
Using Shape Expressions (ShEx) to Share RDF
Data Models and to Guide Curation with

Rigorous Validation

Katherine Thornton1, Harold Solbrig2, Gregory S. Stupp3, Jose Emilio Labra
Gayo4, Daniel Mietchen5, Eric Prud’hommeaux6, and Andra Waagmeester7

1 Yale University, New Haven, CT, USA
katherine.thornton@yale.edu

2 Mayo Clinic, College of Medicine, Rochester, MN, USA
Solbrig.Harold@mayo.edu

3 The Scripps Research Institute, San Diego, CA, USA
gstupp@scripps.edu

4 University of Oviedo
Spain

labra@uniovi.es
5 Data Science Institute, University of Virginia, Charlottesville, VA, USA

daniel.mietchen@virginia.edu
6 World Wide Web Consortium (W3C),

MIT, Cambridge, MA, USA
eric@w3.org,

7 Micelio, Antwerpen
Belgium

andra@micel.io

Abstract. We discuss Shape Expressions (ShEx), a concise, formal,
modeling and validation language for RDF structures. For instance, a
Shape Expression could prescribe that subjects in a given RDF graph
that fall into the shape “Paper” are expected to have a section called
“Abstract”, and any ShEx implementation can confirm whether that is
indeed the case for all such subjects within a given graph or subgraph.
There are currently five actively maintained ShEx implementations. We
discuss how we use the Javascript, Scala and Python implementations in
RDF data validation workflows in distinct applied contexts. We present
examples of how ShEx can be used to model and validate data from two
different sources—the domain-specific Fast Healthcare Interoperability
Resources (FHIR) and the domain-generic Wikidata knowledge base,
which is the linked database built and maintained by the Wikimedia
Foundation as a sister project to Wikipedia. Three projects that are
using Wikidata as a data curation platform are presented as well, along
with ways in which they are using ShEx for modeling and validation.
When reusing RDF graphs created by others, it is important to know
how the data is represented. Current practices of using human-readable
descriptions or ontologies to communicate data structures often lack suf-
ficient precision for data consumers to quickly and easily understand
data representation details. We provide concrete examples of how we

use ShEx as a constraint and validation language that allows humans
and machines to communicate unambiguously about data assets. We use
ShEx to exchange and understand data models of different origins, and to
express a shared model of a resource’s footprint in a linked data source.
We also use ShEx to agilely develop data models, test them against sam-
ple data, and revise or refine them. The expressivity of ShEx allows to
catch disagreement, inconsistencies, or errors efficiently both at the time
of input, and through batch inspections.

ShEx addresses the need of the semantic web community to ensure data
quality for RDF graphs. It is currently being used in the development
of FHIR/RDF. The language is sufficiently expressive to capture con-
straints in FHIR, and the intuitive syntax helps people to quickly grasp
the range of conformant documents. The publication workflow for FHIR
tests all of these examples against the ShEx schemas, catching non-
conformant data before they reach the public. ShEx is also currently
used in Wikidata projects such as Gene Wiki and WikiCite to develop
quality-control pipelines to maintain data integrity and incorporate or
harmonize differences in data across different parts of the pipelines. We
end by discussing how ShEx validation of Wikidata subgraphs about
software and file formats enables new approaches to digital preservation
of software and data, including Emulation as a Service.

Keywords: RDF wd:Q54872; ShEx wd:Q29377880; FHIR wd:Q19597236;
Wikidata wd:Q2013; digital preservation wd:Q632897

1 Introduction

The RDF data model is a core technology of the semantic web. RDF is used to
integrate data from heterogeneous sources, it is extensible, flexible and can be
manipulated with the SPARQL query language [9].

The need to describe the topologies–or shapes–of RDF graphs triggered the
creation of an early version of Shape Expressions (ShEx 1) and the formation
of a World Wide Web Consortium (W3C) Working Group—the Data Shapes
Working Group—in 2014 [15]. Its task was to recommend a technology for de-
scribing and expressing structural constraints on RDF graphs. This has led to
SHACL[8]–another shape-based data validation language for RDF–and further
development of ShEx.

We provide an overview of ShEx, discuss implementations of the language,
and then consider use cases for the validation of RDF data. The use cases we
present consist of two types. For the first type, which is domain-specific, we
provide an overview of how ShEx is being used for validation in medical infor-
matics. For the second type, which is domain-generic, we provide examples that
involve validation of entity data from the Wikidata knowledge base. We analyze
workflows and highlight the affordances of multiple implementations of ShEx.

2 Shape Expressions

The Shape Expressions (ShEx) schema language can be consumed and produced
by humans and machines[9] and is useful in multiple contexts. ShEx can be used
in model development, both for creating new models as well as for revising ex-
isting ones. ShEx is helpful for legacy review, where punch lists can be created
for existing data issues that need to be fixed. ShEx is useful as documentation
of models because it has a terse, human-readable representation that helps con-
tributers and maintainers quickly grasp the model and its semantics. ShEx can
be used for client pre-submission, when submitters test their data before submis-
sion to make sure they are saying what they want to say and that the receiving
schema can accommodate all of their data. ShEx can also be used for server
pre-ingestion, through a submission process that checks data as it comes in, and
either rejects or warns of non-conformant data.

ShEx’s semantics have undergone considerable peer review. [2] compares it
with SHACL and discusses stratified negation and validation algorithms. [24]
analyzes the complexity and expressive power of ShEx. With extensions like
ShExMap[16], ShEx can generate an in-memory structure of the validated RDF,
from which it is possible to operate—much like XSLT does for XML. Some
experimental ShEx 1 extensions translated from RDF to XML8 and JSON9[15].
To date, there are three serializations and five implementations that are actively
maintained. We will discuss three of the implementations in this paper.

2.1 ShEx Implementations

shex.js for Javascrpt/N3.js The shex.js 10 Javascript implementation of
ShEx was used to develop the ShEx language and test suite 11 and is gener-
ally used as a proving ground for language extensions. It was used to develop
GeneWiki 12, WikiCite 13 and FHIR/RDF schemas[21]. The online validator14

was used to develop and experiment with all of these schemas. In addition, the
FHIR/RDF document production pipeline used a REST interface, and the Ge-
neWiki and WikiCite projects used its command line interface to invoke it in
node.js. The development of the GeneWiki schemas uses several branches of
shex.js that are aggregated into a single ”wikidata” branch 15.

Shaclex Shaclex16 is a Scala implementation of ShEx and SHACL. The library
uses a purely functional approach where the validation is defined using monads

8 http://w3.org/brief/NTAx
9 http://w3.org/brief/NTAy

10 http://github.com/shexSpec/shex.js
11 https://github.com/shexSpec/shexTest
12 https://github.com/SuLab/Genewiki-ShEx
13 https://github.com/shexSpec/schemas/tree/master/Wikidata/wikicite
14 https://rawgit.com/shexSpec/shex.js/master/doc/shex-simple.html
15 https://rawgit.com/shexSpec/shex.js/wikidata/doc/shex-simple.html
16 http://labra.weso.es/shaclex/

http://w3.org/brief/NTAx
http://w3.org/brief/NTAy
http://github.com/shexSpec/shex.js
https://github.com/shexSpec/shexTest
https://github.com/SuLab/Genewiki-ShEx
https://github.com/shexSpec/schemas/tree/master/Wikidata/wikicite
https://rawgit.com/shexSpec/shex.js/master/doc/shex-simple.html
https://rawgit.com/shexSpec/shex.js/wikidata/doc/shex-simple.html
http://labra.weso.es/shaclex/

and monad transformers[11]. The validator is defined in terms of a simple RDF
interface (SRDF) that has several implementations. Two implementations are
based on RDF models that can be created using Apache Jena17 or RDF4J18.
Another implementation of the simple RDF is based on SPARQL endpoints,
so the validator can be used to validate the RDF data that can be accessed
through those endpoints. By leveraging Apache Jena or RDF4J libraries, the
Shaclex library can take as input RDF defined in all the serialization syntaxes
that they support, e.g. Turtle, RDF/XML, JSON-LD, or RDF/JSON. Shaclex
also has an online demonstrator, available at http://shaclex.validatingrdf.com/.

PyShEx PyShEx19 is a Python 3 implementation of the ShEx20 specification.
It uses the underlying model behind the ShEx JSON format (ShExJ)21 as the
abstract syntax tree (AST), meaning that ShEx schemas in the JSON format
can be directly loaded and processed. PyShEx uses the PyShExC parser22 to
transform ShEx compact format (ShExC) schemas into the same target AST.
PyShEx is based on the native Python RDF library – the rdflib23 package –
meaning that it can support a wide variety of RDF formats. PyShEx can also use
the sparql slurper24 package to fetch sets of triples on demand from a SPARQL
endpoint. An example of PyShEx can be found at https://tinyurl.com/ycuhblog.

2.2 Interoperability

The three implementations above offer a consistent command line and web invo-
cation API. These same parameters can be embedded in ”manifest” files, which
store a list of objects that encapsulate an invocation. The shex.js and shaclex
implementations offer a user interface allowing a user to select and execute ele-
ments in the manifest. In addition to agreement on the semantics of validation,
this interface interoperability makes it trivial to swap between implementations,
e.g. depending on immediate platform and user interface preferences.

3 Use Cases

We present use cases that encompass two distinct models for validation. In the
first use case, validation is performed on clinical data in an institutional con-
text. In the second group of use cases, validation is performed via the Wikidata
Query Service, a public SPARQL endpoint maintained as part of the Wikidata
infrastructure.

17 https://jena.apache.org/
18 http://rdf4j.org/
19 https://github.com/hsolbrig/PyShEx
20 http://shex.io/shex-semantics/
21 https://github.com/hsolbrig/ShExJSG
22 https://github.com/shexSpec/grammar/tree/master/parsers/python
23 http://rdflib.readthedocs.io/en/stable/
24 https://github.com/hsolbrig/sparql slurper

http://shaclex.validatingrdf.com/
https://github.com/hsolbrig/PyShEx/blob/master/notebooks/school_example.ipynb
https://jena.apache.org/
http://rdf4j.org/
https://github.com/hsolbrig/PyShEx
http://shex.io/shex-semantics/
https://github.com/hsolbrig/ShExJSG
https://github.com/shexSpec/grammar/tree/master/parsers/python
http://rdflib.readthedocs.io/en/stable/
https://github.com/hsolbrig/sparql_slurper

3.1 Domain-Specific ShEx Validation in Medical Informatics

The Yosemite Project[31] started in 2013 as response to a 2010 report by the
President’s Council of Advisors on Science and Technology[14] calling for a uni-
versal exchange language for healthcare. As part of its initial efforts, this project
released the “Yosemite Manifesto”25, a position statement signed by over 100
thought leaders in healthcare informatics which recommended RDF as the “best
available candidate for a universal healthcare exchange language” and stating
that “electronic healthcare information should be exchanged in a format that
either: (a) is in RDF format directly; or (b) has a standard mapping to RDF.

Around the same time as the Yosemite Project meeting, a new collection of
standards for the exchange of clinical data was beginning to gather momentum.
“Fast Healthcare Interoperability Resources (FHIR)”[4] defined a modeling envi-
ronment, framework, community and architecture for the REST oriented access
to clinical resources. The FHIR specification defines some 130+ healthcare and
modeling related “resources” and describes how they were to be represented in
XML26 and JSON27. One of the outcomes of the Yosemite project was the for-
mation of the FHIR RDF / Health Care Life Sciences (FHIR/HCLS) working
group28 tasked with defining an RDF representation format for FHIR resources.

ShEx played a critical role in the development of the FHIR RDF specification.
Prior to its introduction of ShEx, the community tried to use a set of representa-
tive examples as the basis for discussion. This was a slow process, as the actual
rules for the underlying transformation were implicit. There was no easy way to
verify that the examples covered all possible use cases and that they were inter-
nally self-consistent. Newcomers to the project faced a steep learning curve. The
introduction of ShEx helped to streamline and formalize the process[21]. Instead
of talking in terms of examples, the group could address how instances of entire
FHIR resource models would be represented as RDF. Edge cases that seldom
appeared received the same scrutiny as did everyday usage examples. The pro-
posed transformation rules could be implemented in software, with the entire
FHIR specification being automatically transformed to its ShEx equivalent.

ShEx allowed the participants to finalize the discussions and settle on a
formal model and first specification draft in less than three months. A formal
transformation was created to map the (then) 109 FHIR resource definitions
into schemas for the RDF binding. This transformation uncovered several issues
with the specification itself as well as providing a template for the bidirectional
transformation between RDF and the abstract FHIR model instances. The doc-
umentation production pipeline was additionally extended to transform the 511
JSON and XML examples into RDF, which were then tested against the gener-
ated ShEx schemas.[21] These tests caught multiple errors in both the transfor-
mation software and uncovered a number of additional issues in the specification

25 http://yosemitemanifesto.org/
26 http://hl7.org/fhir/xml.html
27 http://hl7.org/fhir/json.html
28 https://www.w3.org/community/hclscg/

http://yosemitemanifesto.org/
http://hl7.org/fhir/xml.html
http://hl7.org/fhir/json.html
https://www.w3.org/community/hclscg/

itself, ensuring that the user-facing documentation was accurate and comprehen-
sive. In early 2017, the FHIR documentation production framework, written in
Java, switched from using the shex.js implementation to natively calling the
Shaclex implementation. As a testament to the quality of the standard, both
implementations agreed on the validity of all 511 examples. The first official
version of the FHIR RDF specification was released in the FHIR Standard for
Trial Use (STU3) release[5] in April of 2017.

3.2 Domain-Generic ShEx Validation in Wikidata

What Wikipedia is to text, Wikidata is to data: an open collaboratively curated
resource that anyone can contribute to. In contrast to Wikipedia, Wikidata is
semantic web-compatible, and most of the edits are made using automated or
semi-automated tools. This ‘data commons’ provides structured public data for
Wikipedia articles[19] and other applications. For each Wikipedia article–in any
language–there is an item in Wikidata, and if the same concept is described in
more than one Wikipedia, then Wikidata maintains the links between them.

In contrast to individual Wikipedias and to most other sites on the web,
Wikidata does not assume that users who collaborate have a common natural
language[7]. In fact, consecutive editors of a given Wikidata entry often do not
share a language other than some basic knowledge about the Wikidata data
model.Using ShEx to make those data models more explicit can facilitate such
cross-linguistic collaboration.

Wikidata is hosted on Wikibase, a non-relational database maintained by the
Wikimedia Foundation. The underlying infrastructure also contains a SPARQL
engine https://query.wikidata.org that feeds on a triplestore which is continu-
ously synchronized with Wikibase. This synchronization–which occurs in seconds–
enables data in Wikidata to be available as linked data almost immediately
and thus becoming part of the semantic web. Basically, Wikidata acts as an
“edit button” to the semantic web and as an entry point for users who other-
wise do not have the technical background to use semantic web infrastructure.
While Wikidata and its RDF dump are technically separate, they can be per-
ceived as one from a user perspective. Content negotiation presents either the
Wikibase form or the RDF form, creating a sense of unity between the two.
For instance, https://www.wikidata.org/entity/Q54872 (which identifies RDF)
points to the Wikibase entry at https://www.wikidata.org/wiki/Q54872, while
http://www.wikidata.org/entity/Q54872.ttl will provides the Turtle representa-
tion and http://www.wikidata.org/entity/Q54872.json a JSON export.

The Wikidata data model [29]. currently consists of two entity types: items
and properties (a third one, for lexemes, is about to be introduced). All en-
tities have persistent identifiers composed of single-letter prefixes (Q for items,
P for properties, L for lexemes) plus a string of numbers and are allotted a
page in Wikidata. For instance, the entity Q1676669 is the item for JPEG File
Interchange Format, version 1.02. Properties like instance of (P31) and part
of (P361) are used to assert claims about an item. A claim, its references and
qualifiers form a statement. Currently, Wikidata’s RDF graph comprises about

https://query.wikidata.org
http://https://www.wikidata.org/entity/Q54872
https://www.wikidata.org/wiki/Q54872
http://www.wikidata.org/entity/Q54872.ttl
http://www.wikidata.org/entity/Q54872.json
https://www.wikidata.org/wiki/Q1676669
https://www.wikidata.org/wiki/Property:P361?uselang=en
https://www.wikidata.org/wiki/Property:P361

5 billion triples (with millions added per day), which reflects about 500 million
statements involving about 50 million items and roughly 5000 properties.

Besides serving Wikipedia and its sister projects, Wikidata also acts as a data
backend for a complex ecosystem of tools and services. Some of these are general-
purpose semantic tools like search engines or personal assistants [1], while others
are tailored to specific scientific communities, e.g. Wikigenomes [18] for curating
microbial genomes, WikiDP for digital preservation of software[27], or Scholia
[13] for exploring scholarly publications. Through such tools, communities can
engage with the Wikidata RDF graph that are not active on Wikidata itself.
ShEx can facilitate that.

Non-ShEx Validation Workflows for Wikidata Wikidata uses constraints
and validation in multiple ways. For instance, some edits are rejected by the user
interface or the API, e.g. certain formats or values for dates cannot be saved.
Some of the quality control also involves patrolling individual edits [20].

Most of the quality control, however, takes place on the data itself. Initially,
the primary mechanism for this was a system of Mediawiki templates 29, simi-
lar to the infobox templates on Wikipedia. These templates express a range of
constraints like “items about movies should link to the items about the actors
starring in it” or “this property should only be used on items that represent hu-
man settlements” or a regular expression specifying the format of allowed values
for a given property. For more complex constraints, some SPARQL functionality
is available through such templates. In addition, an automated tool goes through
the data dumps on a daily basis, identifies cases where such template-based con-
straints have been validated, and posts notifications on dedicated wiki pages
where Wikidata editors can review and act on them30. This template-based val-
idation infrastructure, while still largely functional, has been superseded by a
parallel one that has been built later by having dedicated properties31 for ex-
pressing constraints on individual properties or their values or on relationships
involving several properties or specific classes of items. For instance, P1793 is
for “format as a regular expression”, P2302 more generally for “property con-
straint”, and P2303 for “exception to constraint” (used as a qualifier to P2302).
This way, the constraints themselves become part of the Wikidata RDF graph.
This arrangement is further supported by dedicated Mediawiki extensions32, one
of which also contains a gadget that logged-in users can enable in their prefer-
ences in order to be notified through the user interface if a constraint violation
has been detected on the item or statement they are viewing.

Many of the tools that are used to interact with Wikidata have elaborate
mechanisms to validate the data, and users can of course query the data in mul-
tiple ways to perform specific quality checks. Here, it is helpful that Wikidata’s
SPARQL endpoint provides a range of visualizations. Problems with geolocation

29 https://www.wikidata.org/wiki/Category:Constraint templates
30 https://www.wikidata.org/wiki/Wikidata:Database reports/Constraint violations
31 https://www.wikidata.org/wiki/Help:Property constraints portal
32 https://www.mediawiki.org/wiki/Wikibase Quality Extensions

https://www.wikidata.org/wiki/Property:P1793
https://www.wikidata.org/wiki/Property:P2302
https://www.wikidata.org/wiki/Property:P2303
https://www.wikidata.org/wiki/Category:Constraint_templates
https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations
https://www.wikidata.org/wiki/Help:Property_constraints_portal
https://www.mediawiki.org/wiki/Wikibase_Quality_Extensions

data of train stations, for instance, can then sometimes simply be inferred from
some of them being plotted in the sea33.

Generic ShEx Validation Workflow for Wikidata One issue with the
existing template-based constraint and validation mechanisms for Wikidata is
that they are usually very specific to the Wikidata platform or to the tools used
for interacting with it. ShEx provides a way to link Wikidata-based validation
with validation mechanisms developed or used elsewhere. Getting there from the
RDF representation of the Wikidata constraints is a relatively small step.

Efforts around the usage of ShEx on Wikidata are coordinated by WikiPro-
ject ShEx34. The ShEx-based validation workflow for Wikidata consists of

1. writing a schema for the data type in question, or choosing an existing one;
2. transferring that schema into the Wikidata model of items, statements, qual-

ifiers and references;
3. writing a ShEx manifest for the Wikidata-based schema;
4. testing entity data from Wikidata for conformance to the ShEx manifest.

Initially, Wikidata may be missing some properties for adequately represent-
ing such a schema. Such missing properties can be proposed and – after a process
involving community input – created. Once they appear in the Wikidata RDF
graph, ShEx can be used to validate the corresponding RDF shapes.

At present, the ShEx manifests for Wikidata are hosted on GitHub, but they
could be included into the Wikidata infrastructure, e.g. through a dedicated
property similar to format as a regular expression (P1793).

4 ShEx Validation of Domain-Specific Wikidata
Subgraphs

4.1 Molecular Biology

In 2008, the Gene Wiki project started to create and maintain infoboxes in
English-language Wikipedia articles about human genes [6]. After the launch of
Wikidata in 2012, the project shifted from curating infoboxes on Wikipedia pages
towards curating the corresponding items on Wikidata [12]. Since then, Gene
Wiki bots have been enriching and synchronizing Wikidata with knowledge from
public sources about biomedical entities such as genes, proteins, and diseases,
and are now regularly feeding Wikidata with life science data [3]. To date, there
are items about 2̃4k human and 20k mouse genes from NCBI Gene 35, 8,700
disease concepts from the Disease Ontology 36, and 2,700 FDA-approved drugs.

33 https://twitter.com/piecesofuk/status/979292229159317504
34 https://www.wikidata.org/wiki/Wikidata:WikiProject ShEx
35 https://www.ncbi.nlm.nih.gov/gene/
36 http://disease-ontology.org/

https://www.wikidata.org/wiki/Property:P1793
https://twitter.com/piecesofuk/status/979292229159317504
https://www.wikidata.org/wiki/Wikidata:WikiProject_ShEx
https://www.ncbi.nlm.nih.gov/gene/
http://disease-ontology.org/

The Gene Wiki bots are built using a Python framework called the Wikidata
Integrator (WDI) 37. This platform is using the Wikidata API and does concept
resolution based on external identifiers. The WDI is openly available.

Validation Workflows for Gene Wiki In the Gene Wiki project, the focus
is on synchronizing data between Wikidata and external databases. After the
data models used by these external sources have been translated into Wikidata
terms and the missing properties created, one or more exemplary entities from
the sources in question are chosen and manually completed on Wikidata. Upon
reaching consensus on the validity of these items and their data model, a bot is
developed to reproduce these handmade Wikidata entries. Once the bot is able
to replicate the items as they are, more items are added to Wikidata. This is
done gradually to allow community input–first 10 items, then 100, then 1000
and finally all. During the development of a bot, it is run manually (at the
developer’s discretion). Upon completion of development, the bots are run from
an automation platform where the sources are synchronized regularly 38 .

ShEx has its value in both the development phase and the automation phase.
During development, ShEx is used as a communication tool to express the
data model being discussed. For instance, https://github.com/SuLab/Genewiki-
ShEx/blob/master/genes/wikidata-human-genes.shex contains the data model
of a human gene as depicted in Wikidata (note the many uses of the comment
sign “#”). Currently, data-model design is done in parallel by writing ShEx and
drawing graphical depictions of these models. We are currently working towards
creating ShEx from a drawn diagram.

After completion of the bot, ShEx can be used to monitor for changes in the
data of interest. This is either novel data, disagreement or vandalism. Regularly,
all Wikidata items on a specific source/semantic type are collected and tested
for inconsistencies.

4.2 Software and File Formats

Metadata about software, file formats and computing environments is neces-
sary for the identification and management of these entities. Creating machine-
readable metadata about resources in the domain of computing allows digital
preservation practitioners to automate programmatic interactions with these en-
tities. People working in digital preservation have a shared need for accurate,
reusable, technical and descriptive metadata about the domain of computing.

37 https://github.com/SuLab/WikidataIntegrator
38 http://jenkins.sulab.org

https://github.com/SuLab/Genewiki-ShEx/blob/master/genes/wikidata-human-genes.shex
https://github.com/SuLab/Genewiki-ShEx/blob/master/genes/wikidata-human-genes.shex
https://github.com/SuLab/WikidataIntegrator
http://jenkins.sulab.org

Wikidata’s WikiProject Informatics39 collaboratively models the domain of
computing [26]. Until now, members of the Wikidata community have created
items for more than 60,000 software titles40 and more than 2,000 file formats41.

Schemas for software items42 and file format items43 in Wikidata have been
created and entity data was tested using the ShEx2 Simple Online Validator44.
In order to use ShEx, we created manifests for software items45 and file for-
mat items46. These manifests contain a SPARQL query for the Wikidata Query
Service Endpoint that gathers all of the Wikidata items one wishes to test for
conformance. The online validator accepts the manifest and then tests the entity
data pertaining to each item against the schema for conformance. It provides
information about conformance status and error messages.

4.3 Bibliographic Metadata

WikiCite is an effort to collect bibliographic information in Wikidata[25]. Launched
in 2016, it is concerned with developing Wikidata-based schemas for publica-
tions – such as monographs, scholarly articles, or conference proceedings – and
with the application of such schemas to Wikidata items representing publica-
tions and related concepts (e.g. authors, journals, publishers, topics). While these
schemas are mature enough to be encoded in a range of tools used for interact-
ing with the WikiCite subgraph of Wikidata, they are still in flux, and using
ShEx—especially with an interoperable set of implementations and graphic and
multilingual layers on top if it—could help coordinate community engagement
around further development. At present, the WikiCite community is curating
around 15 million Wikidata items about ca. 700 types of publications47, which
are linked to each other through a dedicated property cites (P2860) as well as
with other items, e.g. about authors, journals, publishers or the topics of the
publications, and with external resources. Several hundred properties are in use
in these contexts, the majority of which are for external identifiers.

The usage of ShEx in WikiCite is currently experimental, with tests being
performed via the ShEx2 Simple Online Validator. Drafts of ShEx manifests
exist for a small number of publication types like conference proceedings or
journal articles as well as for specific use cases like defining a particular subset

39 https://www.wikidata.org/wiki/Wikidata:WikiProject Informatics
40 https://github.com/emulatingkat/SPARQL/blob/master/software/

softwareCount.rq
41 https://github.com/emulatingkat/SPARQL/blob/master/fileFormat/ffCount.

rq
42 https://github.com/shexSpec/schemas/blob/master/Wikidata/DigitalPreservation/wikidataSoftware.shex
43 https://github.com/shexSpec/schemas/blob/master/Wikidata/DigitalPreservation/wikidataFileFormat.shex
44 https://rawgit.com/shexSpec/shex.js/master/doc/shex-simple.html
45 https://github.com/shexSpec/schemas/blob/master/Wikidata/

DigitalPreservation/manifest_all_software.json
46 https://github.com/shexSpec/schemas/blob/master/Wikidata/

DigitalPreservation/manifest_all.json
47 http://wikicite.org/statistics.html

https://www.wikidata.org/wiki/Property:P2860
https://www.wikidata.org/wiki/Wikidata:WikiProject_Informatics
https://github.com/emulatingkat/SPARQL/blob/master/software/softwareCount.rq
https://github.com/emulatingkat/SPARQL/blob/master/software/softwareCount.rq
https://github.com/emulatingkat/SPARQL/blob/master/fileFormat/ffCount.rq
https://github.com/emulatingkat/SPARQL/blob/master/fileFormat/ffCount.rq
https://github.com/shexSpec/schemas/blob/master/Wikidata/DigitalPreservation/wikidataSoftware.shex
https://github.com/shexSpec/schemas/blob/master/Wikidata/DigitalPreservation/wikidataFileFormat.shex
https://rawgit.com/shexSpec/shex.js/master/doc/shex-simple.html
https://github.com/shexSpec/schemas/blob/master/Wikidata/DigitalPreservation/manifest_all_software.json
https://github.com/shexSpec/schemas/blob/master/Wikidata/DigitalPreservation/manifest_all_software.json
https://github.com/shexSpec/schemas/blob/master/Wikidata/DigitalPreservation/manifest_all.json
https://github.com/shexSpec/schemas/blob/master/Wikidata/DigitalPreservation/manifest_all.json
http://wikicite.org/statistics.html

of the literature, e.g. on a specific topic. One such literature corpus is that
about the Zika virus48. In this context, a ShEx manifest has been drafted49

that goes beyond the publications themselves and includes constraints about the
way the authors and topics of those publications are represented. It is currently
being tested, compared against the existing non-ShEx validation mechanisms
and developed further. Other use cases include curating the literature by author
(e.g. in the context of working on someone’s biography), by funder (e.g. for
evaluating research outputs), or by journal or publisher (e.g. in the context of
digital preservation).

5 Using ShEx-Validated Wikidata Subgraphs in Digital
Preservation

Digital Preservation is the set of practices that we undertake to ensure contin-
ued access to digital objects. Within digital preservation, we need to be able to
unambiguously refer to resources in the domain of computing in order to char-
acterize digital objects, plan preservation actions, and automate workflows. The
Wikidata QIDs for software and file formats described above are unique URIs
and can be used to identify these resources in digital preservation workflows.

Digital Preservation is an expensive activity for many institutions. Irrespec-
tive of their budgets for digital preservation, they can reuse content from Wiki-
data at no cost. The boundary infrastructure [23] of Wikidata provides dig-
ital preservation professionals from around the world, working in their own
languages, with the means to collaborate by creating structured data in the
knowledge base. This reduces the risk of redundant efforts to describe the same
file format in numerous local format registries. The boundary infrastructure of
the knowledge base also provides visibility and supports contributions from the
crowd, i.e. people who have an interest in, and information about the domain
of computing. This allows for collaborations that might not happen without
the boundary infrastructure that facilitates communication in a community of
practice.

Members of the general public will also have access to this information. Hav-
ing this information in an accessible, structured repository will allow more people
to consult it, which could lead to people making different computing choices in
their lives, for example choosing an open format, which could impact the work
of future generations of digital preservation professionals.

Wikidata’s CC0 license ensures that this data will have an equalizing force,
as it will not be controlled by any single institution, or even any consortium of
institutions. Anyone with access to the internet will be able to inspect and reuse
this data for their own systems.

48 https://www.wikidata.org/wiki/Wikidata:WikiProject Zika Corpus
49 https://github.com/shexSpec/schemas/blob/master/Wikidata/wikicite/Zika%20Corpus/zika corpus.shex

https://www.wikidata.org/wiki/Wikidata:WikiProject_Zika_Corpus
https://github.com/shexSpec/schemas/blob/master/Wikidata/wikicite/Zika%20Corpus/zika_corpus.shex

5.1 Emulation as a Service

Some legacy software titles are no longer available for our inspection or use.
Other pieces of legacy software may still be available, but they can be challenging
to install and configure, and rapidly become unusable when the appropriate
operating system is no longer supported on contemporary hardware. Software
emulation technologies simulate older computer hardware. This allows us to
provide emulated computing environments in which to run the legacy software.

The structured data in the Wikidata knowledge base plays a key role in the
EaaS platform. The EaaS platform hosts pre-configured emulated environments
that consist of legacy operating systems and combinations of software applica-
tions. EaaS also hosts an object library of software titles or software bundles
that can be used within one or more of the base environments. The EaaS plat-
form uses the relationships encoded by Wikidata property readable file format
(P1072) to provide a list of options to present to the user of base environments
that are compatible with the object they have selected.

We syndicate data from Wikidata in our Emulation as a Service platform.
Wikidata editors contribute data using the properties available. Not all editors
align their data models with one another before contributing data. In some
cases, it is possible to express the same or similar statements using different
sets of properties and qualifiers. Validating entity data from Wikidata using a
ShEx schema allows to easily discover different modeling practices within the
knowledge base. The reports generated within the validation workflows allow to
quickly identify areas for additional curation work. This information supports
our articulation work, meaning we can provision work tasks among members of
our distributed project team.

One potential application of Emulation as a Service is in providing access
to legacy data. In addition to data models of relevant software and file formats,
this routinely requires handling of legacy physical storage media and associated
legacy equipment. In the case of a recent analysis of data from the Apollo Space
Program of the late 1960s and early 1970s, this involved “magnetic tape, micro-
film, microfiche, or hard-copy document”[30]. Wikidata has some basic coverage
of hardware associated with such legacy storage methods, as well as of datasets,
but the data models are inconsistent across similar items. ShEx could help es-
tablish an infrastructure for sharing data models, building on the efforts that
have gone into the curation of software and file formats.

6 Discussion

6.1 Novelty of Validation of RDF Data Using ShEx

RDF has been “on the radar” for the healthcare domain for a number of years,
but always as a speculation – “If we could figure out how to build it, maybe
they would come”. ShEx proved to be the key that enabled actual action – it
moved RDF from a topic of discussion to active implementation. ShEx provided
a formal, yet (relatively) easy to understand view of what the RDF associated

https://www.wikidata.org/wiki/Property:P1072

with a particular model element would look like. It provided a mechanism for
testing data for conformance, as well as a framework for assembling the elements
of an RDF triple store into pre-defined structures. ShEx has the potential to
define a unifying semantic for multiple modeling paradigms – in the case of
FHIR, ShEx is able to represent the intent of the FHIR structure definitions
model, constraint language and extension model in a single, easy to understand
idiom. While it is yet to be fully explored, ShEx has exciting potential as a data
mapping language, with early explorations showing real promise as an RDF
transformation language[16]. The validation workflows introduced above for the
Wikidata cases are the first application of shapes to validate entity data from
Wikidata. The impact of software frameworks that support validation of entity
data is an important improvement in the feasibility of ensuring data quality for
the Wikidata ecosystem and facilitating cross-linguistic collaboration. Wikidata
data models are defined by the community, and the knowledge base is designed to
support multiple epistemological stances [28]. Wikidata contributors may model
data differently from one another. ShEx makes it possible to validate entity data
across the entire knowledge base, a powerful tool for data quality.

6.2 Uptake of ShEx tooling

ShEx schemas are highly re-usable in that they can be shared and exchanged.
The fact that ShEx schemas are human readable means that others can under-
stand them and evaluate their suitability for reuse. ShEx schemas can also be
extended. The ShEx Community Group of the W3C50 maintains a repository of
ShEx schemas51 published under the MIT license that others are free to reuse,
modify, or extend to fit novel use cases. We recommend that ShEx manifests
be licensed as liberally as possible, so as to facilitate and encourage their usage.
The Gene Wiki team led the way with workflows for the validation of entity data
in Wikidata. An example of the uptake of ShEx tooling is that the Wikidata
for Digital Preservation community modeled their validation workflow on that
of the Gene Wiki team. We demonstrate the portability of these workflows for
additional domains covered by the Wikidata knowledge base. Once a domain-
based group has created ShEx schemas for the data models relevant for their
area, others can follow this model to develop a validation workflow of their own.

6.3 Soundness and Quality

[2] provides efficient validation algorithms and verifies the soundness of recursion.
[24] identifies the complexity and expressive power of ShEx. The comprehensive
ShEx test suite52 ensures compliance with these semantics. These projects used
ShEx because it 1) has many implementations to choose from 2) has a well-
engineered and tested, stable, human-readable syntax 3) is sound with respect

50 https://www.w3.org/community/shex/
51 https://github.com/shexSpec/schemas
52 https://github.com/shexSpec/shexTest

https://www.w3.org/community/shex/
https://github.com/shexSpec/schemas
https://github.com/shexSpec/shexTest

to recursion. On the other hand, using ShEx poses new challenges about best
practices to integrate the validation step into the data production pipeline, the
performance of the validation for large RDF graphs and the interplay of ShEx
with other semantic web tools like SPARQL, RDFS, or OWL.

6.4 Impact

The ShEx Specification is available under the W3C Community Contributor
License Agreement53. In addition to the specification itself, the ShEx community
also created a Primer54 that provides additional explanation and illustrative
examples of how to write schemas. All of the software tools we describe are
available under an open source license which is either the MIT or the Apache
license. The developers of these software frameworks have made them available
for anyone to reuse[10,17,22].Contributing to open specifications and releasing
software tools under free and open licenses lowers barriers to entry for others
who might like to explore, test or adopt ShEx. The use cases we present are
evidence of how ShEx validation is applicable to different domains. Extending
it to additional domains is the goal of a dedicated initiative in the Wikidata
community, the aforementioned WikiProject ShEx.

7 Conclusion

The ability to test the conformance of RDF graph data shapes advances our
ability to realize the vision of the semantic web. Validating RDF data through
the use of ShEx allows for the integration of data from heterogeneous sources,
and provides a mechanism for testing data quality that has been adopted by
communities in different domains. Using ShEx in data modeling phases allows
communities to resolve ambiguity of interpretation that can arise when using
diagrams or natural language. Through a data modeling process using ShEx,
these differences are resolved earlier in a workflow, and reduce time spent fix-
ing errors that could otherwise arise due to different understandings of model
meaning. Using ShEx to validate RDF data allows communities to discover all
places where data is not yet in conformance to their schema. From the validation
phase, a community will generate a punch list of data needing attention. Not
only does this allow us to improve data quality, it defines a practical workflow
for addressing non-conformant data. Consumers of RDF data will benefit from
the work of data publishers who create ShEx schemas to communicate the struc-
ture of the data. The use cases presented here demonstrate the viability of using
ShEx in production workflows in several different domains. ShEx addresses the
challenges of communicating about the structure of RDF data, and will facilitate
wider adoption of RDF data in a broad range of data publishing contexts.

53 https://www.w3.org/community/about/agreements/cla/
54 http://shex.io/shex-primer/

https://www.w3.org/community/about/agreements/cla/
http://shex.io/shex-primer/

8 Acknowledgements

We would like to thank the members of the W3C Shape Expressions Community
Group for insightful conversations and productive collaboration. We would also
like to thank the members of the Wikidata community. This work was supported
by the National Institutes of Health under grant GM089820. Portions of this
work were also supported in part by NIH grant U01 HG009450.

References

1. Bielefeldt, A., Gonsior, J., Krötzsch, M.: Practical linked data access via SPARQL:
the case of wikidata. In: Proceedings of the WWW2018 Workshop on Linked Data
on the Web (LDOW-18). CEUR Workshop Proceedings, CEUR-WS.org (2018)

2. Boneva, I., Labra Gayo, J.E., Prud’hommeaux, E.: Semantics and validation of
shapes schemas for rdf (2017)

3. Burgstaller-Muehlbacher, S., Waagmeester, A., Mitraka, E., Turner, J., Putman,
T., Leong, J., Naik, C., Pavlidis, P., Schriml, L., Good, B.M., Su, A.I.: Wikidata as
a semantic framework for the Gene Wiki initiative. Database (Oxford) 2016 (2016)

4. HL7: Welcome to fhir, https://hl7.org/fhir/
5. HL7: Wfhir release 3 (stu), https://hl7.org/fhir/STU3/index.html
6. Huss, J.W., Orozco, C., Goodale, J., Wu, C., Batalov, S., Vickers, T.J., Valafar,

F., Su, A.I.: A gene wiki for community annotation of gene function. PLoS Biol.
6(7), e175 (Jul 2008)

7. Kaffee, L.A., Piscopo, A., Vougiouklis, P., Simperl, E., Carr, L., Pintscher, L.: A
Glimpse into Babel: An Analysis of Multilinguality in Wikidata. In: Proceedings
of the 13th International Symposium on Open Collaboration. pp. 14:1–14:5. Open-
Sym ’17, ACM, New York, NY, USA (2017), https://doi.org/10.1145/3125433.
3125465

8. Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL). W3C
Recommendation (Jun 2017), https://www.w3.org/TR/shacl/

9. Labra Gayo, J.E., Prud’Hommeaux, E., Boneva, I., Kontokostas, D.: Validating
RDF Data. Morgan & Claypool Publishers (2017)

10. Labra Gayo, Jose Emilio : SHACLex: Scala implementation of ShEx and SHACL
(Apr 2018), https://doi.org/10.5281/zenodo.1214239

11. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters.
In: Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. pp. 333–343. POPL ’95, ACM, New York, NY, USA
(1995), http://doi.acm.org/10.1145/199448.199528

12. Mitraka, E., Waagmeester, A., Burgstaller-Muehlbacher, S., Schriml, L.M., Su,
A.I., Good, B.M.: Wikidata: A platform for data integration and dissemination for
the life sciences and beyond. bioRxiv (2015), https://doi.org/10.1101/031971

13. Nielsen, F.Å., Mietchen, D., Willighagen, E.: Scholia, Scientometrics and Wiki-
data. In: The Semantic Web: ESWC 2017 Satellite Events. pp. 237–259. Springer
International Publishing, Cham (2017)

14. President’s Council of Advisors on Science and Technology (PCAST): Re-
port to the President Realizing the Full Potential of Health Informa-
tion Technology to Improve Healthcare for Americans: The Path For-
ward (2010), https://obamawhitehouse.archives.gov/sites/default/files/

microsites/ostp/pcast-health-it-report.pdf

https://hl7.org/fhir/
https://hl7.org/fhir/STU3/index.html
https://doi.org/10.1145/3125433.3125465
https://doi.org/10.1145/3125433.3125465
https://www.w3.org/TR/shacl/
https://doi.org/10.5281/zenodo.1214239
http://doi.acm.org/10.1145/199448.199528
https://doi.org/10.1101/031971
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/pcast-health-it-report.pdf
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/pcast-health-it-report.pdf

15. Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape expressions: an RDF
validation and transformation language. In: Proceedings of the 10th International
Conference on Semantic Systems. pp. 32–40. ACM (2014)

16. Prud’hommeaux, E., Mayo, G.: Shexmap (2015), http://shex.io/extensions/

Map/

17. Prud’hommeaux, E., tombaker, Glenna, Labra Gayo, J.E., mrolympia, Waag-
meester, A., Werkmeister, L., Booth, D.: shexSpec/shex.js: Release for zenodo
DOI (Version v0.9.2) (Apr 2018), http://doi.org/10.5281/zenodo.1213693

18. Putman, T.E., Lelong, S., Burgstaller-Muehlbacher, S., Waagmeester, A., Diesh,
C., Dunn, N., Munoz-Torres, M., Stupp, G.S., Wu, C., Su, A.I., Good, B.M.:
Wikigenomes: an open web application for community consumption and cura-
tion of gene annotation data in wikidata. Database 2017, bax025 (2017), http:
//dx.doi.org/10.1093/database/bax025

19. Sáez, T., Hogan, A.: Automatically generating wikipedia info-boxes from wikidata.
In: WWW ’18 Companion: The 2018 Web Conference Companion, April 23–27,
2018, Lyon, France. ACM (2018)

20. Sarabadani, A., Halfaker, A., Taraborelli, D.: Building automated vandalism de-
tection tools for Wikidata. CoRR abs/1703.03861 (2017), http://arxiv.org/abs/
1703.03861

21. Solbrig, H.R., Prud’hommeaux, E., Grieve, G., McKenzie, L., Mandel, J.C.,
Sharma, D.K., Jiang, G.: Modeling and validating HL7 FHIR profiles using se-
mantic web Shape Expressions (ShEx). J Biomed Inform 67, 90–100 (03 2017)

22. Solbrig, H.: PyShEx - Python implementation of Shape Expressions (Version
v0.4.2) (Apr 2018), http://doi.org/10.5281/zenodo.1214189

23. Star, S.L.: This is not a boundary object: Reflections on the origin of a concept.
Science, Technology, & Human Values 35(5), 601–617 (2010)

24. Staworko, S., Boneva, I., Labra Gayo, J.E., Hym, S., Prud’hommeaux, E.G., Sol-
brig, H.R.: Complexity and Expressiveness of ShEx for RDF. In: 18th International
Conference on Database Theory, ICDT 2015. LIPIcs, vol. 31, pp. 195–211. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

25. Taraborelli, D., Dugan, J.M., Pintscher, L., Mietchen, D., Neylon, C.: WikiCite
2016 Report (November 2016), https://upload.wikimedia.org/wikipedia/

commons/2/2b/WikiCite_2016_report.pdf

26. Thornton, K., Cochrane, E., Ledoux, T., Caron, B., Wilson, C.: Modeling the
Domain of Digital Preservation in Wikidata. iPRES 2017: 14th International Con-
ference on Digital Preservation (2017)

27. Thornton, K., Seals-Nutt, K., Cochrane, E., Wilson, C.: Wikidata for digital preser-
vation (2018), http://doi.org/10.5281/zenodo.1214319

28. Vrandečić, D.: Wikidata: A new platform for collaborative data collection. In:
Proceedings of the 21st International Conference Companion on World Wide Web.
pp. 1063–1064. ACM (2012)

29. Wikidata: Datamodel (2015), https://www.mediawiki.org/wiki/Wikibase/

DataModel

30. Williams, D.R., Hills, H.K., Taylor, P.T., Grayzeck, E.J., Guinness, E.A.: Restora-
tion of Apollo Data by the Lunar Data Project / PDS Lunar Data Node: An
Update. In: Lunar and Planetary Science Conference. Lunar and Planetary Sci-
ence Conference, vol. 47, p. 2385 (Mar 2016)

31. Yosemite: About the yosemite project (2013), http://yosemiteproject.org

http://shex.io/extensions/Map/
http://shex.io/extensions/Map/
http://doi.org/10.5281/zenodo.1213693
http://dx.doi.org/10.1093/database/bax025
http://dx.doi.org/10.1093/database/bax025
http://arxiv.org/abs/1703.03861
http://arxiv.org/abs/1703.03861
http://doi.org/10.5281/zenodo.1214189
https://upload.wikimedia.org/wikipedia/commons/2/2b/WikiCite_2016_report.pdf
https://upload.wikimedia.org/wikipedia/commons/2/2b/WikiCite_2016_report.pdf
http://doi.org/10.5281/zenodo.1214319
https://www.mediawiki.org/wiki/Wikibase/DataModel
https://www.mediawiki.org/wiki/Wikibase/DataModel
http://yosemiteproject.org

	Using Shape Expressions (ShEx) to Share RDF Data Models and to Guide Curation with Rigorous Validation

