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This paper presents a conceptual model and a proof-of-concept implementation 

of a novel approach to engage citizens in supervising the analysis of user-gener-

ated geographic content (UGGC). For example, UGGC allows insights into the 

(re-) production of urban spaces, promising new options for pro-active urban 

planning, citizen participation, and local empowerment. However, the unknown 

quality and high volume of UGGC require advanced filtering and classification 

procedures to be able to extract new knowledge and actionable intelligence. The 

complexity of some tasks and the increasing volume of UGGC often restrict the 

role of citizens to data providers. We argue that citizen should and can play a de-

cisive role in the parameterization and training of deeper computational analysis 

of UGGC streams. The challenge is how to present geographical analysis prob-

lems to a crowd of human supervisors, and how to elicit responses and feed those 

back into the workflow. We propose a hybrid processing approach, which maps 

geographical problems into data mining and machine-learning tasks, presents 

analysis results to human supervisors, and uses the responses to improve the ma-

chine-learning and data mining. For the pilot study, we adapt an approach to find 

semantically distinct places in UGGC. The human supervisors rate the clustering 

of potentially similar geo-located photographs from the platform Flickr, and 

thereby help parametrize both the data mining of geospatial clusters, as well as 

the classification of similar images based on several ancillary attributes. 

Keywords: crowdsourcing, citizen science, machine learning, data mining, user-

generated geographic content, Flickr, urban places, hybrid processing 
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1 Introduction 

1.1 Problem Statement and Motivation 

This paper explores a novel approach for crowdsourcing the supervision of computational 

analysis of user-generated geographic content to citizens and potential stakeholders in the 

study objectives and outcomes. This approach takes advantage of the rapid growth of 

available sensor data and user content. With many human activities relating to geographic 

space, this user-generated content (UGC) also contains rich information about geographic 

features or about events occurring in a specific time and place (Caquard, 2014; Graham 

and Shelton, 2013), allowing us to observe the development of urban imaginaries (Kelley, 

2013), and influencing the (re-)production of space (Thrift and French, 2002). The low 

technological entrance barrier, wide reach and bi-directional communication channels 

open up new opportunities for citizens to engage in participative planning processes 

(D’Hondt et al., 2013) or to challenge authoritative knowledge production (Dodge and 

Kitchin, 2013). Citizens can participate in scientific projects more easily, leading to a 

surge in citizen science projects (Kullenberg and Kasperowski, 2016), and through their 

valuable traditional and local knowledge improve our understanding of processes that 

drive human-environment interaction (Bonney et al., 2009). There is a variety of terms 

used to describe the facets of geographic UGC, including volunteered geographic infor-

mation (Goodchild, 2007), ambient geographic information (Stefanidis et al., 2013), and 

contributed geographic information (Harvey, 2013). In this paper, we focus on content 

from geosocial media and refer to it as user-generated geographic content, or UGGC 

(Craglia et al., 2012). 

Although UGGC has proven its utility for a variety of tasks and purposes (Fast and 

Rinner, 2014; Garcia-Martí et al., 2016; Granell and Ostermann, 2016; Haworth, 2016), 

several characteristics of UGGC have a negative impact on its fitness-for-use. These in-

clude high semantic and syntactic heterogeneity, and unknown provenance and produc-

tion parameters (Ostermann et al., 2015). 

A common response to these challenges has been the crowdsourcing of curation 

tasks (Sui et al., 2012): Human volunteers curate incoming information by checking its 

accuracy, assigning labels, and prioritizing it for further processing. Despite encouraging 

results, this approach lacks quality (control) and reproducibility (Camponovo and 
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Freundschuh, 2014), guaranteed sustainability, and efficient scaling up (Morrow et al., 

2011). 

Another approach is to employ data mining (DM) and machine learning (ML) tech-

niques to select, filter, classify, and enrich UGGC. Already more than a decade ago, Ga-

hegan (2003) identified ML as a promising approach to many (geographic) analysis tasks, 

emphasizing its potential for inductively generating new knowledge. Since then, research 

and practice revealed at least three main challenges: First, dependency on data quality for 

unsupervised DM and ML (Kanevski et al., 2008); second, overfitting of the learning 

model (Butler, 2013); and third, training costs for a diversity of contexts and tasks (Os-

termann and Spinsanti, 2012). 

1.2 Research Objectives and Paper Structure 

The overarching objective of this paper is to develop and test mechanisms that ad-

dress the various challenges discussed in the previous section, by combining human and 

computational analysis of UGGC. We envision that such a hybrid processing approach 

can improve the quality assessment and enrichment of near real-time UGGC streams, 

exploiting contextual, local, or traditional knowledge from the human supervisors to in-

crease UGGC’s fitness-for-use. For any scientific analysis, such an approach can contrib-

ute to ensure that any results are not only statistically significant, but also meaningful. 

This paper investigates three main research objectives, all with a focus on UGGC streams: 

1. What are the characteristics of a hybrid processing workflow, and which of the 

identified challenges can it address? 

2. How can we identify which geospatial analysis tasks and methods are suitable for 

a hybrid processing workflow, and implement them in a reproducible manner? 

3. What are characteristics of a feasible system architecture for implementing such 

a hybrid processing workflow? 

We approached these questions in two distinct steps: First, based on a review of 

related work (section 2), we address research questions 1 and 2 by developing a concep-

tual model and formulating general principles that facilitate the transfer to other system 

set ups and case studies (section 3). Second, to address research question 3, we test a 
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proof-of-concept prototype to demonstrate the approach (section 4) by attempting to dis-

cover distinct urban places from meta-data of Flickr images. The paper continues with a 

discussion (section 5) of the approach and its results, before drawing conclusions and 

presenting an outlook (section 6). 

2 Related Work on Processing UGGC 

Many projects especially from the crisis management domain have tried to process 

UGGC using a massively collaborative approach, relying on asynchronous distributed 

interaction to achieve greater reach and flexibility. Volunteers would, for example, trans-

late and geolocate text messages such as SMS or Tweets using web interfaces (Liu, 2014). 

Another example is a map-based approach of the Humanitarian OSM Team, where vol-

unteers create new geographic information from satellite or aerial imagery (Kelso, 2010), 

often gathering in mapping parties for face-to-face collaboration. An often cited example 

for this approach is the Haiti 2010 earthquake (Meier, 2013), after which the crisis mapper 

community experienced a boost. The crisis mappers’ Stand-by-task-force1 developed 

standardized operating procedures and refined them during practices. Important govern-

mental and on-governmental organizations embraced this new digital humanitarianism, 

resulting in or contributing to valuable tools such as the Humanitarian Exchange Lan-

guage (Kessler and Hendrix, 2015). 

Computational methods offer an alternative approach to data curation. Briefly, DM 

is about discovering new patterns in data. It is an inductive approach, which aims to de-

scribe new laws and generate knowledge by looking at the data, and observing correla-

tions and patterns. DM is mostly unsupervised, meaning that the algorithms extract pat-

terns and parameters without significant human input (although the choice of parameters 

is crucial). ML on the other hand is a more deductive approach, which relies on human 

supervision to classify information, and uses this annotated information as training set to 

train a classifier for processing new, unlabelled information. It tries to apply existing 

knowledge reliably to new information. Most of the geospatial ML has been on physical 

geographic phenomena (Kanevski et al., 2009). Recent works on anthropogenic phenom-

                                                 

1 http://blog.standbytaskforce.com/ 
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ena include disambiguation of place references (Santos et al., 2015), classification of mi-

cro-blogging messages (Imran et al., 2013), urban sensing (Kaiser and Pozdnoukhov, 

2013), gamification (Barrington et al., 2012), and detection of information about forest 

fires (Spinsanti and Ostermann, 2013). 

There have been few attempts to combine human and machine computation for 

processing Big Data in general and UGGC in particular. For non-geographic data, the 

focus has been on large-scale classification efforts involving many classes and many hu-

man annotators. The lessons learnt include strategies to address the complexity of the data 

(Sun et al., 2014), methods to organize and motivate participants (Burger et al., 2011), 

and the decision on when to stop labelling (Kamar et al., 2012).  

The AIDR system (Imran et al., 2014) focuses on adaptive aggregation and filtering 

of Twitter, integrating crowd-sourced labelling to learn rules to filter and classify social 

media information. It is open source and allows near real-time processing. However, cur-

rently AIDR relies on a single source (Twitter) and focuses entirely on the content, ignor-

ing geographic semantics.  

The Twitcident (Abel et al., 2012) aggregates and filters social media around events 

extracted from emergency broadcasting services. It semantically enriches the incoming 

information and links it with other external information. However, location only seems 

to influence the filtering of the information and not the assessment. It seems that a recent 

extension (Crowdsense) enables it to use several social media sources. No source could 

be found.  

The GeoCONAVI system (Spinsanti and Ostermann, 2013) is capable of detecting 

past forest fire events. In contrast to the previous systems, it uses multiple sources 

(Tweets, Flickr image meta-data), and exploits geographic semantics by enriching the 

UGGC with geographic context and spatio-temporally clustering it. The processing is 

done in high-frequency batch processing. The content classification employs decision 

trees trained on an event-specific annotated data set. Case study results (Ostermann and 

Spinsanti, 2012) show a low false positive rate (high specificity), and a low false negative 

rate (high sensitivity). It does not examine the source, nor does has it been adapted to 

other event types. 
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3 Developing a Framework for Hybrid Processing 

3.1 Introducing Hybrid Elements to a UGGC Processing Workflow 

To recall, the main challenges of UGGC are its high semantic and syntactic heterogeneity, 

and unknown provenance and production parameters. In principle, these can be solved 

with human curation or machine computation, given enough resources. However, in prac-

tice either of these approaches faces serious challenges of its own. Human curation is 

subject to unknown inaccuracy and a lack of reproducibility, scalability, and sustainabil-

ity. We argue that these can be addressed by using complementary computational and 

crowdsourcing approaches, which in turn face the complementary challenges of depend-

ency on data quality for unsupervised ML, overfitting of the learning model, and diversity 

of contexts and tasks. We further argue that these can be addressed in turn with human 

curation (compare Figure 1). 

 

Figure 1 Hybrid approach addressing challenges of UGGC processing 

A typical UGGC processing workflow, of which Figure 2 shows an abstracted sim-

plified representation, has several phases in which DM and ML techniques can play an 

important role. After the collection of potentially relevant UGGC from the public APIs, 

supervised learning algorithms classify the content, in order to reduce the noise in subse-

quent analysis steps. If the UGGC content or meta-data contains toponyms (place names), 

these require geo-coding using natural language processing procedures (named entity 

recognition, disambiguation). Multiple found toponyms might be synthesized into a sin-

gle geospatial footprint to represent the UGGC’s geographic coverage. A second classi-

fier checks the validity of such derived results. After georeferencing, it is possible to en-

rich and contextualize the UGGC with additional relevant information from authoritative 

or non-authoritative sources. Next, the individual items are clustered to detect events or 
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patterns in space and time. Secondary aims are to further reduce redundant content, and 

reinforce the credibility of confirmed content. Again, this clustering can profit greatly 

from human supervision to parametrize the clustering algorithm, and filter out any irrel-

evant or meaningless clusters. The last step aims to provide an integrative assessment of 

credibility and relevance, and to present actionable intelligence that for example contrib-

utes to increasing situational awareness in crisis situations. Such a combined approach 

pays special attention to geographic semantics, first by examining what else is there, and 

second by asking volunteers whether the results make sense. In the case of time-critical 

applications such as disaster response, this processing has to happen in near real-time or 

at least in high-frequency micro-batches. 

 

Figure 2 Typical UGGC processing workflow (API = Advanced Programming Inter-

face, NLP = Natural Language Processing, NER = Named Entity Recognition, SA = 

Spatial Analysis, GIR = Geographic Information Retrieval, DM = Data Mining, ML = 

Machine Learning) 

We can identify three main challenges for developing such a workflow of hybrid 

geoinformation processing: First, to link the specifics of geographic information with DM 
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and ML algorithms, and translate the annotation task to suitable questions for the human 

supervisors. Second, to develop an interface for human supervisors to annotate and label 

results and account for multiple annotations that contain noise. Third, to translate the 

learned models into nomothetic principles that can be applied in different contexts. Pre-

senting an initial investigation, this paper focuses on the first and second challenges. 

Following from the outlined UGGC workflow and the challenges it faces, we can 

identify four characteristics of an effective and efficient hybrid processing system:  

1. Allowing (near) real-time processing to take advantage of UGGC streams 

2. Multiple input sources to use geographic contextualization and geospatial seman-

tics for assessing relevance and credibility of both data and human supervisor 

3. Open source license to allow customization by any interested group of citizen 

developers 

4. Modularity of components and formalization of supervision tasks to enable ex-

tensions and adaptations to new tasks and events 

The following sub-section focus on the last criterion and addresses the second re-

search question. 

3.2 From Geospatial Analysis Tasks to Supervision and Validation Queries 

A first step is to determine candidate tasks, for which crowdsourced supervision and val-

idation could improve the performance. Since there are no comprehensive geospatial 

analysis task ontologies, this leaves us to develop our own representation. Geospatial 

analysis tasks exist at several scales, from low-level, simple tasks such as “create a buffer 

around all features in the data set,” to more complex, ill-defined tasks, e.g. “find all rele-

vant data sets for assessing forest fire risk.” Given the scope of a comprehensive geospa-

tial analysis task ontology, and the low adoption rate of many ontologies, we adopt a 

strategy of re-use (link to existing partial task ontologies whenever possible and feasible), 

bottom-up design (create what is needed), open world (allow for extensions), and stand-

ardization (rely on standards for implementing it).  
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Drawing on the GIS&T BoK (Geographic Information Science and Technology 

Body of Knowledge, 2006), candidates for suitable geospatial analysis tasks are: (point) 

patter analysis and clustering (AM5-1 to AM5-8), measures of spatial association (AM7-

4 to AM7-7), autoregressive and geographically weighted regression models (AM9-2 to 

AM9-4), data mining and pattern recognition (AM10-2 to AM10-4), and geocomputation 

and classification (GC2-2 to GC2-6).  

Grouping these, we make a fundamental distinction between hyper-parametrization 

of DM tasks and supervision of ML tasks. DM tasks in a UGGC processing context are 

mainly spatio-temporal clustering in order to discover unknown patterns in the data, but 

can also support the generation of hypotheses through abductive reasoning supported by 

geovisual exploration. ML tasks are often classifications, such as content classification 

(topicality), geo-coding (using the correct gazetteers), weighing the evidence, scoring the 

relevance and credibility of geo-information, or deciding on auxiliary (geo-) datasets. ML 

tasks could support (hyper-) parametrization and regression tasks 

In order to crowdsource the supervision and validation in a hybrid processing work-

flow, the tasks need to fulfill two criteria: First, it needs to deal with a human observable 

or recognizable geographic phenomenon; and second, it needs to provide an output that 

can be evaluated by lay persons and potentially profit from local knowledge that the an-

notators possess. 

Example supervision and validation tasks transformed into a query that can be 

asked through a (geo-) visual interface are: 

• Content classification: "Is this [item] directly, indirectly, or not related to [topic]?" 

• Geo-coding and toponym disambiguation: “Does this [item] talk about [location 

A] or [location B], or none, or both?” 

• Deciding on auxiliary data sets: "Is [data set] related to [topic] and can help assess 

credibility of [item]?" 

• Spatial footprint calculation for vague geographies: “Is this spatial footprint for 

[item] correct? If not, is it too large, too small, or wrong shaped, or wrong 

placed?” 
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• Spatio-temporal clustering: “Does this [item] belong to a cluster named [event] in 

[location]? If not, what’s wrong: Event, Location, or both?” 

Some necessary core components of the model are thus [item], [topic], [location], 

[data set], where [data set] is a collection of [item]. In terms of Kuhn’s (2012) core geo-

graphic concepts, [item] corresponds to object, [location] obviously to location, and both 

neighborhood and event relate to what we want to discover in the collection of objects.  

Figure 3 shows the most important elements for our bottom-up UGGC collaborative 

task ontology. It captures all necessary components as a starting point. A concrete exam-

ple of the task ontology is provided in section 4.2. 

 

Figure 3 UML diagram showing the components of a geospatial task ontology 

4 Pilot Study on Geotagged Photos 

4.1 Study Area and Subject 

We address the third research question by developing a pilot study. The primary aim of 

this pilot study is to demonstrate a feasible approach to hybrid geoinformation processing 

by applying the principles developed in the previous section. It prioritizes the use of well-

tested and well-understood analysis methods over the optimization of results. The sec-

ondary aim is to investigate the relationship of UGGC and urban space and place. The 

motivation here is the need to develop representations of our geographic environment that 

take the multiplicity of perspectives into account, i.e. even for widely agreed-up upon 
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distinct urban places, we still expect considerable dissent on shape, size and theme of the 

places. From the various types of UGGC, shared image content on platforms such as 

Flickr, Panoramio, and Instagram has received a substantial amount of research interest, 

because photographs often possess a strong semantic link between content (image and 

descriptive text) and geographic location (Sigurbjörnsson and Van Zwol, 2008), and the 

annotations are potentially rich and personal. Flickr provides the most mature and acces-

sible API. Flickr allows users to enter long titles and extensive descriptions for every 

image, and offers rich EXIF2 metadata as well, including the orientation of the camera (if 

provided). Some examples of relevant studies include the delineation of vernacular place 

names (Hollenstein and Purves, 2010), the extraction of place tags from images based on 

location (Rattenbury and Naaman, 2009), and the detection of places (Van Canneyt et al., 

2012), or the extraction of place semantics (Ostermann et al., 2015).  

However, none of these have relied on a hybrid approach, and focused on a coarser 

granularity or did not validate all of the results. We adopt a bottom-up approach to mine 

the data set through geospatial clustering, instead of imposing a fixed grid over the study 

area similar to Feick and Robertson (2014). Further, we aim to validate the results to 

ensure that they represent meaningful places. To search for places, we look into the tags 

and descriptions of georeferenced photographs, using a controlled vocabulary of terms 

that describe activities, qualities, and elements of places (Purves et al., 2011; Tversky and 

Hemenway, 1983) to measure thematic similarity, and combine it with a spatial clustering 

looking for spatial proximity, and a classification to remove noise from the clustering. In 

terms of tasks identified in section 3.2, we focus on clustering (AM5), data mining 

(AM10), and classification (GC2). The prototype then presents the results of geographic 

analysis tasks to a small group of human study participants for a map-based supervision 

and validation.  

Figure 4 (below) shows the pilot study adaptation using the previously developed 

task ontology (Figure 3) with unused components not shown, and instantiations of a class 

added to the class description box. 

                                                 

2 EXIF (Exchangeable Image File Format) is a standard for metadata, used by digital cameras to 

record technical information of the camera’s status when shooting a photograph. 
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As a study area, we chose the Greater London Area (GLA) because of its rich and 

diverse urban fabric, and abundance of large UGGC and open authoritative data sets. All 

these factors ensure the potential for deeper analysis. 

 

Figure 4 Task ontology adapted to pilot study 

4.2 System Architecture and Set-up 

The pilot study consists of eight main phases, which Figure 5 shows in an overview and 

which are explained in more detail below. 

Phase 1. Collect Flickr photo meta-data 

The initial step is to collect georeference Flickr image meta-data about the study 

area using the public API, and store the retrieved information in a PostGIS database.  

Phase 2. Find place-related terms and build term vectors 

Previous research (Purves et al., 2011) has established a list of English terms that 

are commonly used to describe Flickr images. They are grouped into the three sets of 

activities (107 terms, e.g. “party”, “football”, “exhibition”), elements (313 terms, e.g. 

“church”, “station”, “graffiti”), and qualities (161 terms, e.g. “dark”, “royal”, “woods”). 

For every image, the tags, title and descriptions were parsed to find any of these terms 

through lexical matching. We are aware that our approach might not find all tags if they 
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are misspelled or appear in composite words or expressions. More advanced NLP tech-

niques can result in better recall, but the large number of images in our dataset compen-

sates for this.  

 

Figure 5 Pilot study prototype implementation and workflow 

Phase 3. Find spatial clusters 

Images that contain any terms found in our vocabulary are sent to the clusterer 

module to search for spatial clusters. We implemented the DBSCAN clustering from the 

Python Scikit-learn framework. DBSCAN can deal well with varying density of points 

as well as irregular shapes of clusters, and Scikit-learn could be reliably integrated into 

our workflow. Further, it was computationally inexpensive and fast, and has been used 

successfully in many studies. The clustering was spatial, i.e. with longitude and latitude 

as only features. 



Crowdsourced supervision of user-generated geographic content analysis Ostermann et al.  

14 
 

Phase 4. Compute thematic and spatial cluster characteristics 

For each cluster, we calculated several thematic and spatial characteristics, to be 

used as input features for the ML classifier: First, the average and median cosine similar-

ity. Cosine similarity is a common metric for comparing the semantic similarity between 

two term vectors, and equals the cosine of the angle between the two vectors. We use it 

to measure the internal similarity of clusters by calculating the average and median (to 

mitigate the effect of a single outlier image within an otherwise homogeneous cluster) 

cosine similarity of all the term vectors for all image pairs. Second, the number of images 

and unique contributors might indicate which image clusters define a distinct geographic 

place. Additionally, we computed the average and median silhouette (Rousseeuw, 1987) 

scores of all items for each cluster. The silhouette coefficient measures how similar an 

object is compared to the other objects in its cluster. It ranges from -1 to +1, with high 

values indicating a poor match with other clusters, and a good match with objects in its 

own cluster.  

Phase 5. Crowdsourced labelling and validation of clusters 

For the first iteration of the annotation, we consider the found clusters to be poten-

tial places based on the single criterion of them being spatially close. The web annotation 

interface presents these clusters one at a time to a human supervisor. The following 

screenshot (Figure 6) shows the initial information presented to a human supervisor. The 

interface then presents a cluster to the supervisor, with the location of the contained im-

ages shown on a map (using OpenStreetMap as a base map) located on the left side of the 

interface, and the actual images shown on the right side (for a screenshot, see Figure 7). 

It is possible to select images both on the map and gallery. Empty spots in the gallery are 

images that could not be retrieved, because it had been deleted or the access rights mod-

ified since the retrieval of the metadata. Once a supervisor clicks on the “Provide feed-

back” button, s/he has the opportunity to comment on the spatial layout and thematic 

consistency of the cluster (Figure 8). 
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Figure 6 Initial instructions to human supervisors 

 

Figure 7 Interface showing typical cluster to be labelled 
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Figure 8 Supervisor feedback for a cluster 

If any question is answered “No”, additional feedback options appear. For question 

1, the supervisor can distinguish between “Wrong shape” and “Too large”. An option of 

“Too small” was discarded after initial tests, since it is impossible to judge whether a 

cluster is too small and early tests showed that it is also very unlikely to happen. Even if 

all images are on exactly the same location, their content can cover much more geo-

graphic area. For question 2, it is possible to distinguish between “There is more than one 

place shown” and “There are too many images that are not about a place at all!” 

The current interface design relies on past experiments (Ostermann et al., 2013) and 

a small pre-study, in which users were shown the questions, and then asked what they 

think that their task would be. Their comments led to a refinement of the introductory text 

and actual questions, with another round of questioning. The current set-up is based on 

three such user interviews. 

Phase 6: Assess supervision results and remove noise 

If the investigator(s) consider the results satisfactory and complete, non-place clus-

ters can be simply removed as noise and the remaining stored in a UGGC place database. 

If not, the supervisor feedback leads to adjusting the clustering hyper-parameters. For the 

pilot study, we did not define a stable and satisfactory result. Instead, the first iteration 
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used hyper-parameters that lead to geographically big clusters, and the second iteration 

hyper-parameters resulted in smaller (more compact) clusters. The aim was to account 

for the unknown and varying scale of places, and to test the supervisors’ feedback.  

Phase 7. (Re-)train a classifier to detect places from noise using the cluster labels and 

characteristics  

The characteristics derived in phase 4 form the feature space for the ML algorithm 

to classify the clusters into “place” or “non-place”. For starters, we choose a simple J48 

decision tree learner implemented in Weka3, which has performed well on previous oc-

casions (Spinsanti and Ostermann, 2013).  

Phase 8. Filter clusters using classifier 

If there is no or insufficient human supervision available, the system could use a 

previously trained classifier to filter noise from the clusters. This step is only included for 

completeness but not implemented in the pilot study. 

4.3 Results 

The initial dataset retrieved from the Flickr API consists of the meta-data for 5,182,330 

geo-referenced photos uploaded up to and including November 2014. If there were no 

terms in the meta-data matching the vocabulary, the photo was discarded from further 

analysis, leaving 2,309,760 photos. The GLA contains too many (potential) places for our 

limited pilot study. Therefore, we extracted the data for seven City wards (Queensbridge, 

Dalston, Hackney Downs, Leabridge, Victoria, Hackney Central, Chatham), which are 

not located in the areas most frequented by tourists, and where the administrative bound-

aries form a mostly convex hull to reduce edge effects for places that lie close to admin-

istrative borders. The boundaries of the study area within London are shown in Figure 9. 

The photo meta-data from this area (n=16632) was then fed into the Scikit DBSCAN 

clusterer. 

                                                 

3 http://www.cs.waikato.ac.nz/ml/weka/ 
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Figure 9 Study area of seven City Wards within London 

The initial run used the DBSCAN parameters of eps=0.0005 and a minimum num-

ber of 10 images per cluster. The resulting 77 clusters were then shown to the human 

supervisors (n=5, with some annotators skipping certain clusters where they felt not con-

fident enough to provide feedback) using the web interface described in the previous sec-

tion. As expected, there is some disagreement between the supervisors. The small number 

of supervisor allowed a simple majority vote (i.e. the most common answer is assigned 

to that cluster, with the cluster being dropped from further analysis in case of ties). The 

results of the first round of annotations are shown in Table 1. These results indicate that 

55% of the clusters contain one or more possible places (categories A and C), and 45% 

contain too much noise. 
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Table 1 Frequency of annotator responses to first clustering (n = 77 clusters, majority 

vote in case of inter-rater disagreement, m = 5 annotators; x = 15 excluded if no major-

ity vote available) 

Labeling of cluster 
(Question 1) 

Frequency of label Labeling of place 
(Question 2) 

Frequency of label 

0 (spatial cluster 
correct) 

42 A (one place) 22 

1 (spatial cluster 
wrong shape) 

14 B (too much off-
topic) 

28 

2 (spatial cluster 
too big) 

6 C (more than one 
place) 

12 

In an attempt to filter that noise, the clusters were then used to train a J48 classifier 

implemented in Weka, using a 10-fold stratified cross-validation (CV) to estimate perfor-

mance. Removing ambiguous clusters (without majority rater agreement, see above) im-

proves the J48 classification performance significantly. Using all the features described 

under phase 4, the resulting J48 model correctly classifies on average (of the 10-fold CV) 

71% of all instances. The average recall is 79% if we consider only Type II errors (false 

negatives) to be clusters that contain one or more places – categories A and C – but were 

classified as noise or category B. The full confusion matrix showing the combined results 

of the 10-fold CV is shown in Table 2. 

Table 2 Confusion matrix of 10-fold CV classification of place-relatedness of clusters 

Original Label Classified as A Classified as B Classified as C 

Shows one place 
(A) 

17 3 2 

Too much off-topic 
(B) 

6 21 1 

Shows more places 
(C) 

2 4 6 

Many clusters actually consist of more than one place, and some of the clusters are 

very large in number and spread over a large area (a characteristic of DBSCAN). There-

fore in a second iteration, the results were used to modify the clustering hyper-parameters 

to allow for smaller clusters (DBSCAN parameters of eps = 0.0003 and a minimum of 5 

samples per cluster), resulting in a set of 210 clusters as Figure 10 and Table 3 show: 
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Figure 10 Distribution of images in study area, colored according to cluster attribution 
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Table 3 Frequency of annotator responses to second clustering (n=210 clusters, one 

annotator) 

Labeling of cluster 
(Question 1) 

Frequency of label Labeling of place 
(Question 2) 

Frequency of label 

0 (spatial cluster 
correct) 

189 A (one place) 91 

1 (spatial cluster 
wrong shape) 

11 B (too much off-
topic) 

101 

2 (spatial cluster 
too big) 

10 C (more than one 
place) 

18 

The ratio of signal-to-noise remains similar: 52% of the clusters contain one or more 

places, and 48% contain too much noise or no places at all. Applying the original classi-

fier to predict the second set results in an overall decrease of classification performance: 

only 49% are correctly classified, with a recall of only 45%, indicating a large number of 

false negatives. Some degradation is to be expected, given that the original training data 

set was created with different clustering hyper-parameters, but the number of Type II 

errors is not acceptable. We cannot use the original classifier to predict on new data gen-

erated with the changed spatial clustering hyper-parameters. The full confusion matrix is 

shown in Table 4. 

Table 4 Confusion matrix for prediction of place-relatedness of clusters, first classifier, 

second iteration 

Original Label Classified as A Classified as B Classified as C 

Shows one place 
(A) 

38 45 8 

Too much off-topic 
(B) 

28 63 10 

Shows more places 
(C) 

1 15 2 

However, training a new J48 model using the second dataset also results in much 

lower performance than the first one: The performance estimation of stratified 10-fold 

CV is only 49.5% correctly classified instances, with a recall (again categories A and C 

combined) of 66%. The full confusion matrix is shown in Table 5: 



Crowdsourced supervision of user-generated geographic content analysis Ostermann et al.  

22 
 

Table 5 Confusion matrix of 10-fold CV classification of place-relatedness of clusters, 

second classifier, second iteration 

Original Label Classified as A Classified as B Classified as C 

Shows one place 
(A) 

58 29 4 

Too much off-topic 
(B) 

53 44 4 

Shows more places 
(C) 

8 8 2 

As a result, classification performance has overall degraded with the spatial clus-

tering at a finer granularity. Although much of this is due to misclassified off-topic clus-

ters (false positives), the number of false negatives (misclassified as non-place related) is 

too high. An attempt to address this issue by combining the two cluster sets, adding the 

cluster hyper-parameters as classification features, and training a new classifier did not 

improve the expected error. 

5 Discussion 

The implementation of this workflow in a pilot study produced solid results with estab-

lished and well-known analysis methods. An initial, purely unsupervised DM approach 

to detect places produced too many cluster candidates (potential places), emphasizing the 

need for reduction to meaningful places through ML. The large number of instances to 

label, and the iterative character of the search for good hyper-parameters support our ap-

proach of crowdsourced supervision of training/learning. Because of pilot character of 

the study, we limit it to a manageable number of images (and resulting clusters), but in 

principle this scales well computationally and organizationally. The computational costs 

were sufficiently low so that all scripts would run sufficiently fast (less than a minute of 

run-time) on a common-off-the-shelf business laptop. The software used in the process 

(PostGIS database, Python scripting and Weka) are mature enough so that a user with a 

moderate amount of IT-skills can set it up within few hours. All these criteria make the 

approach suitable for citizen science projects not having a strong or dedicated computer 

or data science expertise. The web interface proved easy enough to navigate and work 

with. Annotator feedback indicated that the questions could be formulated clearer. This 
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is a result of the chosen systems-centered design perspective. A user-centered design pro-

cess (Yovcheva et al., 2013) was not possible due to temporal and resource constraints, 

but remains an objective for future iterations. The same holds true for the small number 

of supervisors. However, we consider both limitations acceptable for the initial pilot 

study, since we do not yet plan to implement advanced decision-making or analysis func-

tionality. Human labelling required less than a minute per cluster (although we did not 

account for varying screen sizes - the bigger the screen, the less scrolling to depict all 

images from large clusters, hence a possible reduction in annotation time). The initial 

clustering was good enough to result in good inter-rater agreement.  

Regarding first criterion for a hybrid information processing workflow (see section 

3.1), the system architecture does not yet allow true stream processing. While micro-

batching can be implemented through scheduled tasks, near real-time processing will re-

quire changes to the architecture. Currently, all processes are implemented as chained 

Python scripts running on a laptop. For future implementations, stream processing frame-

works such as Apache Storm or Spark, running on a cloud platform, promise the biggest 

flexibility and reliability. This would also reduce the amount of manual work needed, and 

increase the stability of the system. The clustering will need to be spatially bounded (i.e. 

a single new UGGC should not trigger a re-clustering of the whole study area). The ML 

part could profit from active learning strategies. In active learning, a learner chooses in-

stances to be labelled and presents them to the human annotator, with the aims of max-

imizing the impact of human annotation and remaining flexible towards new instances. 

However, there is also evidence that passive learning is better suited for annotation by 

domain novices, while active learning profits in particular from domain expertise, and 

batch-mode labeling is better suited to multiple, parallel annotators (Settles, 2009). The 

crowdsourced supervision and constant updating of training sets for the learning algo-

rithms is possible using the Pybossa framework. Additionally, the current convenience 

sample of recruiting annotators has to be replaced with a more systematic and sustainable 

process. To do so, we can rely on current research on establishing successful and lasting 

collaborative frameworks (Eveleigh et al., 2014).  

Regarding the other criteria (see 3.1), the modular structure allows to plug-in dif-

ferent data sources when needed, although this is currently still a manual process. Adap-

tations for geosocial media platforms such as Twitter that provide a streaming API will 
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require an additional layer as mentioned in the previous section. However, a fully web-

based analysis engine relying on web resources and WPS is possible. All analysis has 

been conducted with open source software, openly available algorithms, and it is freely 

available as supplementary material.  

While the pilot study fulfilled well its primary aim of demonstrating a feasible ap-

proach to hybrid geoinformation, its secondary aim of searching for meaningful places 

suffered from the clustering and learning performance, which leave substantial room for 

improvement, both for spatial and thematic dimensions. A considerable share of images 

have not been assigned a cluster or a mega-clusters covering large parts of the study area. 

Taking the temporal dimension into account (Birant and Kut, 2007) might help to detect 

ephemeral events and distinguish them from persistent features. Although one would ex-

pect for a valid thematic cluster a high average cosine similarity and several contributors, 

there are some outliers that make this simple classification very difficult. Further, finding 

places through UGGC is a complex task, probably requiring more features. Tests with 

more features using individual terms aggregated per cluster and different classifiers (Ada-

boost M1, Naive Bayes) show no improvement. It is likely that ancillary data from other 

UGGC sources or socio-demographic data from authoritative sources could help. This 

also leads to questioning the choice of input data and study objectives, because many 

images have only very few and quite generic terms in their textual descriptions, making 

the extraction of place characteristics purely from UGGC very difficult. Another UGGC 

source or target objective could make the actual analysis easier and help to focus on the 

methodological aspects of cognitive task and workflow modeling.  

Another future area of investigation is the suitability of our approach to reduce an 

analytic divide between those who contribute information and those who process it. We 

argue that this analytical divide can impact negatively on the meaningfulness of the anal-

ysis results, the potential for empowerment of marginal groups, and even delegitimize 

democratic processes (Helbing and Pournaras, 2015). Further, the increasing reliance of 

science on massive amounts of data, also described as the 4th scientific paradigm of data-

intensive science (Hey et al., 2009), should not lead to a return of positivism. A higher 

level of participation of citizens in the analytical process can lead to improved autonomy, 

new knowledge and higher societal relevance of research output (Feyerabend, 1993). 
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6 Conclusions and Outlook 

In this paper, we have addressed the question on how to include crowdsourced supervi-

sion into an analytical workflow to mitigate some of the challenges associated with the 

processing of UGGC. We first evaluated the challenges of processing UGGC, followed 

by an evaluation of the advantages and problems of two basic approaches, i.e. human 

curation and machine computing. We have shown that these have complementary 

strengths and weaknesses, and combining the two promises to improve processing of 

UGGC. Further, we have developed a model workflow of hybrid geoinformation pro-

cessing for crowdsourcing the supervision of geospatial analysis tasks. This hybrid geoin-

formation processing workflow integrates crowdsourced supervision in an iterative man-

ner. It distinguishes between phases that profit from a geospatial analysis (georeferencing, 

clustering), and those that can function without explicitly geospatial components (content 

classification). 

We have then defined suitability criteria for analysis tasks and techniques to elicit 

knowledge from supervisor and feeding it back into the system, formalized the tasks in a 

bottom-up basic classification for future re-use, and mapped concrete geospatial analysis 

tasks to querying human supervisor: The hyper-parameterization of a DM (clustering) 

task and of a ML (classification) task.  

Finally, we have implemented a prototype in a pilot study to demonstrate the feasi-

bility of the approach. It relies exclusively on established and available open source soft-

ware and algorithms, and implements major parts of the proposed workflow model. First, 

it collects and stores UGGC from a photo-sharing platform. It then enriches it with addi-

tional information (term vectors), before it clusters them using the DBSCAN algorithm. 

The resulting clusters are presented in a web-interface that allows asynchronous annota-

tion by multiple human supervisors. The responses are stored and can be used to improve 

the clustering by adjusting the hyper-parameters or choosing a different clustering algo-

rithm, and to classify resulting clusters into those about a place or not. 

The pilot study highlighted several issues that future research should address: The 

mapping of tasks to supervision needs further formalization and expansion, e.g. by graph 

representation such as the semantic wiki version of the GIS&T BoK (BokWIKIEx-
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plorer4). Additionally, UGGC requires a system architecture that supports stream pro-

cessing. Finally, the crowdsourced supervision needs a sustainable organization, so that 

more training sets can be labeled. Particularly promising approaches are active learning 

and online learning. The developed conceptual model workflow, task classification, and 

prototype are first steps towards the larger goal of crowdsourced analysis and supervision. 

The model will profit from further refinement and expansion, while the prototype's com-

ponents are intentionally kept simple and offer much room for improvement and optimi-

zation. A possible future case studies is the collaborative supervision of classification of 

UGGC into credible or untrustworthy for the critical task of assigning resources in disas-

ter response. 
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