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Abstract Digitalization is continuing facilitating our daily 
lives. The world is interconnected as never before, 
bringing close people, businesses, or other 
organizations. However, hackers are also coming close. 
New business and operational models require the 
collection and processing of massive amounts of data in 
real-time, involving utilization of complex information 
systems, large supply-chains, personal devices, etc. 
These impose several advantages for adversaries on 
the one hand (e.g., poorly protected or monitored 
elements, slow fashion of security updates/upgrades in 
components that gain little attention, etc.), and many 
difficulties for defenders on the other hand (e.g., 
administrate large and complex systems with high 
dynamicity) in this cyber-security interplay. Impactful 
attacks on ICT systems, critical infrastructures, and 
supply networks, as well as cyber-warfare are deriving 
the necessity for more effective defensives. This paper 
presents a swarm-intelligence solution for incident 
handling and response. Cyber Threat Intelligence (CTI) 
is continuously integrated in the system (i.e., MISP, 
CVEs, STIX, etc.), and Artificial Intelligence (AI) / 
Machine Learning (ML) are incorporated in the risk 
assessment and event evaluation processes. Several 
incident handling and response sub-procedures are 
automated, improving effectiveness and decreasing 
response time. Information concerning identified 
malicious activity is circulated back to the community 
(i.e., via the MISP information sharing platform) in an 
open loop. The proposal is applied in the supply-chain 
of healthcare organizations in Europe (considering also 
EU data protection regulations). Nevertheless, it is a 
generic solution that can be applied in any domain. 
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AI Artificial Intelligence 

C&C Command and Control 

CAPEC Common Attack Pattern Enumeration and Classification 

CIL Cumulative Impact Level 

CIS Center for Internet Security 

CPE Common Platform Enumeration 

CSC Critical Security Controls 

CSIRT Computer Security Incident Response Team 

CTI Cyber Threat Intelligence 

CVD Coordinated Vulnerability Disclosure 

CVE Common Vulnerabilities and Exposures 

CVL Cumulative Vulnerability Level 

CVSS Common Vulnerability Scoring System 

DoS Denial of Service 

DNS Domain Name System 

EC Event Calculus 

ECVL Entry’s Chain Vulnerability Level 

EHR Electronic Health Record 

ELK Elasticsearch, Logstash, and Kibana 

ENISA European Union Agency for Cybersecurity 

FVT Forensics Visualization Toolkit 

ICT Information and Communications Technology 

ICVL Individual Chain Vulnerability Level 

IDS Intrusion Detection System 

IDPS Intrusion Detection and Prevention System 

IOA Indicator Of Attack 

IOC Indicator of Compromise 

IPCI Individual Propagated Chain Impact 

IPVL Individual Propagated Vulnerability Level 

ISAC Information Sharing and Analysis Center 

IVL Individual Vulnerability Level 

MISP Malware Information Sharing Platform 

MitM Man in the Middle 

ML Machine Learning 

MTTResp Mean Time To Response 

MTTRest Mean Time To Restore 

NISTCSF NIST cyber-security framework 

NLP Natural Language Processing 

PA Primary Agent 

PIL Propagated Impact Level 

PVL Propagated Vulnerability Level 

R2L  Remote to Local 

SA Supervisory Agent 

SEM Security Event Management 

SIM Security Information Management 

SIS Smart Information Systems 

SLA Service Level Agreement 

STIX Structured Threat Information eXpression 

TAXII Trusted Automated eXchange of Indicator Information 

TLS Transport Layer Security 

U2R User to Root 

UEBA User and Entity Behavior Analytics 

 
1 Introduction 

 
The business landscape is changing towards the 4th 
Industrial Revolution [1], [2], and so the threat 
landscape is adopting as well [3]-[5]. The involved 
threat actors (both malicious and legitimate ones) are 
following this era of digitalization [6]. Threats are 
increasingly becoming sophisticated and sustained. 
Ransomware is currently the most prevalent emerging 
enterprise-wide business risk, with Deloitte estimating 
that cost for victims will reach the $265 billion by 2031 
[7]. Social engineering is also advancing along with the 
exhibited malware capabilities. On the other hand, the 
risk management methodologies are also expanded to 
follow and, in some cases, try to surpass the wily 
strategies [8]. More-and-more organizations are 
enhancing their compliance and resilience elements. 
Fortune Business Insights forecasts that the global 
security market size will exceed the $376.32 billion in 
2029, reaching a 13.4 CAGR [9]. The latest threat 
landscape reports from various organizations, like 
ENISA [10], NATO [11], IBM [12], McAfee, [13], and 
ESET [14], are also reflecting these aspects across the 
world and various business and operational sectors. 

Attacks on the supply-chains and other logistics 
environments (e.g., on the USA energy sector [15]) are 
posing great threats for businesses and national 
security [16]-[18]. The ongoing Russia-Ukraine wars are 
also highlighting the potentials of cyber-warfare [19]-
[20] and the importance of building cyber-resilience in 
critical infrastructures [21]-[23]. 

Towards the achievement of these goals, defense 
strategies and mechanisms are evolving. Cyber Threat 
Intelligence (CTI) [24]-[26] is gathered and processed 
throughout the various phases of the Cyber Kill Chain 
(Reconnaissance, Weaponization, Delivery, 
Exploitation, Installation, Command and Control (C&C), 
and Actions on Objectives) [27]-[28]. Thereupon, CTI 
sharing is emerging as a vital weapon in the defenders’ 
arsenal to proactively cope with the increasing volume 
of malicious campaigns [29]. Automating the 
procedures for CTI consumption and sharing emerges 
as a new challenge for practitioners and researchers. 
The goal is to accomplish, in a timely fashion, 
situational awareness between the involved benign 
stakeholders by getting informed about potential 
threats to the current Information and 
Communications Technology (ICT) infrastructure 
setting. Automation in processing or implementation is 
desired by the involved entities for procedures like the 
caption of indicators of attack or compromise, 
preparation, response, sharing of CTI among trusted 
participants, etc. Thereupon, there are several 
solutions that provide semi-automated sharing of 
information, such as indicators with 
malicious/suspicious hashes or IPs. One main 
contribution has been provided by MITRE’s STIX and 
TAXII in an attempt to advance the communal efforts 
towards a widely adopted protocol for CTI modelling 
and sharing [29]-[30]. 
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Cybersecurity in healthcare [31-32] is of 
paramount importance as the industry increasingly 
relies on digital technology to manage patient 
records, conduct medical procedures, facilitate 
communication, etc. With the transition to 
Electronic Health Records (EHRs) and the 
proliferation of connected medical devices, 
protecting sensitive patient information from cyber-
threats has become a critical concern. Healthcare 
organizations must implement robust security 
measures, including encryption, access controls, 
and regular security audits, to safeguard patient 
data from unauthorized access or breaches. As 
cyber-threats continue to evolve, maintaining a 
proactive and adaptive cyber-security strategy is 
crucial in ensuring the integrity, confidentiality, and 
availability of healthcare information. 

Regarding CTI, worldwide there are established 
Information Sharing and Analysis Centers (ISACs) 
specifically focused on healthcare [33]. Healthcare 
ISACs are organizations that facilitate the sharing of 
cyber-security threat information and best practices 
within the healthcare industry. They serve as 
collaborative platforms where healthcare 
organizations, including hospitals, clinics, insurance 
providers, and other entities, can exchange 
information about cyber-security threats, 
vulnerabilities, and protective measures. These 
ISACs play a crucial role in helping the healthcare 
industry stay vigilant against cyber-threats, which 
are of particular concern due to the sensitive nature 
of patient data. They provide a forum for members 
to receive and disseminate timely and relevant 
threat intelligence, helping to enhance the overall 
cyber-security posture of the healthcare sector. By 
participating in an ISAC, healthcare organizations 
can benefit from collective intelligence and work 
together to address common security challenges. 

This paper presents a swarm-intelligence 
solution, which was mainly developed under the EU 
funded project AI4HEALTHSEC. Security- and 
privacy-aware smart agents are continuously 
monitoring the systems under protection. The 
agents are self-organized as it concerns their main 
internal operation, while they also form a swarm-
intelligence network where they can share 
security/privacy related information to safeguard 
the system-of-systems as a whole. Each individual 
organization deploys several Primary Agents that 
directly administrate their underlying local systems 
and networks, as well as one or more Supervisory 
Agents that collect knowledge from the Primary 
Agents and perform organization-wide decision 
making. Also, the Supervisory Agents from different 
organizations in a supply-chain or other 
collaborative environments, participate in a 
network and exchange high-level pieces of 
knowledge. CTI data could also be collected from 
other external collaborated communities or the 
Dark Web [34-36]. The agents utilize elements for 
Artificial Intelligence (AI) reasoning and Machine 
Learning (ML) inference to automate some of the 

underlying sub-procedures (e.g., evaluation of ongoing 
events, process CTI resources with human-readable 
data, etc.) [35-36]. 

The rest of the paper is organized as: Section 2 
reviews the background theory and standardized 
methodologies for cyber security management. Section 
3 presents the proposed solution for risk assessment 
and incident handling that was implemented under the 
EU funded project AI4HEALTHSEC. Section 4 details the 
application of AI4HEALTHSEC in a piloting environment 
for the protection of the healthcare organization FHG-
IBMT. Section 5 provides discussions and directions for 
future works of modern CTI approaches. Finally, Section 
6 concludes this work. 

 
2 Background & Related Works 

 
In 2019, the World Economic Forum’s Global Risks 
Report stated cyber-attacks in its list for the top-ten 
most impactful global risks. Towards this direction, in 
the same year the Ponemon Institute reported that 
90% of organizations supporting national critical 
infrastructures (i.e., manufacturing, industry, 
transportation, health, and energy) faced at least one 
assault within 2017-2019 that caused significant 
operational disruptions or data breaches [37]. Those 
are two of the many reports and studies that were held 
during the last decade on the landscape of cyber-
security [7]-[23]. Every year the volume and impact of 
malicious campaigns keeps increasing, revealing that 
such wily actions are forming an ever-growing threat 
for modern societies [38]. Therefore, concrete 
methodologies have been formed in order to cope with 
the various phases of the security lifecycle. The 
following subsections review the main methods and 
standards for incident handling. 

2.1 Incident handling methodologies 
In order to apply the best practices in preventing, 
handling, and managing all cyber security activities, it is 
first necessary to identify cyber security incidents. For this 
reason, many specific methodologies and frameworks for 
incident identification have been developed in the recent 
years. 

Some consolidated procedures for security incident 
identification are defined in ISO/IEC 27035-1:2016 [39] 
and ISO/IEC 27035-2:2016 [40] standards. ISO/IEC 27035-
1:2016 is the foundation of this multipart International 
Standard. It presents basic concepts and phases of 
information security incident management and combines 
these concepts with principles in a structured approach 
for detecting, reporting, assessing, and responding to 
incidents, while applying the lessons learnt. The principles 
given in ISO/IEC 27035-1:2016 are generic and intended to 
be applicable to all organizations, regardless of type, size, 
or nature. Organizations can adjust the guidance given in 
ISO/IEC 27035-1:2016 according to their type, size, and 
nature of business in relation to the information security 
risk situation. It is also applicable to external organizations 
providing information security incident management 
services. ISO/IEC 27035-2:2016 provides the guidelines to 
plan and prepare for incident response. The guidelines are 
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based on the “Plan and Prepare” phase and the 
“Lessons Learned” phase of the “Information security 
incident management phases” model presented in 
ISO/IEC 27035‑1. 

The NIST cyber-security framework (NISTCSF) [41]-
[42] offers a quantitative and measurable risk 
reduction guide on how organizations can incorporate 
cyber security activities as part of their risk 
management process, including incident identification 
procedures. The framework provides guidance that is 
useful and applicable to any organization, therefore 
offers a common, consistent, and comparable set of 
guidelines and practices. 

Another approach for incident identification and 
management relies on Computer Security Incident 
Response Team (CSIRT), whose main function is to 
react in a timely fashion to cyber security threats. The 
CSIRT will typically be called into action by a 
notification or a triggered event but can also be called 
into action by a relevant discovery while performing 
one of many passive services. The latter case may also 
include incident identification tasks. Frameworks for 
defining CSIRT services, roles, policies, standards, as 
well as procedures in case of incidents have been 
widely studied in literature [43]-[46]. 

The European Union Agency for Cybersecurity 
(ENISA) has provided a Good Practice Guide for 
Incident Management [47], which complements the 
existing set of ENISA guides that support CSIRT [48]-
[49]. The guide describes good practices and provides 
practical information and guidelines for the 
management of network and information security 
incidents with an emphasis on incident handling. In 
particular, it includes the identification of the 
incidents and its characteristics in the suggested 
procedures and handling process. 

Other existing standards that are also related with 
the various aspects of incident handling include: 

– ISO/IEC 27039 [50]: Information technology — Security 
techniques — Selection, deployment, and operations 
of intrusion detection and prevention systems (IDPS), 

– ISO/IEC 27041 [51]: Information technology — Security 
techniques — Guidance on assuring suitability and 
adequacy of incident investigative method, 

– ISO/IEC 27042 [52]: Information technology — Security 
techniques — Guidelines for the analysis and 
interpretation of digital evidence, 

– CRR Supplemental Resource Guide [53]: Volume 5 
Incident Management Version 1.1, Carnegie Mellon 
University, 

– ITU-T X.1216 Telecommunication Standardization 
Sector of ITU (09/2020) Series X [54]: Data Networks, 
Open System Communications and Security 
Cyberspace security – Cybersecurity Requirements for 
collection and preservation of cyber-security incident 
evidence. 

– SANS Institute [55]: Computer Security Incident 
Handling: Step by Step, a Survival Guide for Computer 
Security Incident Handling. 

2.2 Analysis and Comparison 
Considering all the above, many well-documented 
methodologies that describe the security incident 
response process, have already been proposed and 
applied in the healthcare domain. As mentioned before, 
the major aim of these strategies is to analyze a procedure 
for rapid detection of incidents, along with minimizing the 
effects, mitigating the causes, and restoring the affected 
resources. In fact, the popular Incident Handling 
recommendations proposed by ENISA [47]-[49], NIST [42], 
ISO/IEC 27035-1 [39], and CSIRT and CERT/CC [44]-[45]. 

As shown already above, all approaches share 
common characteristics, and it seems possible to derive a 
general methodology which would cover the entire 
procedure by the conjunction of the practices introduced 
by the various sources. However, these methods might 
exhibit deviations concerning the definition and coverage 
of the terminology used. 

The AI4HEALTHSEC project team, after carefully 
investigating the relevant methodologies, defined and 
implemented a practical methodology described below. 
To help with the visualization of the common points 
between the basic methodologies and to show the basis 
of the AI4HEALTHSEC proposed methodology, Table 1 has 
been created. 

Table 1 Common characteristics in incident response. 
approaches 
Suggested 
Principles 

NIST SANS ENISA CERT/CC ISO 27035-1 

Preparation 
and 

Receiving 

Preparation Preparation Receiving 
incident 
reports 

Detecting 
and 

reporting 

Plan and 
prepare 

Triage Detection and 
analysis 

Detection and 
analysis 

Incident 
evaluation 

Triage Detection and 
reporting 

Analysis Analysis Assessment and 
decision 

Response Containment, 
eradication, 
and recovery 

Containment Actions Incident 
Response 

Responses 

Eradication 

Recovery 

Post-Incident 
Activity 

Post-incident 
activity 

Post-incident 
activity 

Lessons learnt 

 
Initiality, most methodologies start with the cyber-

security preparation of the organization to establish an 
incident response capability. This involves developing and 
implementing an incident response plan, setting up an 
incident response team, and providing training and 
awareness for staff. Preparation is key to effective 
incident management, as it ensures that the necessary 
tools, roles, and procedures are in place before an 
incident occurs. 

Thereupon, the deployed defenses are starting to 
identify and detect potential security incidents. This phase 
ordinarily includes the monitoring of systems and 
networks for signs of an incident, the establishment of 
detection mechanisms, and the procedures for reporting 
potential incidents. Timely detection is crucial for 
minimizing the impact of security incidents. 

Once an incident is detected, it needs to be assessed 
to understand its nature and scope. These phases involve 
triaging events, evaluating the severity of the incident, 
determining its impact, and deciding on the appropriate 
course of action. This step is critical for prioritizing and 
responding to incidents effectively. 

After the detection and assessment, the core incident 
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response is performed. The organization takes action 
to contain, eradicate, and recover from the incident. 
This may include measures to limit the spread of the 
incident, remove the cause of the incident, and 
restore affected systems or data. The response actions 
are based on the type and severity of the incident. 

Finally, when managing the incident, the 
organization should review and analyze it, as well as 
the response to it. This phase aims to identify lessons 
learned, improve the incident response plan, and 
enhance security measures to prevent future 
incidents. It is a crucial step for continuous 
improvement in incident management and overall 
security posture. 

The principles [46] that the state-of-the-art 
methodology should have, are: i) Preparations and 
receiving, ii) Triage, iii) Analysis, iv) Response, and v) 
Post-incident activities. 

2.3 AI4HEALTHSEC Incident Handling Phases 
Taking into account the previous analysis, a new 
derivative methodology can be developed by adapting 
the NIST methodology to the swarm-intelligence 
architecture scheme of AI4HEALTHSEC [42]. Hence, 
the incident handling framework of AI4HEALTHSEC 
consists of four steps, as they are proposed by NIST 
[42] (see Fig. 1): 

 

Fig. 1 NIST & AI4HEALTHSEC Incident Respond Life Cycle. 
 

– Preparation (Step 1): It contains the steps that are 
taken before an incident occurs, such as training, 
writing incident response policies and procedures, and 
providing tools such as laptops with sniffing software, 
crossover cables, original OS media, removable drives, 
etc. In fact, preparation should include anything that 
may be required to handle an incident or will make 
incident response faster and more effective. 

– Detection and Analysis (Step 2): It is the phase in 
which events are analyzed in order to determine 
whether these events might comprise a security 
incident (triage principles are included in this step). 

– Containment, Eradication and Recovery (Step 3): The 
containment phase of incident response is the point at 
which the incident response team attempts to keep 
further damage from occurring as a result of the 
incident (i.e., taking a system off the network, isolating 
traffic, powering off the system, etc.). The eradication 
phase involves the process of understanding the cause 
of the incident, so that the system can be reliably 
cleaned and ultimately restored to operational status 
later in the recovery phase. The recovery phase 
involves cautiously restoring the system or systems to 
operational status. 

– Post-Incident Activity (Step 4): It includes the creation of a 
follow-up report, which each incident response team 
should evolve to reflect new threats, improved technology, 
and lessons learned aiming to reduce the probability of a 
similar incident happening again and to improve incident 
handling procedures. 

 
3 The AI4HEALTHSEC Approach 
As aforementioned, AI4HEALTHSEC forms a swarm-
intelligence framework that can protect the systems of 
distinct organizations and their supply-chains. This is 
implemented in the form of two main procedures for risk 
assessment and incident handling, respectively. 

The risk assessment elements are based on the 
MITIGATE platform (see details below). The system: i) 
records the organizational assets, ii) discloses their known 
vulnerabilities and threats (e.g., from the Common 
Vulnerabilities and Exposures (CVE) [56] or other 
databases [57]), and iii) estimates the levels of individual 
and cumulative risks of the evaluated components. ML is 
used in order to enable the processing of human language 
and the automatic ingestion of information from relevant 
resources (e.g., [35-36]). This risk assessment procedure 
with MITIGATE is presented in [58]-[59] and it is not 
covered further in the current paper. Nevertheless, an 
outline of MITIGATE is provided in the sub-section 3.1 for 
completion. 

This study details the incident handling process. Smart 
agents are collecting data from the monitored devices and 
networks, exchange fruitful information or gather CTI 
from open sources (similarly with the abovementioned 
risk assessment elements), and build knowledge 
concerning the overall operational environment. This “CTI 
of Things” concept [60] permits the secure administration 
of the whole ecosystem, with AI/ML automating several of 
these steps and mitigating some type of zero-day attacks 
(e.g., [61]-[63]). 

3.1 Outline of Risk Assessment with MITIGATE 
The AI4HEALTHSEC Risk Assessment methodology that is 
implemented with MITIGATE [58]-[59], comprises five 
systematic phases for managing cyber-security risks in 
healthcare operations. It outlines a process that guides 
organizations in comprehending and controlling risks, 
focusing on crucial aspects like the healthcare supply-
chain, assessing critical assets, threat profiling, risk 
evaluation, and prioritizing controls. By following 
MITIGATE, healthcare institutions can gain insights into 
individual and cascading risks, enabling them to 
implement appropriate controls for a secure and robust 
healthcare ICT infrastructure. This methodology provides 
a structured approach for healthcare organizations to 
enhance overall cyber-security. MITIGATE aligns with 
established risk management standards such as ISO-
31000:2018 [64] and ISMS standard ISO-27001:2013 [65], 
as well as security standards like the Center for Internet 
Security (CIS) Critical Security Controls (CSC) (CIS_CSC) [66] 
and Common Vulnerability Scoring System (CVSS) [67]. 
Additionally, it incorporates recognized security best 
practices and methodologies, including CVSS 4.0 for 
vulnerability assessment [67], the Common Platform 
Enumeration (CPE) [68] for asset mapping, Common 
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Attack Pattern Enumeration and Classification (CAPEC) 
for threat identification [69], Coordinated 
Vulnerability Disclosure (CVD) for vulnerability 
identification [70], consideration of healthcare sector 
assets, and the integration of suitable ML models [35], 
making it applicable across various supply-chain 
domains. 

These five risk assessment phases are: 
 Phase 1: The initial phase involves establishing 

the overall scope of risk management within the 
healthcare organization and its supply-chain context. 
Active participation of key stakeholders, such as 
operations managers, IT and security managers, and 
business analysts, is essential to precisely define this 
scope. The outcomes of this phase are: i) the 
specification of the cyber security risk management 
scope, and ii) the identification of the organizational 
context, which encompasses both internal and 
external facets, as well as outlining the risk 
management strategy. 

 Phase 2: Following the determination of risk 
management scope and context, the subsequent 
phase entails an analysis of the healthcare 
organization's environment and the existing 
healthcare ecosystem it operates in. The outcomes of 
this phase are: i) a list of all available healthcare 
services of the organization, classified based on their 
criticality level, ii) the list of the underlying assets with 
their CPE identification, the services that each asset 
participates in, and the dependency and criticality 
values for each of the assets and services, and iii) the 
identification of healthcare ecosystem dependencies 
as well as the production of a Healthcare Ecosystem 
Dependency Graph. 

 Phase 3: This phase aims to identify all 
potential individual risks that may affect the assessed 
assets. It comprises four steps that provide a 
comprehensive insight into vulnerabilities and threats 
relevant to these risks. This process aids in analyzing 
risks from a holistic perspective of the healthcare 
ecosystem and formulating appropriate control 
measures to mitigate the identified risks. The 
outcomes of this phase are: i) the identification of the 
individual threats along with their occurrence level 
(ranging from very high to very low) based on the links 
of assets’ CPE on the CAPEC list, the related CVEs and 
their risk scores via the CVSS, ii) the production of a 
related asset vulnerability inventory and the 
identification of the Individual Vulnerability Levels 
(IVLs) for all of the entries, iii) a list of impacts per 
relevant asset that operates in the context of each 
identified healthcare service, and iv) a calculated risk 
value for each vulnerability of each recorded asset of 
each recorded service. 

 Phase 4: In this phase, the methodology 
focuses on recognizing and evaluating cascading risks 
associated with assets and services in the healthcare 
supply-chain. RA4Health specifically takes into 
consideration vulnerabilities that could be exploited 
due to interdependencies among assets. The 
outcomes of this phase are: i) the estimation of the 
Individual Chain Vulnerability Level (ICVL), the Entry’s 

Chain Vulnerability Level (ECVL), the Cumulative 
Vulnerability Level (CVL), and the construction of 
vulnerability dependency chains, ii) the generated 
propagated vulnerability chains from the exposure of a 
specific vulnerability in an asset entry point, the 
estimation of the Individual Propagated Vulnerability 
Levels (IPVLs) and the calculation of the Propagated 
Vulnerability Levels (PVLs), iii) the Cumulative Impact 
Level (CIL) for each vulnerability chain, iv) the estimation 
of the Individual Propagated Chain Impact (IPCI) and the 
Propagated Impact Level (PIL), v) the Cumulative Risk level 
of each target asset, and vi) the Propagated Risk level of 
each asset considered as an entry point of an attack for a 
specific threat. 

 Phase 5: The final phase of the MITIGATE 
methodology implements an effective risk management 
strategy to address both identified individual and 
cascading risks, ensuring a resilient healthcare service 
delivery [71]. This involves a decision-making process, 
based on existing risks, to select the most suitable 
strategy and recommended controls within various 
constraints (e.g., healthcare context, budget, and resource 
availability). The phase also revisits vulnerabilities and 
threats identified in prior stages to pinpoint appropriate 
control measures. Additionally, it aligns with established 
standards to demonstrate the broader applicability of 
these controls. The resulting guidance aids the healthcare 
entity in implementing the identified controls, managing 
risks, and enhancing overall security and resilience. The 
outcome of this phase and the final result of the risk 
assessment procedure is a control register. It establishes a 
connection between the identified control, the 
vulnerability, threat, and assets, enabling a clear 
traceability path from control to threats and 
vulnerabilities. 

3.2 Overview of the Swarm-Intelligence Network for 
Incident Handling 

The AI4HEALTHSEC system is composed of a set of smart 
agents. Each organization has at least one Supervisory 
Agent (SA), which manages the underlying systems and 
networks, exchanges information with SAs from other 
collaborative organizations, and collects CTI from open 
sources. Then, within each organization and under the 
relevant SA, there can be several Primary Agents (PAs) 
that directly audit systems and networks. For example, 
there can be specialized PAs that monitor traffic in a 
networking gateway or the operation of nodes (e.g., 
computers, mobile or medical devices, etc.). The main 
incident handling operations for a SA are mainly 
administrated by the Assurance Platform [71] component 
and for a PA by the Metadon [73] component (see the 
following paragraphs for details). 

Both agents are self-organized, in the sense that they 
have the knowledge to handle some types of events by 
their own. They also exchange information to achieve 
collaborative tasks. The SA is higher in this hierarchy. It 
collects information from all sources and has the holistic 
view of the organization’s system. It is also the main 
interaction point with the human operator for incident 
handling, who can also access the PAs in order to perform 
direct human-driven analysis (if required). 
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Fig. 2 Interactions between the Assurance platform and other internal components. 
 
The formal aspects of Artificial Intelligence (AI) are 

based on the Event Calculus (EC) [74] and the 
implementation of this reasoning behavior is 
developed with the Drools reasoning engine [75]. 
Apart from a simple rule-based logic, the reasoning 
process can be enhanced with ML features that 
further evaluate ongoing events and feed the results 
back to the AI reasoning. ML and AutoML modules are 
built for this purpose, which are based on the Keras 
and AutoKeras system [76], respectively. The 
capturing of ongoing events from the running system 
is based either on customized event captors and/or 
the Elasticsearch, Logstash, and Kibana (ELK) Beats 
[77]. ELK may also act as an internal knowledge base 
for the agents within an organization. Also, the agents 
can interchange messages between them or other 
AI4HEALTHSEC elements (e.g., the risk assessment 
components) via a Kafka Broker [78]. The privacy 
module, implemented with CHIMERA [79], can be also 
executed to anonymize messages’ content with 
personal data. CTI collection within the organization 
and exchange with other entities or communities is 
developed in the Malware Information Sharing 
Platform (MISP) [80]. Finally, the user can access the 
AI4HEALTHSEC platform via a unified web interface 
and the Forensics Visualization Toolkit (FVT) [81], 
where he/she can find the details for each recorded 
event and its analysis elements. Fig. 2 illustrates the 
main components for the installation of 
AI4HEALTHSEC in a single organization with many local 
PAs (Metadon) and one SA (Assurance Platform) at 
the backend. 

 

3.3 Preparation 
During the initial deployment of the platform to an 
organization, the audited system elements are 
recorded in the Assets Inventory (e.g., asset ID, 
vendor, version, correlation with other assets, etc.). 

Then, the risk assessment analysis with MITIGATE 
discloses the currently known vulnerabilities of these 
component based on the latest CTI, which is collected 
from various resources, like general CVEs, sectorial 
repositories (e.g., with vulnerabilities for medical devices), 
and Dark Web. Usually, repositories contain machine 
readable data, and their consumption can be facilitated 
with STIX/TAXII compatible services [82]. Human-readable 
sources can be also incorporated (e.g., CVEs’ description 
part or cyber-security blogs) with the help of the Natural 
Language Processing (NLP) module [35-36]. 

Thereupon, the organization lists the most critical 
threats and prioritize the defenses. The incident handling 
elements are applied, and the smart agents are configured 
accordingly. Capturing mechanisms are deployed to 
continuously sending data to the agents, which will 
evaluate all events based on the implemented Artificial 
Intelligence (AI) rule-based logic. If further Machine 
Learning (ML) evaluations are required, the initial 
construction of datasets and training activities are 
performed in this step. Afterwards, the platform becomes 
ready for the monitoring and management of the runtime 
operation of the system. 

3.4 Detection and Analysis 
The phase of Detection and Analysis incorporates 
automated processing tools and intelligent operations 
conducted by the AI4HEALTHSEC agents. Additionally, the 
Analysis phase involves the examination and analysis 
performed by the system operator situated at the SA's 
side. 
 
3.4.1 Gathering of information 
The detection phase involves utilizing various techniques 
and tools to capture and identify cyber incidents. 

Information sources include log management tools, 
antivirus software, intrusion detection systems, network 
monitoring tools, and vulnerability scanners, among 
others. Logging standards and procedures play a crucial 
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role in ensuring the collection of information from 
logs and security software. 

Both agent types (PAs and SAs) implement 
mechanisms that can deploy Customized Event 
Captors to gather and fetch information from the 
abovementioned information sources. Additionally, 
the Assurance Platform of the SA can utilize ELK Beats 
and their capabilities which are popular and widely 
known for the experts in the field. 

The AI4HEALTHSEC platform prioritizes effective 
log management to handle vast amounts of data, 
enabling security analysts to conduct queries and 
correlations that aid in the detection phase. 
Specifically, it emphasizes Security Information 
Management (SIM) and Security Event Management 
(SEM). These procedures utilize a standardized 
taxonomy for security events and incidents, along 
with a shared information model aligned with 
governmental and industrial standards [83]-[84]. 

Various methods are employed for log collection 
connectors, which include data ingestion to the 
manager through HTTP, TCP, and syslog standards, as 
well as monitoring specific log/text files. A 
transformation process is implemented to convert 
input formats from a domain-specific language into a 
standardized and uniform field taxonomy. 
Elasticsearch [85] serves as the storage solution for 
the data. A web-based user interface facilitates 
security analytics and enables the execution of queries 
using a high-level query language. Events and alerts 
are generated when abnormal system behaviors or 
operations occur. To enhance search queries, visual 
analytics techniques are utilized to visually represent 
patterns such as unusual network behavior, 
unexpected configuration changes, and anomalous 
account activities, aiding human operators in 
effectively identifying cyber incidents. 

Once security- and privacy-related data has been 
collected, primarily using Elasticsearch, three types of 
tools are employed to process this information during 
the detection phase of the AI4HEALTHSEC 
methodology. These tools consist of: i) an Intrusion 
Detection System (IDS) based on Snort [86], ii) a Data 
Fusion module and CHIMERA [79] for privacy 
protection, and iii) Metadon [73] for PAs or the 
Continuous Monitoring and Assurance Platform [71] 
for SAs. Snort fulfills the primary functionality of the 
IDS. The Data Fusion module stores pertinent 
information for this phase, handles intricate data 
transformations, and applies semantic annotations to 
facilitate knowledge sharing and reuse. CHIMERA may 
apply additional anonymization transformations in 
cases where personal data are processed. Metadon 
and the Assurance Platform utilizes all the gathered 
information to validate the compliance of the 
operational environment with established security 
policies/strategies, identifying any violations or 
potential cyber incidents. 

Table 2 summarizes the main type of malicious 
activities that can be detected by the AI4HEALTHSEC 
components. 

 

Table 2 Captured malicious activities. 
Malicious Activity 

Brute force attempts Attempt of log tampering 

Multiple failed authentications 
to different accounts by same 
IP 

Sensitive file permissions 
change 

Access to the same account 
from different IPs 

Sensitive group change 

Password change after new IP 
access 

Suspicious user elevation 

Access from/to blacklisted IP Suspicious number of 
VM/docker activity 

Possible man in the middle 
(MitM) 

High NXDomain enumeration 

Too many errors 404, 403, 
500, 501 

High reverse DNS enumeration 

Exposed endpoints used from 
public IP 

Failed access to host but 
successful access to system 

Detection of accesses to 
sensitive protocols 

Multiple users email forwarding 
to same destination 

Anomalous traffic detection 
(leveraging from intrusion 
detection systems), 

Anomalous sensitive service 
execution 

Commonly abused URLs User created and deleted 
within 10 mimute 

Distributed brute force 
attempt 

Process executed from binary 
hidden in Base64 encoded file 

 
In an indicative use case, the detection process can be 

exemplified by employing a security appliance, such as a 
firewall, that generates logs. These logs are then collected 
and parsed into a standardized format using a syslog 
server. The resulting data is transmitted to the log 
storage, which utilizes Elasticsearch. Subsequently, users 
have the ability to define queries on the collected logs 
using a language that is not specific to any particular 
domain. Correlation tasks can be performed by leveraging 
the data. By scheduling queries, it becomes possible to 
trigger alerts, notifying users through email, initiating a 
service, or executing a shell script when specific conditions 
are met. Any log source can be utilized as input, 
encompassing auditing logs, firewall logs, router logs, DNS 
traffic, or network flows. The system supports multiple 
data formats, including CSV, JSON, and raw data in legacy 
formats, accommodating nearly all types of data. 

 
3.4.2 Reasoning evaluation and Response 
After capturing and fetching events from the monitored 
systems and networks, the smart agents can process all 
these pieces of information and reason about their 
legitimacy and incident handling policies. 

The core reasoning procedures are implemented in a 
rule-based logic. Event Calculus (EC) is mainly used in 
order to model the reasoning behaviors and provide the 
theoretic foundations for the formal verification of the 
evaluation process. EC is implemented in the rule engine 
Drools and the AI procedures are implemented in JAVA. 
Set of rules are defined, with each rule-set evaluating a 
specific type of security or privacy incident. 

Thereupon, the user can deploy Assessment Profiles. 
Each profile contains information about the deployment 
of the related capturing mechanisms to specified system 
assets, as well as which rule-sets will be used for the 
evaluation of the collected events. Each incoming event 
triggers the reasoning behavior to evaluate to situation. 
The user can review the results and the whole process via 
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a user-friendly web interface. Moreover, these AI 
procedures can execute automated response actions, 
which are defined in the deployed rule-sets, to 
response and mitigate ongoing malicious operations 
(see the following paragraphs). 

 
3.4.3 Incorporation of Reasoning with ML evaluation 
While rule-based AI procedures are quite powerful 
and can cope with a wide range of problematic 
situations, there are complex problems that cannot be 
easily expressed and modeled with them. Machine 
Learning (ML) elements are also required in order to 
provide evaluation of complex wily activities as well as 
anomaly detection. 

Therefore, enhanced reasoning behaviors are 
developed for AI4HEALTHSEC, where the AI 
procedures can ask for ML components to evaluate 
series of events. When a relevant rule-set is triggered 
by one or more incoming events, one of the 
underlying rules can send a message to an ML 
component asking for evaluation. The ML component 
responds with the evaluation result, which is 
processed by one or more rules of the rule-set. 

Context-wise, usually PAs process more specialized 
and technical datasets (e.g., specific network 
monitoring, devices profiling, etc.), while SAs process 
datasets for more common services and functionality 
that is found in backend infrastructure. In the current 
prototype of AI4HEALTHSEC, ML and AutoML modules 
[62] are embodied by the agents based on Keras and 
AutoKeras solutions. The ML solution is mainly used 
by the PAs and concentrates in datasets for local 
systems and networking traffic. The AutoML module is 
mostly used by the SAs. This solution is also better 
fitted for users who have no or low expertise in ML 
and are not aware of how to choose a proper ML 
algorithm for their problem. 

Although these two ML components were selected 
for the proof-of-concept implementation of 
AI4HEALTHSEC, the overall approach is generic 
enough and can easily incorporate other ML solutions 
as well. 

 
3.4.4 Human-driven Analysis 

The proposed solution relies not only on the 
accuracy of system indicators or precursors but also 
on human judgment in certain cases [87]. Indicators 
may not always signify an actual incident, and the 
complexity of interconnected ecosystems results in 
varying types and quantities of indicators, whether 
user-defined or not. Identifying genuine security 
incidents from the multitude of indicators and 
associated events can be a challenging task. To 
facilitate these processes and examine different signs 
and events within the system, incident handlers utilize 
tools such as the Forensics Visualization Toolkit (FVT) 
[81]. 

During the Incident Analysis process, a security 
expert examines incoming events by investigating the 
system's status through different visualizations and 
dashboards. These visualizations provide diverse 
perspectives based on potential event/incident 

correlations. The exploration schemas can be pre-
configured for specific event types or customized based 
on the investigator's requirements. Various visualizations 
and dashboard schemas correspond to different system 
metrics (e.g., device monitoring, network monitoring) or 
event-related information (e.g., incident entry point, 
potentially affected nodes). The security expert can also 
request and analyze a variety of data from individual 
event processing and analysis services, leveraging 
knowledge from all available sources. This knowledge 
includes previously identified incidents, their semantic 
descriptions in the form of Data Reference Models, and 
correlations with ongoing investigations or historical 
events. Filtering and comparing this data facilitate 
network-system profiling, understanding normal 
behaviors, and discovering new attack patterns. 

Throughout the incident analysis process, the security 
expert can explore and modify the incident profile, which 
is documented and stored in knowledge databases for 
future reference. Incidents can be prioritized based on 
their functional and informational impact, as well as the 
system's recoverability level. The incident prioritization 
process may involve user-driven or automated simulations 
and AI-based recommendations. Once an incident is 
identified as a potential attack, the initial level of incident 
response is initiated, involving the notification of all 
affected parties. This notification process includes 
generating alerts and identifying the recipients who 
should be notified based on established security policy 
conditions (e.g., notification period, level of information 
to be shared). 

Moreover, this stage can involve an interplay of the 
incident handling procedure and the risk assessment one. 
Therefore, the analyst can utilize the offerings of 
MITIGATE [58]-[59] to further evaluate the potential side-
affects. For example, an attacker may have infiltrated the 
system from some point and the attack is detected at 
some time-point in a specific part of the system. The 
expert can run the attack simulation module in an attempt 
to examine the defined Chain Vulnerability paths (already 
defined during the initial risk assessment phase) and how 
the vulnerability may have been propagated in the 
system, trying the trace backward and forward the hacker 
and mitigating the side-affects. 

When the incident has been handled, the analyst can 
determine the overall feedback, updating and re-
performing the risk assessment to estimate the new 
protection level. This may include the update of the 
vulnerability database, the vulnerability paths, and the 
affected risk levels [71]. Moreover, the user could 
annotate the relevant events, indicating also potential 
false positives/negatives, and re-train the ML models that 
are utilized in vulnerable assessments and 
incident/anomaly identification and are briefly described 
in the subsection 4.4. 

 
3.4.5 Containment, Eradication, and Recovery 
Containment is the phase where the incident is controlled, 
either through the response team's actions or automated 
processes, by isolating network and asset variations that 
could be affected by the original attack. This phase also 
involves predicting potential future targets that the 
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incident may impact. Attack propagation graphs are 
valuable in capturing and extracting the necessary 
information to guide the isolation tasks (link to 
MITIGATE analysis). The goal of containment is to limit 
the damage caused by the incident and subsequently 
eradicate or remove any malicious artifacts, followed 
by system recovery as outlined in NIST 800-61 
guidelines [88]-[89]. In essence, containment aims to 
minimize the incident's impact and prevent further 
contamination of the system. During the containment 
process, evidence must be collected and analyzed. The 
eradication phase involves removing suspicious 
artifacts based on Indicators of Compromise (IOCs), 
while the recovery phase focuses on restoring the 
system to normal operation and continuously 
monitoring its state after the incident [90]. 

Containment is an interdependent task that 
encompasses security, policy, and network 
management [91]. Security operations handle 
compromised devices, assets, or attacks by 
transitioning to a secure domain using security 
controllers [92]. Containment methods can range 
from simple actions like disconnecting a network cable 
or shutting down processes to more complex 
measures such as isolating compromised machines 
through Domain Name System (DNS) or firewall rule 
changes [93]. The containment phase relies heavily on 
the information gathered during the detection and 
analysis phase, which is used to identify and define 
IOCs for system neutralization. 

The specific nature of attacks determines the 
technical aspects of containment, considering 
attributes like malware, rootkits, Denial of Service 
(DoS), asset loss, data theft, unauthorized access, and 
misuse of assets [94]. IOCs play a crucial role in 
matching them to the incident and proceeding with 
containment and system isolation for further analysis. 
Research has focused on containing malware attacks, 
proposing strict or flexible rules to restrict the attacks. 
The chosen containment strategy may involve 
complete isolation, filtering, or emulation procedures. 
Therefore, containment strategies vary based on the 
incident type, and specific criteria have been 
proposed to determine the appropriate approach. To 
verify and validate the compromised host, incident 
handlers should consider containment-specific 
activities for identifying the attack host. 

Within the context of this project, containment 
processes encompass configuring and updating 
firewall rules and isolating compromised machines by 
changing DNS settings and restricting them to a virtual 
network. This process is triggered by event matching 
and correlation, where specific rule-sets are 
monitored. The alerting system then triggers 
commands to update firewall rules, effectively 
redirecting the compromised device to a different 
network. The compromised device remains isolated 
while retaining Internet connectivity and accessing a 
different network environment. It operates under 
monitored actions to gather data that will aid the 
eradication phase. 

Critical post-containment actions include analyzing 

and extracting IOCs, focusing on containment and 
preparing for eradication. IOCs can include virus 
signatures, changes in file integrity within system 
registries, inbound and outbound network traffic, or 
previously reported malicious domain names. 

The actions taken to eradicate the effects of an 
incident depend on the type of attack. For instance, in the 
case of malware or ransomware attacks, it is necessary to 
delete the malicious files, restore file integrity changes, 
and reverse any registry modifications. In a DoS attack, 
updating rulesets in firewalls and intrusion 
detection/prevention systems and implementing new 
technologies or tasks to prevent future similar attacks are 
crucial. If the incident involves a rootkit, the process 
involves identifying and recovering the original system 
image from previous backups or reinstalling the infected 
OS from scratch. In all cases, it is essential to validate that 
no malicious artifacts, processes, or configurations related 
to the incident are still present [89]. 

Once the malicious code is removed and the system 
services are restored, it is important to perform iterative 
vulnerability assessments to ensure that security and 
configuration flaws have been addressed. A review should 
be created based on this vulnerability assessment, 
ensuring a successful recovery phase that builds upon 
successful containment and eradication efforts. 
Understanding the full extent of the damage is crucial, and 
various logs such as system logs, IDS logs, configuration 
logs, and incident documentation can be utilized to 
support this endeavor. 

Concerning recovery, two main methods exist for: 
backward recovery and forward recovery [95]. Backward 
recovery involves restoring a system to a previous state 
that is known to be uncompromised. In such cases, 
backups created close to the incident time are used to 
minimize restoration time. Backward recovery is 
particularly useful when the extent of the damage is 
difficult to determine or when there is a lack of 
confidence, especially during the eradication phase. On 
the other hand, forward recovery involves undoing tasks 
based on logged information. By examining system logs 
that have recorded malicious activities, attempts can be 
made to reverse the effects caused by those activities. 

 
3.4.6 Incident-related Information Sharing 

  3.4.6.1 Outline 
As part of the core functionality that is performed by the 
Supervisory Agent (SA), the Assurance Platform facilitates 
the information sharing operations of the incident 
handling process. These include internal communications 
within a healthcare organization, as well as external 
interactions with other entities. Internal communications 
involve: i) the exchange information with the underlying 
Primary Agents (PAs) (via relevant Metadon instances), ii) 
fusion of events from various resources and potential 
reasoning (by the Assurance Platform itself) concerning 
the overall status, and iii) notification of the backend 
user/analyst regarding high level events and incidents 
with high severity (through the FVT component of the 
Unified Dashboard). External interactions involve: i) the 
exchange of information with other Supervisory Agents 
(instances of the Assurance Platform in other 
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organizations) concerning high level events or 
recorded incidents on interconnected assets (i.e., 
assets that are used in common or participate in a 
collaborative service between the organizations), as 
well as ii) the filtering of captured events that are 
related with Cyber Threat Intelligence (CTI) (e.g., 
identified malicious IPs, domains, and spam emails or 
signatures of malicious code) and are disseminated in 
the MISP AI4HEALTHSEC. 

 
  3.4.6.2 Internal information sharing between the 
different nodes within the same organization 

As mentioned before, the Assurance Platform at the 
backend (acting as the SA) collects information from 
the underlying Metadon instances at the edge systems 
(acting like the PA) and orchestrates the internal 
swarm-intelligence functionality (between the SA of 
an organization and its underlying PAs). 

Regarding the log collection by using PAs, the 
Metadon agents collect data from multiple resources 
and distribute the data either to the Metadon or to 
different nodes. 

Metadon agents can send data between them, 
meaning that in whichever system the agents are 
deployed the logs can be retrieved there or the 
opposite. Furthermore, the Metadon agents retrieve 
logs that can be sent to the Metadon service and store 
the indexes appropriately there. Therefore, the 
Metadon agents can be used for storing and managing 
the logs to the cloud service of AI4HEALTHSEC or to 
distribute to other third parties by using a peer-to-
peer connection between the agents. The 
communication is encrypted, and the connection is 
using regular HTTP protocol in order to bypass 
security limitations and maintain flexibility on the 
deployment. 

Listeners are used to inserting the logs collected 
on the AI4HEALTHSEC components into the 
Metadon’s database. Configuring a listener is basically 
defining a channel of HTTP or Kafka type, where the 
components will put through the data collected on 
each component. Moreover, all data will be 
normalized according to the pre-defined rules, and 
then inserted into Metadon’s database. 

The formal aspects of the reasoning behavior of 
the Platform are based on Event Calculus (EC), which 
is implemented with the Drools reasoning engine and 
the Java general programming language. The Platform 
exchanges messages with the rest AI4HEALTHSEC 
components via a broker. The content of the 
messages includes EC events that represent the 
security/privacy events/incidents that have been 
identified. 

Thereupon, the SA processes and reasons about 
these pieces of knowledge and can perform a series of 
actions: 

– Store the information in the Knowledge Base 

– Send information for selected type of events (e.g., 
incidents with high severity, metrics, etc.) to the 
Unified Dashboard 

– Send information for selected type of events concerning 
Cyber Threat Intelligence (CTI) to the MISP AI4HEALTHSEC 

– Perform pre-defined responsive actions (e.g., send email to 
the system administrator for an on-going attack) 

– Command Metadon instances to perform pre-defined 
responsive actions to their local system (e.g., increase 
security level proactively due to attacks and/or anomalies 
that are currently observed in other system areas) 

– Inform collaborating entities (other nodes of the swarm-
intelligence network) regarding on-going 
attacks/anomalies on their interconnected assets. 
Fig. 2 illustrates these interactions of the internal 

components within an organization. 
 

  3.4.6.3 External information sharing with other 
organizations in the swarm network 

This subsection documents the last action of sharing 
information between the different nodes of the swarm-
intelligence network. This is performed in the form of 
information exchange between the different SAs. Each 
node/entity has installed in its backend a relevant 
instance of the Assurance Platform, performing the main 
reasoning behavior of the SA. The Assurance Platform 
instances communicate by exchanging messages via Kafka 
brokers. Each instance has its own broker (which also 
facilitates the above-mentioned internal communications) 
and ‘listens’ to a queue, where other instances can send 
messages containing EC events. Then, the processing of 
knowledge is performed as described before and the 
aforementioned actions can be executed/triggered (i.e., 
store information, perform responsive actions, command 
PAs, notify user, or share information to the swarm-
intelligence network). The information sharing between 
different nodes is depicted in Fig. 3. 
 

 
 

Fig. 3 Information sharing between different organizations of 
the swarm network. 

 
The information in-transit is protected with Transport 

Layer Security (TLS). Self-signed certificates have been 
produced for each instance and the system administrator 
installs the certificates of the trusted entities in the 
Assurance Platform instance of his/her organization. The 
instances listen in pre-defined broker queues for incoming 
messages from those trusted nodes, applying also 
authorization properties. Information about the content 
of transmitted messages cannot be disclosed by 
adversaries and captured messages cannot be 
retransmitted (replay attack). Moreover, non-trusted 
entities cannot send information (the authentication fails, 
and their messages are dropped). 

 
  3.3.6.4 Information sharing to external stakeholders and 
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communities 
AI4HEALTHSEC will also support information sharing 
with external stakeholders. Specifically, the human 
operator of a SA will be able to collect CTI data and 
disseminate it in the MISP AI4HEALTHSEC, which is 
responsible to provide functionalities related to CTI 
exchange, integration with the EU-funded multi-
disciplinary research and innovation project 
CONCORDIA [96]. The SA deploys a MISP contributor 
service which gathers CTI data from the underlying 
system and the final message can be sent to the MISP 
AI4HEALTHSEC and therefore to the CONCORDIA’s 
community. 

CONCORDIA is part of the Cybersecurity 
Competence Network of EU. CONCORDIA strives for 
excellence and leadership in technology, processes, 
and services to create a user-centered EU-integrated 
cyber-security ecosystem, aiming to promote digital 
sovereignty in Europe. The cyber-security community 
includes CTI sharing organizations, such as ER-ISAC, 
EE-ISAC, EA-ISAC, the EU CSIRTs Network, ENISA, and 
EUROPOL [96]. One of the project’s outcomes includes 
a service to automatically detect a threat in the 
network using indicators of compromise provided via 
an instance of the MISP platform. 

As mentioned in the previous subsections, the 
Assurance Platform collects information concerning 
the underlying system of a healthcare organization, as 
well as the swarm-intelligence network. Then, the 
Platform can reason about the collected pieces of 
knowledge and perform related actions. One such 
action is to filter the recorded events and notify the 
MISP Contributor. This module provides the 
corresponding functionality that the Assurance 
Platform calls every time a relevant event is identified. 
Fig. 4 illustrates the information sharing between 
AI4HEALTHSEC and the CONCORDIA community. 

 
 

Fig. 4 Information sharing between AI4HEALTHSEC and 
CONCORDIA community. 

 
4 Demonstration in FHG-IBMT 

4.1 Piloting System Description 
FHG-IBMT is the main organization that is 

examined under this risk assessment process. It 
collects and maintains important biorepositories and 
provides human biomaterial for research purposes. 
FHG-IBMT also collects and stores human samples 
from specific cohorts of donors to monitor people's 
exposure to contaminants in the environment on 
behalf of the German Environment Agency UBA. Users 
of the system that access the main FHG-IBMT web-
application via Internet. 

Fig. 5 illustrates the main system architecture of 
the piloting testbed that was provided by FHG-IBMT 

and was utilized for the evaluation of the AI4HEALTHSEC. 
The system implements 5 main services: 

– Manage Application Users (e.g., create, update, delete 
simple users, admins, etc.); 

– Store samples’ data; 

– Store samples’ logistics; 

– Store data for sample storage; and 

– Store user data (e.g., sample owners, related sample 
operators/researchers, etc.). 
 
For the implementation of the main functionality, the 

core UBA-PVS server can run Windows or Linux OS and 
deploys Apache Tomcat v7 Webserver, PostgresSQL v9.2 
or 9.3, pgAdmin Tool, and JRE7. The user logins the system 
via a web browser (i.e., IE 11 (or higher) and Firefox 32 (or 
higher)). 

 
 

Fig. 5 Main architecture of the piloting testbed of FHG-IBMT. 
 

Moreover, 4 user roles are modelled. The Standard 
User only reads data (e.g., view data and export, execute 
queries, etc.). The Sample Agent writes on selected data 
sets (e.g., samples). The Sample Manager writes on 
sample-specific basis data (e.g., sample repository, sample 
kind, etc.) or deletes samples. The Application 
Administrator writes on the basis data and acts as a 
superuser of the system. 

4.2 Demo Deployment 
In this demonstration, possible cyberattacks were 
executed to the piloting assets. The security events were 
monitored using the Event Captors, the information was 
distributed to the related agents (PAs/SAs). Metadon 
aggregates the data, capable to transform the payloads 
and stores them to the Elasticsearch. That way the IDS 
alerts are possible to be parsed by the Assurance Platform 
and the other AI4HEALTHSEC components. 

A depiction of the use-case scenario is presented in 
Fig. 6. Several cyberattacks are performed, including: the 
execution of a DoS attack using hping3, an UDP Port 
Scanning using Nmap, on-line password guessing, identity 
theft, encrypting files with ransomware, etc. All these 
actions were successfully detected and mitigated by the 
system. 

The alerts generated by the intrusion detection 
mechanisms are retrieved and collected to the 
AI4HEALTHSEC as explained before. Then the events are 
parsed to the Assurance Platform and are visualized to the 
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Main Dashboard. The IDS alerts are defined using the 
following rules. The rules can be configured according 
to the needs, and the intention of the integration was 
to test a basic ruleset and then extend to a larger rule 
dataset. Automated responses can be also defined, as 
well as the alerting of affected organizations in the 
swarm network and the sharing of CTI with 
collaborating communities. 

 
 

Fig. 6 Demo deployment. 
 

4.3 Core Reasoning with rule-based logic 
As mentioned before, main automated detection and 
analysis processes is performed by the smart agents. 
Data gathering is accomplished via Beats and 
customized Event Captors. Then, the agents process 
these pieces of knowledge and reasons about the 
current status of the system. This includes the 
assessment of criteria or policies for security, privacy, 
or other properties, compliance with Service Level 
Agreements (SLAs), computation of metrics (e.g., 
service up-time, mean time to response (MTTResp), 
mean time to restore MTTRest, etc.), as well as attack 
assessment. 

Indicative use case scenarios are described below. 
The description is in EC and their implementation in 
Drools. All these examples are assessed 
simultaneously and can be customized or combined in 
order to tackle more use cases if required. Also, there 
are general rules that digest alerts coming from Snort 
(or other intrusion detection and alerting 
mechanisms). 
4.3.1 Confidentiality Property Criterion – The users 

access a service from a set of white-listed IPs 
A Filebeat or Auditbeat captures the user interaction 
with a service (or other resource). If a user access is 
recorded from a different IP, it can be due to some 
attack that manage to overcome the deployed 
defenses (e.g., firewall) and infiltrate the system. The 
EC theory for this assessment is consisted of 2 rules: 

– Rule 1: if there is a call request of the service 
(_serviceName) at some timepoint (_t) from a user 
(_userName) who access the system from an IP (_IP), 
and this IP is also denoted in the whitelist with the 
legitimate IPs (defined as a fluent), then record a 
success. 
 

Happens(Event(_e, call (_serviceName, _userName, 
_IP), _t, [_t, _t]) ˄ HoldsAt( Fluent(_f, IPsWL 

(_serviceName, _IPsList), _t, [_t, _t]) ˄ Contains(_IPsList, 
_IP) 

=> Initiates(Event(_e), Fluent(SuccessfullUse), _t) 

– Rule 2: if there is a call request of the service 
(_serviceName) at some timepoint (_t) from a user 
(_userName) who access the system from an IP (_IP), and 
this IP has not been denoted in the whitelist with the 
legitimate IPs (defined as a fluent), then record a violation. 
 

Happens(Event(_e, call (_serviceName, _userName, _IP), 
_t, [_t, _t]) ˄ HoldsAt( Fluent(_f, IPsWL (_serviceName, 
_IPsList), _t, [_t, _t]) ˄ ¬Contains(_IPsList, _IP) 

=> Initiates(Event(_e), Fluent(ViolatedUse), _t) 
 

4.3.2 Confidentiality Property & Privacy Criterions – A 
system resource (e.g., file or service call) is accessed 
only by a list of authorized users 

A Filebeat or Auditbeat captures the resource interaction 
with the system’s users. If an unauthorized user accesses 
the resource, it can be due to some attack (e.g., privilege 
escalation) that manage to overcome the deployed 
authorization techniques. The EC theory for this 
assessment is consisted of 2 rules: 

– Rule 1: if there is an access to a resource (_resourceName) 
at some timepoint (_t) from a user (_userName) and this 
user has also the access privileges to do so (defined as a 
fluent), then record a success. 
 

Happens(Event(_e, access (_resourceName, _userName), 
_t, [_t, _t]) ˄ HoldsAt( Fluent(_f, authorizedUsers 
(_resourceName, _usersList), _t, [_t, _t]) ˄ 
Contains(_usersList, _userName) 

=> Initiates(Event(_e), Fluent(SuccessfullUse), _t) 
 

– Rule 2: if there is an access to a resource (_resourceName) 
at some timepoint (_t) from a user (_userName) and this 
user has not the access privileges to do so (defined as a 
fluent), then record a violation. 
 

Happens(Event(_e, access (_resourceName, _userName), 
_t, [_t, _t]) ˄ HoldsAt( Fluent(_f, authorizedUsers 
(_resourceName, _usersList), _t, [_t, _t]) ˄ 
¬Contains(_usersList, _userName) 

=> Initiates(Event(_e), Fluent(SuccessfullUse), _t) 
 

4.3.3 Integrity Property Criterion – For every request on a 
specified service S2, there must have been called 
the service S1 first 

A Filebeat reads the logfile of two monitored services S2 
and S1, respectively. There is a criterion that the S1 must 
always be called before S2. If S2 has been called without 
the prior execution of S1, it can be due to an attack that 
managed to bypass the defined workflow or sequence 
(e.g., an SQL injection that requests data for users who are 
not logged in the system). The EC theory for this 
assessment is consisted of 2 rules: 

– Rule 1: if there is a call request of the service S2 at some 
timepoint (_t2) and there is also a relevant call on S1 (this 
is checked via the other event arguments which are the 
same for both events) at a past timepoint (_t1+ 
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SLA_Threshold), then record a success. 
 

Happens(Event(_e2, call(_S2, _opInst, _arg1, _arg2), 
_t2, [ _t2, _t2]) ˄ Happens( Event(_e1, call(_S1, 
_opInst, _arg1, _arg3), _t1, (_0, _t2]  

=> Initiates(Event(_e2), Fluent(SuccessfullCall), _t2) 
 

– Rule 2: if there is a call request of the service 
(_serviceName) at some timepoint (_t1) and there is 
not a relevant response (this is checked via the other 
event arguments which are the same for both events) 
within the acceptable time window (_t1+ 
SLA_Threshold), then record a violation. 
 

Happens(Event(_e2, call(_S2, _opInst, _arg1, _arg2), 
_t2, [ _t2, _t2]) ˄ ¬Happens( Event(_e1, call(_S1, 
_opInst, _arg1, _arg3), _t1, (_0, _t2]  

=> Initiates(Event(_e2), Fluent(ViolationCall), _t2) 
 
 

4.3.4 Integrity Property Criterion – There is only one 
active login session for each user on a service 

A Filebeat reads the logfile of a monitored service. 
There is a criterion that each user can have only one 
active login. If a user has more than one active 
sessions, this could be due to an attacker that has gain 
access to the system and is currently on-line. The 
sessions must be further checked by the system 
operator. The EC theory for this assessment is 
consisted of 2 rules: 

– Rule 1: if there is a new login in the service 
(_serviceName) for a specific user (_userName), there 
must have been recorded a logout event for every 
previous successful login. 
 

Happens(Event(_e1, login (_serviceName, _userName, 
_session1), _t1, [_t1, _t1]) ˄ Happens( Event(_e2, login 
(_serviceName, _userName, _session2), _t2, (_t1, _t2]) 
˄ Happens( Event(_e3, logout (_serviceName, 
_userName, _session1), _t3, (_t1, _t2)) 

=> Initiates(Event(_e2), Fluent(SuccessfullCall), _t2) 
 

– Rule 2: if there is a new login in the service 
(_serviceName) for a specific user (_userName) and 
there is a past logged in session that has not been 
ended yet, then record a violation. 
 

Happens(Event(_e1, login (_serviceName, _userName, 
_session1), _t1, [_t1, _t1]) ˄ Happens( Event(_e2, login 
(_serviceName, _userName, _session2), _t2, (_t1, _t2]) 
˄ ¬Happens( Event(_e3, logout (_serviceName, 
_userName, _session1), _t3, (_t1, _t2)) 

=> Initiates(Event(_e2), Fluent(ViolationCall), _t1) 
 

4.3.5 Availability property SLA – For every request on 
a specified service, there is a response within a 
specified time window 

A Filebeat reads the logfile of a monitored service. 
There is a Service Level Agreement (SLA) that the 
service must respond each request within a specified 

period. Failure to deliver the service on time could be to 
congestion, system failure or breakdown, and/or 
malicious disruption (e.g., flooding attacks). The EC theory 
for this assessment is consisted of 2 rules: 

– Rule 1: if there is a call request of the service 
(_serviceName) at some timepoint (_t1) and there is also a 
relevant response (this is checked via the other event 
arguments which are the same for both events) within the 
acceptable time window (_t1+SLA_Threshold), then record 
a success. 
 
Happens(Event(_e1, call (_serviceName, _serviceInst, 

_arg1, _arg2), _t1, [_t1, _t1]) ˄ Happens( Event(_e2, res 
(_serviceName, _ serviceInst, _arg1 , _arg2), _t2, [_t1, 
_t1+SLA_Threshold]) 

=> Initiates(Event(_e2), Fluent(SuccessfullResponse), 
_t2) 

 

– Rule 2: if there is a call request of the service 
(_serviceName) at some timepoint (_t1) and there is not a 
relevant response (this is checked via the other event 
arguments which are the same for both events) within the 
acceptable time window (_t1+SLA_Threshold), then record 
a violation.. 
 

Happens(Event(_e1, call (_serviceName, _serviceInst, 
_arg1, _arg2), _t1, [_t1, _t1]) ˄ ¬Happens( Event(_e2, res 
(_serviceName, _ serviceInst, _arg1 , _arg2), _t2, [_t1, 
_t1+SLA_Threshold]) 

=> Initiates(Event(_e2), Fluent(ViolatedResponse), _t2) 
 

4.3.6 Availability property SLA – A service must be 
available and must not be down for more than a 
pre-defined threshold 

A Heartbeat or customized Event Captor (i.e., get the 
HTTP status) that checks the status of a service. There is a 
Service Level Agreement (SLA) that the service must be up 
and running, and in case of unavailability, the service 
administrator/operator has a maximum pre-defined time 
window (e.g., 1 hour) to fix the problem and restore the 
proper operation. Service unavailability could be to 
congestion, system failure or breakdown, and/or 
malicious disruption (e.g., Denial of Service (DoS) attack). 
The EC theory for this assessment is consisted of 4 rules: 

– Rule 1: if the status check for a service (_serviceName) at 
some timepoint (_t1) is normal, then record a success. 
 

Happens(Event(_e, serviceStatus (_serviceName, 
“Available”), _t, [_t, _t]) 

=> Initiates(Event(_e), Fluent(AvailableService, 
_serviceName), _t) 

– Rule 2: if the status check for a service (_serviceName) at 
some timepoint (_t1) is unavailable, then record a violation 
and start checking against the SLA threshold (Rules 3 and 
4). 
 

Happens(Event(_e, serviceStatus (_serviceName, 
“Unavailable”), _t, [_t, _t]) ˄ ¬HoldsAt( Fluent(_f, 
UnavailableService (_serviceName), _t, [_t, _t]) 

=> Initiates(Event(_e), Fluent(UnavailableService, 
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_serviceName), _t) 
 

– Rule 3: if the service (_serviceName) was unavailable 
and the operation was restored within the pre-defined 
time window (_PreDefinedThreshold) of the SLA, then 
record a success. 
 

Happens(Event(_e, serviceStatus (_serviceName, 
“Available”), _t2, [_t2, _t2]) ˄ HoldsAt( Fluent(_f, 
UnavailableService (_serviceName), _t1, [_t1, _t2]) ˄ 
eval(_t2-_t1<=_PreDefinedThreshold) 

=> Terminates(Event(_e), Fluent(_f), _t2) ˄ 
Initiates(Event(_e), Fluent(SuccessfulServiceRestore, 
_serviceName), _t2) 

 

– Rule 4: if the service (_serviceName) was unavailable 
and the operation was not restored within the pre-
defined time window (_PreDefinedThreshold) of the 
SLA, then record a violation. 
 

Happens(Event(_e, serviceStatus (_serviceName, 
“Available”), _t2, [_t2, _t2]) ˄ HoldsAt( Fluent(_f, 
UnavailableService (_serviceName), _t1, [_t1, _t2]) ˄ 
eval(_t2-_t1>_PreDefinedThreshold) 

=> Terminates(Event(_e), Fluent(_f), _t2) ˄ 
Initiates(Event(_e), Fluent(ViolatedServiceRestore, 
_serviceName), _t2) 

 
4.3.7 Integrity and Availability property – Observe 

potential ransomware activity on system 
resources 

When a ransomware is activated, it will start to 
recursively read and encrypt high volumes of data. A 
customized Event Captor periodically observes (e.g., 1 
minute) the volume of files in a folder that are 
accessed within the current time window. If this 
volume goes beyond a pre-defined threshold (e.g., 
100 accesses), notify for a potential ransomware 
activity. The EC theory for this assessment is consisted 
of 1 rule: 

– Rule 1: if the file access volume check for a folder with 
valuable data (_folderName) at some timepoint (_t) is 
beyond a pre-define threshold 
(_PreDefinedThreshold), then record a violation. 
 

Happens(Event(_e, accessVolume (_folderName, 
_measuredVolume), _t, [_t, _t]) ˄ 
eval(_measuredVolume >_PreDefinedThreshold) 

=> Initiates(Event(_e), 
Fluent(SuspiciousRansomwareActions, _folderName), 
_t) 

 
4.3.8 Metrics – Compute usage metric 
The previous rules can be further extended (mostly 
the Availability criterions) in order to estimate 
measurable variables for system or service usage. 
Indicative examples include: i) the total up-time for a 
monitored period, ii) the mean time to respond, and 
iii) the mean time to restore. The EC theory for these 
assessments is consisted of 6 rules, respectively. 

 
  4.3.8.1 Total up-time for a service 

– Rule 1: if there is a new monitoring period (e.g., every year 
or month), then initiate the total up-time (maintained as 
the fluent totalUpTime) for the service (_serviceName). 
 

Happens(Event(_e, newPeriod (_serviceName), _t, [_t, _t]) 
˄ HoldsAt(Fluent(_f, totalUpTime, _serviceName, _value), 
_t) 

=> Terminates(Event(_e), Fluent(_f), _t) ˄ 
Initiates(Event(_e), Fluent(totalUpTime, _serviceName, 0), 
_t) 

– Rule 2: if an examined service (_serviceName) is up and 
running at some timepoint (_t) within the current 
monitoring period (e.g., running year), then update the 
total up-time metric accordingly (maintained as the fluent 
totalUpTime). 
 

Happens(Event(_e, serviceStatus (_serviceName, 
“Available”), _t2, [_t2, _t2]) ˄ HoldsAt(Fluent(_f, 
totalUpTime, _serviceName, _value), _t1) 

=> Terminates(Event(_e), Fluent(_f), _t) ˄ 
Initiates(Event(_e), Fluent(totalUpTime, _serviceName, 
(_t2 – _t1 + _value), _t) 

 
  4.3.8.2 Mean Time To Respond (MTTResp) 

– Rule 1: if there is a new monitoring period (e.g., every year 
or month), then initiate the MTTResp (maintained as the 
fluent MTTResp) for the service (_serviceName). 
 

Happens(Event(_e, newPeriod (_serviceName), _t, [_t, _t]) 
˄ HoldsAt(Fluent(_f, MTTResp, _serviceName, _value), _t) 

=> Terminates(Event(_e), Fluent(_f), _t) ˄ 
Initiates(Event(_e), Fluent(MTTRep, _serviceName, 
func_InitMTTResp(_serviceName)), _t) 

(func_InitMTTResp is a method in Java that initializes 
an object that maintains an internal data structure for the 
response times of the service (_serviceName) and 
calculates the MTTResp. Initially, it is 0) 

– Rule 2: if there is a new response (_res) on a previous call 
(_call) for a service (_serviceName), then update the 
MTTResp accordingly (maintained as the fluent MTTResp). 
 

Happens(Event(_e2, res (_serviceName, sessionID), _t2, 
[_t2, _t2]) ˄ Happens(Event(_e1, call (_serviceName, 
sessionID), _t1, [_t1, _t2)) ˄ HoldsAt(Fluent(_f, MTTR, 
_serviceName, _value), _t1) 

=> Terminates(Event(_e2), Fluent(_f), _t2) ˄ 
Initiates(Event(_e2), Fluent(MTTResp, _serviceName, ( 
func_UpdateMTTResp(_serviceName, _t2 – _t1)), _t2) 

(func_UpdateMTTResp is a method in Java for the 
object that maintains the response times of the service 
(_serviceName) in an internal data structure, adds the 
new response time (_t2 – _t1), and calculates the 
MTTResp) 

 
  4.3.8.3 Mean Time To Restore (MTTRest) – In combination 
with Availability criteria of the subsection 4.3.6) 

– Rule 1: if there is a new unavailability period for a service 
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(_serviceName), then initiate the MTTRest (maintained 
as the fluent MTTRest) metric. 
 

Happens(Event(_e, serviceStatus (_serviceName, 
“Unavailable”), _t, [_t, _t]) ˄ ¬HoldsAt( Fluent(_f1, 
UnavailableService (_serviceName), _t, [_t, _t]) ˄ 
HoldsAt(Fluent(_f2, MTTRest, _serviceName, _value), 
_t) 

=> Terminates(Event(_e), Fluent(_f2), _t) ˄ 
Initiates(Event(_e), Fluent(MTTRest, _serviceName, 
func_InitMTTRest(_serviceName,_t)), _t) 

(func_InitMTTRest is a method in Java that 
initializes an object that maintains an internal data 
structure for the unavailable periods of the service 
(_serviceName). The metric starts to count when the 
unavailable period is observed (_t) and will calculate 
the MTTRest when the service is later restored) 

 

– Rule 2: if a previously unavailable service 
(_serviceName) is now restored, then update the 
MTTResp accordingly (maintained as the fluent 
MTTResp). 
 

Happens(Event(_e, serviceStatus (_serviceName, 
“Available”), _t2, [_t2, _t2]) ˄ HoldsAt( Fluent(_f, 
UnavailableService (_serviceName), _t1, [_t1, _t2]) ˄ 
HoldsAt(Fluent(_f, MTTR, _serviceName, _value), _t1) 

=> Terminates(Event(_e2), Fluent(_f), _t2) ˄ 
Initiates(Event(_e2), Fluent(MTTResp, _serviceName, ( 
func_UpdateMTTRest(_serviceName, _t2 – _t1)), _t2) 

(func_UpdateMTTRest is a method in Java for the 
object that maintains the unavailable times of the 
service (_serviceName) in an internal data structure, 
adds the new restore time (_t2 – _t1), and calculates 
the MTTRest) 

 

4.4 Enhance Reasoning with ML 
Attacks prediction concerns the identification of 

possible scenarios of future attacks through 
forecasting models. As it has already mentioned, this 
sub phase includes reasoning on the fused data and 
identification of on-going and future attacks. During 
this phase, the fused data about the situation of the 
system are evaluated by comparing them with models 
of normal operation and attack scenarios. 

An analysis of threats and vulnerabilities was 
carried out using ML algorithms [35], including the 
BERT neural language model and XGBoost. These 
models were utilized to gather current information 
from Natural Language documents widely accessible 
online, while simultaneously assessing the severity of 
the detected threats and vulnerabilities affecting the 
healthcare system. The practical application of this 
method involved analyzing cybersecurity news from 
the Hacker News website and examining reports on 
CVEs. 

Concerning network and computer security, open 
datasets were utilized from [97], covering datasets for 
intrusion detection from 1999-2020, like the ones 
from WUSTL EHMS 2020 [98] and DARPA [99]. These 

datasets contain traces from IP, TCP, UPD, and ICMP 
protocols, including several types of attack, like Denial of 
Service (DoS), User to Root (U2R), Remote to Local (R2L), 
and Probe or Scan. Therefore, ML models were trained 
based on Neural Networks (Multilayer Perceptron 
Classifier), which could be utilized for the evaluation of 
network traffic. Moreover, models from the normal 
operation of the AI4HEALTHSEC piloting systems were 
used, including User and Entity Behavior Analytics (UEBA). 

Thereupon, the analysis and decision-making aspects 
of the AI4HEALTHSEC can be further enhanced with 
system and security analytics. The Agents can leverage its 
ML elements in order to support fault and attack 
prediction functionality. 

 
4.4.1 System Faults Forecasting 
For example, once there are adequate ML data (i.e., for 
training and evaluation), the ML and AutoML modules 
could forecast service or component breakdowns and 
upcoming unavailability events based on the historic 
information that has been recorded for the specific 
service or component. The prediction of such incidents 
could further fortify the abovementioned incident 
assessment procedures and trigger proactive actions to 
reduce their occurrence. 

 
4.4.2 Attack Forecasting based on IOA 
Similarly, the agents could evaluate the ongoing system 
operation and identify Indicators Of Attack (IOA), prior the 
Indicators Of Compromised (IOC). For instance, an 
attacker may be performing an on-line guessing attack for 
a username on one of the monitored services. This could 
be captured in the form of several subsequent failed login 
attempts (e.g., admin/admin, admin/12345678, etc.). The 
agent will raise a warning for the specific username (i.e., 
admin). If the attack is successful, eventually the attacker 
will discover a valid username/password pair and there 
will be a successful login attempt. Without analytics 
functionality, we would have reasoned that this final 
event constitutes a legitimate login, as the used 
credentials are the correct ones. However, with the on-
line guessing attack raised for the username admin during 
the current time-window, the system successfully 
identifies that this is an attack. Mitigation actions could be 
performed afterwards (e.g., block the username account 
and the attacker, inform the platform operator and the 
user for the compromised credentials, etc.). 

 
4.4.3 Attack forecasting based on Anomaly detection and 

UEBA 
The integrated Assurance Platform with the rule-based 
monitoring and the ML enhancements can be also utilized 
for anomaly detection activities. The modern User and 
Entity Behavior Analytics (UEBA) is such a case. UEBA 
models are trained in order to detect the activities of a 
user or other system entity. If the runtime behavioral 
patterns do not comply with the previous behavior, an 
anomaly is detected. As an indicative scenario for 
AI4HEALTHSEC, it is considered the protection SSH login 
service of the users to platform or piloting healthcare 
services. Usually, the employees of an organization or the 
users of a service (e.g., email) access the service from 
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specific devices, locations, and/or working hours. For 
example, the web services of public hospital in 
Heraklion in Greece should be accessed by IP locations 
in Heraklion. Based on his/her routine, if a user or 
employee logins a service from another region or 
country (i.e., Maldives, China), this could be a 
suspicious event. Popular sites (Google, Facebook, 
LinkedIn, etc.) detect such events for their services. At 
initialization, the ML parses the organization’s logfiles 
and discloses the usual IPs, devices (e.g., based on the 
MAC details), working hours, and other pieces of 
information that are utilized by the current users, as 
well as other UEBA-related information. At runtime, 
the Monitor will examine every successful service 
login and request the AutoML module to check if the 
login action for the specific user is complying with the 
related UEBA profile. The EC theory for these 
assessments is consisted of 3 rules. 

– Rule 1: if there is a new login to the service 
(_serviceName), then inform the AutoML module to 
assess the event. This is performed by the Executive 
Event ‘Apply_ML’, which will examine in the internal 
database if there is a ready ML model for this user 
(_userName) and service (_serviceName), and if yes, 
then it will send a relevant event/request to the 
AutoML. 
 

Happens(Event(_e1, login (_serviceName, _userName, 
_loginTime, _IP, …), _t, [_t, _t])) 

=> HappensExec(Event(_e2, Apply_ML 
(_serviceName, _userName, _loginTime, _IP, …), _t, 
[_t, _t])) 

– Rule 2: If there is a service login for a username 
(_userName) and a ML check login confirmation with 
high confidence (probability >= 0.9), then record a 
successful login. 
 

Happens(Event(_e1, login (_serviceName, _userName, 
_loginTime, _IP, …), _t, [_t, _t])) ˄ Happens(Event(_e2, 
MLCheckLogin (_serviceName, _probability), _t2, [_t2, 
_t2]) ˄ eval(_probability >= 0.9) 

=> Initiates(Event(_e2), Fluent(SuccessfulLogin, 
_serviceName, _userName), _t) 

 

– Rule 3: If there is a service login for a username 
(_userName) and a ML check login confirmation with 
low confidence (probability < 0.9), then record a 
suspicious login. 
 

Happens(Event(_e1, login (_serviceName, _userName, 
_loginTime, _IP, …), _t, [_t, _t])) ˄ Happens(Event(_e2, 
MLCheckLogin (_serviceName, _probability), _t2, [_t2, 
_t2]) ˄ eval(_probability < 0.9) 

=> Initiates(Event(_e2), Fluent(ViolatedLogin, 
_serviceName, _userName), _t) 
 

4.5 Incident Handling Actions 
Towards the first prototype of the incident handling 
process, Metadon and the Assurance Platform can 
automatically perform some pre-defined response 

strategies to specific problematic or malicious cases. As 
sketched in the introductory sections, this comes in the 
form of parameterized scripts for Metadon and routines 
of JAVA code for the Assurance Platform. Moreover, the 
Assurance Platform, when performing part of the internal 
swarm intelligence, can command the local Metadon 
instances and trigger some of these actions. In a semi-
automated fashion, this process can be also activated by 
the end user of the AI4HEALTHSEC platform via the 
provided GUI. Eventually, the user can combine 
information from the incident handling and risk 
assessment processes and perform manually complex 
containment, eradication, and recovery procedures that 
are not covered by the automated/semi-automated 
modules. 

Indicative response actions that are considered for the 
first implementation of the incident handling process, 
include: 

– Metadon (PAs): 

• Script to change firewall rules and mitigate Denial of 
Service (DoS) attacks or isolate compromised equipment. 

• Send email to local system user/operator when a specified 
malicious or suspicious action is observed. 

– Assurance Platform (SAs): 

• Send email/message to platform user/operator when a 
specified malicious or suspicious action is observed. 

• Inform collaborating organizations of the swarm network. 

• Gather information for identified security incidents and 
prepare a draft CTI message. 

– End user: 

• Utilize FVT to perform a digital forensics analysis for 
identified security incidents. 

• Finalize the CTI elements and authorize their distribution 
to the rest community (e.g., via the MISP service). 

• Perform forward or backward recovery actions on main 
computerized assets. 

 
Fig. 7 depicts the output of FVT and the Unified 

Dashboard, where the user can review all these details. 
 

 
 

Fig. 7 FVT and Unified Dashboard. 
 

4.6 CTI Reasoning 
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The MISP AI4HEALTHSEC module, a MISP instance, 
provides functionalities related to cyber-security 
information and deploys the connection between 
AI4HEALTHSEC with the central MISP instance 
managed by the CONCORDIA project, which is the 
largest major European cyber-security consortium and 
has a mission to establish an EU-integrated cyber-
security ecosystem for digital sovereignty in Europe. 

The EC theory for the filtering of MISP-related 
events is consisted of 3 rules. Rules 1 and 2 maintain a 
list of MISP-related events, by adding and removing 
event types in the list, respectively. Rule 3 is 
performing the actual filtering functionality for each 
occurred event and the call of the MISP Contributor 
internal API to share the information. 

– Rule 1: if there is a new request 
(add_to_MISP_events_list) to include an event type 
(_eventName) in the filtering mechanism, then update 
the list (_hashset) accordingly. The list is a hashset and 
will add the event type only once. 
 

Happens(Event(_e, 
add_to_MISP_events_list(_eventName), _t, [_t, _t])) ˄ 
HoldsAt(Fluent(_f, MISP_events_list(_hashset)) 

=> _hashset.add(_eventName) 
 

– Rule 2: if there is a new request 
(remove_to_MISP_events_list) to remove an event 
type (_eventName) from the filtering mechanism, then 
update the list (_hashset) accordingly. The list is a 
hashset datatype and will remove the event type only 
if it has been previously added. 
 

Happens(Event(_e, 
remove_to_MISP_events_list(_eventName), _t, [_t, 
_t])) ˄ HoldsAt(Fluent(_f, MISP_events_list(_hashset)) 

=> _hashset.remove(_eventName) 
 

– Rule 3: If there is recorded a new event (_e) and its 
event type (_e.name) is included in the MISP-related 
events (_f._hashset), then call the MISP 
Contributorclient internal API to share the related 
information. 
 

Happens(Event(_e), _t, [_t, _t])) ˄ HoldsAt(Fluent(_f, 
MISP_events_list(_hashset)) ˄ 
eval(_hashset.contains(_e.name)) 

=> {Call MISP client internal API to send _e} 
 
When relevant events are recorded by the agents, 

the event is disseminated automatically to the 
AI4HEALTHSEC MISP module. The events can be also 
disseminated automatically to the CONCORDIA MISP, 
but in general it is preferred that the analyst will 
review the overall information, form an incident 
report, and define the sharing approach. 

Fig. 8 depicts the dissemination of information 
from AI4HEALTHSEC to the CONCORDIA community. 

 

 
 

Fig. 8 Sharing Events between MISP AI4HEALTHSEC and MISP 
CONCORDIA. 

 
5 Discussion & Future Directions 
Sharing Cyber Threat Intelligence (CTI) has emerged as a 
promising approach to raise situational awareness among 
stakeholders and tackle cyber-threats proactively rather 
than reactively [100]-[101]. Organizations may be required 
to adopt a threat intelligence program and share 
information to survive current and future attacks. Failure 
to share information about known threats may result in 
stakeholders being held responsible for breaches caused 
by those threats. The primary objective of sharing threat 
intelligence is to promote situational awareness among 
stakeholders, enabling them to swiftly implement 
remedies for emerging threats and vulnerabilities. CTI can 
also help stakeholders in making tactical decisions. 
However, implementing a CTI program that can consume 
and disseminate information in a timely manner is a 
significant challenge for practitioners. Furthermore, 
stakeholders face difficulties in making CTI relevant to 
their system. One of the most significant challenges faced 
by practitioners before sharing their CTI is how to 
comprehend the information and apply its remedy. 
Stakeholders prefer an automated and effective sharing 
process, but lack of models and tools makes it difficult 
[102]. However, sharing information about vulnerabilities 
through manual means, such as stakeholder-to-
stakeholder sharing or through trusted groups like an 
ISAC, is still a common approach to create situation 
awareness among stakeholders and quickly alert them to 
threats. Yet, manual sharing can be ineffective due to slow 
sharing, errors during processing, or subjective filtering. 
Automating some processes could enhance the 
effectiveness of CTI sharing. CTI sharing occurs on a global 
scale, but different laws and regulations across countries 
create challenges. The survey in [29] identifies current 
challenges that impede the sharing process, such as trust, 
reputation, relevance, anonymity, timeliness, and data 
interoperability. Before critical threat intelligence is 
shared, trusted relationships must be established. 
Governance, management, policies, and legal factors may 
also impact CTI sharing. Though most sharing occurs on a 
national level, international exchanges are gaining 
momentum. Challenges regarding human behavior, 
cultural and language barriers, and incentives are also 
discussed. Organizations need to invest time and 
resources into understanding the importance of CTI 
sharing programs and building them for the future [29]. 
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More and more, cyber-attacks are causing harm to 
businesses by exploiting vulnerabilities in networked 
manufacturing machines. In certain instances, these 
attacks on vital industrial equipment have the ability 
to compromise the overall business model. It is a 
competitive advantage to identify and assess in 
advance the primary assets that are at risk of cyber-
attacks and the potential business consequences [2]. 

The private and public sectors are increasingly 
interested in using AI to address cyber-security 
challenges. Market projections suggest that the AI 
cyber-security market will experience tremendous 
growth, rising from $1 billion in 2016 to an estimated 
$34.8 billion by 2025. AI is specifically mentioned in 
the latest national cyber-security and defense 
strategies of various governments. Efforts to establish 
new standards and certification procedures to build 
trust in AI are also underway worldwide. However, 
trusting AI in security/privacy is a double-edged sword 
[102]. AI in cyber-security has its advantages and 
disadvantages. While it can enhance cyber-security, it 
can also expose AI applications to new forms of 
attacks (e.g., semantic attacks [103]), creating serious 
security threats. We suggest that having complete 
trust in AI for cyber-security is not justified, and to 
minimize security risks, it is essential to have some 
form of control to guarantee the use of 'reliable AI' for 
cyber-security. The study in [102] suggests three 
roadmaps in order to improve the AI applications for 
cyber-security and improve their robustness against 
wily manipulation: i) promote in-house development 
as most common types of attacks are accommodated 
by the use of commercial solutions, ii) enhance the 
datasets with adversarial training, and iii) perform 
parallel and dynamic monitoring. AI4HEALTHSEC 
stipulates with these ideas and implements such 
functionality (i.e., in-house development, ML 
procedures and AI decision-making procedures that 
takes into account the potential infiltration by 
adversaries, and continuous monitoring of the 
involved system components). 

Nonetheless, CTI cannot resolve all cyber security 
problems. The are many limitations of current CTI 
solutions (i.e., countering zero-day attacks [61]-[63]), 
as well as obstacles that need to be overcome (e.g., 
CTI incorporation rate, especially for organizations 
with low or very low cyber-security budget and culture 
that can be found in a supply-chain ecosystem, timely 
sharing of information for wily actions and trends). 
The AI4HEALTHSEC approach tries to tackle these 
issues. The overall incident handling operation can 
detect malicious campaigns from their early 
reconnaissance phase to their actual execution and 
exploitation functions. The organization is becoming 
aware of the danger and the human operator along 
with the automated analysis elements could 
potentially help in identifying new attacks and hacker 
tactics. The automated and semi-automated process 
for analysis and information sharing could enhance 
the robustness of supply-chains, even when small 
organizations with low security budget and expertise 
are engaged. 

Moreover, modern approaches are highlighting the 
need to share malicious patterns and behavioral models, 
not just data or information of low value [104]-[105]. This 
is also something that could be supported by our 
methodology in the modern Cyber Threat Intelligence for 
“Things” landscape [60], [106]. 

SHERPA is an EU funded project [107] which 
investigates the role of AI and Big Data analytics in Smart 
Information Systems (SIS) and how they are impacting 
ethics and human rights. They use of SIS in cyber-security 
is one of the examined domains. It is concluded that 
currently there is comparatively little work on this aspect, 
for reasons like the danger of false positives and 
negatives, the relatively low intelligence of existing 
systems, and the high diversity of attacks and malicious 
tactics. 

Moreover, several ethical issues are raised from the 
adaptation and automation of cyber-security with AI, such 
as: the difficulty is supporting the proper informed 
consent procedures for users or other involved people, 
protection from harm, disclosure of vulnerabilities, biases, 
the nature of hacking, trust and transparency of the AI/ML 
algorithms, the necessity for a risk assessment in 
cybersecurity, responsibility between companies, 
government and users, lack of clear codes for 
international practice, as well as the issue of monetization 
(how far can one ethically go to monetize customer’s 
data). 

Despite these issues, there are valid reasons to 
consider employing SIS in cybersecurity. Their primary 
utility lies in examining systems for recognized attacks or 
unusual behavior patterns that strongly suggest a cyber-
attack. When paired with a human operator who reviews 
any warnings to decide on the appropriate response, this 
integrated human-machine security system can be quite 
effective. However, it still encounters challenges related 
to automation bias and a high number of false alarms. 

AI4HEALTHSEC is also concerning about those issues 
and have come in similar conclusions in terms of biased 
and false inference results of fully automated systems, 
lack of well-established methodologies for international 
cooperation, privacy concerns, as well as security and new 
opportunities and options for attackers on the AI 
counterparts themselves [108], [109], [87]. Therefore, the 
proposed solution for incident handling is mostly focused 
in identifying known vulnerabilities and abnormalities, 
while keeping the human operator in the security loop. 
Well-established methodologies for CTI modelling and 
sharing are supported in an attempt to enhance the effort 
of international collaboration and interoperable practices. 
Anonymization of data can be performed with the 
CHIMERA module, while the security of the AI4HEALTHSEC 
Platform itself has also been taken into account. 

Finally, AI4HELATHSEC adopted rule-based methods 
for the implementation of the core AI reasoning. Other 
alternatives can be examined as well, like policy-based 
languages (e.g., [110]-[112]). These may include 
programming or specification languages designed to 
define policies that govern the behavior of AI systems. 
Such languages are crucial in contexts where AI systems 
need to make decisions based on a set of predefined rules 
or policies, ensuring that the AI behaves in a manner that 
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is consistent, predictable, and aligned with 
organizational or ethical guidelines. They are 
particularly important in areas such as access control, 
network management, autonomous systems, and any 
domain where AI systems interact with humans or 
make autonomous decisions. Therefore, incorporating 
such solutions in AI development helps in imposing a 
structured framework for AI behavior, ensuring that AI 
systems adhere to specified norms and regulations, 
and facilitating transparency and accountability in AI 
operations. 

 
6 Conclusion 
Cyber-security is one of the hot research topics at the 
time. Warfare and continuous attacks on global 
supply-chains and networks are making the protection 
of critical and other ICT infrastructures essential. This 
paper presents a swarm-intelligence approach for the 
automation of: i) CTI incorporation, ii) dynamic risk 
assessment, iii) continuous monitoring, evaluation, 
and response to ongoing events, and iv) post-incident 
actions and feedback. Recent advancements of CTI 
technologies and models are marshaled (i.e., MISP, 
CVEs, STIX, etc.) with AI/ML automating the decision-
making processes. The demonstration on healthcare 
settings reveals the effectiveness of the system in 
detecting and responding to attacks. Incorporating in 
a fast pace the latest distributed CTI, helps in 
advancing an organization’s intelligence very quick 
and decreasing the time to detect and mitigate new 
(known) attacks. Moreover, the integrated ML 
solutions (e.g., UEBA models) can defend the system 
against some zero-day attacks, disclosing wily activity 
elements in a semi-automated fashion, which are 
immediately shared with CTI communities, limiting the 
attacker’s effectiveness and benefits. Although, the 
solution has been deployed and tested in the 
healthcare domain, it is general and can be applied in 
other sectors as well. 
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