
with low B/T and vice versa. Panels (c) & (d) show B�D colour di↵erence, whilst
panels (e) & (f) show the bulge:disc size ratio. The dashed lines in these panels show
the median for galaxies with a B/T flux ratio > 0.5, whilst the dot-dash lines show
the median for galaxies with a B/T flux ratio < 0.5. The wavelength dependence
of n gives a more reliable indication of a galaxy’s internal structure than R, and
galaxies with similarly coloured components exhibit a weaker dependence on R than
galaxies in which the bulge is redder than its corresponding disc. Also note that
there appears to be little dependence of N on B/D size ratio, however there is a
stronger correlation with R; as expected, the smaller the size ratio, the stronger the
wavelength dependence of Re.
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(b) of Fig. 5.7. As seen in Chapter 3, most galaxies display R < 1, such that

they appear smaller in the H-band than the g-band. Bulge-dominated systems

exhibit the largest departures from unity, but also the largest scatter. This

corresponds with the results for high-n galaxies from V14. Galaxies with a

B/T . 0.2 are disc-dominated and are likely to correspond to V14’s low-n

galaxy samples. Panel (b) of Figure 5.7 shows that these galaxies, as in V14,

have R closer to one than their high B/T counterparts; their radii change less

with wavelength.

From these trends we are able to estimate the likelihood of a galaxy having

a bulge and/or disc at a given value of N . In Fig. 5.8 I show the percentage

of galaxies at a given N which have B/T < 0.25, 0.25 < B/T < 0.75 or

B/T > 0.75. Although galaxies with B/T > 0.25 can be present at all values

of N , one can see that galaxies with prominent discs (i.e. B/T < 0.25)

account for more than half the population at N & 2, while less than 10% of

the population beyond N ⇠ 2 have B/T > 0.75. I have included in the lower

panel of Fig. 5.8 a black dashed line showing the percentage of B/T < 0.5

galaxies in the sample over the range of N . It can be seen that at N & 0.9

(& 2) we expect 50% (80%) of our population to be disc-dominated. One

can therefore use N to determine how likely it is that a given galaxy has

a prominent disc, although selecting galaxies in combination with the Sérsic

index in a single band would be most e↵ective (see Vika et al. 2015).

N & R vs B-D colour di↵erence and B/D size ratio

In addition to their relative luminosity, one would expect other aspects of

the bulge and disc to influence the overall wavelength dependence of galaxy

structure. If the two components have strongly contrasting colours, then the

relative dominance of overall structural parameters should vary dramatically

with wavelength. In cases where a galaxy’s Sérsic index is larger in redder

wavelengths we will see N > 1, and vice versa. Similarly, R > 1 means a

galaxy appears smaller at redder wavelengths. Panels (c) and (d) of Fig. 5.7

shows N and R versus the di↵erence between the u � r colours of bulge and

disc, where both components are well-constrained. As the colour di↵erence

widens (in the typical sense of the bulge being redder than the disc), N and R
do depart further from unity: galaxies exhibit peakier (higher-n) and smaller
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Figure 5.8. Upper panel shows blue, grey and red histograms giving the number
of B/T < 0.25, 0.25 < B/T < 0.75 and B/T > 0.75 galaxies respectively, for bins
of N . The lower panel shows what percentage of the whole population lies in each
B/T subsample at a given value of N . We also show with a black dashed line
the percentage for B/T < 0.5 galaxies over the range of N . The corresponding
B/T > 0.5 line would be a mirror image of this, and has therefore been omitted
from this plot. One can see that although it would be di�cult to determine whether
a galaxy has a prominent bulge using N , we can see that above NH

g ⇠ 1 more than
half the galaxies have prominent discs, or B/T < 0.25.
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profiles at longer wavelengths.

Similarly, the relative sizes of the bulge and disc should a↵ect the structural

behaviour. Panels (e) and (f) of Fig. 5.7 demonstrate the relationship between

N and R versus the ratio of bulge and disc size, Re(B)/Re(D), in the r-band.

In panel (e) one can see that the relative size of bulge and disc has little or no

e↵ect on N .

There is, however, a positive correlation in panel (f); galaxies with smaller

Re(B)/Re(D) display a stronger wavelength dependence of single-Sérsic e↵ec-

tive radius. This appears to meet expectations: the more pronounced the

di↵erence in the size of the bulge and disc, the greater the overall decrease in

size from blue to red.

There are two particularly interesting aspects of these results. Firstly, the

trends of N versus B�D colour di↵erence and size ratio are o↵set for di↵erent

B/T , while for R they are very similar. Thus, N is dominated by the e↵ect

of B/T , while R appears to be driven by the relative size and colour of an

extended ‘disc’ component, irrespective of its relative luminosity.

Secondly, bulge-only systems lie at values of R associated with the largest

bulge�disc colour contrast. This is consistent with trends in overall colour:

galaxies with larger bulge�disc colour di↵erence or larger B/T tend to be

redder in overall colour (see Fig. 5.9). This matches the findings of V14, in

that red, high-n galaxies display a dependence of size on wavelength that is

stronger than bluer, more disc-like galaxies. Drawing on the literature, V14

postulate that this behaviour is the result of accretion, preferentially to the

galaxy outskirts via minor mergers, of younger or more metal-poor stars. In

the case of our bulge-disc decompositions, the blue outskirts implied by the

single-Sérsic fits of red, high-n galaxies are either too faint to be constrained or

modelled by an extended blue disc. For most cases where a disc is significantly

detected, it must be associated with the usual thin disc of spiral galaxies.

However, fascinatingly, the same trends in R and N continue to galaxies

where the disc is no longer discernible.
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µB �B µD �D µB�D �B�D

Red, low-n 2.56 0.46 1.94 0.29 0.54 0.53
Red, high-n 2.54 0.27 2.05 0.38 0.46 0.42
Green, low-n 1.84 0.54 1.54 0.27 0.35 0.68
Green, high-n 1.94 0.49 1.61 0.42 0.34 0.63
Blue, low-n 1.44 0.54 1.25 0.30 -0.01 0.72
Blue, high-n 1.30 0.61 1.45 0.82 -0.24 0.79

Table 5.2. The median colour of bulges (µB) and discs (µD) in Fig. 5.9, the median
B �D colour di↵erence (µB�D), and the standard deviations on these values (�B,
�D, �B�D).

5.3.2 Colour distributions for bulges and discs

I have previously presented the colour distributions for bulges and discs in

Fig. 5.3. As anticipated, these two components display distinct colour distri-

butions. To draw more meaningful conclusions from the bulge and disc u� r

colours of galaxies in my sample, and to allow meaningful comparison with

the single-Sérsic work presented in V14, we must study the same subsamples

with the added detail of our bulge-disc decompositions. Figure 5.9 shows the

u� r bulge and disc colours, and the colour di↵erence of the two components

(B�D = (u� r)b � (u� r)d), for galaxies divided by Sérsic index and colour.

Median colours are overlaid as dashed lines, and are given in Table 5.2. As

the overall galaxy u � r colour moves from red-green-blue, bulges and discs

become closer in colour. For red, low Sérsic index galaxies there is a narrower

peak of blue discs compared to the wider distribution of redder bulges. For

blue galaxies, the peaks of the bulge and disc distributions overlap, although

the relative widths of the distributions are consistent with those of red and

green galaxies.

The B �D colours, plotted in black, show that the redder the overall galaxy,

the greater the di↵erence between the colour of the disc and the bulge. Blue

galaxies show a wider distribution of B � D colours, but the peak is very

close to 0, showing that these blue galaxies tend to have bulges and discs with

similar colours.

The bulges and discs of high Sérsic index galaxies have distributions with

similar widths to one another. The bulges and discs also follow the low Sérsic

index trend of becoming closer in colour the bluer the overall galaxy is.
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The observation that bulges are consistently redder than their associated discs

for the majority of our sample could imply that the formation histories of

these two components are linked; rather than all bulges being intrinsically red

and all discs being intrinsically blue, we see a colour di↵erence within a given

galaxy.

To assess whether the trends seen here could be due to dust, I show in Figure

5.10 the colour distribution of bulges and discs for face-on (qr > 0.9) galaxies

and edge-on galaxies (qr < 0.35) alongside the whole population. One can see

that the trends seen here are also present in Figure 5.9, which suggests that

whilst the inclination e↵ects of dust act to redden the components of edge-on

galaxies, this is not driving the B-D trends.
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5.3.3 Bulge and disc colour distributions with galaxy

type

In the analysis of Fig. 5.9 I made assumptions about the connection between

the populations seen in these figures and the subsamples used in V14 (i.e.

that red, high-n galaxies correspond to our usual notion of elliptical galaxies,

whilst we think of the ‘green’ low-n population as late-types). To assess how

robust my assumptions are, in Fig. 5.11 I plot the u � r colour of galaxies

binned according to their morphological classifications for the low-z sample.

These classifications are presented in Kelvin et al. (2014), and are a sample of

3727 galaxies with Mr < �17.4 and in the redshift range 0.025 < z < 0.06,

taken from the GAMA survey and visually classified into E, S0-Sa, SB0-SBa,

Sab-Scd, SBab-SBcd, Sd-Irr and ‘little blue spheroid’ classes.

Elliptical galaxies have a similar u � r colour di↵erence to red galaxies of

both low- and high-n (as expected). Barred galaxies tend to show a smaller

B-D colour di↵erence than comparable non-barred galaxies. This trend has

been studied by papers that do bulge-disc-bar decomposition (Barazza, Jogee

& Marinova 2008; Weinzirl et al. 2009; Masters et al. 2010). It most likely

appears because the free Sérsic function that is supposed to fit the bulge is

fitting both the bulge and the bar (De Geyter et al. 2014); consequently the

stellar population of the bulge appears to be more blue that it actually is

(Peng et al. 2002; Sánchez-Blázquez et al. 2011). It is also interesting to note

that, when näıvely fitting a bulge and a disc to all galaxies in my sample,

even galaxies that have been visually classified as ‘elliptical’ appear to contain

both a strong bulge and disc. This phenomenon has been seen before; Naab &

Burkert (2001) show that most ellipticals have evidence of a disc component

containing ⇠ 10-20% of the luminosity of the elliptical component. Huang

et al. (2012) show that bright, nearby elliptical galaxies can be well-fitted with

three exponential components of di↵erent sizes, whilst Krajnovic et al. (2013)

find kinematic evidence for discs in early-type galaxies.
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Figure 5.10. Face-on only (qr > 0.9), edge-on only (qr < 0.35): Normalised
histograms showing the relative colour distributions of the bulges and discs of a
volume-limited sample of Mr < �21.2, z < 0.3 galaxies, for edge-on galaxies (top
panel), face-on galaxies (bottom panel) and the whole sample (middle panel). The
trends seen here are also present in Figure 5.9, which suggests that whilst the incli-
nation e↵ects of dust act to redden the components of edge-on galaxies, this is not
driving the B-D trends.
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5.3.4 Luminosity dependence of bulge and disc

properties

Studying the luminosity dependence of bulge & disc colours and flux ratios

gives us insight into the physical properties of our sample. The lower panels

of Fig. 5.4 show normalised histograms of B/T flux ratio for my three mag-

nitudes bins. For nr > 2.5 I do not see a significant di↵erence in the B/T

flux ratio distribution with magnitude. In the nr < 2.5 panel, however, we see

a change in shape of the distribution with magnitude; the distribution of the

brightest galaxies appears slightly ‘peakier’ around B/T ⇠ 0.1 than for fainter

galaxies. The observation that the brighter galaxies are more disc-dominated

is not necessarily surprising, as we could be seeing proportionally more star

formation; bright low-n galaxies are predominantly discy, whereas the faint

low-n population can include low-mass spheroids.

Figure 5.12 shows the luminosity dependence of bulge and disc u � r colours

for high- and low-n samples. Low-n systems experience a change in bulge

and disc colour with luminosity; the fainter the galaxy, the closer in colour

the bulge and disc appear, and the bluer the galaxy overall. High-n galaxies

see a similar, although less pronounced, trend. It is interesting to note that

in all populations the colours of the discs are comparatively unchanged by

luminosity, whereas the bulges get significantly bluer (by up to 0.7 mag, in the

case of low-n galaxies). A certain amount of the trends seen for fainter galaxies

may be influenced by the fitting process; because the galaxies are so faint, the

components cannot be as easily separated and therefore some properties of

the bulge may be interpreted as that of the disc and vice versa. This will be

explored further in Häußler et al. (in prep.).

5.4 Discussion

In this chapter I have presented multi-band bulge-disc decompositions for a

sample of 10491 galaxies and tested that key quantities (B/T and colours of

bulge and disc) are robust to the e↵ects of redshift. These decompositions

have been used to study how bulge and disc properties relate to the structural

behavior measured using wavelength-dependent single-Sérsic models. I have
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Figure 5.12. Luminosity dependence of bulge and disc colours, plotted as red solid
lines and blue dotted lines respectively. Median u � r colours for each sample are
overlaid as thicker vertical lines. Left- and right-hand panels show low- and high-n
galaxies respectively. Both the high- and low-n populations show a trend of fainter
galaxies appearing to be bluer in overall colour.

then focused on how the relative colours of bulges and discs vary with overall

galaxy properties.

5.4.1 Comparison of observed trends of R and N with

other studies

The wavelength dependence of single-Sérsic structure was measured by V14,

and summarised in terms of the fractional variation in Sérsic index and e↵ective

radius between the g- and H-bands, which I denote NH
g and RH

g .

To recap, a value of unity for R and N means that a galaxy appears to be the

same size, and has the same Sérsic index, between g- and H- wavebands. If

R < 1, as in the majority of galaxies, that object will appear larger in bluer

wavebands. Conversely, in the more unlikely case in which R > 1, a galaxy

would appear bluer in the centre and redder at larger radii. The variation

in Sérsic index with e↵ective radius, N , is greater than unity in cases where

a galaxy’s Sérsic index is larger (more ‘peaky’) in redder wavelengths, and

smaller (‘flatter’) in bluer wavelengths. The reverse is true for N < 1 galaxies.

I find that the di↵erent N and R distributions of high- and low-n galaxies can
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be attributed to specific trends in the relative luminosity, colour and size of

their constituent bulges and discs. Members of the high-n galaxy population

are generally more bulge-dominated, and have N closer to unity. However,

while these galaxies are often considered uniformly-red, single-component sys-

tems, I find they display R substantially below unity: their e↵ective radii are

much smaller at longer wavelengths. The decompositions attribute this to the

presence of an extended, bluer, component, at least reasonably described by an

exponential profile. Dullo & Graham (2013) and Graham, Dullo & Savorgnan

(2015) have revealed that many local, massive galaxies are in fact lenticular

galaxies with large 2D discs rather than spheroids with large 3D envelopes. In

some cases the presence of a disc, including spiral features, may be visually

confirmed. In the remaining cases, the extended component may be a faint disc

or more spherically distributed material, although the trends in the properties

of this component, as well as N and R, with B/T suggest some continuity

in its origin. The properties of these discs are consistent with what is seen

in studies of kinematics (e.g. Emsellem et al. 2011; Krajnović et al. 2011 and

references therein).

The low-n galaxy population is dominated by discs, i.e. low B/T , which

we have found to be consistently associated with N > 1, even in the case

of apparently disc-only systems. This population also displays R somewhat

closer to unity, as a result of less pronounced di↵erences in the colours and

sizes of their bulge and disc components.

The luminosity dependence of N versus R in Chapter 3 can be understood as

primarily due to lower-luminosity galaxies (at a given B/T or n) having closer

bulge and disc colours, and hence N and R closer to unity. The variation

in N and R with overall colour in V14 mainly appears to result from the

correlation between colour and luminosity; the more luminous galaxies tend to

have a greater di↵erence between their bulge and disc colours, which results

in a greater change in structural properties with wavelength.



5.4. Discussion 102

5.4.2 Comparison of observed trends of component

colours with other studies

I remind the reader that in this study I have applied a bulge-disc decomposition

to all galaxies in my sample, regardless of whether there is a physical need for

two components. I have done this primarily to avoid building a dichotomy into

my results, but this has also resulted in some interesting observations, in par-

ticular the sample of visually classified ellipticals seen in Fig. 5.11 which have

strong discs associated with them. I do, however, apply a cleaning algorithm to

distinguish between potentially unnecessary components and eliminate bulges

which are significantly fainter than their corresponding disc (and vice versa).

See section 5.2.1 for more details. The purpose of this cleaning is to avoid con-

sidering the properties of components that make an insignificant contribution

to the galaxy light.

My analysis has shown that the redder and more luminous a galaxy, the greater

the di↵erence between the colour of its bulge and disc. Hudson et al. (2010)

have performed bulge-disc decompositions simultaneously in B and R bands

for ⇠ 900 galaxies in nearby clusters, and find that the reddest (and brightest)

galaxies have a larger gap between bulge and disc colours. Although I find a

small dependence of disc colour on magnitude in my low-n population, this

e↵ect is minimal compared to the strong dependence of bulge colour on mag-

nitude, which is also consistent with the findings of Hudson et al. (2010). In

agreement with this, Head et al. (2014) also observe a greater di↵erence be-

tween bulge and disc colours for brighter objects in their sample of S0 galaxies.

Regardless of visual morphology I see that bulges are consistently redder than

their associated discs; Lackner & Gunn (2012) (and references therein) find

that discs around classical bulges are redder than lone discs or discs around

pseudo-bulges, which supports our observation that bulge and disc colour are

correlated.

The work of Peletier & Balcells (1996), however, suggests that the colour

variations from galaxy to galaxy are much larger than the colour di↵erences

observed between the bulges and discs of individual galaxies, for a small sample

of inclined, bright, early-type spirals. This is somewhat at odds with my work,

which suggests that the overall colour of a galaxy is driven by the relative
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colours of the bulge and disc. Nonetheless, Peletier & Balcells (1996) find a

B �D colour, �(U � R), of 0.126 ± 0.165, which (within error) is consistent

with both my study and Cameron et al. (2009).

By looking at the colours of bulges and discs, we can infer their star formation

histories and eventual quenching. The negative colour gradients seen in the

majority of galaxies (as studied in Chapter 4; also see Prochaska Chamberlain

et al. 2011; Roediger et al. 2011 and references therein) tells us that older,

redder stars tend to lie in the central, collapsed regions of galaxies, whilst

the (rotationally supported) outskirts of a galaxy are generally dominated by

younger, bluer stellar populations. On average over my six subsamples, bulges

are 0.285 mag redder than their corresponding discs, and are indeed smaller

and more concentrated. With my detailed analysis, however, I am able to see

that this mean magnitude di↵erence is a combination of the larger and smaller

B-D colour di↵erences seen in red and blue populations respectively, and has

a significant dependence on luminosity.

5.5 Summary

I remind the reader that in this work we fit a bulge and disc (n = free and

n = 1 respectively) to all galaxies in my sample. I make no attempt to remove

objects for which a 2-component fit is inappropriate, nor do I substitute single-

Sérsic measurements in these cases. I do, however, remove bulges which are

more than 3 magnitudes fainter than their corresponding discs, and vice versa

(see section 5.2.1 for more details). I also note that I use the terms ‘bulge’ to

refer generally refer to the central component of a galaxy (thus, bars, lenses,

pseudo bulges, classical bulges, and their superpositions, are all swept up in

this term), whilst I use ‘disc’ to refer to a more extended component with an

exponential light profile.

• The di↵erence between bulge and disc colours of both high- and low-

n galaxies remains constant regardless of redshift (see Fig. 5.3). The

overall distribution of B/T flux ratios is similar at di↵erent redshifts,

with perhaps a slightly higher proportion of low-z galaxies appearing to

be disc-dominated in the lowest redshift bin.
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• N & R (single-Sérsic wavelength dependence) give us information about

a galaxy’s bulge and disc properties (see Figs. 5.7 and 5.8):

– The wavelength dependence of Sérsic index, N , indicates whether

an object is likely to contain a disc; N >1 ) likely to have a disc

present, N <1 ) bulge-dominated galaxy

– The wavelength dependence of Re is a less e↵ective classifier of

structure than N . Little change in Re with wavelength suggests

that a disc is present, whereas more change in Re with wavelength

suggests that the galaxy could be bulge-dominated.

– A strong wavelength dependence of n is correlated with a redder

B-D colour, i.e. a larger di↵erence between the colour of the bulge

and the colour of the disc.

– Irrespective of the B/T flux ratio of the system, galaxies with sim-

ilarly coloured components exhibit a weaker dependence of Re on

wavelength than galaxies with a bulge redder than its disc.

– For the entire V14 sample I see little dependence of N on B/D size

ratio. However, once I split the sample into bulge-dominated and

disc-dominated galaxies (B/T flux ratio >0.5 and B/T flux ratio

<0.5, respectively), I see that the disc-dominated galaxies show

an increase in N with B/D size ratio, whilst the bulge-dominated

population decreases in N with increasing B/D size ratio.

– The relative size of the bulge and disc have little e↵ect on N , but

there is a correlation with R; as one would expect, galaxies with a

smaller Re(B)/Re(D) display a stronger wavelength dependence of

single-Sérsic e↵ective radius.

• Bulges are generally redder than their associated discs (see Fig. 5.9),

regardless of the overall galaxy colour or Sérsic index. The bulge and disc

are closer in colour for galaxies that are bluer in overall colour. Rather

than all bulges being red and all discs being blue, there appears to be a

colour di↵erence within a given galaxy. For example, the median colour

of green high-n bulges is actually bluer than the median colour of red

high-n discs, which is what one might expect if bulges in bluer galaxies

are likely to be younger, perhaps including a pseudo-bulge element.
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• Regardless of morphology, the majority of galaxies exhibit a bulge that

is redder than its corresponding disc (see Fig. 5.11). This is particularly

interesting in the case of galaxies that have been visually classified as

ellipticals, yet still appear to have a strong, comparatively blue, disc

component.

• For the low-n population, brighter galaxies exhibit a lower B/T flux

ratio, whereas the high-n population shows no significant change in B/T

with luminosity (see Fig. 5.12). Bulges and discs get closer in colour for

fainter galaxies (regardless of n). For both high- and low-n populations,

the fainter the galaxy, the bluer its overall colour.



Chapter 6

Stellar Populations

6.1 Overview

In this chapter I consolidate the results of previous chapters by comparing

colour information to the predictions of a stellar population model.

The colour of a galaxy is closely linked to the intrinsic properties of its stellar

populations. As described in section 1.5, there are three main variables which

can influence the observed color of a galaxy: dust, age and metallicity. In this

thesis I have frequently divided galaxies into six subsamples, defined by colour

and Sérsic index cuts. I will therefore begin by exploring the nature of these

subsamples in terms of the age and metallicity of their stellar populations. In

Chapter 3 I demonstrated that, although dust goes some way to explaining

the trends seen in the wavelength dependence of Sérsic index and e↵ective

radius, the intrinsic properties of the underlying stellar populations must be

the driving factor. In Chapter 4 I showed that the behaviour of structure with

wavelength could be considered in terms of colour gradients, and in Chapter 5

I showed that the results in previous chapters could be better understood

by considering the colours of bulges and discs. From this we can gain a more

physical understanding of the contrasting properties of bulges and discs, as well

as how they vary with overall galaxy type. In this chapter I therefore begin

by looking at the properties of galaxies in each of my colour/Sérsic index

subsamples to ascertain whether previous inferences are reasonable, before

studying the stellar populations of the bulge and disc components within these

106
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galaxies.

6.2 Data

As in previous chapters, I use the V14 volume-limited sample of galaxies for

which we have both single-Sérsic fits and bulge-disc decompositions. The age

and metallicity data used in this chapter has been derived through stellar pop-

ulation synthesis modelling of broadband optical (ugriz) photometry from our

galfitm fits. The photometry for the single-Sérsic, bulge, and disc compo-

nents are each modelled independently. The modelling was kindly performed

by Ned Taylor using the methods described in Taylor et al. (2011), which uses

the Bruzual & Charlot (2003) stellar evolution models, assuming a Chabrier

(2003) stellar initial mass function (IMF) and the Calzetti et al. (2000) dust

curve, with exponentially declining star formation histories. The SPS mod-

els used in the fitting are defined via four output parameters, including the

two parameters considered in this chapter: i-band luminosity-weighted mean

stellar age, and stellar metallicity. As a starting point, in this study I näıvely

assume that the results of the fitting procedure are a reasonable match to the

star formation history of each bulge, disc or galaxy. Future work will be able to

delve deeper into the variation in stellar populations within each component.

6.3 Results

In previous chapters I speculated as to the likely nature of the stellar popu-

lations within each of my six subsamples. Here I study this in more detail,

using age and metallicity. Due to the relationship between age and metallicity

described in Section 1.5, I will discuss them together in this chapter.
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6.3.1 Do age and metallicity measurements support the

distinction between the colour/Sérsic index sub-

samples?

In Chapters 3-5 I discussed how my six subsamples, divided by colour and

Sérsic index, could be considered to represent di↵erent types of galaxies with

di↵erent stellar populations. Galaxies with a low-n profile were found to have

a stronger dependence of Sérsic index on wavelength than high-n galaxies,

whilst the reverse was observed for the wavelength dependence of e↵ective

radius. I concluded that the low-n population appeared to be dominated by

discs, whist the high-n population was dominated by bulges. This holds true

when looking at bulge:total flux ratio within these galaxies, and when studying

the wavelength dependence of n and Re.

To discover whether these inferences agree with stellar population models aver-

aged over the galaxy as a whole, I show in Figures 6.1 and 6.2 the distribution

of ages and metallicities (respectively) from the single-Sérsic photometry for

each for each subsample. We can see that the red galaxies (represented in

orange for the low-n, and red for the high-n populations) are both older and

more metal-rich than the bluer subsamples, thereby in agreement with the

inferences described above. To re-iterate: the populations previously thought

of as bulge-dominated are indeed older (by approx. 3.5 Gyr on average) and

more metal-rich than the bluest galaxies, which points to their formation hav-

ing occurred in a deep potential well. The green high- and low-n subsamples

have low metallicities consistent with the blue low-n population, which was

selected in order to separate out the bluest star-forming galaxies. This im-

plies that the green populations formed in discs, in much the same way as the

blue low-n population, but they are older. The blue high-n population is both

young (⇠ 1.2 Gyr) and metal-rich, which is consistent with recent star bursts

having occurred in the centre of these galaxies, or in mergers in which material

is already metal-rich.
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Figure 6.1. Age histograms for the six subsamples. Colours are as in previous plots,
representing the colour/Sérsic index subsamples described previously. The median
value of each subsample is plotted as a dashed line, with the standard deviation
shown as a horizontal error bar.

Figure 6.2. Metallicity histograms for the six subsamples. Colours are as in
previous plots, representing the colour/Sérsic index subsamples described previously.
The median value of each subsample is plotted as a dashed line, with the standard
deviation shown as a horizontal error bar.
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6.3.2 Bulge & disc age

In Figure 6.3 I study the ages of bulges and discs in each colour/Sérsic index

subsample. It can be seen here that the oldest bulges (⇠ 4 Gyr) reside in

the red high-n galaxies, which is consistent with them being bulge-dominated

systems. The youngest discs reside in the blue low-n population, which is

consistent with them being young starburst galaxies.

Figure 6.3 also allows us to compare the ages of bulges and discs in each

subsample. Green galaxies have bulges and discs with very similar age distri-

butions, which implies that both the bulge and disc in these two-component

systems formed at similar times. Conversely, red galaxies show a greater di↵er-

ence in their bulge and disc age distributions; the bulges are consistently older

than their associated discs in high-n galaxies, whilst the inverse is true for low-

n galaxies. We have previously inferred that a large number of these high-n

objects are likely to be a large spheroid component with a faint disc, which

formed later through accretion of either gas or lower-mass galaxies in wet or

dry minor mergers. In principle we could distinguish between these two origins

using the ages and metallicities of the discs (see Section 1.3.2). The bulges of

red, low-n galaxies are similar in age to the bulges of green low-n galaxies,

but their associated discs are older. This implies that the bulges of red low-n

galaxies continued to grow via continued star formation for a period after their

discs have quenched. This seems at odds with the usual inside-out picture of

galaxy formation (see section 1.3.2). It is, however, consistent with the growth

of pseudo-bulges from residual gas reservoirs in the centres of galaxies, perhaps

fed by bar instabilities and/or wet minor mergers. This result also agrees with

spectroscopic studies which find that the bulges of some S0 galaxies are in fact

younger than their discs (e.g. Johnston, Aragón-Salamanca & Merrifield 2014;

Tabor et al. 2017).

Blue galaxies show contain the youngest components in the sample. The

colour cut which defines the blue subsample was chosen in an attempt to isolate

starburst galaxies, which are undergoing an intense phase of star formation.

Here we can see that these galaxies are young throughout, with low-n galaxies

displaying discs which are slightly younger than their bulges.



6.3. Results 111

F
ig
u
re

6
.3
.
A
ge

h
is
to
gr
am

s
fo
r
b
u
lg
es

an
d
d
is
cs

in
ea
ch

of
th
e
si
x
su
b
sa
m
p
le
s.

C
ol
ou

rs
ar
e
as

in
p
re
vi
ou

s
p
lo
ts
,
re
p
re
se
nt
in
g
th
e
co
lo
u
r/
S
ér
si
c

in
d
ex

su
b
sa
m
p
le
s
d
es
cr
ib
ed

p
re
vi
ou

sl
y.

T
h
e
m
ed

ia
n
va
lu
e
of

ea
ch

su
b
sa
m
p
le

is
p
lo
tt
ed

as
a
d
as
h
ed

li
n
e,

an
d
th
e
d
is
tr
ib
u
ti
on

of
th
e
en
ti
re

V
14

vo
lu
m
e-
li
m
it
ed

su
b
sa
m
p
le

is
sh
ow

n
in

b
la
ck
,
w
it
h
th
e
m
ed

ia
n
va
lu
e
p
lo
tt
ed

as
a
so
li
d
ve
rt
ic
al

b
la
ck

li
n
e.



6.3. Results 112

6.3.3 Bulge & disc metallicity

Figure 6.4 shows the distribution of bulge and disc metallicities for galaxies

in each subsample. Bulges are more metal-rich on average than discs in every

subsample, but this di↵erence between bulges and discs is more pronounced in

low-n galaxies, with significantly di↵erent bulge and disc distributions. The

consistent, high metallicities of bulges point to their stellar populations form-

ing from self-enriched gas in deep potential wells. The distribution of disc

metallicities is much wider than the distribution of bulge metallicities in all

subsamples, which is consistent with multiple disc formation mechanisms, as

previously discussed in section 1.3.

Although in section 6.3.2 they were found to be relatively old, the discs of

red galaxies are more metal-poor than the bulges of these galaxies, with a

wide distribution. This is to be expected if these discs are in fact the accreted

remnants of lower-mass (and less metal-rich) galaxies.
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Age vs. metallicity

The joint distribution of age vs. metallicity for bulges and discs in each sub-

sample is shown in Figure 6.5. The di↵erence in the properties of bulges and

discs is clear: old discs are found to be metal-poor, whilst old bulges are metal

rich. This di↵erence in metallicity with age reflects the di↵erent environments

in which these two populations formed.

At all times, stars formed in spheroids have their metallicity enhanced by

self enrichment in a “closed-box” environment (see Pagel & Patchett 1975

and references therein). Discs, on the other hand, reflect the metallicity of

their gas supply, since the metals produced by star-formation are more easily

ejected. At earlier times, discs contain a high fraction of newly accreted gas,

containing only the lightest elements. Stars formed in early discs are therefore

also relatively metal poor. At later times gas accretion slows and discs become

more dominated by gas which has been enriched by previous generations of

star-formation (see e.g. Tonini et al. 2017 and references therein). Another

possible contributing mechanism responsible for this is the migration of older

stars towards the centre of the disc over time, and continued metal-poor gas

accretion into the outskirts of the disc.

In previous chapters I have discussed the presence of discs in red high-n galax-

ies, which were previously thought to be elliptical galaxies. Using MegaMorph

has allowed us to see that, when näıvely fitting a bulge and a disc to every

galaxy, even the red high-n population is found to have ‘meaningful’ discs

associated with their bulges. Figure 6.5 shows us that these discs follow the

same age–metallicity trends as the discs in other subsamples, thus supporting

the idea that these are ‘real’ structures that have either accreted from minor

mergers, or are the faded remnants of a galaxy’s original disc.
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6.4 Discussion

In Section 5.3.2 I showed that regardless of the overall Sérsic index and colour

of the galaxy in which a bulge and a disc reside, there is a colour di↵erence be-

tween those two components: in a given galaxy, the bulge is likely to be redder

than its associated disc. With the application of stellar population models used

in this chapter, we can begin to untangle the source of this colour di↵erence.

We can see in Figures 6.3 and 6.4 that this colour di↵erence, particularly in

low-n galaxies, is mostly driven by a metallicity di↵erence between the bulge

and the disc, which can be seen more clearly in Figure 6.5.

Two particularly interesting populations are the blue high- and low-n samples;

these galaxies show very close bulge and disc colours, but di↵erent ages and

metallicities for each component. Looking at the absolute ages of the bulges

and discs in these populations, we see that while the bulges are of a similar (but

slightly younger) age to those in other subsamples, the discs are significantly

younger, and also more metal-poor. We previously chose the blue colour cut

in an attempt to isolate the bluest star-forming galaxies in the sample, which

may contain star bursts, and this analysis shows that a) this subsample does

indeed contain the youngest stellar populations within the sample, and b) the

recent star formation in these galaxies occurs in their discs. We can infer from

this information that the bulges in these galaxies formed slightly later than the

rest of the galaxy population, and the stellar populations in the discs formed

later still. It should be noted, however, that a recent burst of star formation is

able to ‘mask’ older stellar populations, resulting in a skew towards a younger

and less metal-rich observation.

I surmised in section 6.3.3 that the diverging metallicity with age for bulges and

discs (i.e. old bulges are metal rich, old discs are metal-poor) demonstrates

their di↵ering formation histories. Discs in all six subsamples also show a

much wider distribution of metallicities than bulges, which is consistent with

simulations (e.g. Snaith et al. 2016). The presence of ‘strong’ discs even in the

red, high-n subsample indicates that, rather than these just being the outer

part of a single spheroid structure, we are detecting real disc components

which formed from the accreted remnants of smaller galaxies, or originated

from low-metallicity accreted gas. These results highlight the discriminatory
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power of the MegaMorph multi-band decompositions, and demonstrate the

value of performing these decompositions equally for all galaxies.

This foray into the ages and metallicities of galaxies in this study answers a

number of questions, and raises many more to be investigated in future work.



Chapter 7

Summary and further work

In this thesis I have studied measurements of the wavelength dependence of

galaxy structure in order to understand the mechanisms by which today’s

galaxies formed and evolved. In this chapter I will discuss the significance of

my results in the context of contemporary studies, and what implications this

has for the field of galaxy evolution.

The results of my analysis are summarised as follows:

• The structural properties of galaxies and their components can be reli-

ably measured out to a redshift of 0.3 (lookback time of ⇠ 3.5 Gyr) using

MegaMorph techniques on SDSS+UKIDSS imaging.

• Dust opacity and varying inclination can account for features in the joint

distribution of R and N for late-type galaxies. However, these factors

alone cannot explain the highest values of R and N ; the bulge-disc

nature of galaxies must also contribute to the wavelength dependence of

their structure.

• There is a bimodality in the luminosity dependence of colour gradients.

This is due to the superposition of many di↵erent galaxy populations

dominating the distribution at di↵erent luminosities.

• The ubiquity of strong negative colour gradients supports the picture

of inside-out growth through gas accretion for blue, low-n galaxies, and

through dry minor mergers for red, high-n galaxies. An exception is the

118



7.1. Discussion 119

blue high-n population, which has properties indicative of dissipative

major mergers.

• The presence of a disc drives the wavelength dependence of a galaxy’s

structure.

• The colours of bulges and discs within a given galaxy are linked; the

redder the bulge, the redder the disc, and vice versa. This interdepen-

dency implies a shared formation history, the potential study of which is

described in Section 7.2.

• The relative ages and metallicities of galaxy components shows that

bulges and discs formed through di↵erent mechanisms and over di↵erent

time scales.

• A large number of red high-n galaxies host significant discs, which are

likely to be faded ‘traditional’ discs, or accreted material.

7.1 Discussion

By observing the wavelength dependence of galaxy structure we can uncover

how galaxies may have formed and evolved.

Previous studies have attempted to use colour gradients to glean information

about the stellar population gradients of both early- and late-type galaxies.

Whilst the technique of measuring colour gradients by laying down ellipses

at di↵erent radii (see e.g. La Barbera et al. 2010a) has its merits as a non-

parametric method, it cannot reveal the internal structure of galaxies in the

same way as studying the wavelength dependence of n and Re.

A strong correlation has been found between the wavelength-dependent proper-

ties of galaxies and their internal structure; in particular, Vulcani et al. (2014)

find that low-n galaxies have a much stronger wavelength dependence of Sérsic

index than high-n galaxies. They find that the joint wavelength dependence

of Sérsic index and e↵ective radius (N vs R) could potentially be an e↵ective

classifier of bulge-disc systems.

However, before an inference is made about the relationship between galaxy

structure and the wavelength dependence of its parameters, it is important
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to consider other possible causes. In Chapter 3 I observe some change in N
and R with luminosity; the sizes of bright high-n galaxies have a stronger

wavelength dependence, whilst low-n galaxies statistically show no trend in

R. For all populations (although it is more pronounced for low-n galaxies)

the brightest galaxies show the highest values of N . Although I do see a

luminosity dependence for N and R, the overall e↵ect is that the di↵erences

between low- and high-n galaxies becomes more pronounced with increasing

luminosity, whilst distinctions between subsamples are maintained. Therefore,

the process by which late-types grow must promote the variation of profile

shape with wavelength, by perhaps accreting a disc of ample cool gas to fuel

star formation (e.g. Stewart et al. 2011), whilst the growth of early-types must

promote the wavelength variation of size. Oogi, Habe & Ishiyama (2016) find

that simulations of dry major mergers can be responsible for the size growth

of early-types, particularly in high density environments. As few as one or two

dry major mergers can increase the size of a galaxy fourfold between z = 2

and z = 0, and support my observations of multiple stellar populations which

are oldest and reddest in the centre of a galaxy, and younger and bluer at the

outskirts.

I find that dust also goes some way to explaining the high- and low-n popula-

tions in N vs R space; increasing dust opacity decreases R, whilst increasing

inclination increases N . These e↵ects cannot, however, account for the full

N -R distribution. Having assessed the possible e↵ects of luminosity and dust,

I can now consider the meaning of the wavelength dependence of galaxy prop-

erties solely in terms of internal structure.

To some degree, all galaxies show radial variations with colour. Even in galax-

ies with a one-component morphology, multiple stellar populations can be

present which contribute to these colour gradients. A galaxy’s colour gradient

reflects internal trends in age and metallicity, however these two properties are

degenerate (Worthey, Trager & Faber 1995); a positive age gradient will be

balanced by a negative metallicity gradient and vice versa. Di↵erent forma-

tion mechanisms predict di↵erent colour, age and metallicity gradients; models

of monolithic collapse predict metal-rich central regions in elliptical galaxies,

whilst models of mergers ‘wash out’ any trends in colour, age and metallicity

(White 1980). In recent years, advances have been made in constraining age
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and metallicity gradients in early-type galaxies using colour information (see

e.g. La Barbera et al. 2010a; Carter et al. 2011). Similarly, studies of late-

types have attempted to disentangle age and metallicity; these studies find

that inside-out formation is supported by observations of metal-rich centres of

spiral galaxies (particularly Bell & de Jong 2000), although it has been found

that in low-inclination spiral galaxies age gradients do not necessarily correlate

with metallicity gradients (see e.g. Tortora et al. 2010; Sánchez-Blázquez et al.

2014).

Previous studies have made contrasting conclusions regarding the luminos-

ity dependence of colour gradients, with some studies reporting little or no

luminosity dependence (e.g. Peletier, Valentijn & Jameson 1990; De Propris

et al. 2005; La Barbera et al. 2005), and others reporting a strong correla-

tion (e.g. Tamura & Ohta 2003; Balcells & Peletier 1994; Roche, Bernardi &

Hyde 2010). La Barbera et al. (2010a) found that, for a sample of ETGs,

the luminosity dependence of colour gradients depended on the wavebands in

which colour gradient was measured; when measuring colour gradients in opti-

cal wavebands they find that the brightest galaxies have the shallowest colour

gradients, whilst the opposite trend is observed when measuring colour gradi-

ents between optical-NIR wavebands. One particularly interesting case is the

double-valued behavior observed in the rg�r gradient, which becomes flatter

for the faintest and brightest galaxies.

In this study I have used a much larger sample of high-resolution galaxies

than ever before in a study of this nature, representing all morphological types

(rather than just ‘early-’ or ‘late-type’). In Chapter 4 I have studied the lu-

minosity dependence of colour gradients for six subsamples, and find that the

bimodality seen in colour gradients vs luminosity must arise from the di↵erent

populations which are being observed simultaneously. For example, I find that

red high-n galaxies are the only population observed at the bright end, so

their shallower colour gradients dominate the distribution seen by La Barbera

et al. (2010a). Observing the colour gradient vs luminosity relationship for

di↵erent subsamples allows me to distinguish between likely formation mech-

anisms. I have discussed these possible mechanisms in detail in Section 4.4,

so here I provide a summary. The strong negative colour gradients we see

in disc-dominated systems are consistent with the gradual accretion of gas to
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their outer regions (Lemonias et al. 2011; Wang et al. 2011). Whilst it has

been widely postulated that elliptical galaxies are the product of major merg-

ers, I observe weak colour gradients even in the bright, red, high-n population.

Any colour gradients would have been flattened by a major merger (Kim &

Im 2013 and references therein), so another mechanism must be responsible.

Possibilities include dry minor mergers introducing metal-poor stellar popula-

tions into the outskirts of these galaxies (e.g. Eliche-Moral et al. 2013) or the

fading of low-n galaxies (e.g. Bell et al. 2006).

Having studied in detail the signatures of evolutionary scenarios provided by

single-Sérsic fits, in Chapter 5 I then looked at what we can learn from bulge-

disc decompositions. Looking in more detail at the two main structures within

a galaxy has allowed me to isolate these populations in order to discover their

individual contributions to the wavelength dependence of galaxy properties.

The work of Vulcani et al. (2014) found that the joint wavelength dependence

of Sérsic index and e↵ective radius (N vs R) could potentially be an e↵ective

classifier of bulge-disc systems. They consider blue low-n galaxies and red

high-n galaxies, which are the main contrasting populations. The blue, low-n

population (which is expected to contain bulge-disc galaxies) exhibits a strong

wavelength dependence for n, implying that the Sérsic index of the disc is

observed in bluer wavebands, and the Sérsic index of the bulge is observed in

redder wavebands. Conversely, the population of red high-n galaxies (which

we expect to be spheroids) shows little change in Sérsic index with wavelength,

implying that there is just one stellar population present. Following this trend,

we would expect that galaxies containing only a disc (i.e. one component)

should also exhibit little wavelength dependence of N .

In this thesis I have revealed that, whilst the joint distribution of N and R
can be an e↵ective classifier for the internal structure of a galaxy, the implica-

tions of Vulcani et al. 2014 are not as straightforward as previously thought.

Rather than the number of components determining the wavelength depen-

dence of Sérsic index, I find that the presence of a disc drives the wavelength

dependence of a galaxy’s structure. When looking at the wavelength depen-

dence of e↵ective radius I find that red, single-component systems have much

smaller radii at longer wavelengths. This can be attributed to an extended,

bluer component, which may have formed due to dry minor mergers adding
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younger stellar populations to the outskirts of these high-n systems.

Low-n galaxies in particular have bulges and discs which are relatively close

in size (i.e. R ⇠ 1). This, combined with the luminosity dependence seen

in Chapter 3, explains the variation in N and R with overall colour seen in

Vulcani et al. (2014); the brighter a galaxy, the greater the colour di↵erence

between its bulge and disc. This in turn results in a greater change in structural

properties with wavelength.

7.2 Further work

Whilst more data, and higher resolution data, will allow us to probe deeper into

our understanding of galaxies, this comes at a price. Current analysis methods

will struggle to handle the huge datasets that facilities like LSST will bring,

so I believe that the future of our field lies in machine learning. The ability

of neural networks to e�ciently learn and process data will transform data

pipelines, allowing us to extract every ounce of science from the data collected

(e.g. Charnock & Moss 2016 who have demonstrated the ability of neural

networks to classify supernovae). However, I have identified some specific

topics for future study which will make use of data and facilities currently

available; these will be discussed in the following sections.

7.2.1 Are we able to observe separate colour gradients

in bulges and discs?

The results presented here provide evidence in support of inside-out growth

through gas accretion for disc-dominated galaxies, and growth through stellar

mergers for bulge-dominated galaxies (see Fig. 4.4, Chapter 4). Observing

colour gradients of each component individually is the next step required to

infer the separate formation histories of bulges and discs, thus dissecting the

formation history of the galaxy and its components.

It is known that star-forming galaxies do not show significant colour gradients

in their discs, whilst passive galaxies do. Meanwhile, ellipticals are thought

to form with steep stellar population gradients (see e.g. Brough et al. 2007;

Kuntschner et al. 2010 for more discussion). With the multiwavelength tech-
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niques developed as part of the MegaMorph project it is possible to fit bulges

and discs with wavelength-dependent profiles, allowing us to observe colour

gradients within individual components.

To investigate the relative contribution of bulges and discs to the overall colour

gradients of galaxies requires bulge-disc decompositions of a sample of bright

galaxies.

The technique described above also allows for several other complementary

projects. In addition to the kinematic data already available through (for ex-

ample) CALIFA and MaNGA, MUSE will be able to provide spatially resolved

spectroscopy for a sample of nearby galaxies spanning all traditional Hubble

types. Instead of looking solely at colour gradients as a proxy for galaxy struc-

ture, spectral information will be available throughout each galaxy which can

be used to look directly at the age and metallicity gradients themselves. This

information can be used to calibrate colour gradient findings and then ap-

ply them to galaxies without IFU data, to improve statistics and/or observe

galaxy properties at higher redshifts. In measuring the wavelength dependence

of a galaxy’s structure, it will be possible to greatly improve the accuracy of

age and metallicity measurements, and thus further understand its formation

history.

Addressing these open questions will transform our understanding of galaxy

formation and evolution by revealing the mechanisms by which bulges and

discs form and evolve.

7.2.2 How does environment impact galaxy formation

and evolution?

It is well-documented that a galaxy’s environment plays an important role in

its formation and evolution; but what impact does environment have on the

individual stellar components within a galaxy?

Previous studies (e.g. Carollo et al. 2013; Cibinel et al. 2013; Head et al.

2014; Head, Lucey & Hudson 2015) have already begun investigating this for

galaxies in nearby groups and clusters (z < 0.05). However they either don’t

have the multi-component information in the optical and NIR a↵orded by

using MegaMorph with GAMA data, or perform their analysis on a much



7.2. Further work 125

smaller sample spanning a smaller range of environments. I found in Chapter 5

that, regardless of morphology, the majority of galaxies exhibit a bulge which

is redder than its corresponding disc. This colour di↵erence is maintained

regardless of the overall colour of Sérsic index of a galaxy, and shows that

rather than all bulges being ‘red’ and all discs being ‘blue’, there appears to

be a colour di↵erence within a given galaxy. This results in the discs of some

galaxies being redder than the bulges in other galaxies. This relationship

between bulge and disc properties implies that the two components have a

shared formation history. Could environment be responsible for quenching in

the reddest bulge-disc systems we have observed? If not, what processes could

be responsible?

Studying the environmental dependence of bulge and disc properties will pro-

vide unique insights into the shared formation history of these components.
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