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Abstract:
Before now, models have not been successful in predicting the rapid growth of

rocky cores of gas giant planets at large separations from their host stars. Timescales
for growth have far outstripped the lifetime of the gaseous disk surrounding the young
star, creating a paradox between the need for the core to accrete material and the
depleted supply of gas and dust. I present a model for planetary core accretion taking
into account the effect of surrounding gas on the dynamics between the core and the
accretable material, thus altering the characteristics of the effective cross section of
accretion of the planet. By replacing the Hill radius with a wind shearing (WISH)
radius, which tracks the point at which a small particle is not sheared away from
a core by differential gas drag force, and by imposing additional energy constraints
which determine whether a particle will successfully decouple from the gas during its
encounter with the core, I recalculate the timescales of growth of a planetary core
under a number of varying parameters. I apply the results to the A-type HR8799 star
system, including HR8799b, c, and d, roughly 10MJ planets located at a separation
of 68, 38, and 24 AU, respectively. Using the model, I reduce the “last doubling”
timescales of growth predicted by classical gravitational focusing models by a factor of
1000, from 107 years to 104 years for HR8799b, c, and d, placing timescales of growth
in all three cases within acceptable limits to agree with the lifetime of a gaseous disk
and the deduced lifetimes of the planets. These results place within the realm of
possibility that these 3 planets are formed by core accretion instead of gravitational
instability. In exploring the timescales for growth of planetary cores in systems with
varying parameters such as star size, disk density, and dust particle size distributions, I
provide a model for predicting the possibility of driftless formation of a gas giant given
the protoplanetary system’s characteristics, which will help in future observational
exoplanet discovery work.



Contents

1 Introduction 4
1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Limits of Current Knowledge of Planet Formation . . . . . . . . . . . . . . . . . . . 5
1.3 Brief Overview of Core Accretion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Brief Overview of Gravitational Instability . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Recent Observations – HR8799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Model using Gravitational Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Competing Models in Planetary Accretion . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8 Layout of the Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Background Physics 21
2.1 Derivation of the Hill Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Radius of Accretion in Gas-Free Gravitational Focusing . . . . . . . . . . . . . . . . 22
2.3 Derivation of Scale Height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Orbital Velocity Change Due to Presence of Gas . . . . . . . . . . . . . . . . . . . . 27
2.5 WISH Radii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Understanding Drag Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.1 λ
R � 1 (Fluid Phase) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.2 λ
R > 1 (Diffuse Phase) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Understanding Particle Capture in the Presence of Gas . . . . . . . . . . . . . . . . 35
2.7.1 Stable Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7.2 Energy Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 Velocity Adjustment During Encounters . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.9 A Note on Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Creating the Model 42
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.3 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 Determining Stable Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Calculating the Energy Restrictions . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.3 Determining Accretablility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.4 Calculating Growth Timescale . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Exploring Parameter Space 65

2



CONTENTS 3

5 Case Study – HR8799 71
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Choosing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Conclusion 81



Chapter 1

Introduction

1.1

One of the major focuses in astronomy has been to study our own solar system and the planets

within it. We tackle problems such as the existence of gas giants like Jupiter and rocky planets

like Earth, Mars, and Mercury to develop models that predict the huge diversity of astronomical

objects in our immediate vicinity. Part of innate human curiosity is the desire to know where we

came from, how our world came to be, and where it might be going. Studying planet formation

is like studying the history of our world. Yet planet sizes and compositions vary, from tiny rocky

planets to huge puffed-up balls of gas, planets on the verge of the ability to carry out nuclear fusion

in their cores.

The recent development of projects like NASA’s Kepler mission (Borucki et al., 2010) have

spurred a newfound fascination with planetary studies by showing the variety of planetary systems,

as well as exposing the fact that our own solar system may not be anything special. We have found

that 70% of stars have planets with orbital periods at or less than Earth’s (Fressin et al., 2013), a

fact that holds promise for one day discovering life on other planets. In addition, Kepler has found

many systems with familiar properties. In 2011, papers announced the discovery of the first rocky

planet (Batalha et al., 2011), the discovery of a six-planet system (Lissauer et al., 2011) and the

first roughly Earth-sized planets in 2012 (Fressin et al., 2012).

Similar to our own solar system, in most systems, the gas giants – if there are any – are

located farther out than the rocky planets. According to Kepler’s data, less than 3% of stars have

4
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at least one gas giant within 1 AU (Batalha et al., 2013). Gas giants are perhaps some of the

most interesting planets to study, as their huge size requires rapid accretion of gas early in the

development of the solar system before available gas is blown away, likely by photo-evaporation

(Alexander et al., 2006), on timescales of roughly a few million years (Jayawardhana et al., 2006).

(a) An image of the circumstellar disk surrounding the young star AB Auri-
gae. Image taken using AEOS telescope on Haleakala, Hawaii. Image taken
from Oppenheimer et al., 2008

(b) An image of present-
day Jupiter, courtesy of
NASA/ESA/Hubble Heritage
Team (AURA/STScI)

Dust and gas surrounding a young star provides the raw materials for the planets in that system.

Image (a) above shows a typical intensity distribution of a circumstellar disk surrounding a young

star. While material able to accrete onto a young core is abundant near the star, where the intensity

of reflected light is high, the amount of material drops off as the distance from the central star

increases.

With so many planets in our own solar system, one would think we know approximately how

these planets came to form – the history of evolution from an a young solar disk like image (a)

to image (b), modern day Jupiter. Yet despite this, the picture of how planets – both rocky and

gaseous – come to be is far from complete.

1.2 Limits of Current Knowledge of Planet Formation

Four regimes exist for the formation of gas giants with varying methods of development for each

regime:
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1. Creation of small particles from the protoplanetary disk

2. Growth of small particles from roughly centimeter scales to kilometer scales

3. Growth of planetesimals from kilometer scales to scales about 10 times the mass of the Earth

4. Rapid acquisition of huge gaseous envelopes due to the gravitational influence of the core on

the surrounding gas

The first regime, from a smooth disk to small particles, almost certainly comes about as the

result of collisional coagulation due to Van der Waals forces (Ormel et al., 2007, see also Wei-

denschilling & Cuzzi, 1993). These particles then collide within the disk, sticking together upon

collision to grow to about a centimeter in size (Dominik & Tielens, 1997. See also Blum & Wurm,

2000). Since the particles are almost all coupled to the surrounding gas (due to their small sizes) the

relative velocities between them are small, mostly coming about simply due to Brownian motion.

Thus, when they collide, the impact is low-energy and they tend to stick rather than fragment. In

regime 2, the centimeter-sized particles settle to the mid-plane of the disk, allowing more collisions

– and growth – to occur (Weidenschilling & Cuzzi, 1993). At about 1 meter in size, however, the

objects couple less easily to the gas, creating relative velocities that, in a collision with another

particle of similar size, will break the object rather than sticking to it. Furthermore, at this size,

drag forces from the gas cause the particles to change direction, spiraling rapidly inwards towards

the central star. This creates the “meter barrier” (Benz, 2000 and Weidenschilling, 1977). Growing

particles from centimeter to kilometer size – thus moving past this barrier – is an open problem in

planet formation.

This paper is primarily focused on the third regime, the growth of gas-giant cores from kilometer

size to a size large enough to attract a gaseous envelope (about 10 mearth). Two general models

exist for this regime.

The first model uses gravitational instability as a catalyst. The 1-10 Jupiter-mass planet (de-

pending on the temperature of the star and the separation from it) could have simply collapsed

together, similar to the formation of stars from stellar nebula (Toomre, 1964). The problem with

this model is that it tends to create objects larger than 10 Earth masses, mostly as binary brown

dwarfs rather than gas giant planets (Kratter, Murray-Clay, & Youdin, 2011).
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The other model assumes that a small core accretes grains of dust or smaller objects, catching

them and building up mass as it travels in orbit around the central star. While this model could

theoretically create a core of any size, it is limited by the amount of accrete-able material and the

lifetime of the disk. Short lifetimes of the disk (Jayawardhana et al., 2006) and long core accretion

times (Goldreich et al., 2004) put an upper limit on core sizes at large distances that doesn’t agree

with observational data. Standard core accretion models cannot even explain the growth of Uranus

and Neptune, and even the most optimistic versions only allow for the formation of gas gians within

40-50 AU (Rafikov, 2004). This paper will attempt to solve the issues in this regime through a new

version of core accretion, one that increases cross sections of accretion due to dynamical interactions

with the surrounding gas in the disk.

1.3 Brief Overview of Core Accretion

In this section I will formulate a basic model of core accretion. Core accretion does not attempt to

explain how protoplanets come to be (which is an open question in the astronomical community).

Rather it describes how small cores grow to become larger by gravitationally colliding with and

accreting small dust grains or planetesimals as it travels through the disk.

There are several conventional regimes in the core accretion model. A typical progression of

stages in the model looks like:

1. Collapse of dust into cores

2. Runaway growth of large cores to roughly 100 km scales

3. Oligarchic growth

4. Rapid gas envelope accretion

In runaway growth, a larger core (moving at a low velocity due to energy equipartition) is sur-

rounded in close proximity by smaller particles (moving at higher velocities) grows rapidly due to

accretion (Wetherill & Stewart, 1989). In the oligarchic growth regime, cores are far enough away

that gravitational forces influence velocities rather than self-stirring (Ida & Makino, 1993). Finally,

once the core has reached about 10mearth it enters the rapid gas envelope accretion phase where
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gas, and not just dust, is accreted to form large, massive envelopes around the rocky core. The

core spends most time in the oligarchic growth regime, where objects are accreted by gravitational

(and gaseous) forces. This is the focus of my work.

In the oligarchic growth stage, a core will grow through accretion at a rate of:

δMp

δt
= ρπRc

2vc (1.1)

Where Mp is the mass of the protoplanet, ρ is the density of accreteable material in the disk, Rc

is the planet core’s maximum radius of capture, and vc is the velocity of an object (relative to the

planet) located at the capture radius. Thus, the unknown parameter in determining the growth

rate of the core is its capture radius.

In the absence of gas, particles are captured by gravitational focusing, where the gravity of

the core pulls surrounding objects into collision courses. In this scenario, particles are accelerated

during an encounter to velocity vHill associated with the Hill radius (vHill = RHillΩ), the point at

which the gravitational influence of the core on a particle overcomes the gravitational influence on

that particle from the central star. Its mathematical definition is given by:

RHill = a

(
Mp

3M∗

) 1
3

(1.2)

vHill = RHillΩ (1.3)

where a is the distance of the planetary core from the central star and Ω is its orbital frequency.

One then finds the maximum radius, for a particle at this velocity, where the kinetic energy and

angular momentum allow the particle to graze the core (creating a collision with the same angular

momentum and energy as at infinity), and this radius, b, is the radius of accretion of the core. This

idea will be developed further in coming sections.

1.4 Brief Overview of Gravitational Instability

Here I formulate a basic model of gravitational instability, the main competing theory to core

accretion. Let a disk of gas have surface density Σ, angular velocity Ω, velocity dispersion cs, and
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pressure P (Σ) ∼ ρcs
2 (with ρ = Σ/H where H is the disk’s scale height) (e.g. Chiang & Youdin,

2010). I define a value κ, the epicyclic frequency of radial oscillations, as:

κ =

√
r
δΩ2

δr
+ 4Ω2 (1.4)

Using this definition, as well as the linearized equations for axisymmetric perturbations (e.g. Chiang

& Youdin, 2010) the dispersion relation for asymmetric waves is given by:

ω2 = c2sk
2
r − 2πGΣ|kr|+ κ2 (1.5)

kr =
2π

λ
(1.6)

Here, the two positive terms of the dispersion relation serve to stabilize the disk and the negative

term serves to destabilize the disk. In other words, when ω2 is a negative number (and thus ω is

imaginary), its behavior is exponential instead of sinusoidal. When wavelengths are short (λ� 1),

kr is large. In the limit of large kr, the k2r term dominates the |kr| term, so in order to keep

ω2 positive, one depends on the value of cs (a function of pressure). When wavelengths are long

(λ� 1), the relative values of |kr| and the k2r term will determine whether ω is real or imaginary,

so ω is dependent mainly on κ, a function of Ω. Thus, short wavelength oscillations are stabilized

by pressure and long wavelength oscillations are stabilized by the rotation of the disk. For medium

wavelengths, I define the Toomre criterion (Toomre, 1964) Q to be:

Q ≡ csκ

πGΣ
(1.7)

When Q > 1, medium wavelength oscillations are stabilized, but when Q < 1, medium wavelengths

destabilize the gas, creating gravitational overpressures and underpressures that condense to gas

giants (Boss, 2011).

1.5 Recent Observations – HR8799

Until recently, core accretion was generally accepted as the standard planet formation mechanism

(e.g. Goldreich, Lithwick, and Sari, 2004). This was mostly because simple core accretion models
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(such as those used in Fischer & Valenti, 2005) could account for planet formation and metallicity

in planets within 5 AU of their star. At the time, this was no problem: most known exoplanets

orbited within 3 AU of their star, well within the range of possibility in these models (Dodson-

Robinson et al., 2009). It was known that these simple models were not perfect. Yet there was

simply not enough data to be able to verify or falsify a new theory of core accretion or of any other

method of planetary formation at large orbits.

HR8799

In 2008, however, direct imaging of star HR8799 showed three orbiting planets, at separations of

24 (planet d), 38 (planet c), and 68 AU (planet b) (Marois et al., 2008). The masses of the planets

were determined and refined in a series of papers (Barman et al. 2011a, Currie et al., 2011, Galicher

et al., 2011, Madhusudhan et al., 2011, and Marley et al., 2012) and summarized, as well as other

planetary characteristics, in the table below, included in Marley et al., 2012:
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Figure 1.2: Table (taken from Marley et al., 2012, Figure 1) showing estimated characteristics of
the three planets orbiting HR8799. One planet is predicted to be about 7 times the mass of Jupiter
(Marois et al. 2010), the others about 10 times the mass of Jupiter. Temperatures for all three
hover at about 1000 Kelvin.
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Figure 1.2 shows that all three planets, each one farther than 20 AU, are many times the mass

of Jupiter. This challenges core accretion models further, by constraining them to allow three giant

planets to build up at large distances in a stable manner. Also, while core accretion models could

not predict planets this large, the size and distance of the planets made models of gravitational

instability that had previously been outside the realm of observed planets (e.g. Rafikov, 2005) now

once again viable contenders for explaining the bizarre phenomenon. Put simply, the planets lie in

a region between typical sizes and separations of the two models.

Furthermore, Marois’ team, in 2010, announced the discovery of a fourth, closer-in planet

orbiting HR8799, of comparable size to the other three (Marois et al., 2010). The planet, HR8799e,

orbits at a radius of about 14.5 AU. The presence of four planets, all of large size, presents a

challenge to the core accretion model, as well as rules out a scenario where the planets were formed

closer to the star and later drifted away.

This raises several interesting points about planet formation. For example, the fact that HR8799

is an A-type star (as well as many other discovered stars with wide-separation gas-giant planets)

opens discussion about the statistics of gas giants – star temperature correlation. Papers like Vigan

et al. (2012) study the rates of massive, large-separation planets for several types of stars, from

A-type to M-type, to determine whether the difference in frequency is a real phenomenon or simply

observational bias.

HR8799 provides a perfect system as a testing ground for new models of core accretion. Since

the planets lie in such an unexplored region, they provide an open source of data with which to

test the boundaries of my new model. These planets and their properties will prove key to my

understanding of the motivation of my research, as well as to checking the effectiveness of my new

model.

1.6 Model using Gravitational Instability

Several papers have come out in favor of the gravitational instability hypothesis for the creation

of planets such as those around HR8799. Dodson-Robinson et al. (2009) in particular arrive at

this conclusion by attempting to rule out the two other possible mechanisms through numerical

simulation as well as by simulating gravitational instability. Both planetary accretion and scattering
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from the inner disk (where the planets are formed much farther in and then migrate outwards due

to an interaction with a closer-in orbiting body) are ruled out based on the author’s simulations.

The gravitational instability model presented is split into four necessary steps:

1. Disk breaks up into fragments

2. Each fragment is tracked through changes that occur over the lifetime of one orbit

3. The fragments accrete gas and dust

4. The fragments contract under their own self-gravity to spherical Jupiter-sized planets

and the paper outlines the physics behind the first step, allowing the disk to become gravitationally

unstable enough for fragments to form.

The Dodson-Robinson paper makes use of models developed by Adams et al. (1989) and Laugh-

lin & Rozyczka (1996) to find exponentially growing spiral modes, necessary for the gravitational

instability. Finally, it produces the simulations shown below:

Figure 1.3: Taken from Dodson-Robinson et al., 2009 (Figure 3). The image shows the eigenmodes
in the maximum-mass nebulae of three different type stars: A type (left), G type (middle), and
M type (right). Red color corresponds to overdense regions, green in unaffected regions, and
blue in underdense regions. In the case of the A type star, regions even far from the center are
gravitationally unstable, and therefore capable of collapsing into a planetary core.

Dodson-Robinson shows a good attempt at the proof of the possibility of Gravitational Insta-

bility as the method for planetary formation. Kratter, Murray-Clay, and Youdin (2010), however,
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state that in order for a planet-sized object to form from gravitational instability its host disk must

be rapidly accreting. In such an environment, new fragments quickly grow too massive to be called

planets. It is important to note that Dodson-Robinson never systematically proves the impossibility

of core accretion. She simply assumes it (based on the gravitational focusing timescale issues).

1.7 Competing Models in Planetary Accretion

A few models have already been presented incorporating the presence of gas to try to solve the

timescale problem in core accretion. In this section, I present two of the most important ones,

noting the parts that will be useful for my own research, and parts where my research will differ.

In doing so, I hope to give a sense of where the current research on the topic stands, and how my

work will fit into the expanding body of knowledge on the subject.

Ormel & Klahr, 2010

Notably, Ormel & Klahr (2010) develop a model of growth of protoplanets involving gas drag. The

model is correct in placing importance on the presence of gas in the process of protoplanet growth,

especially when the core is less than about 10 Earth masses. The model makes several assumptions

in order to make modeling and simulation easier. The assumptions are as follows:

1. The protoplanetary disk is flat enough to be modeled in 2D

2. Gas drag varies linearly with velocity

3. The disk is laminar, and has a smooth pressure gradient

4. Particles drift inwards radially

5. Protoplanets that are large in size are negligibly affected by gas drag, while small accreting

particles do feel a force due to gas.

These assumptions allow easy simulation of the path of accreting particles, but also restrict the

scope of the model. For example, by assuming gas drag varies linearly with velocity, the authors

have limited themselves to modeling gas drag only in the Epstein and Stokes regime, and have

neglected the RAM pressure regime, where gas drag varies quadratically with velocity. The authors
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even state, “In fact, there is a transition regime between the Stokes and quadratic [RAM pressure]

regimes where stopping times are proportional to |∆v|0.4 which we have, for reasons of simplicity,

ignored here” (Ormel & Klahr, 2010). In my model, no gas drag regime will be ignored or excluded.

Ormel and Klahr then go on to use full 3-body integrations, including added gas drag, to

simulate some possible paths of objects surrounding a core. Below is shown Figure 5 from that

paper, which demonstrates some of the paths approaching particles might take:

Figure 1.4: Taken from Ormel & Klahr, 2010 (Figure 5). Different scenarios of particle cap-
ture/ejection are presented, showing how small variations in starting position of the particle have
large impacts on the possibility of capture of the particle. ζw represents the headwind velocity of
the surrounding gas and St represents the “coupling parameter,” a value defined in the paper. The
dotted circle represents the Hill radius of the core.

Using the three scenarios shown in the figure (3-body, settling, and hyperbolic) the authors go

on to classify impact parameters for each scenario, combining these to find growth timescales of

the core.

My model differs from the Ormel & Klahr paper in a few ways. First, rather than try to model

the exact path of a particle as it encounters the core, I simply model the parameter space to find
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which parts of the parameter space lead to accretion and which lead to rejection. From there, I

can model planet growth without needing to map out the trajectories of every single particle in the

system.

More importantly, the dotted circles in Figure 1.5 point to the most fundamental difference

between my work and the authors of this paper’s work. While they talk about shearing due to

gas, they still use the Hill radius as an indicator of the region of stability surrounding a planetary

core. The Hill radius, however, is a notion firmly rooted in Kepler’s gravitational laws and 3-body

motion in a gas-free environment. I prove that for some parts of parameter space, objects within

the Hill radius may still not be stable, due to shear caused by varying velocity with respect to

the disk of gas. The authors get to this point, but in a roundabout and complicated way which, I

believe, is the reason they had to make other limiting simplifications, such as with the linear gas

drag regime. I will prove that by simply replacing the Hill radius with the WISH (Wind Shearing)

radius where it is smaller than the Hill radius, one can model the stability of a particle entrenched

in gas, no matter its velocity in relation to the gas.

Furthermore, the Ormel & Klahr paper only applies their model to a core at a distance of 5

AU. Because of my observational goal regarding the planets in HR8799, I apply my model out to

much larger distances, where disks are less dense and therefore planetary accretion becomes more

difficult. A major piece of my work is exploring the effect of gas drag on different planetary systems,

attempting to find regions that, under particular conditions, are particularly efficient at accreting

mass. Thus the scope of my work is much broader than in the Ormel & Klahr paper.

Lambrechts & Johansen, 2012

More recently, Lambrechts & Johansen (2012) present another model for protoplanetary accretion.

This model is actually quite similar to the model I present. They use the presence of gas around

centimeter-sized particles, which they call “pebbles” to model gas drag forces. Again, they make

the assumption that the core is moving on a circular, Keplerian orbit around its star (the same

assumption was made in Ormel & Klahr and in my research as well).

The paper models accretion by assuming that a pebble, entrained in gas, will only accrete if

it is able to dissipate enough energy to be released from the gas flow (Lambrechts & Johansen,

2012). Thus, unlike Ormel & Klahr’s modeling of a specific trajectory of a particle, it sets limits
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to the energy a particle can have, at what distance from the growing core, in order to free itself

of gas coupling and be pulled into collision. By varying the size of the growing core, Lambrechts

and Johansen characterize two core regimes. The first, the so called “drift regime” in which the

following relation holds:

Mc < Mt (1.8)

Mt =

√
1

3

∆v3

GΩK
(1.9)

Where Mt refers to the mass where the Bondi radius is similar in size to the Hill Radius. In this

“drift regime,” pebbles are essentially coupled to the gas, and thus approach the planetary core at

the same velocity as the gaseous headwind. If the core mass is larger, however, the pebbles will not

be so entrenched with the gas.

Finally, they present the results of their work in a graph, shown below:

Figure 1.5: Results of Lambrechts & Johansen, 2012 (Figure 11 in the paper). Core growth (shown
as a fraction of Earth’s mass) as a function of time, for three different models. The drift branch
represents growth in the drift regime, cut short and transferred to the Hill regime at Mc = Mt. PA
represents classical, gas-free planetary accretion models.
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While Lambrechts and Johansen (2012) will certainly prove useful as a comparison to my work,

it differs in two significant ways. First, similarly to the Ormel and Klahr paper, the Lambrechts

and Johansen paper uses the Hill Radius as a comparison, rather than the WISH radius. This

proves to be a significant difference especially at smaller distances from the star, due to thicker gas.

I only use the Hill Radius when it is smaller than the WISH radius.

Also, this paper limits itself in parameter space, first by assuming that all pebbles are 1 cm

in radius, and by limiting the scope of parameter space it explores. The model is only tested at

0.5 AU, 5.0 AU, and 50 AU – leaving a large region left to be explored. My model, in addition

to making use of the WISH Radius, attempts to explore protoplanetary environments in a more

robust way, to provide a picture, and not just a small sample, of the possibilities of planet growth

around a certain type of star.

1.8 Layout of the Paper

My research, as explained above, seeks to provide a flexible model of core accretion in a variety

of protoplanetary disk environments. Allowing the model to accommodate many different stars,

planetary cores, and gaseous environments makes it an important tool for predicting possible lo-

cations of large exoplanets in known stellar systems, as well as a good way to find orbital systems

that are unusual – that is, where large planets exist in locations not especially conducive to large

planet formation. My thesis is organized in the following order:

1. Background Derivations

In this section, I provide the derivations for many of the important values in core accretion

– for example, the Hill Radius, gas drag laws in different regimes, and Keplerian orbital

dynamics, along with corrections due to gas pressure. This helps to give the reader an

intuitive sense of how adding gas changes the dynamics of the system and helps to clarify the

specific meaning of terms used. Because the model is essentially based around gas drag, a

majority of the chapter focuses on developing a framework of how different sized objects are

affected by the presence of gas.

2. Steps to Modeling
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This section explains, step by step, the development of my model for determining the cross-

section for core accretion, given certain environmental parameters. The model works by the

following: a test particle, at a certain distance and velocity, is presented with a number of

“tests” (such as being energetic enough to be able to decouple from the gas and being within

the WISH radius of the core) which, if any are failed, would result in a failure to accrete onto

the core.

By building up a capture radius through testing the accretability of a test particle at various

separations from the core, an area of accretion is created, which differs based on core size

and test particle size. This area of accretion, when plugged into the appropriate timescale

formula, gives a net growth rate of the core, and thus a timescale of growth can be calculated

for that core. By going through and describing each step in model development, I elucidate

the process by which a particle accretes onto a core, and where (and why) things go awry.

3. Model Visualization in Parameter Space

Next, I generalize the model, doing simulations that cover different star types, as well as

different distances of cores. In doing this, I predict, for a certain type of star and disk density,

where large planets are most likely to form from core accretion. This will be a powerful

tool for observers, because it will narrow down for them where to look for large exoplanets

(if knowledge about the system’s early characteristics can be gleaned). I am able to find

out whether certain bands around certain stars are best for planet growth, or, like has been

suggested (Vigan et al., 2012) whether wide-orbit planets are much more common in general

around a certain type of star, such as A-stars.

4. Case Study: HR8799

Finally, I apply my results to planetary system HR8799, plugging in the stellar mass, disk

properties, and distances of the three far away planets (Marley et al., 2012) to see whether

my model predicts the possibility of formation of planets of this size at this distance. This is

a good test of the model, because observations have already been made (Marois et al., 2008)

of the three planets and their distances through direct methods. If the model predicts the

possibility of planets at those distances, one could theoretically use the timescale of growth
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(at that distance) to estimate the age of the planets. This is useful, as there has been much

research lately into the age of the planets in the system (e.g. Sudol & Haghighipour, 2012)

that can be further validated using my model. Using HR8799 is a good capstone to prove the

efficacy and the applicability of the model developed in this paper.



Chapter 2

Background Physics

2.1 Derivation of the Hill Radius

One cannot study planetary accretion without mention of the Hill radius. Essentially, it describes

the spot between two objects at which a test particle will switch “orbits” – will feel the same

gravitational force from the smaller object as tidal gravitational force from the larger. In a system

where particles did not feel a drag force from a surrounding gas environment, the Hill radius (and

associated Hill velocity) would be a good approximation for the minimum velocity at which an

incoming particle is moving as it is gravitationally focused into a collision – and in fact, the use of

this Hill radius for just that purpose led to the timescale of growth paradox in the first place. I

will now derive the equation for the Hill radius, for use later on in the model.

Let two objects be in orbit, separated by a distance a. The larger object (a star) has a mass

M∗ and the smaller (a planet) has a mass m and a radius r. The Hill radius is the distance at

which the gravitational influence of the planet becomes comparable to the tidal perturbation by

the star. Let that distance be given by d (measured from the planet). The force per mass (f) due

to gravitational force on the planetesimal from the planet core can be given by:

f =
Gm

d2
(2.1)

21
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Furthermore, the tidal perturbations by the star can be represented by:

∆f =
GM∗

(a− x)2
− GM∗

a2
(2.2)

Setting these two equal, I arrive at the expression:

Gm

d2
=

GM∗
(a− d)2

− GM∗
a2

(2.3)

I assume that d� a. Therefore, I can Taylor expand the right hand side of the equation (keeping

only the first term), simplifying the equation to:

Gm

d2
=

2M∗d

a3
(2.4)

Solving for d, I arrive at an approximate expression for the Hill Radius (assuming m�M∗):

d =

(
m

2M∗

)1/3

a (2.5)

A more exact calculation yields:

d ≈
(

m

3M∗

)1/3

a (2.6)

The exact derivation requires using a reference frame rotating along with the planet at angular

velocity Ω. However, the intuition used in this derivation is, for my purposes, correct and instructive

for future uses of the Hill radius in this paper.

2.2 Radius of Accretion in Gas-Free Gravitational Focusing

In this section, I explain how to find the accretion radius in a gas-free environment through the

mechanism of gravitational focusing. The following figure describes the parameters important to

the problem:
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Figure 2.1: Diagram showing a setup to help determine the radius of accretion, b, in a gravitational
focusing, gas-free model.

Imagine a (stationary) core with radius Rcore and mass M. Imagine a particle approaching the

core at a height of b, with mass m, moving at velocity vrand. In order to find the distance, b, which

supports focusing to collide with the core, I simply equate the angular momenta and the energies

of the particle in the two locations. Assume 0 potential energy at ∞.

Far away, the particle has energy (E) and angular momentum (L):

E =
1

2
mv2rand (2.7)

L = bmvrand (2.8)

At the surface of the core, the particle has energy and angular momentum:

E =
1

2
v2surf −

GM

Rcore
(2.9)

L = Rcoremvsurf (2.10)



CHAPTER 2. BACKGROUND PHYSICS 24

Equating the two angular momenta yields:

bvrand = vsurfRcore (2.11)

vsurf =
bvrand
Rcore

(2.12)

Furthermore, equating the two energies yields:

1

2
v2rand =

1

2
v2surf −

GM

Rcore
(2.13)

Plugging in for vsurf gives:

1

2
v2rand =

1

2

b2v2rand
R2
core

− GM

Rcore
(2.14)

Using the definition for escape velocity I manipulate this equation algebraically into something

elegantly simple:

vesc =

√
2GM

Rcore
(2.15)

GM

Rcore
=

1

2
v2esc (2.16)

v2rand =
b2v2rand
R2
core

− v2esc (2.17)

b2

R2
core

=
v2rand + v2esc

v2rand
(2.18)

Finally, I arrive at the equation:

b2

R2
core

= 1 +

(
vesc
vrand

)2

(2.19)

For the gravitational focusing model, an encountering particle is entering the Hill radius of the core.

If the incoming velocity of the particle is larger than the escape velocity of the core, that is to say

v∞ ≥ vesc then the radius of accretion is approximately Rcore (b ≈ Rcore) and the planetary core

only accretes that which directly collides with it. If v∞ ≤ vHill then the particle will be accelerated

to vHill (see Chapter 2.8 for an explanation of this) so vrand will be vHill. Between those two values,
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the incoming velocity of the particle will be unaffected during its encounter so vrand = v∞. Here I

assume that vHill is given by:

vHill =

√
GM

RHill
(2.20)

In my calculations, I use the standard choice of setting v∞ = vHill, assuming there is a high

probability of a particle having been excited to that velocity during a previous encounter with the

core. Thus, I assume that:

vrand =

√
GM

RHill
(2.21)

Now the equation for the accretion radius in the gravitational focusing model is complete. Because

the radius of accretion is b, the area of accretion is πb2.

2.3 Derivation of Scale Height

I now will derive a formula for the scale height of a disk (essentially the thickness of gas), another

important quantity that will be used to develop some of the fundamentals of my model.

For a given particle, let a represent the radial distance from the star, and let z represent the

distance from the plane. Using cylindrical coordinates, the gravitational force exerted on that

particle from the star can be represented by:

Fg =
GmM∗
a2

(−sin (α) ẑ − cos (α) r̂) (2.22)

where α is the angle between the plane and the particle, from the perspective of the star. Now,

assuming that z � a I can replace

sin(α) ≈ z

a
(2.23)

cos(α) ≈ 1 (2.24)
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Thus, the equation now becomes

Fg =
GmM∗
a2

(
−z
a
ẑ − r̂

)
(2.25)

The radial component of this force is cancelled out by the centrifugal force on the particle due to

the rotation of the disk. The vertical component of the force I must balance, using the assumptions

that the disk is supported by pressure and that it is in hydrostatic equilibrium.

Using the force due to gravity in the ẑ direction and the fact that the gas is in hydrostatic

equilibrium, the change in pressure per z is given by:

δP

δz
= −GM∗ρ(a)z

a3
(2.26)

(Consider a box of height δz. The difference between the force on the top and the force on the

bottom is scaled by a factor of δz, since pressure is defined as the force per area).

The pressure P , assuming an isothermal gas, is given by P = c2sρ(a) where ρ(a) represents the

density of the gas at a. Plugging in for pressure,

δρ(a)

δz
= −GM∗ρ(a)z

c2sa
3

(2.27)

Solving this differential equation, I get:

ρa(z) = ρ(0)e
−GM∗z2

2c2sa
2 = ρ(0)e−z

2/2H2
(2.28)

where H, the scale height, is
(
a3c2s
GM∗

)1/2
. In order to find Ω, I invoke Kepler’s third law, which states

that the square of the orbital period is proportional to the cube of the orbital radius. Using this

relation, I arrive at the relation:

G(M∗ +Mp) = Ω2a3 (2.29)
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Assuming M∗ �Mp, I can simplify this to:

GM∗ = Ω2a3 (2.30)

Ω =

(
GM∗
a3

)1/2

(2.31)

Substituting in Ω, the result is:

H =
cs
Ω

(2.32)

2.4 Orbital Velocity Change Due to Presence of Gas

Now I will dive into some of the specific physics of the model. Mostly, I use a Keplerian framework

when describing the dynamics of the star-planetary core system. I must make a few corrections,

however, to account for the presence of gas, and the effect this will have on the motions of the

relevant objects. First, I look at the rotation of the gas itself.

Normally, when describing the circular orbit of a gas particle around a star, one would simply

use the Keplerian orbit – that is to say, following Kepler’s laws. The gravitational force acting on

that gas particle from the star is given by:

Fg =
GM∗m

r2
(2.33)

where m represents the mass of the particle, and r represents the distance to the star from the

object. I then set this equal to the centripetal acceleration, yielding the equality:

v2kepm

r
=
GM∗m

r2
(2.34)

v2kep
r

=
GM∗
r2

(2.35)

thus getting a relation for Keplerian velocity independent of the mass of the particle. However,

with a gas particle in a gaseous disk, the gravitational force is not the only force acting on the

particle. Because the gas feels the pressure of the disk pushing outwards, its velocity will therefore
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be less than the Keplerian velocity:

vgas < vkep (2.36)

One can think of this force as caused by the difference in force on either side of the “box of

gas.” This difference in force causes an acceleration towards the side of lower pressure (outwards).

Consider a cube of gas with density ρ, length δr, and surface area δA. The force acting on each

side of the cube is the pressure multiplied by the surface area, or P (δA).Thus, the difference in

force acting on one side of the cube and the other can be described by:

∆F = (∆P )(δA) ≈ (δP )(δA)

The mass of the cube of gas is given by:

mcube = ρ(δA)(δr)

Then using F = ma I plug in:

agas =
∆F

mcube
(2.37)

agas =
1

ρ

δP

δr
(2.38)

acentripetal = agravity + agas (2.39)

v2orb
r

=
GM∗
r2

+
1

ρ

δP

δr
(2.40)

where agas represents the acceleration of the gas due to these forces. Let’s convert this result into

a more familiar form, using some assumptions about the behavior of the body. First, I solve the

equation for vgas, yielding:

vgas =

√
GM∗
r

+
r

ρ

δP

δr
(2.41)
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In a gaseous disk, the pressure can be described by:

P = crn

where c and n are constants and in the case of a large disk, n is very close to −1. Thus, differenti-

ating:

δP

δr
= c(n− 1)rn−1 (2.42)

≈ −nP
r

(2.43)

≈ −P
r

(2.44)

Thus, the correction to the orbital velocity, Equation 2.38, can be approximated by:

agas =
P

ρ
(2.45)

I assume the gas is approximately ideal and use the equations:

PV = nKT (2.46)

cs =

√
KT

µ
(2.47)

where cs is the speed of sound in that gas, K is the Boltzmann constant, T is the temperature of

the gas, n is the number of particles, and µ is the molecular mass, or mass per particle. Combining

equations 2.46 and 2.47:

P

ρ
=
V P

m
=
nKT

m
=
KT

µ
= c2s (2.48)

The Keplerian velocity is defined to be:

vkep =

√
GM∗
r

(2.49)
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Combining this with equations 2.41 and 2.48, I now rewrite the orbital velocity as:

vgas =
√
v2kep − c2s (2.50)

Or, in an equivalent form,

vgas = vkep

(
1− c2s

v2kep

) 1
2

(2.51)

Now, I make the assumption that the correction to the Keplerian velocity is small. That is,

c2s � v2kep (for example, in the Solar System at 1 au, cs is about 1 km/s and vkep is about 30 km/s).

I then Taylor expand equation 2.51, giving the approximate expression:

vgas = vkep

(
1− c2s

2v2kep

)
(2.52)

vgas = vkep −
c2s

2vkep
(2.53)

Thus, the orbital velocity of gas in a protoplanetary disk can be easily described using a simple

correction to the Keplerian velocity of that gas.

2.5 WISH Radii

I now turn my attention to the basics of how to develop a wind shearing (WISH) radius (from

Perets and Murray-Clay, 2011).
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Figure 2.2: Illustration demonstrating distances between the star, the core, and the object

Consider a small object (shown yellow in the diagram), a larger planetary core (shown blue)

and a central star (turquoise). The core and the object are in orbit around the star, surrounded

by orbiting gas.

In the first scenario (what I label the orbit-capture WISH radius), I consider the object to

be orbiting around the central star alone. Therefore, it has some velocity vog relative to the gas,

and the core has some other velocity vcg relative to the gas. Each object will have some drag

acting on it from the gas, dependent on the area of the cross section of the object (r2obj and r2core,

respectively), and on vrel. I represent these differing forces as Fd(obj) and Fd(core). The differing

acceleration of each object due to these differing drag forces is given by the equation (from Perets

and Murray-Clay, 2011):

∆aws =

∣∣∣∣Fd(object)mobj
− Fd(core)

mcore

∣∣∣∣ (2.54)

The WISH radius, then, is the radius at which this differential acceleration (the analog to the

gravitational tidal acceleration) overcomes the gravitational attraction to the core, given by the

equation:

Rws =

√
G(mcore +mobj)

∆aws
(2.55)

For the second scenario (which I label the orbit-maintain WISH radius), I instead assume that the
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object is in orbit around the core (like a moon) which is in turn in orbit around the star. In this

case, the average velocity with respect to the gas is vcg for both the object and the core. The WISH

radius, then, can still be represented by Equation 2.55, but will differ in ∆aWS from the previous

scenario.

2.6 Understanding Drag Regimes

Next, one must be able to understand how an object placed in the presence of moving gas will act

differently from an object in a vacuum. I will now develop a framework to think about the various

scenarios of objects in the presence of gas, and the resultant forces.

Depending on the mean free path (λ, given by λ = mh/ρσ where mh is the mass of hydrogen, ρ

is the volumetric density of gas, and σ is the collision cross section between two hydrogen particles),

the relative velocity of the object moving through the gas, and the radius of the particle R, different

equations are needed to describe the drag force on the object and the differential acceleration

between two bodies. The value of λ/R helps to determine which drag regime to use.

2.6.1 λ
R
� 1 (Fluid Phase)

In this phase, the mean free path is much smaller than the radius of the particle moving through

the gas. Therefore, almost constant collisions are inevitable, and the gas can be thought of as a

fluid. In this case, an important number to calculate is the Reynolds number, Re. The Reynolds

number is calculated by:

Re =
Rv

λvth
(2.56)

where v represents the velocity of the particle and vth represents the thermal velocity of the gas

(where vth ∼ cs, defined earlier). When Re� 1, the dynamics of the system are dominated by the

object’s momentum, and it enters the RAM pressure drag regime. If Re < 1, then the dynamics

are dominated by the viscosity of the gas, and it enters the Stokes drag regime.
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Re� 1 (RAM pressure regime)

Let n represent the number density of the gas, ρ represent the mass density of the gas, and A

represent the cross sectional area of a particle. Assuming the gas is made of mostly hydrogen, the

change in momentum of the particle per time (the force on the particle) can be represented by the

equation:

F = (nAv)mHv (2.57)

where nAv is the rate of collisions on the object and mH is the mass of hydrogen. Thus, the drag

force on the object is:

FD =
1

2
ρAv2 (2.58)

(gas drag laws reviewed in Batchelor, 1967)

Re < 1( Stokes Drag regime)

In this phase, one can think of the gas surrounding the object as linearly decreasing from v to 0 as

it approaches the object (under a no-slip assumption). The force acting on the side of an object

moving in the y direction with area A can be thought of as the difference in velocities just inside

and outside it (moving in the x direction), or the shear between the two gases. The momentum of

just one gas particle collision, in this case, is m (δvy/δx)λ, where λ is the mean free path and m

is the mass of the gas particle. The force acting on a side of the object with area A is therefore

expressed as:

F = (nAvth)(mH
δvy
δx

λ) (2.59)

where the first part is the number of collisions on that side, and the second part is the momentum

exchange of each collision. Furthermore, the scale of transition (of the gas) from v to 0 is about
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the same scale as the size of the particle. Therefore, I can estimate:

δvy
δx
∝ v

R
(2.60)

Thus, plugging in, I get that:

FD ∝ nR2vthmH(
v

R
)λ (2.61)

∝ ρRλvvth (2.62)

This is kinematic viscosity. Let ν = vthλ. Furthermore, let η represent ρν = ρvthλ. Thus, I arrive

at the drag force:

FD = 6πηRv (2.63)

(Stoke’s Law developed by George Stokes in 1851, drag laws reviewed in Batchelor, 1967).

2.6.2 λ
R
> 1 (Diffuse Phase)

In this regime, an important number for classification is the Mach number, M . The Mach number

is defined as:

M =
v

cs
(2.64)

where v is the velocity of the object and cs is the speed of sound in that gas. If M < 1, then the

object is relatively slow-moving, and is bombarded with particles from all sides. This is called the

Epstein drag region. If M > 1, then the object is moving fast enough that gas particles coming

at it from behind are not fast enough to catch up, so the object only collides with gas particles in

front of it. This region is identical to the RAM pressure drag region.

M < 1 (Epstein Drag regime)

For this regime, I move to a reference frame in which the object is stationary. Particles bouncing

off the top and bottom of the object are equal in number, so the forces in that direction cancel out.
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In the front of the particle, however, objects collide with velocity v + vth, and in the back, with

velocity vth − v. The drag force the object feels is the front force minus the back force. One can

write each as:

Fd(front) = nAm(vth + v)2 (2.65)

Fd(back) = nAm(vth − v)2 (2.66)

Where the momentum exchanged is m(v+vth) and m(vth−v), respectively, and the rate of collision

is nA(v + vth) and nA(vth − v), respectively. Thus, the total drag force felt is:

FD ∝ ρA[(vth + v)2 − (vth − v)2] (2.67)

FD ∝ ρAvvth (2.68)

M > 1 (RAM pressure regime)

In this regime, the dynamics are the same as in the momentum-dominated fluid phase. Therefore

the drag force is the same equation:

FD =
1

2
ρv2R2 (2.69)

Using these 4 regimes, I can model the behavior of an object moving through gaseous protoplanetary

disks.

2.7 Understanding Particle Capture in the Presence of Gas

Now I have the tools needed to understand the difference between accretion in a vacuum and

accretion in the presence of gas. I apply the physics from this chapter to develop a framework of

testing whether a particle will accrete onto a core or not. In this section, I develop an intuition for

imagining the possible trajectories of different particles. I further develop a simple framework for

testing whether a particle will accrete, without having to rely on solving explicitly for the particles

complete path of motion.

A particle will orbit with different velocities, depending not only on its distance to the star,



CHAPTER 2. BACKGROUND PHYSICS 36

but also because of the drag force due to the slower-orbiting gaseous environment. Objects are

affected differently depending on their size and mass, as both cross-sectional contact with the gas

and inertial momentum are affected.

In order to determine whether a certain sized object will accrete onto the planetary core, I set

up a simple system, whereby an object, traveling at velocity vobj , travels in a straight line towards

a core (traveling at velocity vcore). The entire system is encased in a gas traveling at velocity vgas.

I assume that the planetary core is large enough that its velocity is not significantly affected by gas

drag on the timescale of its encounter with the approaching object. I then set certain conditions

to put constraints on the object’s ability to spiral into the core.

To begin, I define certain parameters. The important velocities in the problem are not the

proper motions of the components themselves, but rather their relative velocities to one another.

Thus, I define:

vog = |vobj − vgas| (2.70)

voc = |vobj − vcore| (2.71)

vcg = |vcore − vgas| (2.72)
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2.7.1 Stable Radius

The first condition concerns the distance of the object at its closest point to the core. In previous

discussion, I have defined a radius, either the Hill radius or the WISH radius, that constitutes the

maximum radius of orbit of a bound system. Beyond this, the object will either be gravitationally

pulled away by the influence of the star, or it will be sheared away by gas interaction.

Thus, I plug in the parameters for the radius of stability for the core, as a function of the mass

of the core, its distance from the star, and its relative velocity with the gas, vcg. This gives the

maximum cross section of collisions for the planetesimal.

2.7.2 Energy Constraints

The second condition concerns the energy of the incoming particle. As the particle approaches the

core’s stable radius, it is acted upon by a drag force from the gas. This drag force does work on the

particle, which then reduces its energy. As the particle dissipates energy, it slows down. Eventually,

the particle will have lost an amount of energy equal to its initial kinetic energy relative to the core.

At that point, the particle will be gravitationally bound to the core, and will eventually spiral in

and accrete onto the core.

There are two regimes that are intuitively important in thinking about the energy dissipation

of the object. They are defined by the relative size of the Bondi radius to the stable radius of the

core. Consider the motion of gas around a rigid spherical body, as simulated by Ormel in Figure 5

of his paper (Ormel, 2013):

Figure 2.3: 2D cross-section of simulated gas flow around a rigid body. Taken from Ormel, 2013,
Figure 5.

In reality, the gas is compressible rather than incompressible, so Figure 2.3(b) is a more correct
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diagram than 2.3(a). I will approximate the core to be rigid for the purposes of this paper, however.

The relevant length scale here is Rbondi. The bondi radius is given by:

Rbondi =
GMcore

cs2
(2.73)

And comes from equating the relative velocity of a gas molecule (vcg) to the escape velocity of the

core – essentially the gas binding distance of the core. This represents the maximum radius at which

gas particles are considered part of the core’s atmosphere, or, referring to the figure, where the gas

particles are significantly bent off-course. I can make two descriptive pictures of the core-object

interaction, shown below in Figure 2.4:

Figure 2.4: Depiction of possible relationships between stable radius and Bondi radius. For small
approaching particles dominated by the WISH radius constraint, the relationship on the right is
appropriate. For larger particles, the left is appropriate.

On the left side, the stable radius of the core is larger than the Bondi radius. In this case, the

incoming particle, in order to spiral into the core and accrete, must dissipate all its kinetic energy

(relative to the core) by the time it crosses the stable radius.

On the right side, however, the Bondi radius of the core is larger than the stable radius. In this

case, in order for the particle to be caught within the stable radius, it must first enter the Bondi

radius. If it has dissipated all its kinetic energy and coupled to the gas, then it will not be able to

enter the Bondi radius – it will simply flow around the core without accreting. Thus, in order for

the particle to accrete in this instance, it must not dissipate all its kinetic energy relative to the
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core over the length scale of the Bondi radius. The following condition must hold:

If Rbondi ≤ Rstable, FDRstable ≥
1

2
mobjv

2
∞ (2.74)

If Rbondi ≥ Rstable, FDRbondi ≤
1

2
mobjv

2
∞ (2.75)

2.8 Velocity Adjustment During Encounters

One also must look at what happens to the kinetic energy – and therefore velocity – of a test

particle as it encounters the planetary core. Consider the following diagram:

Figure 2.5: Diagram showing velocity adjustment during a particle-core encounter.

I set 0 potential energy to be at a distance of ∞ from a core with mass mcore. Furthermore, I

assume that the test particle has mass mobj .

At location d0, the test particle’s total energy is:

E =
1

2
mobjv0

2 −
Gmcoremobj

d0
(2.76)

At location d1, the test particle’s total energy is:

E =
1

2
mobjv1

2 −
Gmcoremobj

d1
(2.77)

Total energy is conserved, so equating the two energy expressions and taking out the mass depen-
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dence yields:

1

2
v0

2 − Gmcore

d0
=

1

2
v1

2 − Gmcore

d1
(2.78)

One can assume that d0 is much larger than d1 (since, at some point, the test particle was very far

away from the core. Thus, the term Gmcore/d0 → 0.

If v0 is very small in comparison to v1, then this too is approximately 0, and therefore:

v1 ≈
√
Gmcore

d1
(2.79)

Thus, if a particle is moving at a velocity slow compared to the orbit velocity at the stable radius

of the core, by the time of its encounter with the core, it will be moving at approximately a velocity

that corresponds to the orbital velocity at the stable radius, or the “stable velocity.”

2.9 A Note on Geometry

In the model, I take geometry into account when I determine the velocity of the accreting particle,

by calculating the components of its velocity in the radial and orbital directions. This will give a

sense of how to incorporate geometry into the relative motion between the planetesimal and the

planetary core.

On the other hand, however, I have not taken into account geometry with respect to gas flow.

The following diagram, for instance, shows a possible picture (from the perspective of the planetary

core):
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Figure 2.6: Diagram showing one of the geometrical intricacies of gas interaction.

Both of these particles, 1 and 2, will collide into the planetary core. In the frame of the core,

both particles are moving towards it. In the frame of the gas, however, the geometry is different.

Particle 1, moving at velocity v1, is moving towards the planet, but the drag force from the gas is

working against it. Particle 2, on the other hand, is moving towards the planet, but the gas drag

works to speed the particle up, not slow it down.

In my simulation, depending on the velocities, I would not be able to distinguish between these

two scenarios. I simply calculate the relative velocity between the object and the gas, not knowing

whether the gas is working to slow it down or speed it up. Of course, however, the accretion

probability is different between the two particles.

Thus, in fact, for half the particles tested, I do not know the exact geometry of the encounter

and may not be able to predict the accretion probability. This geometry correction would be a

good place to start doing further research. On the other hand, at worst, I can assume that any

particle that I have incorrectly modeled will not be able to accrete. This would mean that, at worst,

the accretion mass is half what I originally thought, and the timescale of growth will therefore be

double. This is a correction only on the order of unity, which is insignificant compared to the order

of magnitude of reductions I make to the gravitational focusing timescales. This is an important

point to consider going forward with the model, as well as for future work.



Chapter 3

Creating the Model

3.1 Preliminaries

Now I construct a model that can predict the growth timescale for a core in disk conditions. First,

I define some constants in the units that are used in the model (cgs units).

3.1.1 Constants

I define certain constants as such:

G = 6.674× 10−8
cm3

g ∗ s2
(Gravitational Constant)

π = 3.1416

k = 1.381× 10−16
erg

K
(Boltzmann Constant)

µ = 3.85× 10−24g (mean molecular weight of a particle)

AU = 1.496× 1013cm (Astronomical Unit)

σ = 10−15cm (the neutral collision cross-section of protoplanetary disk gas)

3.1.2 Assumptions

Furthermore, I make several assumptions about the protoplanetary system. The following values

can be changed depending on the nature of the system in question, and will provide all the raw

42
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information needed to predict protoplanetary growth:

acore = distance to star from core in au

ρp = density of bodies in g/cm3

M∗ = mass of star in g

mcore = starting mass of core in g

mobj = mass of accreting objects (I assume all accreting objects are a constant size)

rcore = starting radius of core in cm

robj = radius of accreting objects

Σ(a) = surface density of disk in g/cm2 – a function

T(a) = temperature of system in Kelvins – a function

faccrete = the fraction of disk mass made of accretable material (dust to gas ratio)

where, of course, either the mass of the core/planetesimal or the radii of the two is needed, but not

both (using the density of bodies, one can easily relate the two by m = 4
3πr

3 ∗ ρp). For the sake of

this chapter, I demonstrate the flow of the model using solar system masses an example. I consider

the planetary core to be Earth mass and radius (5.97×1027 g in mass, 6.37×108 cm in radius), the

star to be Sun-size (1.9891× 1033 g in mass) and the distance between the two bodies to be 10 AU.

While I will explore a range of test particle sizes, the numbers listed will be for test particles 10 cm

in radius, with a density of 2g/cm3. I assume disk surface density Σ and temperature profiles of:

Σ = 2× 103
(acore
AU

)−1
(3.1)

T = 120
(acore
AU

)− 3
7

(3.2)

Finally, I assume that the protoplanetary disk is a laminar disk. That is to say, the gas flows in an

orbit around the star with no turbulence.
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3.1.3 Equations

From here, I combine the assumed values and constants to calculate some basic quantities that will

be useful later on in the model. First, I calculate the Keplerian orbital frequency of the core, :

Ω =

√
GM∗
a3core

(3.3)

(In the example, Ω = 6.30× 10−9s−1)

Next, I calculate the speed of sound in the disk:

cs =

√
kT

µ
cm/s (3.4)

(In the example, cs = 4.0× 104 cm/s)

From this, I calculate the density of the gas in the disk. The disk scale height can be represented

by:

H ∼ cs
Ω

(3.5)

(in the example, H = 6.36× 1012 cm)

From this I arrive at the relation for gas volume density, :

ρg ∼
Σ

2H
(3.6)

(ρg = 1.57× 10−11 g/cm3)

Combining these values together, one can arrive at the mean free path of the gas in the protoplan-

etary disk(λ), given by:

λ =
µ

ρgσ
(3.7)
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(λ = 245 cm)

The thermal velocity of the gas (vth) can be given by:

vth =

√
8

π
cs (3.8)

(vth = 6.39× 104 cm/s)

And with these values now calculated, I start the modeling.

Model framework

The basic framework of the model is such. I choose a test particle of size mobj , located at a distance

aobj from the star. I model the effect of pressure on the gas to get a realistic estimate for the average

velocity of the gas at that distance. Next, by determining the gas drag regime of the test particle

in the gas, I apply the appropriate drag laws to get an accurate picture of the real velocity of that

particle (before it encounters the planetary core).

Next, I use what I know about the core, the particle, and their relationship to calculate the

energy of the particle at∞ and the energy dissipation due to gas drag (see section “Understanding

Particle Capture in the Presence of Gas” for an explanation of the relevant values). If the correct

relations hold to guarantee accretion of the particle, then I add this “test location” (a distance d

from the core) to the capture area. If not all the correct relations hold, then I omit this from the

capture area.

Timescales

By running this series of steps for sufficient test particles (at different distances d from the core) then

I create an effective capture radius for a specific core in specific protoplanetary conditions (counting

only those distances that accrete). After that, I use the simple equation below to determine the

timescale of growth of the core:

timescale =
mcoreH

ΣAaccretevoc
(3.9)
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where H is the scale height of the disk, Σ represents the surface density of the disk, Aaccrete

represents the area of accretion, and voc represents the relative velocity between the core and

the particles it is accreting. In the gravitational focusing case, when no gas disk is assumed, the

timescale is instead given by:

timescale =
mcore

AaccreteΣΩ
(3.10)

(This can be derived by setting voc = vrand and H = vrand/Ω, using the random velocity discussion

from Chapter 2.2). If the timescale of growth is less than the typical lifespan of protoplanetary

disks of those characteristics, then it is possible for the core of a gas giant to have formed through

accretion mechanisms at that location in the system.

3.2 Model

3.2.1 Determining Stable Radius

First I must determine whether the test particle falls within the radius of stability of the core. There

are three criteria for this: first, the particle at its present location must be able to be captured

into a stable radius without being sheared away by gas (thus we envision the particle as in orbit

around the star). Second, the particle, once in orbit, must be able to stay there (and cannot be

sheared away by gas from its new orbital location) – thus I envision the particle as in orbit around

the core, and the particle-core system as a whole in orbit around the star. Third, the particle must

not be sheared away by gravitational tidal forces due to the central star. I therefore determine the

stable radius in three separate ways: Rws(Orbit Capture), Rws(Orbit Maintain), and RHill. I use

the smallest of the three as the conservative standard.
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Hill Radius

First I determine the Hill Radius for the core (for a deeper discussion of the Hill radius, see the

Hill radius derivation in the derivations section). The Hill radius is given by:

RHill = acore

(
mcore

3M∗

) 1
3

(3.11)

(RHill = 1.50× 1012 cm)

Orbit Capture WISH Radius

In order to find the orbit capture WISH radius, I first determine the terminal velocity of the test

particle. Then, I use this to find the tidal acceleration due to gas forces (between the test object

and the core) and from that I derive a radius of stability.

The orbital velocity of the core is given by:

vcore =

√
GM∗
acore

(3.12)

(vcore = 9.42× 105 cm/s)

At the distances I am dealing with (along the scale of RHill) the Keplerian orbital velocity of the

test particle can be estimated to be the same as the core, vcore (since d, the distance between the

core and the test particle, satisfies d ≤ RHill, d� acore). Thus I set vobj = vcore

(vobj = 9.42× 105 cm/s)

I define the orbital velocity of the gas around the planetary core to be the Keplerian velocity,

adjusted to account for gas pressure (for explanation of adjustment, see previous section):

vgas = vcore −
c2s

2vcore
(3.13)

(vgas = 9.41× 105 cm/s)

Now, to see how the velocity of the test particle will change because of the presence of gas, I first
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need the relative velocity between the test particle and the gas:

vrel = vobj − vgas (3.14)

I now find the Reynolds number and drag constant for the test particle, according to the following

equations:

Reobj =
2robjvrel
.5vthλ

(3.15)

cdobj =
24

Reobj
(1 + 0.27Reobj)

0.43 + 0.47
(

1− e−.04Re
0.38
obj

)
(3.16)

Now I apply drag force laws to adjust the velocity of the test particle. If the particle is in the

Stokes or RAM pressure regime, I use the smoothed drag force equation given by Cheng, 2009:

Fd =
1

2
cdπr

2
objρgv

2
rel (3.17)

If the particle falls in the Epstein regime (defined by robj ≥ 9λ/4), however, Cheng 2009 does not

hold. Instead, I use the Epstein-specific drag force law, given by:

FD =
4

3
πρgvthvrelr

2
obj (3.18)

For the knowledge of how this drag force will affect both the radial and orbital components of the

velocity, I refer to Perets and Murray-Clay, 2011. First, I define the constants η, ts, and vkep to be:

vkep =

√
GMstar

acore
(3.19)

η = 0.5

(
cs

2

vk2

)
(3.20)

ts =
mobjvrel
Fd

(3.21)

where ts represents the stopping time of a particle at that velocity and vkep is the Keplerian velocity

of a particle at that distance. Next, I use the two formulas below to calculate the new radial and
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orbital velocities:

vrel,r = −2ηvkep[
tsΩ

1 + (tsΩ)2
] (3.22)

vrel,φ = −ηvkep[
1

1 + (tsΩ)2
− 1] (3.23)

where vrel,r represents the velocity component towards/away from the star and vrel,φ represents the

velocity component in the orbital direction. From here, the relative velocity is now set to be:

vrel =
√
v2rel,r + v2rel,φ (3.24)

I repeat this process (starting with finding the Reynolds number and drag constant) again and

again, until vrel does not change. At this point, I have determined the terminal velocity of the

particle in the gaseous disk (before encountering the core).

I then define the following relative velocities:

vobj,r = vrel,r (3.25)

vobj,φ = |vrel,φ + vgas| (3.26)

vcg = |vcore − vgas| (relative velocity between core and gas) (3.27)

vog = vrel (relative velocity between test particle and gas) (3.28)

voc =
√
|vobj,φ − vcore|2 + v2obj,r (relative velocity between test particle and core) (3.29)

(vobj,r = 384 cm/s, vobj,φ = 9.41× 105 cm/s, vcg = 851 cm/s, vog = 211 cm/s, voc = 864 cm/s)
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(a) Relative terminal velocity of test particle with respect to gas. Changing the radius
of the particle affects the force of the drag on the particle, which changes the terminal
velocity of the particle.

(b) Graph showing peak of relative terminal velocity. Peak is at about 100cm, illus-
trating the “meter barrier” problem.

Figure 3.1: Relationship between terminal velocity relative to the gas velocity and test particle size
(radius).
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(a) Relative terminal velocity between the test object and the core. This relative
velocity will be important in determining whether the particle is moving at the right
speed to accrete onto the core, as well as help to determine the WISH radius of the
core.

(b) Zoomed in view of peak relative velocity between object and core.

Figure 3.2: Relationship between terminal velocity of a test object relative to the velocity of the
core and the test object’s size (radius).
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I now find the Reynolds number and drag constant for both the core and the test particle ac-

cording to the equations from earlier in the chapter. I use vcg for vrel, rcore for r in the case of the

core and vog for vrel, robj for r in the case of the object. (Recore = 1.39× 105, Reobj = 5.38× 10−4,

cdcore = 0.473, cdobj = 4.46× 104)

Figure 3.3: Reobj at terminal velocity. The plot shows a clear break at about 100 cm corresponding
to the transition between the Stokes and Epstein regimes.

I now use the appropriate drag force equation (either Cheng, 2009, or the general Epstein regime

equation, depending on the radius of the particle) to calculate the drag force experienced by the

core and the test particle (Brown & Lawler, 2003; Cheng, 2009): (Fdcore = 1.46 × 1015 dynes,

Fdobj = 8.86× 10−2 dynes)
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where vrel is the relative velocity w.r.t. the gas (vog for the test particle, vcg for the core).

Figure 3.4: Fdobj relative to particle size. As particles get smaller, their terminal velocities are closer
and closer to the velocity of the gas. Thus, the lower limit on the drag force would be the force
required to keep a particle at the gas’s orbital velocity (below the Keplerian velocity of object).

I then use these drag forces to find the differential acceleration between the particle and the

core due to drag, or wind shearing, by using the equation:

∆aWS =

∣∣∣∣Fd(object)

mobj
− Fd(core)

mcore

∣∣∣∣ (3.30)

(∆aWS = 1.06× 10−5)
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Figure 3.5: ∆aWS compared to radius of test particle. This differential acceleration serves the same
purpose as differential acceleration due to gravitational tidal forces serves in determining the Hill
radius.

I define the wind shearing radius, or the WISH radius, to be the distance between the two

objects where the differential acceleration between the two due to drag overcomes the gravitational

attraction between the two. Thus, the orbit capture WISH radius is:

RWS =

√
G(mcore +mobj)

∆aWS
(3.31)

(RWS = 6.14× 1012 cm)
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Figure 3.6: Comparing the orbit-capture WISH radius to robj . In the orbit capture scenario, I
consider the particle to be in orbit around the central star (instead of around the core). I then
calculate, based on the relative velocity of the particle with respect to the gas, the radius at which
wind-shearing prevents the particle from entering into orbit around the core. A particle that lies
outside this WISH radius experiences such shearing forces from the gas that it is pulled away by
the gas, instead of slowed down to an orbit-acceptable velocity.

Orbit Maintain WISH Radius

To find the WISH radius assuming the particle is already in orbit around the core, I follow a similar

procedure. I use the same Reynolds numbers and drag constants (for the planet core) found in the

previous section. vrel does not change for the core (I still use vcg as the value). However, I now

assume that the test particle is already in orbit around the core, rather than the star (see Chapter

2.5). Thus, the relative velocity between the gas and the particle, averaged around the particle’s

orbit, is the same as the relative velocity of the core, vcg.
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I thus recalculate the Reynolds number of the test particle, the drag constant, and finally the drag

force on the test particle, and from there recalculate the differential acceleration. Plugging in this

new ∆aWS to the equation for WISH Radius, I arrive at a value for the orbit maintain WISH

Radius.

(Fdcore = 1.46× 1015, Fdobj = 0.36, ∆aWS = 4.28× 10−5)

(RWS = 3.05× 1012 cm)

Figure 3.7: Graph comparing the three radii found using the example numbers. In green is the
Hill radius, the point (in a gas-free environment) at which the particle will be pulled away from
orbit around the core by tidal forces from the central star. In red is the WISH radius for the orbit-
capture technique, explained earlier in this chapter. In blue is the orbit maintain WISH radius, the
radius at which a particle in orbit around the planetary core will be sheared away by differential
gas acceleration between the two objects. In orange is the radius of the core. For small sizes of
particles, the Orbit Maintain WISH radius is the smallest of the three stable radii, but for most
sizes, the Hill radius is the smallest stable radius, and the limiting factor in a particle’s ability to
enter into orbit around the core.
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Choosing the Stable Radius

I now have three possible values for the stable radius of the core: Rws(orbit capture), Rws(orbit maintain),

and RHill. I choose the smallest of these three values to be the stable radius, Rstab, of the core,

knowing that if a test particle is within the smallest distance from the core, it also is within the

two larger stability radii..

(1.50× 1012 < 3.05× 1012 < 6.14× 1012, Rstab = 1.50× 1012 cm)

3.2.2 Calculating the Energy Restrictions

If the test particle does not fall within the stable radius of the core, then I automatically exclude

it from the accretion area. Falling within the stable radius, however, does not guarantee that the

particle will be captured. If the particle cannot dissipate its kinetic energy relative to the core

during its encounter with the stable radius (or dissipates its energy too quickly and cannot enter

the Bondi radius) then it will not be able to accrete, regardless of whether it falls within the stable

radius of the core (see Chapter 2.7 for a deeper discussion of this subtlety).

The first step is to determine the relative sizes of the stable radius and the Bondi radius, which

will tell whether the particle needs to dissipate all its energy or hold on to some energy.

Bondi Radius

First, I calculate the Bondi Radius of the core, using the equation:

Rbondi =
Gmcore

cs2
(3.32)

(Rbondi = 2.48× 1011 cm)

The Bondi radius describes the possible radius of an atmosphere on that core, within which

orbiting gas particles would have sub-escape energies.

Determining the Crossing Radius

If the core’s stable radius is the larger of the two, then the test particle has distance 2Rstab in which

to dissipate its energy. If the Bondi radius of the core is larger, however, the work done is not over
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the stable radius – rather, the particle must not couple to the gas within the distance of 2Rbondi.

Thus, the crossing radius – or the radius used to determine the work done by gas drag – is the

larger of the Bondi and stable radii, in all cases.

(1.50× 1012 ≥ 2.48× 1011, Rcross = 1.50× 1012 cm)

Figure 3.8: Comparison between Bondi radius and stable radius for a given test object. When the
Bondi radius is larger than the stable radius, the length scale that determines the accretability is
the Bondi radius. When the stable radius is larger, it is the determining length scale.

Velocity Adjustment

In order to determine the energy dissipation, I must first be able to specify what the energy of the

object will be as it encounters the core. At an infinite distance from the core, this will simply be

dependent on its terminal velocity. Yet as described in Chapter 2.8, as the object encounters the

core, it will exchange potential and kinetic energies, and could possibly be accelerated to a higher



CHAPTER 3. CREATING THE MODEL 59

velocity.

The crossing radius will determine whether the object will be accelerated or not. I find the

velocity associated with a particle located at Rcross from the core (using the reasoning in Section

2.8) and compare this velocity, vcross with the object’s voc at ∞. I then can specify that:

venc,core = max{voc, vcross} (3.33)

venc,gas = max{vog, vcross + vcore − vgas} (3.34)

Where venc,core is the relative velocity between the core and the object upon encounter, and venc,gas

is the relative velocity between the object and the gas upon encounter with the core.

These encounter velocities will help to determine the energy constraints on the incoming particle.

Energy Dissipation due to Gas Drag

Next, I calculate the work done due to drag force. I use the equation:

W = −∆E = F∆d (3.35)

In this case, the distance, d, is Rcross. In order to determine the force, F , I consider the force due

to drag on the particle (determined by drag regime – see Chapter 2.6) at the particle’s encounter

velocity, venc,gas (after the particle has been accelerated, if it is so). In reality, the velocity is some

complicated function of the drag force and its potential energy – after all, drag force from gas

acts on it as it is accelerated by the gravity of the core. The object might not get the chance

to accelerate fully to its encounter velocity. If the object does not accrete, however, then it will

definitely be at venc at the end of its encounter. Thus, allowing it to accelerate before being acted

upon by gas works for the sake of excluding particles (though it might miscalculate the drag force

on particles that would have accreted anyway). Thus, the change in energy is given by:

∆E = FdRcross (3.36)

plugging in venc,gas for vrel. (∆E = 2.16× 1013 ergs)

Now, I calculate the kinetic energy of the particle at infinity – essentially, from the perspective
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of the core, what is the energy the particle has to lose to couple to the gas? The kinetic energy of

the particle at infinity is given by:

KE =
1

2
mobjv

2
∞ (3.37)

where v∞ is the object’s velocity relative to the core before the encounter – voc. For small particles,

which are moving at essentially the same velocity as the gas, this approaches vcg. For large particles,

which are moving at essentially the same velocity as the core, this will be 0.

(KE = 3.13× 109 ergs)

Figure 3.9: Graph depicting the kinetic energy of a test object at ∞ (relative to the core) and the
energy dissipation due to work done by gas drag. Where the energy dissipation is greater than the
kinetic energy at infinity, the test object will be gravitationally bound to the core by the end of
the encounter.
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3.2.3 Determining Accretablility

Once I have the stable radius, the size of the Bondi radius, the work done by drag over the crossing

radius, and the kinetic energy of the particle at infinity, I can calculate whether that specific particle

will accrete or not. First, I impose the condition that the particle is within Rstab. Next, I impose

the energy conditions, explained in Chapter 2.7. Thus, the three conditions are:

|aobj − acore| ≤ Rstab (3.38)

If Rstab ≥ Rbondi, Fd(venc,gas)Rstab ≥
1

2
mobjv

2
oc (3.39)

If Rstab ≤ Rbondi, Fd(venc,gas)Rbondi ≤
1

2
mobjv

2
oc (3.40)

If that particle satisfies both the radius and the energy condition, then I add that particle to the

area of accretion. Summing over all test particles of a certain size will give me a range of accretion.

3.2.4 Calculating Growth Timescale

Once I have the area of accretion, I can plug into the equation for growth timescale (Equation 3.9).

The area of accretion is roughly rectangular. I use the limits of accretion to determine the length

of the accretion rectangle.

To determine the height of the accretion rectangle (and to determine the scale height for acc-

retable material), I take the minimum of the stable radius and Hd, the height of the dust at that

particular point in the disk. Thus, if the stable radius is small enough to fit within the disk on all

sides, then it can fill completely. If, however, the disk is very thin, or the stable radius very large,

then the accretion will be cut off above and below the core. I assume the height of the disk using

Kelvin-Helmholtz shear instability (Helmholtz, 1888) to arrive at the equation:

Hd =

(
Hgas

acore

)2

acore (3.41)

(Hd = 2.71× 1011 cm)

(1.50× 1012 > 2.71× 1011)

Essentially, this represents the minimum height dust settling can produce without the shear between

the dust layer and the gas only layer creating instability, causing the dust layer to expand (e.g.
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Papaloizou & Pringle, 1985, Johansen et al. 2006).

I multiply Σ by the fraction of dust to gas faccrete (typically about 1%) to find the surface

density of accretable material. I then divide by Hd, since all the accretable material will be within

this height, to get a volumetric density of accretable material. Using the accretion area Aaccrete I

thus have found the timescale of growth for the core.

(timescale = 1.83× 104 yrs)

Gravitational Focusing Timescale

As a comparison, I follow the steps outlined in Chapter 2.2 to find the corresponding timescale of

growth using the gravitational focusing method. For vrand (the encounter velocity of the incom-

ing particle) I use vHill, using the assumption of previous (unsuccessful) encounters between the

particle and the core. Plugging in πb2 for Aaccrete and using Equation 3.10 yields the gravitational

focusing timescale.

(timescale = 2.51× 106 yrs)
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Figure 3.10: Timescale of growth v object radius. At the small end of the graph (where robj < 0.01
cm), no particles will satisfy the energy constraints, since they will all be coupled to the gas.
Therefore, the timescale of growth grows to infinity, and planet growth in this regime of disk
particles is impossible.

In this final graph, one can see all the elements of the model coming into play. At the left side,

the line is cut off at about 0.02 cm. This is not a product of the graphing range, but rather a

product of the physics itself. At this point, particles are so small that they couple completely to

the surrounding gas. Since at this small size, the Bondi radius is larger than the stable radius, the

fact that particles are coupled to the gas means they cannot enter the Bondi radius, so will never

be able to get inside the stable radius. At these size scales, timescales of growth will be infinite.

When particles are able to accrete onto the core, in this example, all particles within the stable

radius are able to accrete, so the timescale of growth is affected mainly by the stable radius and by

voc. Smaller than 2 cm in radius, the WISH radius is smaller than the Hill radius and timescales

are lengthened accordingly (the kink in the line at 0.1 cm corresponds to a shift between gas drag
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regimes). Above 2 cm, accretion is set by the Hill radius. Here, particles are moving at roughly

the gas velocity, but are large enough that through their gravitational interaction with the core,

they can decouple and accrete. At around 80 cm, in fact the exact location of the “meter-sized

barrier”, particles have a maximum relative velocity with respect to the core due to their rapid

radial motion, and as such, this corresponds to a minimum in timescales of growth.

After this, the particles are no longer moving with the gas, resulting in decreased voc and thus

longer timescales. At the right side where the line levels off, the particles are so large that they are

not particularly affected by the gas, so the gravitational focusing model (and growth timescale) is

a better approximation than the gas-dominated model.



Chapter 4

Exploring Parameter Space

Now that I have developed the model, I explore parameter space to find out what kinds of variables

are most important for efficient core growth, as well as figure out what kinds of constraints I can

put on searching for gas giant formation in extrasolar systems.

I vary four parameters: the size of the star, the starting size of the core, the distance from

the star to the core, and the density of the disk, in order to try to get a complete picture of the

dynamics of the system. For this study I have shown the timescale of growth using a 5mearth core.

This is the size of the “last doubling” timescale, assuming the core starts rapid accretion of a gas

envelope at about 10mearth. Thus, this is the last (and most time intensive) doubling the core

needs to complete in order to begin accreting gas.

My default parameters are Mstar = Msun, acore = 10AU, and the temperature and disk surface

density profiles used in the previous chapter (Equation 3.1) to model the solar system.
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Figure 4.1: Timescales of growth, varying separation between core and central star. Assuming
mcore = mearth, gas density = solar system, Mstar = Msun.

Figure 4.1 shows the dependence of timescale of growth on separation between the growing core

and the central star. The most surprising part of the model is in fact that larger separations from

the central star, in general, have lower timescales of growth. Not only this, but at larger timescales,

small particles are more likely to accrete onto the core. For example, at 1 AU, particles smaller

than about 0.1 cm cannot accrete onto the core. At 100 AU, however, particles down to 0.01 cm –

about ten times smaller – are able to accrete onto the core, with timescales below 1× 106. This is

because at larger separations, the density of gas is lower, making it easier for particles to decouple

from the gas during their encounter with the core and subsequently enter the stable radius.

For a similar reason, however, closer-in cores have lower timescales for larger particles. This is

because denser gas environments are able to slow down these particles more effectively, increasing

voc and thus increasing the rate at which the core encounters particles in its orbital path.
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Figure 4.2: core mass varies. Assuming gas density = solar system, Mstar = Msun, acore = 10au.

Timescales of growth also depend on the size of the growing core. Larger cores have larger

timescales of growth. In addition, smaller cores shift the switch from WISH radius to Hill radius

to the right. This makes intuitive sense. The gravity of smaller cores accelerates particles more

weakly, so they are less able to overcome gas drag acceleration. Thus, the WISH radius is smaller

for smaller cores (compared to the Hill radius), shifting the switch to the right.

The point of smallest timescale is not affected by core size. This also makes intuitive sense.

The point of smallest timescale corresponds to the point at which the relative velocity between the

core and the object is maximized. Since I assume the core to be moving at its Keplerian velocity,

the low point is simply a factor of vog, independent of core mass.
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Figure 4.3: Timescales of growth, varying mass of star (dynamical changes only, temperature profile
remaining same). Assuming mcore = mearth, gas density = solar system, acore = 10au.

Star mass certainly has an effect on the timescale of growth of cores. Larger stars generally

produce longer timescales of growth than smaller ones (in the range of particle sizes that produces

a mostly flat curve). This is counterintuitive, because larger-mass stars have shorter dynamic

timescales – objects will orbit faster. But two important factors can explain this correlation. First,

as star size increases, RHill decreases, all other things being equal. Thus, the core has a smaller area

within which particles have even a chance of accreting. Furthermore, the correction to the orbital

velocity of the gas goes inversely with the orbital velocity of the core (see Chapter 2.4). Thus, when

the star size increases and the orbital velocity of the core increases, vcg decreases, meaning the core

will encounter gas-coupled particles less frequently. This explains why larger stars produce larger

timescales of growth.

When particles are small, however, and accretion is based on the WISH radius, a more compli-

cated relationship holds. It seems that up to a certain point, the timescales of growth will decrease
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with increasing star size, and then after that point, will increase with increasing star size.

In order for this information to be useful, however, one would have to incorporate a relationship

between star size and disk properties. It is naive to assume that star size would not impact the

properties of the disk itself (temperature and surface density profiles).

Figure 4.4: gas surface density varies. Assuming mcore = mearth, Mstar = Msun, acore = 10au.

Finally, when gas density changes, the timescale of growth changes accordingly. Generally, as

gas density increases, timescale of growth shifts down. This is simple – with more gas comes more

accretable material, and thus more rapid growth. As gas density increases, too, the switch from

the WISH radius to the Hill radius shifts rightward – more gas means more gas drag, so smaller

WISH radii (and thus WISH-dominated dynamics for larger particles). As that switch point moves

rightward, small particles are less likely to be accreted. Finally, as gas density increases, the
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timescale of growth minimum shifts to the right (larger particle sizes). Denser gas means more gas

drag, and thus the particular size particle that satisfies the “meter barrier” problem increases.

What can be said in general, then, about core-accretion growth using the results of this study?

For one, timescales of growth are reduced from those estimates given by the gravitational focusing

model for a large range of particles. In particular, cores “prefer” to accrete small particles in a

Hill radius dominated region – that is, particles that are coupled to the gas at ∞, enter the stable

radius like that, and then spiral in to collide with the core. The most effective growers are those

particles that have a large radial velocity component, increasing the relative velocity between them

and the core.

Finally, the gas model developed in this paper breaks down for larger particles, where gas has

little effect on their velocity. At these sizes, gravitational focusing is the correct way to describe

their accretion onto the core. These models could prove useful for future predictions of early

characteristics of systems with known large-separation gas giants, as well as a possible way of

predicting whether a native gas-giant could exist in a given system, given the values of the various

parameters.



Chapter 5

Case Study – HR8799

I now apply the model to the case of HR8799 planetary system, which will test the extreme limits

of my hypothesis of gas giant core growth through accretion.

5.1 Motivation

As previously stated in the introduction, this system will test the limits of my model by presenting

a case of planets with exotic properties, challenging the scientific community to either explain their

formation through accretion or through gravitational instability (neither of which, in its present

form, can fit the planets into the model nicely).

The system is composed of an A-type star, orbited by four planets, three of which (HR8799b,

c, and d) are gas giants located at a distance of more than 20 au from the central star. The masses

of the three gas giants, as stated in the discovery paper, are 7, 10, and 10 times the mass of Jupiter

respectively, or 1.329× 1031, 1.898× 1931, and 1.898× 1031 grams. The dilemma, of course, is that

the planets are too big and far away to be described by conventional models of planetary accretion,

and too small to be described by gravitational instability collapse models. The following graph

(Kratter, Murray-Clay, and Youdin, 2010) describes the problem pictorially:
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Figure 5.1: Taken from Kratter, Murray-Clay and Youdin, 2010, Figure 6. Plot of fractional mass
of the object v distance from central star. Substellar companions are shown as asteriskses and
planets, formed by accretion, are shown as plusses. HR8799 system shown as pink circles.

The HR8799 planets fall right between the two populations – planets formed by core accretion

and stellar companions, formed by a variety of other processes. In applying my model to the system,

I can figure out which population they should belong to.

5.1.1 Choosing Parameters

To begin, I must find out what the appropriate parameters are to plug in. I need to determine the

following values in order for the model to have minimal uncertainty:

1. Mass of the star at the time of accretion

2. Distances of the planetary cores, assuming no drift

3. Size of accreting particles

4. Gas density in the disk

5. Temperature profile of the disk

6. Current age of the planets
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From the discovery paper, I extract the distances and masses/radii of the planets (Marois et al.,

2010). Furthermore, from a follow-up paper done by Marley et al. (2010) I find the ages of the

planets, which will be, roughly, the limiting timeframe of accretion. Below is a table specifying

each value for the planets:

Figure 5.2: Parameter values specific to HR8799 b, c, and d. Information taken from Marois et al.
2010 and Marley et al. 2010, through observation and theoretical modeling.

Furthermore, Kratter, Murray-Clay and Youdin (2010) modeled the temperature profile and

density profile of the disk, as well as the projected mass of the star when accretion would have begun.

They model the disk as passively irradiated following the work of Chiang and Goldreich (1997),

thus introducing an a−3/7 dependence for temperature. Furthermore, they follow a conservative

accretion model for the star, working backwards under the assumption that the star follows a typical

mass-luminosity function for an A-type star and accretes a constant 10−7 Msun per year. This rate

was set based on the minimum requirements for star formation timescales. The parameters relating

to the stellar environment are summarized in the table below:

Figure 5.3: Parameter values specific to HR8799 system. Information taken from Kratter, Murray-
Clay and Youdin (2010), through theoretical modeling.
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Σ = 200
( acore

70AU

)−1 g

cm2
(5.1)

Σ =
csΩ

πG

g

cm2
(5.2)

For the gas density profile, I calculate the timescale of growth twice – once using the minimum

gas density and once using the maximum – to get a sense of how dependent my hypothesis of core

accretion is on accurate determinations of the early disks of planetary systems. My minimum gas

density profile is based on the idea that the minimum amount of material present in a young disk is

the amount of material in the current-day planets and asteroid belts of the system (Weidenschilling,

1977, Hayashi, 1981, and Desch, 2007). This is then adjusted to reflect the temperature of the A-

type star. The maximum gas density profile is based on limits of stability of disks. At higher

densities than those given by the Toomre condition, either rotational shear will stabilize the disk

by expanding and thus restoring lower densities or it will collapse as in gravitational instability

models (Kratter, Murray-Clay & Youdin 2010). Thus the maximum density is when the Toomre

condition is exactly 1.

In terms of particle size, I assume that the disk is made of uniformly-sized particles. Possible

future work will be to use a distribution of particle sizes. I also assume that the cores uniformly

begin at mcore = 5mearth (as seen in the previous chapter, as core mass increases, so does timescale

of growth. Thus, by using the “last doubling” timescale, I can judge the success of the model in

a conservative way). Finally, I use the values below as reference to convert the masses to grams

(instead of with respect to the sun and Jupiter):

MSun = 1.9891× 1033g

MJupiter = 1.898× 1030g

1AU = 1.496× 1013cm
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5.2 Results

I represent the results of the simulation in a table form below:

Figure 5.4: Results of core accretion simulations for HR8799 system. Assuming all accretable
particles 10cm in radius. Min refers to the use of the minimum-mass disk density profile and Max
refers to the use of the maximum-mass disk density profile. Realistic values will likely fall between
these two models.

The gas-interaction model developed in this paper is largely successful. The timescales of growth
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represent a significant reduction from the predictions using a gravitational focusing model. In all

cases, the gas-interaction model predicts a timescale of growth well within estimations of lifetimes

of disks. Reassuringly, all timescales of growth, including those modeled using the minimum mass

solar nebula disk density estimate (the “upper limit” on the timescale of growth) are much less

than the derived ages of the planets, which is more than can be said for the gravitational focusing

timescales.

These timescales were generated assuming that all dust particles were of equal size. In reality, of

course, there will be a variety of sizes of particles moving in the disk surrounding the core, following

some sort of distribution. The timescales of growth of the HR8799 planets for varying particle sizes

are shown in greater detail in the following graphs:

Figure 5.5: Local disk average surface densities (assuming laminar disk) around each core at the
time of growth. Disk density is independent of particle size by assumption.
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Figure 5.6: Local disk temperatures around each core at the time of growth. Disk temperature is
independent of particle size (for the purposes of this model).
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(a) Minimum disk density model.

(b) Maximum disk density model.

Figure 5.7: Stable radii for the 5mearth cores at the location of the HR8799 planets for different
sized disk particles.
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(a) Minimum disk density model.

(b) Maximum disk density model.

Figure 5.8: Timescales of growth for 5mearth cores at the location of the HR8799 planets, using the
model developed in this paper. These timescales represent the “last doubling” timescale, or the
last doubling needed before the core can enter the regime of rapid gas envelope accretion. Dashed
lines show the timescale of growth following the gravitational focusing model.
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As shown in the above figure, even if I assume worst case scenario (minimum density disk

profiles), the particles in the disk would have to be uniformly less than 10−2 cm or larger than

103 in radius in order for a core-accretion model to predict timescales larger than 106 years for

any HR8799 planet. Interestingly, all three planet cores have very similar timescales of growth

in the minimum-density case. This reinforces the hypothesis that all three were formed the same

way – either all three by core accretion, or all three by GI. The results of this research point to

core accretion as the growth mechanism for the three gas giants, while the results of other studies

(Kratter, Murray-Clay and Youdin, 2010) discourage GI as the mechanism.

Thus, I conclude my case study of HR8799 with a positive result – the model predicts that the

large-separation gas giants are most likely formed as a result of core accretion.
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Conclusion

The study I present in this paper is quite successful. The goal was to use gas interactions to

model the growth of gas giant cores at timescales shorter than the age of the protoplanetary disk.

Specifically, I used the model to predict the timescales of growth of the HR8799 planets.

Using both a minimum disk density profile (based on the minimum mass solar nebula model)

and a maximum disk density profile (based on the Toomre criteria) I was able to estimate the

timescale of the last doubling of HR8799b,c, and d. These timescales were reduced from around

107 years (using gravitational focusing) to 104 years. Thus, timescales were within an acceptable

range (less than 106 yrs) for particle sizes .01 cm to 103 cm. Of course, ultimate timescales of

growth will depend on the particle size distribution within the disk, but as long as the majority of

particles are within these limits, I can say that core accretion is a possible model for the growth of

these planets.

Furthermore, delving into parameter space simulations of the model gave a good descriptive

sense of what kinds of characteristics are conducive to large separation core growth. At small

particle radii, the particles are not able to decouple from the gas during an encounter with a core

to enter the Bondi radius. Thus, at the low end of particle sizes, the gaseous disk model predicts

that timescales are infinite – these particles simply do not accrete at all. In general, the size of

particle at which Rws = RHill up to the size at which the particles do not couple with the gas

is the range at which core growth is most effective. The best growers were the size particles that

presented the “meter barrier” problem – the size at which inward radial velocity is maximized (due

to gas drag).
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Thus, gas plays a vital role in influencing the path of colliding particles in the early and middle

stages of giant planet growth. It limits the radius of stability of a core, by introducing an extra

element of shearing force to approaching particles. It also increases the efficiency of accretion within

that reduced radius of stability, by exerting forces on the particles that slow them down to relaxed

velocities.

There is great potential for future work with this model, both in terms of adding more complexity

and nuance and using it to help with observational efforts. Most importantly, a study that takes

into account the various geometries present in the disk involving gas, the accreting particles, and

the cores is needed. This, along with not being able to predict disk density profiles and particle

size distributions, is the largest source of uncertainty in my modeling. In addition, protoplanetary

disks are not perfectly laminar, and include both flares and turbulence, both which will have effects

on the behavior of particles embedded in them. A direct extension of this project would be to

incorporate models of turbulence in disks to further refine timescale estimates.

In terms of observation, this work could be used as a tool for predicting the separations of

extra-solar gas giants from their stars (though this would ignore the fact that many planets drift

considerable distances since their initial formation). Furthermore, it could be used to place con-

straints on properties of disks once a certain amount of core accretion takes place. For instance, if

one size particle accretes well to the core and one does not, then you would expect to find increasing

proportions of the latter surrounding a growing core.

My research does not provide a definitive proof of growth by core accretion. Just because the

timescales of growth are correct does not mean my model describes the physical reality of how

planetary cores grow. Our body of observational data on protoplanetary disk makeups, exoplanet

systems, and their relationship is not nearly large enough for any theory on planet growth to be

proven correct. Yet I believe that in showing possibility – even plausibility – I have paved the way

for future work in the field.
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