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Abstract—The ever more used and widespread Time-Sensitive
Networking (TSN) has changed real-time networks, enabling
reliable communication for time-critical applications. At the same
time Software-Defined Networking (SDN) has emerged as a
solution to ensure proper quality of service for managing dynamic
network configurations even in evolving topologies. This paper
investigates the integration between TSN and SDN to enable
dynamic network re-configuration and improve performance for
time-critical applications. We present an experimental setup
designed to evaluate this approach. The setup focuses on scenarios
where an SDN controller can dynamically reroute critical data
flows across different TSN network devices to avoid interference
and maintain consistent Quality-of-Service (QoS).

Index Terms—Time-Sensitive Networking (TSN), Software-
Defined Networking (SDN), Seamless routing, Traffic shaping and
scheduling

I. INTRODUCTION

The introduction of IEEE 802.1 Time-Sensitive Networking
(TSN) [1] is revolutionizing the design and implementation
of industrial networks and applications. Comprising over 20
standards, TSN addresses synchronization (802.1AS-2020)
[2], traffic shaping and scheduling (802.1Qbv) [3], network
management (802.1Qcc) [4] and other issues.

Originally conceived to introduce real time performance
on Ethernet networks, TSN is nowadays being extended to
wireless networks such as WiFi and 5G [5], [6]. Notice-
ably, TSN revealed promising not only for the aforemen-
tioned applications, but also in the context of reconfigurable
network architectures in conjunction with Software-Defined
Networking (SDN), a paradigm originating from Information
Technology. SDN offers programmable network architectures
through centralized control entities, enhancing the capabilities
of TSN and enabling dynamic network reconfiguration. This
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synergy promises improved performance, synchronization, and
easier integration of time-sensitive applications.

Recent research explores the integration of SDN and TSN
to tackle challenges in industrial automation, mixed-criticality
control, dynamic path reconfiguration, and failure handling.
However, existing studies primarily focus on legacy TSN
applications within Ethernet networks.

For example in [7], the authors introduce the concept of
a unified control-plane that bridges the gap between Time-
Sensitive Networking (TSN) and Software-Defined Network-
ing (SDN). Depending on specific connection requirements,
the proposed solution enables the establishment of either
deterministic or non-deterministic paths. The approach has
been validated using a testbed. Another paper on this topic is
[8] where a solution that combines TSN, SDN, and OPC-UA is
presented: the proposed architecture demonstrates the feasibil-
ity of configuring time-sensitive traffic streams by harnessing
TSN methods for synchronization and Time Aware Shaping,
alongside forwarding techniques from SDN. The OPC UA acts
as the link for industrial applications, facilitating interaction
with network management and efficient transmission of their
service demands.

In [9] a SDN-TSN approach is proposed to enforce temporal
isolation for flows that were provided during network design.
By doing so, flow delays remain unaffected even when new
flows are introduced dynamically at runtime. The solution has
been tested on a preliminary experimental assessment based
on commercial-off-the-shelf TSN-compliant switches.

An emulation based approach to achieve improved network
resource management, while meeting high-reliability Quality
of Service (QoS) requirements is presented in [10]. The
performance analysis carried out by the authors demonstrates
that the proposed solution accurately schedules critical time
traffic, resulting in bounded end-to-end latency with minimal
jitter.



A SDN-based Dynamic path reconfiguration approach is
presented in [11], where an algorithm is proposed and formu-
lated as an optimization problem. By leveraging the control
plane’s global view, the authors evaluate, by simulation, vari-
ous dynamic path configuration strategies under deterministic
communication requirements.

In [12] an architecture is presented that integrates wireless
TSN with Software-Defined Networking (SDN), aiming to
facilitate dynamic network configuration and enhance the
performance of time-sensitive applications. A practical test
environment is introduced, based on a hybrid network con-
figuration that includes both wireless and wired TSN links.

Moving from the work described so far, in this paper we
address the use of SDN to dynamically reconfigure TSN-based
communication paths. In detail, we present an experimental
setup which employs TSN switches and [13] nodes to achieve

• Evaluation of end-to-end latency to identify actual com-
munication delays.

• Dynamic routing of time-sensitive traffic across the net-
work based on latency measurements for reliable, low-
latency communication.

In TSN applications, where guaranteed low latency and
reliability are crucial, the ability to seamlessly update data
flow paths is critical. Assessing this capability is a key
objective of our paper. We present a test environment utiliz-
ing a network configuration managed by an SDN controller.
Through practical setups, low cost devices and experimental
sessions, we investigate the seamless transition of traffic flows
between different links while maintaining performance levels,
particularly in scenarios where communication issues arise on
some paths.

The paper is structured as follow: in Section II our proposal
based on TSN and SDN is introduced, while in Section III
the setup we used for experimental evaluation is described.
Section IV reports on the results we obtained, and Section V
draws some conclusions.

II. DYNAMIC PATH RE-CONFIGURATION USING SDN
As will be detailed in the next Sections, this paper presents

a technique to dynamically and seamlessly reconfigure the
paths between network nodes when the traffic on the current
path becomes critically delayed. The overall system is based
on the measurement tool described in [14] that relies on
the synchronization of two nodes that act, respectively, as
sender and receiver. This approach is based on how TSN’s
time synchronization acts as the groundwork for the proposed
measurement method. Leveraging the ETF (Earliest TxTime
First) mechanism, we optimize frame transmission precision
and timeliness at the network’s link layer, ensuring frames
are sent with nanosecond-level accuracy. Simultaneously, at
the receiving end, we utilize the SO TIMESTAMPING API
from the Linux kernel to access hardware timestamps. By
integrating TSN features with this API, it has been possible
to obtain a dependable and precise assessment of latency,
focusing solely on network communication delays regardless
of device setup and performance.

Once the latency measurement system is installed and
operational, it exploits the measured values to determine, in
the event of latency increases, any path changes necessary to
bring the latency values back below a predefined threshold. In
other words, after setting up and activating the measurement
system, it continuously monitors latency levels. If it detects
an increase in latency beyond a given threshold, the system
automatically adjusts the network path to restore latency values
to an acceptable level.

This operation is performed by the SDN controller that
monitors the messages received by nodes and decides whether
or not paths have to be dynamically changed. Path reconfigura-
tion, if necessary, is triggered by messages from the controller
to the Open vSwitch node.

To evaluate the network devices under different stress con-
ditions we increase the network load along the path between
sender and receiver by directly injecting interfering traffic that
flows in the same direction of the main traffic.

To stress the network setup under different conditions
and to evaluate different aspects of this TSN topology, four
experiments were performed

1) interfering traffic with no reconfiguration
2) interfering traffic with reconfiguration on the OSW

switch, to change the path used by traffic with high
priority

3) interfering traffic with reconfiguration on the TSW1

switch, to isolate the different types of traffic
4) interfering traffic with priority conflicting with the main

traffic

III. THE EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. It comprises two
main nodes, referred to as sender and receiver. Both of them
are NUCs Intel NUC11TNKI5, Ram 16GB DDR4-3200, SSD
M.2 250GB PCIe. They are both equipped with an Ethernet
card with chipset Intel I225, able to supply TSN capabilities,
including hardware timestamping, hardware management of
ETF and the PTP protocol. The sender has been programmed
to generate the probe traffic, based on UDP datagrams with
a payload of 256 bytes, that includes the TX TIME value
used as launch time for each packet by the ETF scheduler.
This scheduler leverages the offload capability of the network
card, effectively delegating the packet sending operations to
the network card hardware. Moreover, to further limit any
possible delay due to the software layer, a set of datagram
are pre-loaded and sent to the Ethernet card until the buffer
of the interface is full. As soon as a number of frames are
sent, others are pre-loaded, in a continuous loop. In this
way, the software avoids any problems that can arise when a
precise periodic operation is required at application level. Two
additional identical NUCs (int1 and int2 in Fig. 1) are used to
generate the interfering traffic. The software they use is iperf3.
All the NUCs run an Ubuntu 22.04.3 LTS Linux distribution.
The PC indicated as OSW in Fig. 1 runs Open vSwitch. It is
a Dell OptiPlex 5000, with an Intel i7-12700 CPU, Ram 16GB
DDR4-3200, HDD 4TB. It is equipped with a 4-ports network
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Fig. 1. Topology.

card with four interfaces based on the Intel chipset I225. This
card is used to deploy the virtual switch used to create both
paths from the sender to the receiver, exploiting either the
switch TSW1 or TSW2. The Open vSwitch used is version
3.3.90. After some measurements, where we noticed a latency
introduced by the OVS with values around 80µs, we decided
to leverage the Data Plane Development Kit (DPDK, version
23.11.0) to optimize the usage of the 4 network cards as a
switch, with a remarkable improvement in terms of latency.

Both TSW1 and TSW2 switches are based on the NXP
LS1028ARDB model. These switches are powered by an
ARM Cortex-A72 dual-core processor clocked at 1.3 GHz
and have 4 GB of RAM. Each switch features a 1Gbps
Ethernet port utilized for control and monitoring operations.
Then, the model supplies 4 1Gbps ports that permit switch
functionality through Quad Serial Gigabit Media Independent
Interface (QSGMII). This enables seamless connectivity to
multiple network devices concurrently, all supporting Time-
Sensitive Networking (TSN) and IEEE 1588 protocols.

An additional NUC was introduced in the configuration,
namely the sink to draw the interfering traffic. To facilitate
the convergence of the two paths leading to, respectively, the
receiver and the sink, a further switch indicated as SW Fig. 1,
was deployed that connects both such devices. SW is a 5-port
Netgear GS105 Prosafe switch.

A picture of the real physical setup is shown in Fig. 2.
On the OSW node, a Ryu controller is running, awaiting

REST commands dispatched by the receiver whenever the
latency threshold is exceeded. This threshold is assessed every
second. Considering a periodic traffic interval of 1 ms, the
value is computed based on a moving average derived from a
window of 1000 samples.

Both the sender and the receiver are synchronized using

TABLE I
HARDWARE DEVICES

Device Latency (ns)
Avg Min p99 Max Std

TSW1 and TSW2 2711.2 2600 2788 3278 38.6
SW 4951.3 4827 5052 5086 56.29

PTP with TSW1 as the clock master, whereas the interfering
nodes int1 and int2 are not synchronized at all.

These nodes are controlled via a simple command messages
sent through the network at the beginning of each experiment.
This command schedules a predefined waiting time on both in-
terfering nodes, after which they both launch a iperf3 instance
to generate traffic with specific characteristics.

In each experiment the initial configuration allows the traffic
to flow between the sender and receiver through the TSW1

switch. To ensure this specific path, the Open vSwitch (OVS)
was configured with the following static rules

• Traffic from sender to receiver: all incoming traffic from
the sender is directed to switch TSW1.

• Traffic from receiver to sender: similarly, all traffic from
the receiver back to the sender is directed to TSW1.

• REST Commands: an additional rule intercepts REST
commands originating from the receiver and directs them
to the Ryu controller.

.

IV. RESULTS

A. Setup evaluation

Before performing the experiments, some preliminary as-
sessments have been carried out, to characterize the devices
included in the paths between sender and receiver.

Table I summarizes the latency measurements for the
key network components, namely, TSW1, TSW2, SW, (the
columns refer to, respectively, Average, Minimum, 99th per-
centile, Maximum and Standard Deviation values).

As expected, the hardware switches (TSW1, TSW2, and
SW) exhibit consistent (deterministic) latency values. These
measurements have been carried out sending 1000000 sam-
ples, with a period of 1ms.

We have also evaluated the software switch measuring the
total latency between the sender and the receiver. Because all
the other component are deterministic, the greater variability
in the measured latency is due to the software switch OSW .
This evaluation has been carried out in this way, including
two hardware switches because TSW1 was used as the PTP
master clock. It is worth highlighting that the performance
of OVS configured with DPDK remains significantly better
than a standard OVS installation on the same PC. In fact, the
standard installation averages around 80 µs of latency.

While the latency statistics for the default path using the
TSW1 switch were previously presented in Table II, we
include a corresponding plot here to highlight some key
observations. As can be seen in Figure 3 there is an interesting
anomaly in latency between samples 33,200 and 34,200. This



Fig. 2. Picture of the experimental setup.

TABLE II
sender TO receiver PATH THROUGH TSW1

Latency (ns)
Avg Min p99 Max Std

25530.3 14327 26358 33646 679.4
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Fig. 3. Latency of the initial configuration, through TSW1 switch.

appears as a dip followed by a rise, both lasting approximately
1 second. This behaviour is likely caused by an anomalous
spike in the delay caused by the OSW node, affecting one PTP

packet. This triggered the PTP algorithm to compensate and
adjust the clock frequency accordingly on the sender, resulting
in an offset between sender and receiver that is reflected in the
overall latency measurement. This effect persisted until a new
PTP frame arrived providing updated delay estimation, causing
a new clock adjustment. Significantly, the duration of both
ramps (1 second) aligns with the default PTP synchronization
interval. We also observe a similar, albeit less pronounced,
effect around sample 60,000. This anomaly exhibits a smaller
change in latency compared to the one previously discussed.

After the above described initial characterization of the
devices, we conducted a series of experiments to evaluate
the proposed architecture. Each scenario was evaluated using
100000 samples generated at a constant rate of 1000 PPS
(Packets Per Second).

B. First experiment: interfering traffic with no reconfiguration

The first experiment investigates the impact of interfering
traffic on the TSW1 switch. To achieve a more stable and
significant level of interference, we employed two separate
nodes, int1 and int2, running the iperf3 tool, generating two
different traffic flows. This approach proved more effective in
saturating the TSW1 switch, requiring a combined bandwidth
of approximately 800Mbps in total to produce a noticeable
effect. The sender initiates the interfering traffic by sending a
command to the two designated nodes, int1 and int2. These
nodes are programmed to listen for this command. Upon
receiving it, they wait for 15 seconds before starting iperf3.
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Fig. 4. Experiment 1: interfering traffic.

Each iperf3 instance is configured to transmit UDP traffic at
a rate of 400Mbps for a duration of 30 seconds.

Fig. 4 illustrates the impact of interfering traffic on latency.
A significant increase in latency exceeding 75µs is observed
around sample 16000, coinciding with the activation of the
two generators of interfering traffic using iperf3. Thereafter,
the latency fluctuates in the range of 50µs to 75µs. Once the
two interference generators int1 and int2 cease their activity,
the system returns to normal behavior and the latency values
are again on average.

C. Second experiment: interfering traffic with reconfiguration
on the OSW switch, to change the path used by traffic with
high priority

In the second experiment, we introduce the dynamic re-
configuration of the network. The receiver was configured to
evaluate the latency on the fly using a simple moving average
(SMA) on a window of 1000 samples. In practice, since the
traffic under analysis has a generation period of 1 packet every
1ms, the average of the latency was evaluated considering all
th packets acquired in the last elapsed second.

A threshold of 40µs was configured, so that if the SMA
execeeds this threshold, the receiver sends a REST command
to the controller running on OSW . On the OSW node there
is a Ryu controller that has been configured, on the startup, to
deploy the initial configuration to forward the traffic from the
sender to the receiver using the TSW1 switch. This controller,
as soon as it receives a specific REST command from the
receiver, triggers a rules change in the Open vSwtich to use
the path through the TSW2 switch. More specifically, to avoid
any packet loss, the controller adds two rules that affect only
the IP traffic. In this way, the PTP protocol frames can be
still exchanged without any interruption between the master
clock and the sender. It is to worth noting how new rules
are added with higher priority while preserving existing rules.
This ensures continuity on the connection and prevents packet
loss during route changes.
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Fig. 5. Experiment 2: dynamic re-configuration.

In Fig. 5 the results of the experiment are shown. We can
see how the system is working normally until the interfering
nodes start to send their packets (always around sample
16000). But at this time, as soon as the calculated value of
the mobile average goes over 40µs, the receiver reacts and
makes the controller to change path, so that the latency is
brought back to the former value. It may be concluded that the
dynamic reconfiguration technique works appropriately and,
consequently, it may applied in practice.

D. Third experiment: interfering traffic with reconfiguration
on the TSW1 switch

Until now we have used only the synchronization mecha-
nism to evaluate latencies in real time, but we haven’t yet used
any of the features supplied by the TSN paradigm. In this third
experiment, we’ll demonstrate two key aspects of the use of
TSN. First of all, we introduce the Time Aware Shaper (IEEE
802.1Qbv) on the TSW1 switch to isolate different types of
traffic. To reach this scope, we introduce traffic priorities and
we assign the sender traffic to priority 3 (critical applications),
leaving the interfering traffic as Best Effort (priority 0). For
this purpose, the C program running on the sender uses the
combination of setsockopt system call and SO PRIORITY
parameter. At the same time, the sender network card has been
configured with a VLAN subinterface that, through the usage
of egress settings, sets correctly the PCP field in the Ethernet
frame reflecting the chosen priority value. We now provide a
more complex and general configuration on the TSW1 switch,
defining 3 windows for 3 different types of traffic, where each
window has a time duration specified as in the following:

• High priority traffic (priority 3): 300µs
• Intermediate priority traffic (priority 2): 300µs
• Best Effort traffic (all other priorities): 400µs
This configuration is applied on the TSW1 switch using the

Linux TAPRIO qdisc implementation. Moreover, the switch
can leverage the full-offload feature meaning that the taprio
configuration will pass the gate control list to the network card
which will execute it cyclically in hardware.



With this configuration, the traffic under analysis and the
interfering one will be managed separately, with the former
one that will not be affected by the latter. From the point
of view of the receiver, no effects on the measured latency
will be noticed. However, in this scenario it is interesting to
evaluate what happens during a configuration change. So, in
this experiment, when the latency threshold is reached, we do
not change the flow rules on the OSW node but instead we
apply the Time Aware Shaper on TSW1 and we analyse its
impact.

A portion of the complete experiment results is shown in
Fig. 6, where we reported the latency measurements in a time
window of 15 seconds (corresponding to 15 thousand packets).
Around the sample 16000 we notice again an increase in the
latency, as expected, followed by a small cluster of packets
suffering high latency (up to 30 ms), after which the latency
returns to usual average values. We used a logarithmic scale
on the y-axis to see all the data comprehensively but it is
still possible to notice how the experiment initially shows
the same behavior noticed in experiment 2. However, as soon
as QBV settings are activated, the switch TSW1 effectively
separates the two kinds of traffic, protecting the one with high
priority from the influence of the interfering nodes. We also
see 28 packets suffering high delays of tens of milliseconds
magnitude. These packets are included in the area delimited
by green vertical lines in both plots, where the inner one uses
a standard y-axis scale. We clearly see a regular decrease in
the measured latency for these packets. The explanation is
that, while the change in the configuration of the switch does
not cause any packet loss, it, however, forces some packets
to be enqueued and delayed. As soon as the configuration
change ends, these packets are de-queued and are sent as fast
as possible to their destination.

This experiment highlights the potential for dynamically
adjusting transmitting window sizes based on traffic priority.
While feasible, it also reveals two challenges: increased delay
caused by network card reconfiguration and the need for a
standardized switch reconfiguration protocol.

E. Fourth experiment: interfering traffic with priority conflict-
ing with the main traffic

The last experiment we have carried out starts from the
TSW1 switch already configured with the Time Aware Shaper
activated. We have then configured int1 to use iperf3 to send
the interfering traffic, but we have changed the VLAN settings
of the network card to re-map this traffic from Best Effort to
the same priority of the one under analysis; in particular, the
egress settings has been configured to change the priority from
0 to 3. With this scenario configuration, we have again the
same situation as before: the interfering traffic impacts on the
network performance and causes delays to the traffic under
control, as can be seen in Fig. 7. Moreover, this time, the
window reserved for the high-priority traffic is smaller (from
1ms to 300µs) and a single interfering node, that generates a
traffic with a 260Mbps bandwidth, is enough to cause a delay
that exceeds the threshold and that triggers the path change.
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Fig. 6. Experiment 3: Time Aware Shaper on the TSW1 and zoom for a
comparison with other experiments.
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Fig. 7. Experiment 4: interfering traffic mapped to high priority and taprio
configured on the TSW1 switch.

V. CONCLUSIONS

This paper evaluated the integration of a TSN network with
an SDN controller for dynamic reconfiguration. Our goal was
to maintain Quality-of-Service (QoS) for time-critical data
flows even in the presence of interfering traffic. We tested
various scenarios in a real experimental setup, demonstrating
the effectiveness of this approach and the pros and cons of the
different used functionalities. While using an Open vSwitch
introduced some non-determinism into the network, it still
facilitated reliable and fast path switching without packet
loss. On the other hand, another experiment yielded valuable
insights into the potential for dynamically configuring Time-
Aware Shapers on TSN switches that is effective but with some
costs to take into account. Overall, the different experiments
we conducted, demonstrated the necessity of having a flexible
topology able to make use of both SDN and TSN capabilities,
to adapt to different network load scenarios.
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[8] T. Kobzan, I. Blöcher, M. Hendel, S. Althoff, A. Gerhard, S. Schriegel,
and J. Jasperneite, “Configuration solution for tsn-based industrial
networks utilizing sdn and opc ua,” in 2020 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
vol. 1, 2020, pp. 1629–1636.

[9] L. Leonardi, L. L. Bello, and G. Patti, “Exploiting software-defined
networking to improve runtime reconfigurability of tsn-based networks,”
in 2022 IEEE 27th International Conference on Emerging Technologies
and Factory Automation (ETFA), 2022, pp. 1–4.

[10] M. Seliem and D. Pesch, “Software-defined time sensitive networks (sd-
tsn) for industrial automation,” in 2022 14th International Conference
on Computational Intelligence and Communication Networks (CICN),
2022, pp. 1–7.
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