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Method for comparing pulmonary perfusion measured by PET/CT

and indicator based EIT measurements in a porcine model
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Abstract: The potential of saline indicator based pul-

monary perfusion measurements with EIT was investigated

in five different lung states of a porcine model. Based on

corresponding regions within the relative regional perfusion

images overall limits of agreement (LoA) around 10% were

determined between EIT and PET/CT measurements.

1 Introduction
Assessing pulmonary perfusion using Electrical Impedance

Tomography (EIT) at the bedside could potentially support

the optimization of mechanical ventilation in daily clinical

routine. The application of a saline solution as an EIT indi-

cator has been studied before [1,2]. In this study, multiple

saline concentrations have been used to compute regional

lung perfusion maps. The perfusion measured by EIT was

compared to PET/CT perfusion as a reference. The method

of comparing 2D-EIT and 3D-PET/CT perfusion distribu-

tions will be described in the following.

2 Methods
The preclinical study: Five different perfusion conditions

were investigated in 13 anesthetized pigs. During each

state, pulmonary perfusion was assessed by EIT during res-

piratory hold phases at mean airway pressure. 10ml of

different indicator concentrations (3%, 5%, 10%) were in-

jected central-venously. Consecutively, PET/CT scanning

was performed using 68Ga as nuclear tracer.

EIT indicator dilution: EIT measurements were con-

ducted with the PV500 at a frame rate of 50 frames/s. The

reconstruction was performed using a general porcine torso

shape based on all 13 animals, a homogeneous background

conductivity and a 1-step Gauss Newton solver.

The injection of a saline solution results in a regional in-

crease in relative conductivity ∆σs,i during the presence of

the saline bolus in pixel i. Similar to previous analyses [1],

a surrogate for the amount of blood flow qEIT,i into pixel i

was calculated by:

qEIT,i =
d∆σs,i

dt

∣

∣

∣

max
(1)

A normalized distribution QEIT is calculated after remov-

ing the ventricular region based on pulsatility analysis.

Comparing EIT with PET/CT perfusion: EIT images

represent a projection of current flowing within a volume

around the electrode plane. Thus, to compare 2D-EIT im-

ages and 3D-PET/CT volumes of perfusion adequately, the

PET/CT volume should optimally be projected with a pro-

file corresponding to the sensitivity distribution of an EIT

measurement. Two projection profiles were hence inves-

tigated: 1) rectangular profile (equal weighting of each

transversal plane) and 2) bell shaped weighting profile [3].

Finally, the resulting images were subdivided into eight re-

gions of interest (ROIs) to compare both images by means

of the Pearson’s correlation coefficient (r) and limits of

agreement (LoA) of a Bland-Altman analysis. The division

of the image into ROIs was performed with two different

approaches: a) division based on the centroid of segmented

healthy lung tissue of the co-registered CT (ROICT ); b) di-

vision based on the centroid of the measured PET/CT dis-

tribution (ROIPET ). The second one is potentially better

accounting for the physiologically inhomogeneous distribu-

tion of perfusion within the lung.

Figure 1: The three images on the left show the relative perfu-

sion measured by EIT, the right image presents the corresponding

projected PET image during unilateral ventilation. The CT based

ROIs are depicted (white lines).

3 Results
The qualitative comparison for one exemplary lung state is

depicted in figure 1. The quantitative measures using a 3%

saline solution are shown in table 1.

Table 1: Results of the comparison with different PET projection

profiles and in different ROIs for the lowest saline concentration

of 3% including all experimental states.

rectangular profile simulation profile

ROICT ROIPET ROICT ROIPET

r 0.87 0.81 0.88 0.85

LoA (%) 10.7 10.4 9.5 10.3

4 Discussion
The comparison of regional perfusion distributions QEIT

and QPET shows good overall agreement both qualitatively

and quantitatively. The potentially more adequate projec-

tion profile for the comparison of PET and EIT measure-

ments results in lower LoAs. The ROIs based on CT seg-

mentation might virtually increase the correlation coeffi-

cient due to the already inhomogeneous distribution of per-

fusion within the lungs.
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A comparison of EIT lung perfusion measures
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Abstract: Several different techniques have been proposed
to measure the distribution of perfusion in the lung using
EIT: using a bolus of hypertonic saline, or frequency filter-
ing the EIT images at the cardiac rate. We compare these
techniques in newborn lambs. The preliminary results from
two animals show a common trend between bolus injection
and frequency analysis measures of perfusion.

1 Introduction

The “holy grail” of EIT-based lung function assessment is
measurement of both ventilation and perfusion distribution.
While EIT measures of ventilation are reasonably well val-
idated, multiple different measures of perfusion are used
and their relationship is poorly understood [1]. True EIT-
perfusion measures can be made with an vascular injection
of a conductivity contrasting (hypertonic NaCl) fluid, but
this is invasive, must be infrequent to avoid hypernatremia,
and can affect the EIT signal over time [2]. The second
approach uses cardiac-frequency filtering of the time-series
EIT images. This shows what has been called “pulsatility”,
and is affected by cardiac-related movement and is not sen-
sitive to the continuous blood flow in the capillaries.

Our goal is to compare images from these techniques

to determine whether the distribution of perfusion and its
trends are consistent between bolus- and filtering-derived
functional images. Data with a large change in ventila-
tion status due to the introduction of total liquid ventilation
(TLV) were used [3].

2 Methods & Results

Newborn lambs were anesthetized and ventilated in a
supine position. 16-electrode, EIT data were acquired at
4.7 frames/s using the Sigmatome II EIT device [4], and the
experimental protocol of Fig. 1 used. PB was measured by
a injection of a 7.9% saline solution during an apnoea. PA

and PV were measured during apnoea and ventilation.
Results show a relationship between images in over-

all shape and distribution of pulsatility images through
the stages of the protocol, from gas ventilation (baseline),
through TLV filling, stable (5 minutes) and 2h post filling.

References
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perfusion image from bolus, calculated between bolus measures and an apnoea reference measure; and VT: tidal ventilation image.
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Abstract: In order to analyze the feasibility of monitoring

regional lung ventilation to perfusion ratio (V̇ /Q̇) by elec-

trical impedance tomography (EIT), we validated regional

ventilation (V̇ ) and perfusion (Q̇) by EIT against single-

photon emission computed tomography (SPECT). While

individual assessment of V̇ and Q̇ is possible, substantial

research is necessary to enable V̇ /Q̇ by EIT.

1 Introduction

In intensive care patients with acute respiratory distress syn-

drome (ARDS), lung gas exchange is often severely im-

paired. EIT is a noninvasive imaging modality that allows

real-time monitoring of V̇ at bedside [1]. Furthermore, it

was shown that Q̇ can be obtained by bolus injection of

saline into the central venous catheter (CVC) [2]. Since gas

exchange only takes place in lung regions that are simulta-

neously ventilated and perfused, the availability of V̇ /Q̇ at

bedside is likely to open up new possibilities to guide ven-

tilation therapy.

2 Methods

We reevaluated data of a previous study [4]. After ad-

mission of the animal ethics committee (Uppsala Univer-

sity Hospital, Uppsala, Sweden), four healthy pigs were

anesthetized and mechanically ventilated at positive end-

expiratory pressures (PEEP) of 0 and 15 cmH2O in supine

position. EIT and SPECT measurements of both V̇ and

Q̇ were performed at both PEEP levels. EIT was acquired

using the EEK 2 (Draeger Medical GmbH, Germany) at a

frame rate of 40 Hz. A bolus injection of saline (NaCl 10%,

10 ml) into the CVC was used to obtain Q̇ based on a previ-

ously described model-based approach [5]. SPECT was ac-

quired using a dual-head gamma camera (Millenium, Gen-

eral Electric, USA). Krypton gas (81mKr) was used to as-

sess V̇ , while Technetium-labeled macro-aggregated albu-

min (99mTc-MAA) served to obtain Q̇. Imaging properties

were analyzed by comparing pixel sums of rows (dorsal-

ventral) and columns (right-left) of both EIT and SPECT

images (see Figure 1). Furthermore, a correlation analysis

was performed to quantify image similarity.

3 Results

Analysis of imaging properties revealed a strong agreement

between EIT and SPECT for both V̇ and Q̇. However,

imaging artefacts, such as central compression, are pro-

nounced and most obvious in right-left direction (see Fig-

ure 1, right). Furthermore, ventral and dorsal shifts of EIT

over SPECT were observed at both PEEP levels. At PEEP

0 cmH2O, a dorsal shift was observed for V̇ , whereas Q̇ ex-

hibits a ventral shift (see Figure 1, left). Correlation analy-

sis revealed very strong (r2 = 0.94 to 0.95) similarity for V̇
and Q̇ in dorsal-ventral direction at both PEEP levels. Mod-

erate (r2 = 0.36 to 0.46) and moderate to strong (r2 = 0.61
to 0.82) similarity resulted for V̇ and Q̇ in right-left direc-

tion, respectively.

4 Conclusions

The results indicate that individual assessment of V̇ and Q̇
by EIT is possible. However, the dorsal shift of V̇ and the

ventral shift of Q̇ introduce a position error that is different

for both quantities. As a result, the spatial matching of V̇
and Q̇ cannot be ensured and a direct calculation of V̇ /Q̇
as a pixel-wise quotient will be erroneous. We thus suggest

to investigate new algorithms for EIT reconstruction with a

focus on low position error to enable V̇ /Q̇ by EIT.
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Figure 1: Analysis of imaging properties at PEEP 0 cmH2O: Mean and standard deviation of the pixel sums in dorsal-ventral (left) and

right-left (right) direction over all subjects are shown for both EIT (blue) and SPECT (red).
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Abstract: D-bar based reconstruction methods for EIT are

robust to noise and modeling errors [3, 4] yet suffer blurring

due to a low-pass filtering of nonlinear Fourier data. CNNs

can learn the blurring present in reconstructions and pro-

vide effective post-processing for deblurring D-bar images.

Results are presented for experimental data.

1 Introduction

In Electrical Impedance Tomography (EIT) the interior con-

ductivity of a body Ω is recovered from surface electri-

cal current/voltage measurements. While various recon-

struction methods exist, here we focus on D-bar methods

which are based on nonlinear Fourier transforms of the cur-

rent/voltage data tailor-made for the EIT problem. The con-

ductivity σ ∈ Ω is recovered by solving a ∂̄k-equation in the

transform variable k.

Deep learning methods have shown great promise for

improving low quality or corrupted images. By viewing the

blurred D-bar reconstructions as convolutions, we can train

a Convolutional Neural Network (CNN) to undo the blur-

ring inherent in low-pass filtered D-bar based images and

use the trained network as a post-processing step.

2 Methods

In [1] we trained a CNN to deblur D-bar reconstructions

from simulated noisy voltage/current data (continuum

boundary conditions and known boundary shape). Here

we remove potential biases from boundary shape, electrode

locations, etc. completely by instead generating the training

data from the non-physical Beltrami equation and using the

‘Shortcut D-bar Method’ [2]. For the training we generated

conductivities σn ∈ L∞(Ω) and their corresponding low-

pass D-bar reconstructions σDB

n as follows:

Step 1: Generate the Beltrami scattering data τn(k) for

σn(z) for k ∈ C, |k| ≤ R as in [2]

τn(k) :=
1

2π

∫

R2

∂̄z [M+µn
(z, k)−M

−µn
(z, k)] dz1dz2 (1)

where M±µn
(z, k) = e−ikzf±µn

(z, k) are solutions to the

Beltrami equation ∂̄z f±µn
(z, k) = ±µn(z)∂z f±µn

(z, k)

satisfying M±µ(z, k) = 1 + O
(

1
|z|

)

for large |z| and

µn(z) =
1−σn(z)
1+σn(z)

denotes the Beltrami coefficient.

Step 2: Recover the low-pass D-bar reconstruction σDB

n by

solving the Schrödinger ∂̄k equation (see [5]) with scatter-

ing data tn(k) = −4πikτn(k).
Note that no electrode or boundary information is used

in the training data as µ(z) = 0 near ∂Ω (we require σn

to be constant near the boundary, scaled to one). Pairs of
simulated data {σn, σ

DB

n }n were then used as training data
for the CNN. The trained network was then directly applied,
with no transfer training required, to the D-bar reconstruc-
tion σexp for the experimental data. The D-bar image σexp

was reconstructed from the measured current/voltage data
Λσ using Step 2 above with scattering data t

exp

t
exp(k) =

∫

∂Ω

e
ik̄z̄

[

Λσ

(

e
ikz

)

− ikνe
ikz

]

ds(z), (2)

where ν = ν(z) denotes the unit outward facing normal

vector to the boundary, which can be computed numerically

from a guess at the boundary shape function (see [3] for ro-

bustness to incorrect boundary shape and derivation of (2)).

Preliminary results are shown in Figure 1.

3 Conclusions

Combining the power of CNNs with D-bar methods results

in significantly sharper EIT reconstructions. No reliance on

boundary shape or electrode locations was used nor noise

included in the training data. Rather we sought to learn to

undo the blurring inherent in D-bar. The methods devel-

oped here work with absolute and time-difference EIT in

2D. Further details will be given in the talk.
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EXPERIMENT LOW-PASS D-BAR IMAGE DEEP D-BAR IMAGE

Figure 1: Demonstration of absolute imaging with the Deep D-bar method on experimental data from the ACT4 system with

agar/graphite targets. The heart/aorta are more, and lungs/spine less, conductive than the background. The right (DICOM) lung

contains an injury with conductivity matching the heart. No simulations of current/voltage data were required for any step of the

process. The Structural SIMilarity (SSIM) index increased from 0.5176 (D-bar) to 0.6963 (Deep D-bar).
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Abstract: EIT reconstruction algorithms based on D-bar

methods offer various advantages. One limitation to wider

use of these algorithms has been a lack of comparisons of

algorithm performance on reconstruction metrics. We show

some initial results comparing D-bar and regularization-

based reconstructions for phantom data.

1 Introduction

Reconstruction of EIT images is a challenging non-linear

problem which needs to overcome the poor sensitivity to

changes at depth. Over the years, many EIT reconstruction

algorithms have been proposed for 2D and 3D geometries,

and for difference and absolute reconstructions.

One relatively novel approach to image reconstruction

is D-bar, a non-iterative absolute approach [2]. The D-bar

literature is rich, but there is little direct comparison of per-

formance to traditional (iterative, regularized) approaches.

Comparison of algorithms is challenging, because there are

multiple comparison criteria: resolution, ability to suppress

noise, ability to maintain sharp edges, resistance to elec-

trode movement and other artefacts.

Our goal is to present initial results comparing D-bar

with two popular regularized algorithms, iterative Gauss-

Newton (with a smoothing prior) and GREIT [1], all for

reconstruction of difference images with small contrasts.

2 Results and Discussion

Two simulation phantoms were used, shown in fig. 1. One

is a shape – “Pac-Man” – with sharp edges and holes, while

the other moves a small target from centre to the side. Small

(0.1× background) contrasts were used. All algorithms

were set to calculate difference 32×32 pixel EIT images

assuming a circular 2D body with 32 equally spaced elec-

trodes of the indicated width. Stimulation patterns were

“skip 4” with monopolar voltage measurements on all elec-

trodes (including driven ones).

Figure 1: Phantoms: “Pac-Man” shape, and point targets

Most algorithms have parameters to control the trade-

off between resolution and noise performance. D-bar uses

a radius (r), GN uses a hyperparameter (λ) and GREIT uses

a noise figure (NF). We wanted to first select parameters

which for which the noise performance is equal, and then

subsequently evaluate other characteristics. Fig. 2 recon-

structs the phantom with added Gaussian noise for com-

parison of parmeter settings. We observe that D-bar shows

a different pattern (lower spatial frequency) for the recon-

structed noise compared GN and GREIT.

Figure 2: Reconstructions of data with added Gaussian noise

(noise sample per row) for algorithms and parameter settings.

Next, we analysed the “point spread function” versus

radial position (fig. 3). D-bar has more uniform resolution,

compared to improving resolution near the boundary.

Figure 3: Reconstructions of points (at grey dotted line)

Last, we explore the ability to reconstruct difference im-

ages where electrodes move between measurements. Here

the right centre electrode moves by the indicated amount (in

degrees). Results show D-bar is least affected.
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Figure 4: Reconstructions of moving electrode near “mouth”

Our results show that D-bar: 1) has position invariant

point-spread function, 2) projects noise into images very

differently, and 3) appears much less sensitive to electrode

position errors than regularized reconstructions. There is

clearly plenty of work needed to understand these effects.
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Abstract: The method presented in paper allows us to 

produce accurate baseline prediction of conductivity for 

image reconstruction. The statistical algorithms enable us 

to estimate the adequate parameters for linear models, that 

describe the linear dependences between conductivities 

and measurements of voltage on the electrodes.  

1 Introduction 

The highly correlated predictors with each other’s in linear 
models do not allow to determine the precisely influences 

of these predictors on the output variable. Directly 

application the least square method to estimate the 

unknown parameters may lead to a poor prediction. 

Dampness in structural objects such as walls is a serious 

problem in the construction industry. The traditional 

techniques used to deal with this kind of problem show, to 

be ineffective, justifying the need to find a new approach 

[1-3]. 

2 Algorithm 

Let us consider the system of state equations where ܻ ∈ℝ𝑛, ܺ ∈ ℝ𝑛× denote the observation matrices of response 

and input variables respectively, 𝛽 ∈ ℝ denotes the 

vector of unknown parameters. Sometimes by applying 

the algorithm of predictor selection we may obtain the 

variables which are linearly dependent. Then after 

estimating the unknown parameters β in linear model we 

observe the large absolute values of parameters for 

collinear variables. The obtained model does not have a 

prediction accuracy. Whereas the application LASSO, 

Elastic net, LAR methods allows us to shrink the 

coefficients β toward 0. The shrinkage of coefficients 
often improves the prediction accuracy 

The following algorithm has been proposed: 

1. Using the location and scale transformation we 

standardize all predictors. The intercept in expression 

() is equal a mean of response variable. Additionally, 

we put that the active set (set of predictors) is empty, 𝛽ଵ = 𝛽ଶ =. . . = 𝛽 = Ͳ. At the beginning the sequence 

of residuals {𝜀}ଵ≤≤𝑛 is equivalent to sequence of 

response variable {ݕ}ଵ≤≤𝑛, ie. 𝜀 =  for ͳݕ ≤ ݅ ≤ 𝑛. 

2. Calculate the residuals for the linear model with all 

predictors from active set. Determine the predictor ܺ, ͳ ≤ ݆ ≤ ݇ (which is not in active set) most correlated 

with residuals and attach to the active set. 

3. Move coefficient 𝛽 from Ͳ towards its least-squares 

coefficient ⟨ ܺ , 𝜀⟩, until some other competitor ܺ𝑠 
(which belong to active set) has a much correlation 

with the current residuals as does ܺ. 
4. Move 𝛽 and 𝛽𝑠 in the direction defined by their joint 

least square coefficient of the current residual on 

( ܺ , ܺ𝑠), until some other competitor ܺ from active set 

has a much correlation with the current residual. 

5. Go to step 2 and continue in this way until all ݇ 

predictors have been entered. 

3 Results 

The image reconstructions were made on the testing set �̈� = {ܻ̈ , ܺ̈}, ܻ̈ = colሺܻ̈⋅ሻ, ܺ̈ = colሺܺ̈⋅ሻ for ͳ ≤ ݅ ≤ 𝑛ଶ. 

The picture 1a presents the randomly chosen dampness of 

the block corresponding to the conductivity vector ܻ̈⋅ 
from the testing set, whereas the picture 1b shows the 

reconstructions ܻ̂⋅ = ሺܺ̈⋅ − ሻݔ �̂� +  based on the ݕ

measurements ܺ̈⋅. 
 

   
Figure 1: The damp of block and reconstruction based on the 

voltage on the electrodes. 

4 Conclusion 

In this paper, there were proposed algorithms based on 

statistical methods for the purpose of more accurate and 

stable reconstruction results in solving EIT inverse 

problem. The presented algorithm determines the moisture 

of the test model. These methods will be applied very 

successfully in many areas of the scientific modelling. 
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Abstract: We introduce an electric impedance 

tomography modality without any active current injection. 

By loading the probe electrodes with a time-varying 

network of impedances, the proposed technique exploits 

electrical fields existing in the medium due to biological 

activity or EM interference from the environment or an 

implantable device. A phantom validation of the technique 

is presented.  

1 Introduction 

The aim of the Electrical Impedance Tomography (EIT) is 

to deduce the spatial distribution of electrical impedance 

in a region of interest (ROI) enclosed by electrodes. The 

measurements consist of the potential created on the 

electrodes as a response to current injection from each 

electrode, which are expressed concisely as a pairwise 

impedance matrix. An inverse problem is then solved to 

infer the properties of the medium [2].   

Here we introduce a novel technique for electrical 

impedance monitoring in which the pairwise impedance 

matrix of the electrodes is deduced from the voltage 

response to the loading of electrical fields existing in the 

medium by means of a time-varying network of 

impedances switched at a high frequency. The existing 

fields may result from biological activity (such as EEG, 

ECG or EMG), power line electrical noise, or from the 

communication signal of an implantable device. The 

potential advantages of the proposed passive EIT 

technique include reduced power consumption due to the 

absence of active current injection, reduced sensitivity to 

electromagnetic interferences, decreased nonlinear effects, 

and the possibility to monitor the bio-impedance change 

on the frequencies overlaying with the spectrum of the 

electrophysiological signals while measuring these signals 

[2, 3]. All these properties are important especially for 

wearable and implantable devices. 

 

2 Theory and results 

We assume a nonzero electrical potential vector 𝐕 is 

measured in a conductive medium by means of a passive 

system of ܰ electrodes characterized by the unknown ܰ × ܰ  pairwise impedance matrix 𝐙 (each 𝑧  measuring 

the impedance between the electrodes ݅ and ݆). When the 

electrodes are loaded by a passive impedance network 

whose pairwise impedance matrix is 𝐙L, the following 

relation holds between the voltages 𝐕 and currents 𝐈 on the 

electrodes 

 𝐕 = 𝐙LI                𝐕 − 𝐕 = 𝐙𝐈     (1) 

Given ܯ measurements 𝐕, i=1,..,N, each 

corresponding to loading by an invertible matrix 𝐙L[݅], the 

following linear system can be solved for 𝐙 

 
Figure 1: Left-to-right: a schematic diagram of the phantom for 

the passive EIT, its physical implementation and experimental 

validation.   ሺ𝐕 − 𝐕ଵ, … , 𝐕 − 𝐕𝑀ሻ = 𝐙( 𝐙L,−ଵ[1]𝐕 , … ,  𝐙L−ଵ[ܯ]𝐕).   
(2) 

The load switching frequency should be fast enough to 

consider 𝐕  constant during a single loading period (about 

10kHz for the biological signals and in our experimental 

validation). In such a case 𝐕 is the voltage measured on 

the electrodes for the unloaded periods, while 𝐕 are for 

the loaded ones. For multi-frequency excitation the values 

in (1) can be considered phasors [1]. If the signal is much 

faster than the switching frequency (e.g. communication 

signal of the implantable device) the values in (1) is 

voltage power averaged over the switching period (RMS).  

Our experimental setup for the validation of the 

passive EIT technique comprised a saline bath with an 

immersed electrode array (Fig. 1). The slow 

"physiological" signal induced in the bath was periodically 

loaded on the electrodes through the analogue switch by 

resistors (Fig. 1). Comparing the voltages on electrodes 

during the loaded and unloaded periods allowed to 

passively determine the conductivity of the saline solution. 

Conclusions 

We introduced the theory and experimentally validated 

a passive EIT technique. In contrast to active EIT, our 

technique works with low current density on electrodes, 

which in turn reduces nonlinear effects on the 

tissue/electrode interfaces and the amount of current 

injected into tissues, and its power is harvested from the 

biological activation or noise. The spectrum of potential 

applications ranges from seizure onset sensing and 

myocardial ischemia detection to human-machine 

interfaces. 
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Abstract: Deep Brain Stimulation (DBS) electric and 

magnetic fields were mapped using MREIT. In-house 

carbon electrodes were fabricated to address challenges in 

using traditional DBS electrodes in an MRI environment. 

Reduced susceptibility artifacts with equivalent electric 

fields were achieved using carbon electrodes. 

1 Introduction 

Neuromodulation techniques such as Deep Brain 

Stimulation (DBS) apply electric fields to regulate 

abnormal neural activity involved in Parkinson's disease 

[1]. DBS currents are typically applied via Pt-Ir electrodes 

(e.g. Medtronic DBS 3387/3389 lead) implanted in the 

brain to a neurostimulator body within the subcutaneous 

pectoral area. The spatio-temporal localization of 

electrical stimulation induced changes in neural activity is 

critical to understand mechanisms underlying DBS. An 

MR-based impedance imaging technique, Functional 

Magnetic Resonance Electrical Impedance Tomography 

(fMREIT), is being developed to spatially map the 

activation and inactivation of neural centers on the 

timescale of neural activity.  

Challenges such as field inhomogeneities and joule 

heating are inherent in the MRI use of Pt-Ir (       = 230 

ppm,                 ) [2]. Effects increase with 

MR field strength and faster imaging sequences (e.g. 

Gradient echo). We fabricated carbon electrodes 

(         -26.11 ppm, (                 ) [2]
 
for 

better MRI-compatibility. Electric and magnetic field 

distributions produced by carbon and size-matched Pt/Ir 

electrodes were mapped in isotropic and anisotropic 

phantoms. 

2 Methods 

Electrodes - In-house carbon electrodes (500/270 μm 

diameter one-contact, 1C; 1200 x 500 μm
2
 two-contact, 

2C) were prepared with insulative coatings (Nafion in 

Isopropanol, Polyvinylidene Fluoride in acetone) 

surrounding conductive carbon fibers. 

Experimental setup - Size-matched carbon (1C and 2C) 

and Pt-Ir electrodes (Pt-Ir wire; 3389 DBS lead) were 

imaged together in isotropic gel phantoms (5.2g/L NaCl, 

20g/L Agar, 50g/L Gelatin; conductivity, σ = 0.29 S/m at 
1 kHz). DBS-style current was injected between each of 

these electrodes to an external ground. Additionally, 1-C 

carbon/ground electrodes were used in a formalin-fixed 

rodent head. All images were obtained using a Bruker 

Biospec 7T preclinical MRI system at the Barrow 

Neurological Institute (Phoenix, AZ).  

MREIT Imaging Parameters: Spin echo (SE) and 

gradient echo (GE) MREIT [3] sequences were employed. 

Scan parameters were SE-MREIT: FOV: 60 x 60 mm
2
 (40 

x 40 mm
2
 for anisotropic phantoms), Matrix size = 128 x 

128, TR/TE = 1000/20 ms, Slice thickness = 3 mm, 

Averages = 4. ±1 mA current injection pairs were applied 

for 10 ms each after 90
o
 and 180

o
 pulses respectively. GE-

MREIT: Same as SE-MREIT except TR/TE = 500/10 ms. 

Processing: Susceptibility artifacts associated with carbon 

and Pt/Ir electrodes were assessed by computing ratios of 

full-width half-maximum (FWHM) apparent size on 

magnitude images to actual electrode sizes. Complex MR 

data was processed to magnetic flux density (Bz) [3] and 

projected current density (J
P
) magnitude [4] distributions. 

Current density magnitude images of uniform phantoms 

(J
0
) were compared with J

P
.   

3 Results 

Artifacts around carbon electrodes (2C:1.34x)were smaller 

than around Pt/Ir electrodes (DBS:2.34x). Complete and 

partial Bz dipoles were observed around source carbon and 

Pt/Ir electrodes respectively.  The scales of Bz and J
P
 

distributions were similar for size-matched 2C/DBS 

electrodes (Fig. 1(a,b)). J
P
 surrounding the cylindrical 

DBS lead was symmetric whereas rectangular 2C 

electrode was asymmetric. The smaller volume (3.15x) of 

the anisotropic phantom (Fig. 1(d)) compared to isotropic 

phantoms (Fig. 1(a,b,c)) led to larger Bz and J
P
 scales.  

 

 
Figure 1: Current injected in isotropic gel phantoms (a-c) 

and anisotropic rodent head (d) 1C-G. MR magnitude, Bz, 

J
P 

and J
0
 distributions are shown for each sample.    

4    Conclusions 

MR susceptibility artifacts surrounding carbon electrodes 

were smaller than their Pt/Ir analogs without 

compromising the efficiency of current injection. 

Simulated and experimental current density distributions 

agreed for both isotropic and anisotropic phantoms.  
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Classification Applied to Brain Haemorrhage Detection: Initial 
Phantom Studies using Electrical Impedance Measurements 

Barry McDermott1, Martin O’Halloran1, Adam Santorelli1, Brian McGinley1 and Emily Porter1
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Abstract: Machine learning and classification algorithms
are applied to data collected from an EIT system. The 
system is used with an anatomically accurate head 
phantom setup in a variety of situations modelling normal 
and haemorrhagic brain. This initial study demonstrates 
the promise of classification, but also indicates challenges. 

1 Introduction 

EIT has traditionally shown most success when applied to 
situations featuring changes in time such as lung function 
monitoring [1]. Static or quasi-static lesions such as 
established brain haemorrhage have conversely proved 
challenging to detect using EIT [2]. Machine learning 
approaches have shown potential in tackling such cases 
with related diagnostic modalities such as microwave 
imaging [3] but have not to date been studied in depth in 
the EIT sphere. 
In this study an anatomically accurate two layer head 
phantom was developed along with a range of phantom 
bleeds, varying in size and shape. A 16 electrode ring was 
placed around the head and connected to a Swisstom 
Pioneer EIT system. EIT data measurement frames were 
recorded for a wide variety of test scenarios differing in 
ring orientation, bleed size and bleed location. These 
frames were labelled as ‘normal’ or ‘bleed’. This data was 
then divided and used to train and test classifiers to 
differentiate between the two cases. Linear support vector 
machines (SVMs) in particular showed good performance, 
thus sample results from this classifier are presented here. 

2 Methods 

A two layer head phantom was developed with an outer 
layer modelling aggregate scalp, skull and cerebrospinal 
fluid, constructed from a graphite, carbon black and 
polyurethane composite. This composite emulated the 
conductivity of this layer. Another composite based on 
these materials was used to produce phantom bleeds, 
modelled as spheres and rectangular cuboids of volume 
6 ml to 36 ml. The conductivity of the brain compartment 
of the head phantom was modelled using saline. A ring of 
16 EEG electrodes was placed around the head and 
connected to the Swisstom Pioneer. In total 216 different 
abnormal test scenarios were captured as EIT 
measurement sets differing in bleed size (4 sizes), location 
(9 locations) and ring position (6 ring orientations). A 
sample setup is shown in Fig. 1. An equal number of 
corresponding normal (healthy) scenarios were captured. 
These frames were divided in a variety of ways and used 
to train and test a range of classifiers. Linear SVMs 
appeared to perform best with some sample results shown 
from this classifier type shown in Table 1. A True Positive 
(TP) is where a bleed is detected and is truly present. A 

True Negative (TN) is where normal is detected and is
truly the case. 

Figure 1: This example of a typical test setup shows a 
rectangular cuboid bleed suspended into the saline brain layer of 
the head phantom. 

TP % TN % 
Train on all Rings (1-6) 84 % 95 % 
Half Ring 3 Withheld 72 % 100 % 
Half Ring 1 Withheld 75 % 100 % 
Ring 1 Withheld 75 % 86 % 
Ring 2 Withheld 0 % 100 % 

Table 1: True Positive & True Negative % for linear SVM 
Classifier. Sample results are those from testing on withheld data 
(and training on all the rest); except for the first row which is the 
performance when trained with cross validation on all of the data 
(none withheld). 

3 Conclusions 

The results of this initial phantom study show that 
classification may help in applying EIT techniques to 
static or quasi-static situations such as detection of an 
established bleed. The classifier works well when the ring 
layout(s) used in test data match those in training data. 
However, introducing test data from an unseen ring can 
result in significantly poorer performance. Improved data 
processing as well as training on a significantly higher 
number of test cases (i.e. differing heads) should improve 
performance and help make the technology valuable 
clinically. 
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In Vivo Estimation of the Head Tissue Conductivities 

Taweechai Ouypornkochagorn 
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Abstract: The scalp (�scalp), skull (�skull), cerebral spinal 

fluid (CSF, �CSF), grey matter (GM, �GM) and white matter 

(WM, �WM) conductivities are determined from Electrical 
Impedance Tomography (EIT). Gauss-Newton (GN) with 

bound constrained optimisation was used. Our estimations 

of them are 0.60 S/m, 0.010 S/m, 1.36 S/m, 0.30 S/m, and 

0.22 S/m respectively. 

1 Introduction 

Many studies have reported values of head tissue 

conductivities by using an in vivo estimation method [1-

4]. However, all of them can only estimate �scalp and �skull

due to the very low sensitivity of boundary voltages (V) to 
conductivity perturbation of the tissues inside skull. 

Including �CSF, �GM, �WM in the estimation may result 
unexpected negative values. For example, [2] estimated 

�scalp, �skull and the brain conductivity resulting large 
negative conductivities by 44-56% of the subjects. To deal 

with this negative-value problem, [5] proposed to 

constrain the estimation to be always positive by 

transforming � to � with a logistic function 

��� ��
�

��
e

pt
p

1
or )1log( �

�
�

��
p

pt

�
�� , (1) 

where t is the upper bound, p is the lower bound, and � is 

the relaxation factor. The sensitivity matrix in the �
domain (� G) computes by 

11)()()()()( �������� ����� �� pttpUG , (2) 

where U is the known modeling function of �, and then G

is now that of �. �U is the 5-parameter sensitivity matrix 

of � domain. Thus the forward computation is now 

� � ,eGV �� � (3) 

where e is noise, and the estimation is now based on 

� �2
)(minargˆ ��

�
GV �� . (4) 

Finally, �̂ can be computed for �̂ , i.e. the estimated 

conductivity in � domain, by (1). 

2 Methods 

A trial, approved by NHS RECs and MHRA, was carried 

out on a healthy subject. The EIT measurement was 

performed by fEITER machine [6], complying with 

IEC60601, on 32 electrodes. 1 mApeak-peak 10kHz 
excitation current was injected in 20 diametric directions, 

and 509 adjacent measurements were collected with a 

speed of 100 fps. The measurement data over 12 s were 

averaged to reduce influences of noise. A subject head 

model containing 178,480 elements was used, where the 

geometry of the attached electrodes were included. GN 
method without constraint (the conventional method) and 

GN with constraint (the constrained method) were used, 

with 20 iterations and the regularization parameter of 

1x10-4. The lower and the upper bounds were 0 S/m and 2 

S/m respectively. The relaxation factor was set to 1. Three 

initial guesses of all conductivities were randomly 

selected. The contact impedance of the electrodes was set 

to 1,200 �. 

3 Results 

The estimation results and the errors are shown in Table 1 

and Fig. 1 respectively. The reported conductivities are 

also presented in the last column of Table1. Obviously, the 

estimates obtained from the constrained method are much 
more consistent to the reported conductivities than those 

of the conventional method where some negative values 

occurred. The standard deviations of those of the 

constrained method are also much lower than those of the 

conventional method by the average of 193 times. The 

estimation errors of the constrained method are 
significantly lower and more robust to the change of initial 

guesses as well. 

Table 1: The estimated � (S/m)1

� Conventional 
method (S/m) 

Constrained 
method(S/m) 

Reported 
Conductivities(S/m) 

�scalp 1.96�2.02 0.60�0.02 0.33[1], 0.32[2], 
0.58[3], 0.4[4] 

�skull 0.374�0.633 0.010�0.001 0.008[1], 0.016[2], 

0.008[3], 0.005[4] 

�CSF 8.86�9.73 1.36�0.43 1.456 [7] 

�GM -3.33�4.74 0.30�0.08 0.28 [8] 

�WM 0.99�1.72 0.22�0.02 0.26 [9] 
1
The presented values are in the format of mean�standard deviation. 

(a) Conventional method (b) Constrained method 

Figure 1: Estimation errors. 

4 Conclusions 

Constrained method can effectively estimate the 
conductivity of the five head tissues with plausible 

consistency to the reported conductivities obtained from 

different methods. It is also robust to the selection of 

initial guesses as well. 
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Impedance Change due to Ion Channel Opening in Muscle as a 
Potential Robust Means for Controlling Bionic Prostheses 

Leonardo Fiuza1, James Avery1, David Holder1, and Kirill Aristovich1 
1Department of Medical Physics and Biomedical Engineering, University College London, UK, 
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Abstract: A novel approach was developed for detecting 

functional muscle activity using EIT and surface ECG 

electrodes placed on the forearm. The method shows 

average real-time SNR of 5, which is free from motion and 

geometry-related artefacts and allows real-time control of 

prosthetic arm.   

1 Introduction 

Control of prosthetic devices may be achieved using 

surface EMG. Unfortunately, the signal is contaminated by 

crosstalk, which makes it difficult to separate signals from 

different muscles. EIT could be used as an input signal by 

imaging muscle shape changes or density with recording 

with 10-60 surface electrodes at around 50 kHz [1,2] but 

this was limited by artefacts from motion and external 

shape changes. We propose a novel approach in which ion 

channel opening, rather than muscle bulk, is recorded by 

extension of the approach of fast neural EIT [3]. In this, 

impedance decreases with neuronal depolarization, with 

optimal changes at 1.7 and 6 kHz for cerebral cortex and 

nerve respectively. As muscle activation is accompanied by 

ion channel opening, we propose that this could provide a 

more accurate method as input for prosthesis control.   

The purpose of this work was to demonstrate the 

feasibility of using EIT measurements of functional 

spontaneous muscular activity as control signals for 

prosthetics. Questions were: 1) What is the SNR and 

optimal frequency? 2) Is the approach likely to yield 

sufficient independent measures to anticipate control of 

prosthetic arm? 

2 Methods 

4 conventional ECG Ag/AgCl/Solid adhesive pregelled 

electrodes were placed 7cm apart on the volar mid-forearm 

in 3 subjects. 4 electrode impedance changes (dZ) were 

recorded during wrist flexion to 70° using 20 sinusoidal 

currents between 100 Hz and 10 kHz at 10 current levels 

from 50 to 500 μA. EMG signals were recorded 

simultaneously with low-pass filter fc 80 Hz. dZ was 

extracted by demodulation around the carrier frequency 

with a bandwidth of 100 Hz (lowered for lower 

frequencies), and high-pass filtered at 30 Hz to remove 

geometry and motion artefact-related changes.  

3 Results 

Reproducible significant (P<0.001) dZ with peak SNR of 

5±0.5 occurred during wrist flexion, over 500-2000Hz with 

a peak at 1.2kHz. Filtered dZ correlated with EMG as well 

as RMS dZ correlated with RMS EMG (P<0.001, Fig.1, 

n=270 in 3 subjects). The relaxed muscle motion resulted 

in EMG-uncorrelated non-significant dZ changes (P>0.5). 

4 Discussion 

This study suggests, for the first time, that there is an 

impedance change associated with muscle depolarization 

which is equivalent to the surface recorded EMG. Improved 

resolution with surface recording for prosthetics could in 

theory be achieved with imaging either by EIT or inverse 

source modelling of the EMG, or machine learning applied 

to either approach. However, EIT has the advantages that 

there are more independent measures for the number of 

electrodes, and the inverse solution is in principle unique. 

The range of usable frequencies (500-2000 Hz) suggests 

that real-time frequency division multiplexing approach 

(FDM-EIT) will be the most suitable for real-time control 

of the prosthetic device. 

Figure 1: Typical Example of the real-time measurement. 

Top: EMG signal with increased RMS during muscle 

contraction. Middle: Unfiltered dZ contaminated with 

motion and shape change-related artefacts, Bottom: RMS 

of high-pass filtered dZ representing functional muscle 

activity. 

   

Work in progress is to record dZ simultaneously using 

frequency division multiplexing EIT with 6 frequencies 

with the greatest SNR using two 6 electrode rings around 

the mid-forearm 7 cm apart. This yields total of 66 linearly 

independent measurements. The RMS dZ signals will be 

used for a pre-trained machine learning kernel (SVM) to 

compute outputs for 5 DC and 1 stepper motor of the 

OpenBionics 3D-printed arm prosthesis [4]. Theoretically 

this paradigm is suitable for a linear control strategy using 

25 independent parameters, which should result in precise 

force-finger motion control. 
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Electrode drive and measurement patterns for EIT of neural activity in 

peripheral nerve 
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Abstract: The performance of six EIT drive and 

measurement electrode patterns have been investigated and 

compared using a finite element (FE) model of a nerve cuff, 

with dual-ring electrode array, implemented on a three 

fascicle peripheral nerve. Unique and non-unique solutions 

were observed due to anisotropy in the nerve tissue.  

1 Introduction 

Physical alignment of nerve fibres in a peripheral nerve 

produces higher conductivity in the longitudinal axis, 

aligned parallel to the fibre length direction. In EIT, 

anisotropic anomalies can produce boundary voltage data 

with non-unique solution, although, the use of numerical 

modelling techniques with some a-priori information can 

circumvent this problem [1]. Previous studies on EIT 

imaging of neural activity in peripheral nerve [2, 3] have 

used a single-ring electrode configuration with drive 

current on the transverse plane, perpendicular to the 

longitudinal axis, thus largely eliminating the influence of 

tissue anisotropy. An electrode configuration which utilises 

the longitudinal axis offers the benefit of a larger fraction 

change in impedance during neural activity but may not 

provide a unique solution due to anisotropy in the active 

neural tissues.  Here, we present results of a simulation 

study in which we aim to resolve fascicle level neural 

activity in peripheral nerve using longitudinal current 

electrode patterns.  

2 Methods 

2.1 Drive and measurement patterns 

We considered a total of six electrode drive and 

measurement patterns; four patterns utilised longitudinal 

current by passing current between two rings, spaced 10 

mm apart, on a 2x16 dual-ring electrode configuration; two 

patterns utilised a transverse current within a 1x16 single-

ring electrode configuration. Longitudinal current drive-

electrode pairs were on different rings and either 

‘Opposing’, i.e. an angular offset of 180 degrees, or ‘In-

line’, i.e. an angular offset of 0 degrees. Longitudinal 

current measurement electrode pairs were either 

‘Opposing’ or ‘In-line’, defined in the same way as above, 

and taken as differential measurements. Transverse current 

drive and measurement electrode pairs were on the same 

electrode ring and were either ‘Adjacent’ or ‘Opposing’.  

2.2 FE Model 

The forward EIT problem used a cylindrical 4-layer 

shell model of a single fascicle nerve with the intra-fascicle 

volume divided into a grid of 50 sub-volumes, whereas the 

inverse EIT problem contained 3 fascicles, see Ref [4]. 

Both models were implemented in COMSOL 5.3. 

2.3 Performance criteria 

Electrode patterns were compared using three criteria: 1) 

analysis of the singular values from singular value 

decomposition of the sensitivity matrix (Fig 1a); 2) the 

signal to error ratio: 𝑆𝑆𝑆𝑆𝑆𝑆 =  20 log(𝑣𝑣𝜎𝜎 𝑣𝑣𝑒𝑒⁄ ) (1) 

where 𝑣𝑣𝜎𝜎  is the standard deviation of the normalised 

differential boundary voltage measurements and  𝑣𝑣𝑒𝑒 is the 

normalised maximum possible voltage error from noise and 

hardware errors (Fig 1b); and 3) qualitative analysis of the 

reconstructed conductivity (Fig 1c).  

3 Results and Conclusions 

Transverse current patterns produced higher singular 

values but also significantly poorer SER’s at central grid 

locations, Figs 1a and 1b. Longitudinal current with 

(drive/measurement) Opposing/Opposing and In-line/In-

line patterns produced the highest SER’s across all grid 

locations, Fig. 1b, however, these two patterns also 

produced solutions with conductivity in significantly wrong 

locations, Fig 1c.  

 Figure 1: a) Singular values; b) SER; c) Fascicle-level neural 

activity (purple) reconstructed with longitudinal current drive and 

measurement patterns (green).    

We have demonstrated, through simulations, the 

viability of two electrode patterns for EIT of neural activity 

with a longitudinal current: Opposing/In-line and In-

Line/Opposing. Both produce reasonable SER magnitudes 

across the sample depth.  

References 

[1] Adler, A., Gaburro, R., and Lionheart, W., EIT, in Handbook of 

Mathematical Methods in Imaging: Vol 1, 2nd Ed. 2015.
[2] Aristovich, K., Blochet, C., Avery, J., Donega, M., Holder, D., 

BAEIT, Proceedings, 2016

[3] Aristovich, K., Donega, M., Perkins, J., Fjordbakk, C., Avery, J.,
Holder, D., BAEIT, Proceedings, 2017.

[4]. Hope, J., Vanholsbeeck, F., McDaid, A., Phys. Meas., 2018 

(currently under review) 

a) b) 

c)

12 19th International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT2018), Edinburgh



19th International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT 2018), Edinburgh 
 

Effect of a PEEP trial on global inhomogeneity index, alveolar 

overdistension/collapse in cardiothoracic surgery and ARDS patients 

SJH Heines, U Strauch, MCG van de Poll, PMHJ Roekaerts, DCJJ Bergmans 

Department of Intensive Care, Maastricht University Medical Centre+, the Netherlands,  S.Heines@mumc.nl 

 

Abstract: With electrical impedance tomography (EIT) 

alveolar overdistension (OD), collapse (CL) and the global 

inhomogeneity index (GI) was calculated in patients with 

ARDS and postoperative cardiothoracic surgical patients 

(CTS) during a PEEP trial. We found the same changes 

with different PEEP levels between both groups. 

1 Introduction 

Several parameters derived from EIT data have been 

developed in order to optimize ventilator settings e.g. the 

best balance between alveolar OD and CL (ODCL), where 

the percentage of OD is subtracted from the percentage of 

CL. Furthermore, it has been suggested that optimal PEEP 

is established when ventilation is most homogeneously 

distributed. Therefor the GI, which quantifies the 

homogeneity of tidal volume distribution, has been used 

previously [1]. The present study describes the effect of 

PEEP on ODCL and GI in ARDS patients, using 

postoperative CTS as a reference group. 

2 Methods 

Seventeen CTS and 27 ARDS patients were 

retrospectively analysed (Table 1). The GI and ODCL was 

calculated at each PEEP step by EIT during an 

incremental and decremental PEEP trial. The analysis is 

performed in 4 consecutive incremental followed by 4 

decremental PEEP steps of 2 cmH2O. The smaller the GI, 

the more homogeneous the tidal volume is distributed. An 

ODCL of 0% would indicate an optimal balance between 

alveolar OD and CL. 

2.1 Statistics 

Data are expressed as a number (%) for categorical 

variables and as mean ±SD for continuous variables. 

Characteristics between CTS and ARDS patients were 

compared using paired sample t-test. Changes in GI and 

ODCL between CTS and ARDS patients were tested using 

two-way ANOVA. 

2.2 Results 

There was a significant difference between CTS and 

ARDS patients in APACHE II and PaO2/FiO2-ratio 

(p<0.05).  

The GI decreased during each incremental PEEP step and 

increased during each decremental PEEP step. The 

opposite was the case for ODCL (Fig. 1). The change in 

ODCL and GI during the PEEP trial was not significantly 

different between CTS and ARDS patients (p=0.06 and 

p=0.54 respectively). 

 
Figure 1: Changes in GI (circle) and ODCL (diamond) in CTS 

and ARDS patients during an incremental and decremental PEEP 

trial. 

2.3 Discussion 

Increasing airway pressure enhances homogenous 

ventilation distribution. The most homogeneous 

ventilation resulted in the largest amount of OD in ARDS 

patients, this effect however was similar in CTS patients 

with assumingly healthy lungs. Solely trying to minimize 

inhomogeneity without limiting the upper level of PEEP 

may lead to severe OD and can be harmful. Using the 

combination of GI and ODCL for PEEP setting may be 

required to develop a feasible and safe bedside tool. 

3 Conclusions 

Individual monitoring of regional lung mechanics using 

EIT is feasible and the effect of different PEEP levels can 

be reliable assessed. EIT has a large potential to become 

the golden standard tool for patient-tailored ventilator 

setting. Agreement on which indices, or combinations of 

EIT derived calculations should be used to guide 

ventilator setting remains to be determined. 
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Table 1: Patient characteristics. Data are presented as means ±SD, unless stated otherwise. (*p <0.05) 

 Patients (%) Age, years (SD) Sex (M/F) APACHE II (SD) PaO2/FiO2-ratio 

ARDS 28 (62) 63 (16) 17/11 28 (8) 137 (49) 

CTS 17 (38) 66 (14) 14/3 17 (5)* 339 (73)* 
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Abstract: Patient-ventilator asynchrony increases work-

of-breathing and prolongs patient weaning from ventilator. 

Inappropriate triggering might sometimes not be 

recognized via pressure or flow patterns. Analysis of 

impedance-time curves measured with EIT is able to 

identify the asynchrony of respiratory time.   

1 Introduction 

Patient-ventilator asynchrony increases work-of-breathing 

and the duration of mechanical ventilation. Patient-

ventilator asynchrony can be detected by clinical 

inspection of the patient and interpretation of breath-by-

breath real-time ventilator waveforms [1]. Ineffective 

triggering is one of the common asynchrony, where a 

patient’s inspiratory effort does not trigger a mechanical 

breath because of inappropriate ventilator settings or the 

patient status change after the initial settings [2]. 

Therefore, the status of the respiratory system including 

the lung mechanics, respiratory muscle and neural drive 

should be measured and closely monitored. Chest EIT is a 

non-invasive and effective monitoring technique to 

achieve this goal. In a previous study, the effect of trigger 

sensitivity on redistribution of ventilation was evaluated 

[3]. 

2 Methods 

A patient with chronic obstructive pulmonary disease 

(COPD) was mechanically ventilated under assisted-

controlled ventilation (age, 84 years; height, 165 cm; 

weight, 71.1 kg; APACHE II score, 30). Positive end-

expiratory pressure (PEEP) and driving pressure were set 

to 5 and 27 cmH2O, respectively. Respiratory rate was 12 

/minute. An EIT electrode belt with 16 electrodes was 

placed around the thorax in the fifth intercostal space and 

one reference electrode was placed at the patients’ 

abdomen (PulmoVista 500, Dräger Medical, Lübeck, 

Germany). EIT images (each consisting of 32×32 pixels) 

were generated with a reconstruction algorithm based on a 

modified ‘finite element model’ [4]. EIT images were 

continuously measured at 20 Hz and stored. Respiratory 

data from the ventilator was transferred to EIT via 

MEDIBUS connection. The data were filtered using a 

Butterworth 4
th

 degree low-pass filter with a cut-off 

frequency of 50/min to eliminate impedance changes 

synchronous with the heart rate. 

3 Results 

Small volumes were identified between two mechanical 

breaths in impedance-time curve (Fig. 1), which indicated 

spontaneous breaths. However, the spontaneous breaths 

were hard to discover in airway pressure- or flow-time 

curves. Further, the expiratory volume (represented with 

the relative impedance value) of the third breath is smaller 

than inspiratory volume of the corresponding breath, 

which indicates the presence of intrinsic PEEP. The 

patient-ventilator asynchrony might be due to the trigger 

sensitivity. External PEEP needs to be correctly set to 

compensate the effect of intrinsic PEEP. Enhancing the 

airway management including humidification, spasmolysis 

and bronchodilation may reduce the airway resistance and 

decrease intrinsic PEEP. Further, EIT may also help to 

identify the distribution of intrinsic PEEP [5]. Another 

potential reason of the asynchrony is that the inspiratory 

effort occurs out of the trigger window (i.e. during a 

refractory period). By monitoring the relative impedance-

time curve, ineffective triggering can be easily identified.   

 
Figure 1: Patient-ventilator asynchrony identified with relative 

impedance-time curve measured with EIT (black line). Airway 

pressure (Paw, blue) and flow (green) measured with the 

ventilator are also plotted for comparison. Data are normalized to 

fit into the same axis. 

4 Conclusions 

In the present study, we demonstrated the feasibility using 

EIT to identify the ineffective triggering of the ventilator. 
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Abstract: Image reconstruction in EIT is complex and not 

standardised for clinical use. Different algorithms produce 

different images and consequently yield different 

physiological parameters. Here, we investigated the 

influence of the amount of regularisation, defined by the 

noise figure, on derived physiological parameters. 

1 Introduction 

Electrical impedance tomography (EIT) is a promising tool 

for non-invasive lung monitoring at the bedside. However, 

due to the complex nature of image reconstruction, clinical 

images and parameters are not yet standardised and 

decision pathways are missing. While there are ongoing 

clinical trials to create the necessary knowledge foundation 

and also a consensus reconstruction algorithm GREIT [1], 

the optimal settings for the clinical routine have not yet 

been identified. Since the mathematical formulation of 

image reconstruction is “ill-posed”, regularisation is 

essential for numerical approaches with the hyperparameter 

controlling the extent of smoothing. From a theoretical 

perspective, the so-called noise figure nf has been 

introduced to quantify the effect of the hyperparameter on 

the basis of signal-to-noise ratios. The behaviour of 

different nf in the clinical setting has already been 

investigated [2], but further evaluations are crucial for the 

adaptation of EIT in the clinical routine. 

In this work, the influence of different nf, in GREIT and 

Gauss Newton (GN) reconstruction algorithms, on the 

derived physiological parameters such as centre of 

ventilation CoV and right-left-ratio RL were investigated. 

2 Methods 

From one mechanically ventilated pig (ethics approval No. 

53/11), contours of thorax, lungs and heart were extracted 

from computed tomography images. These contours were 

further used to create individualised finite element models 

as basis or the numerical forward model. Lung and heart 

regions were weighted (with 0.2 and 1.5) and measured 

voltages were normalised as vnormൌ vvሺtrefሻ -1. Tidal images 

were reconstructed using GREIT and GN algorithms with 

different nf ranging from 0.1 to 1 in steps of 0.1. The 

hyperparameter for GN was automatically chosen 

according to the given nf [3]. Further, reconstruction 

settings of GREIT, target size and weighting radius, were 

set to 0.08 and 0.15, respectively. For regularisation in GN, 

the Laplace prior was chosen. 

 
Figure 1: Reconstructed tidal images in one pig with different 

noise figures for GREIT (GR) and GN and the corresponding 

physiological parameters, CoV and RL. Please note the inverse y-

axis. 

The resulting images were then analysed and physiological 

parameters CoV of the anterior-posterior ventilation 

distribution and RL were calculated. 

3 Results and Discussion 

In GREIT, CoV and RL increased after an initial low value 

at nf=0.1. Afterwards, a steady decrease of both parameters 

with increasing nf could be observed. While CoV decreased 

quite steadily for GN until nf=0.7, RL showed only a slight 

downward trend with large variability. The total range of 

CoV values was 44.7% to 50.2% and 42.0% to 48.7% in 

GREIT and GN, respectively, leading to possibly differing 

interpretations of measurements (Fig. 1). Both 

physiological parameters differed significantly from each 

other (p<0.01 for CoV and RL) between GREIT and GN. 

Even though a strong influence of nf on physiological 

parameters CoV and RL could be observed, further 

evaluations focussing on changes of these parameters in a 

larger sample are essential [4]. In addition, a vast amount 

of reconstruction algorithms and settings exist, which will 

be investigated in future work. 
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Abstract: This work explores a novel method to 

reconstruct electrical impedance tomography (EIT) images 

of the heart. A simulation study was conducted and data 

was collected from echocardiography patients. Simulation 

results were compared to the model ground truth and 

clinical data was validated with echocardiography. 

1 Introduction 

Stroke volume (SV) is the volume of blood pumped out by 

the heart every beat and is an important indicator of 

cardiovascular health [1]. Current methods of monitoring 

SV are not reliable in long-term, continuous monitoring 

settings, making it challenging for clinicians to deliver 

proactive healthcare. Electrical impedance tomography 

(EIT) has the potential to non-invasively monitor SV over 

long periods of time. Our previous simulation study 

demonstrated the sensitivity of EIT to clinically significant 

changes in SV [2]. The objective of this work is to 

demonstrate the improvement in image quality through use 

of norm-minimized cardiac gated averaging (NMCGA) as 

compared to regular cardiac gated averaging (RCGA) in an 

in vivo setting.  

2 Methods 

2.1 Data Collection 

Data was collected from 30 patients scheduled for 

echocardiography under an IRB-approved study. EIT data 

was recorded immediately before the echocardiography 

procedures using a 32-channel SwissTom Pioneer Set with 

electrodes positioned around the thorax two inches above 

the nipple plane (T4). Pulse oximeter (PO) and ECG-based 

heart-rate data was collected using a BIOPAC MP150 data 

acquisition system. Patients were asked to perform an 

exhaled breath-hold (EBH), inhaled breath-hold (IBH), and 

no breath-hold (NBH). Data from 14 patients was not 

included in final analysis due to a variety of issues. 

Reconstructions are computed with a standard Gauss-

Newton EIT algorithm using the dual-mesh method.  

2.2 Norm-Minimized Cardiac Gating 

The PO and ECG signals were synchronized with the EIT 

data using an external trigger. EIT frames associated with 

end-diastole (ED) and end-systole (ES) were identified 

using the synchronized cardiovascular signals. 

Conductivity difference images (Figure 1) were computed 

using the difference between an ES impedance data frame 

and an ED data frame. For RCGA, difference images 

between ES and ED are computed for each heart cycle over 

the duration of acquisition and ensemble averaged to 

produce a single RCGA-based image of the thorax. 

Averaging over multiple heart cycles provides a filtered 

image that suppresses noise and the effects of breathing. In 

NMCGA a window of heart cycles about each ES frame is 

defined and the ED frame that minimizes the norm-

difference between ES and ED impedances is used to 

compute the conductivity difference image. These images 

computed for each ES frame are then averaged together to 

define a single NMCGA-based image of the thorax.  

The heart and lung regions-of-interest (ROI) are 

automatically segmented and features are extracted [2]. The 

contrast-to-noise ratio (CNR) increases by a factor of 2.6 

for NMCGA images as compared to RCGA images. A 

multivariable regression model using heart ROI max and 

mean conductivities, lung ROI area, max, and mean, and 

height, weight, and BMI as variables was implemented with 

known SV from patient echocardiography reports. For 

RCGA images in the NBH data, an R2 of 0.53 was achieved 

with an adjusted R2 of -0.01; For NMCGA images, an R2 of 

0.95 with an adjusted R2 of 0.89 was achieved.  

 
 

Figure 1:  The region of positive conductivity change (yellow) 

represents blood-flow into the heart. The region of negative 

conductivity change (blue) represents blood flow out of the 

lungs, i.e. pulmonary perfusion. NMCGA images show a 

brighter heart ROI, indicating that the conductivity change due to 

SV is better isolated in these images.  

3 Conclusions 

NMCGA images are visually better at isolating the heart-

based conductivity changes; the heart regions in the 

NMCGA images are brighter and larger as compared to the 

RCGA images, have a higher CNR, and have higher 

correlations when accounting for body dimensions. More 

data is needed to improve the generalizability of the models.  
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Abstract: Frequency-differential EIT reconstructs complex

regional conductivity differences. We propose to extend the

traditional Gauss-Newton approach with a weighted volt-

age minimization similar to absolute-EIT. The reconstruc-

tion results show a smoother background area and an im-

proved contrast between organs and background.

1 Introduction

Most EIT-systems monitor time-differential conductivity

distributions. Measuring at multiple frequencies simultane-

ously gives information about passive electrical properties

and the dispersion of biological tissue. In the long term, the

underlying tissue should be identified [1]. One application

of frequency-differential Electrical Impedance Tomography

(fdEIT) is to monitor lung edema, due to the reduced extra-

cellular resistance [2].

2 Methods

2.1 The Inverse Problem of EIT

In a three-dimensional domain Ω with a given conductivity
−→γ the resulting voltages

−→
U of an injected current can be

easily calculated by A : −→γ 7→
−→
U , where A is the forward

map of Ω. EIT tries to reconstruct −→γ from the measured

surface potentials. The inverse of A cannot directly be cal-

culated, as the inverse problem is ill-posed. Therefore, a

least-squares minimization −→γ opt = min {Ψ} is often used

to estimate −→γ , where Ψ is an objective function of the min-

imization. −→γ opt is optimized in a way that the difference of
−→
U and the calculated forward solution is minimized. Dif-

ferent approaches exist to solve this problem, e.g. GREIT

and Gauss-Newton algorithm [3, 4]

2.2 Frequency-Differential Reconstruction

The objective function of the traditional Gauss-Newton ap-

proach is adjusted to meet the requirements for fdEIT:

ΨabsGN (−→γ tot
k ) =

1

2

∥
∥
∥

(
∆A(−→γ tot

k ))
)
− (

−−→
∆U)

∥
∥
∥

2

︸ ︷︷ ︸

differential-term

+
λ

2

∥
∥Ltot · −→γ tot

k

∥
∥
2

︸ ︷︷ ︸

regularization-term

+
β

2

(∥
∥
∥A(−→γ high

k )−
−→
U high

∥
∥
∥

2

+
∥
∥
∥A(−→γ low

k )−
−→
U low

∥
∥
∥

2
)

︸ ︷︷ ︸

absolute-term

.

(1)

The differential-term includes the voltage differ-

ence at two frequencies
−−→
∆U =

−→
U h − α

−→
U l, where

∆A(−→γ tot
k ) = A(−→γ h

k)− αA(−→γ l
k) is the difference of the

forward solution of the current conductivity solution. In

addition, α describes a weighted difference coefficient as

described by Jun [4] to cancel out common errors. The

regularization-term performs a Tikhonov-Regularization

with a NOSER prior [5]. The hyperparameter λ is cho-

sen with the L-curve criterion [6]. We introduced an

absolute-term, which minimizes the voltage difference

at each single frequency similar to absolute-EIT. The con-

trol coefficient β ∈ [0, 1] was introduced to define a ratio

between the absolute- and differential-minimization.

3 Results and Discussion

The reference model in fig. 1 mimics an edema in the left

lung. Typical tissue-conductivities were derived from the

Gabriel-database [7].

Figure 1: The magnitude of the conductivity distribution is given

with the white-yellow-red colorbar. The contour lines depict the

phase value with a blue-green colorbar. The Reference model in-

clude lung-lobes (one with an edema), heart and spine (left). The

reconstruction result is shown on the right.

The model used for the reconstruction has a different

shape as the reference model to avoid over-fitting. The

background area of the image is smooth and the contrast

between organs and background is improved. Especially

the phase contour of the edema has a similar shape as the

reference lung and has similar values.

4 Conclusions and Outlook

We developed an improved version of a weighted differ-

ence algorithm for fdEIT. The newly introduced absolute-

minimization term leads to a smoother background and an

improved contrast between organs. In the future, the algo-

rithm will be evaluated on different models in simulations

as well as in real fdEIT measurements.
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Abstract: Absolute reconstructions from gelatine prostate 

phantoms using fused-data transrectal electrical 

impedance tomography (fd-TREIT) incorporating biopsy 

electrode measurements are produced. The successful 

reconstructions are important steps toward ex-vivo and in-

vivo evaluation of the technology. 

1 Introduction 

Detecting prostate cancer non-invasively is clinically 

challenging. Low threshold PSA-based screening has a 

high sensitivity, but low specificity due to numerous 

benign conditions elevating PSA levels [1]. Men with 

elevated levels of PSA are typically subject to an image-

guided biopsy protocol for more accurate diagnosis. 

Unfortunately, transrectal ultrasound (TRUS)-guided 

biopsies miss 10-30% of all cancers [1]. A number of ex-

vivo studies have shown that electrical properties exhibit 

significant differences between benign and cancerous 

prostate [2]. We have previously developed an fd-TREIT 

system for prostate imaging that fuses tetra-polar 

impedance data recorded from 18 sonolucent electrodes 

adhered to a TRUS probe and 4 electrodes integrated near 

the tip of a biopsy needle. The work presented here 

advances our prior efforts in fd-TREIT [3]; specifically, 

improvements include using 1) a realistic number of 

measurements that could be recovered during a standard 

12-core TRUS-guided biopsy, 2) prostate phantoms with 

metal, plastic, and gelatine inclusions, 3) 

electromagnetically (EM)-tracked TRUS and biopsy 

probes, and 4) a parallelized-software implementation 

providing 8x speed-up for absolute reconstructions.  

2 Methods 

Gelatine phantoms were produced with either 3 inclusions 

(2 metal and 1 plastic bead, Fig. 1B) or one large 

gelatine/graphite inclusion (Fig. 1A). TRUS images were 

used to segment the prostate and gelatine inclusion. EM-

tracking using an NDI Aurora V2 system provided 6 

degree-of-freedom states of the TRUS probe and biopsy 

needle for each EIT measurement and of the true bead 

locations. For each experiment, 10 x/y-locations (needle 

insertion sites) were measured at 3 depths yielding a total 

of 30 measurement locations. 

The fd-EIT approach was based on a standard Gauss-

Newton algorithm using a regularization scheme 

optimized for open domains [4]. The fusion process 

utilizes a single finite element method (FEM) mesh (776k 

nodes, 4.4M elements) that has the TRUS probe and 

biopsy needle encoded. The mesh was transformed for 

each state and related to a fixed coarse inverse mesh using 

the dual-mesh method. The measurements and Jacobians 

are concatenated so the problem can be solved as if it were 

a standard EIT problem. Absolute reconstructions required 

90 (30x3) forward solves and 30 Jacobian calculations for  

each iteration. Three forward solves per state are due to 

the standard update and a parabolic linear search 

algorithm. Matlab’s parfor with 16 workers solved the 

forward problems using Pardiso yielding a 8x speedup 

compared to serial runs while using up to ~150 GB of 

RAM. Each iteration took approximately 40 minutes, 

yielding total times of ~3.3 hours for 5 iterations.  

 

 
Figure 1: A. Setup for a prostate and gel inclusion experiment, 

absolute reconstructions of B. a 3 inclusion test and C. a gel 

inclusion test, and D. average values of each region from C.   

The 3-inclusion experiment resulted in average position 

errors of 6.4 mm. The gel inclusion reconstruction resulted 

in 44% of the thresholded volume within the true inclusion 

volume and yielded frequency-dependent conductivities 

resembling the true inclusions.  

3 Conclusions 

This study represents significantly steps towards bringing 

this technology towards pre-clinical evaluation. Further 

study of EM data and TRUS images can likely improve 

the results and further speed-up can likely be 

accomplished. 
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Abstract: This paper reports the use of a miniature sensor 

with multi-plane electrode configuration for microporous 

polymer-based scaffold monitoring. Its improvement to 

3D image reconstruction is verified by simulation showing 

the cell proliferation in a scaffold when the SNR is 50dB.  

1 Introduction 

3D cellular assays can better reflect the biological 

mechanisms of cell migration, differentiation and viability 

than traditional monolayer cell assays because 3D cell 

culture model is closer to in vivo like morphologies [1]. 

Previous studies demonstrate that EIT has the potential to 

real-time monitor the cell viability in a  microporous 

polymer-based scaffold [2]. However, the planar electrode 

configuration has limited sensitivity to the conductivity 

variation on the top layers of the sensor, so it is only 

suitable to monitor the cells located on the substrate. In 

this study, we introduce the multi-plane electrode 

configuration [3] to the design of the miniature EIT sensor. 

Simulations have been performed to evaluate its spatial 

sensitivity and feasibility to monitor the cell proliferation 

in a microporous polymer-based scaffold. 

2 Methods 

2.1 Sensor design 

The miniature EIT sensor was developed based on the 

structure of a 24-well plate. 32 rectangular electrodes 

(dimensions: 0.6×0.8 mm2) were evenly distributed on 

two layers at its boundary as shown in Fig.1 (a). The 

distance between two electrode layers is 2.5 mm. 

2.2 Simulations 

Simulations were performed to compare the performance 

of the sensor with multi-plane electrodes and the sensor 

with planar electrodes (Fig.1 (b)) [4]. 1 ml Dulbecco's 

Modified Eagle Medium (DMEM) culture medium 

(conductivity = 1.5 S/m) was added to the sensor to 

generate a liquid column at the height of 6 mm. Then, a 

cylindrical microporous polymer-based scaffold (diameter: 

5 mm; height: 4.5 mm) seeded with cancer cells was 

introduced to the side of the sensor. The initial 

conductivity of the scaffold was 1.4 S/m and it dropped to 

0.7 S/m when the cell concentration in the scaffold 

increased. Adjacent drive method with 1 mA stimulation 

current was used in the impedance measurement. The 

conductivity variations due to the cell proliferation are 

reconstructed using Tikhonov regularization.  

3 Results 

From the sensitivity field in Fig.2 (a), it can be seen that 

the sensor with multi-plane electrode configuration 

generates a more homogenous sensitivity field along the 

vertical axis than the sensor with planar electrode 

configuration. With multi-planar electrode configuration, 

the sensor maintains more than 66% sensitivity at the top 

layers in comparison with the 1st layer. However, in the 

sensor with planar electrode configuration, the sensitivity 

field at 20th layer is four times smaller than that at the 1st 

layer. Therefore, the multi-plane electrode configuration 

allows the sensor to reconstruct the cell proliferation 

process in the whole scaffold (Fig.2 (b)) while the sensor 

with planar electrode configuration only sensitive to their 

changes at the bottom layers (Fig.3 (c)). 

 
Figure 1: The miniature EIT sensor with (a) multi-plane and (b) 

planar electrode configuration.   

 
Figure 2: (a) The normalised sensitivity at x=4mm, y=0; and the 

reconstructed images for the 3D cell proliferation with (b) multi-

plane and (c) planar electrode configuration.  

4 Conclusions 

Sensor with the multi-plane electrode configuration is 

more suitable for the 3D image reconstruction. It can 

monitor the conductivity variations inside the scaffolds 

and it has the potential to be applied in the real-time 3D 

imaging of the cellular activities in tissue engineering. 
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Abstract: This work presents two methods of co-

simulating the FEM-based EIT model and SPICE-based cir-

cuit models in impedance imaging.

1 Introduction

Integrating circuit simulation into the Finite Element

Method (FEM) models used for Electrical Impedance To-

mography (EIT) simulations may improve analysis of the

complete electrical system. Combining these two models is

possible because both linear circuits (at a fixed frequency)

and EIT forward simulations use the same underlying nu-

meric tools, the Cholesky decomposition (for symmetric

matrices) and LU decomposition (for unsymmetric matri-

ces), which are both incorporated into the left divide opera-

tion in Matlab. The combined matrix is block diagonal with

one sparse block for the FEM model and one sparse block

for the circuit model. Off-diagonal entries are used to con-

nect the two models at the “wires” which are the individual

nodes that would normally be driven by the input vector or

have difference measurements calculated.

2 Modified Nodal Analysis in EIDORS

SPICE-based circuit simulation tools such as ngspice use

Modified Nodal Analysis (MNA) to solve linear circuits [1].

Non-linear circuits require additional steps: a DC solution

to determine the operating point, then a linearization of non-

linear models at the operating point, and insertion of the

linearized model into the matrix. Non-linear elements such

as transistors and diodes have a variety of models associ-

ated with them (BSIM3, BSIM4, SIMSOI, PSP, HICUM,

MEXTRAM). Linear elements are often enough to model

complex circuit behaviour, for example op-amp frequency

response.

As an initial implementation, only the linear circuit el-

ements (resistors R, inductors L, capacitors C, ideal cur-

rent I and voltage V sources, current H F and voltage E

G controlled sources) have been integrated into EIDORS.

A “standard”1 SPICE netlist reader takes a SPICE netlist

(Listing 1) and transforms it into a matrix using “stamps”

which are similar in construction to FEM elements; a stan-

dard N -terminal element is mapped to global nodes. The

nodes of the stamp are variables that hold the nodal volt-

ages and branch currents of each circuit element. Each type

of element has a different “stamp.” For linear elements, the

Laplace representation gives a direct complex valued solu-

tion representing phase delay and voltage/current gain.

Listing 1: SPICE model of an ideal voltage controlled current

source (ec) driving an electrode wire (RLC) into electrode #7

(e7)

Gs 6 0 ec 0 1.0

L4 5 6 4m

R1 e7 5 10

CL e7 0 250p

Figure 1: SPICE circuit model of wiring connected to the EIT

forward model

3 Forward Modelling with SPICE

For a more complete forward model and stronger co-

simulation capabilities, direct integration with SPICE

would be preferable rather than re-implementing the

feature-rich capabilities of a standard SPICE package. This

integration is made challenging by Matlab’s .mex file pro-

tections which isolate sub-processes and are tied to non-

system compilers. Using a model reduction of the FEM for

a system matrix
[

VA

VD

]

=

[

A B

B
T

D

]

−1 [

0
ID

]

(1)

D
′ = D−B

T
A

−1
B (2)

VD = D
′−1

ID (3)

the reduced matrix D
′ can be converted to a mesh network

of n(n − 1)/2 resistors (for n electrodes). This mesh is

loaded into a SPICE simulation as a subcircuit which en-

ables the full facilities of a non-linear SPICE simulation

when evaluating EIT hardware. More complete simulations

are possible without making a quasi-static assumption [2],

but this Partial Element Equivalent Circuit approach has not

been implemented here.

4 Conclusions

Inverse problems could benefit from modelling the nonlin-

ear behaviour of the circuits used to transmit and acquire

signals in the system. This work presents two methods of

co-simulating the FEM-based EIT model and SPICE-based

circuit models in impedance imaging.

Integrated circuit/FEM modelling may reduce calibra-

tion effort and enable more graceful aging of equipment

over its service life. SPICE does not have any specialized

capabilities for inverse modelling except through manual

controls to characterize circuits. A method that unites the

Jacobian for the FEM model with an accurate model of the

circuit Jacobian requires equations for each (non-linear) cir-

cuit stamp.

EIT-into-SPICE eit_spice and SPICE-into-EIT

spice_eit implementations are available in the EIDORS

repository (solvers/forward/).
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Abstract: Multiplexed excitation leads to the presence of 

significant switching transients in EIT signals. A recently 

proposed method using model based curve-fitting seeks to 

improve EIT signal measurement accuracy in the presence 

of transients. Results from experimental validation of the 

technique through advanced phantom studies and 

preliminary in vivo trials are presented and compared with 

standard alternative techniques.  

1 Introduction 

Biomedical EIT systems seek to determine the distribution 

of electrical impedance within a body through the 

injection and measurement of currents and voltages 

respectively at a set of electrodes positioned on the body. 

In a typical multiplexed biomedical EIT system [1], the 

current source is switched from one electrode pair to the 

next according to an injection pattern sequence while the 

voltage measurements are conducted on a subset of 

electrodes either sequentially or simultaneously. Due to 

the resistive-capacitive nature of the electrode-skin 

interface [2], a finite amount of charge is retained at each 

electrode at the end of a current injection pattern [3]. 

Voltage measurements on these electrodes after a 

switching event are then seen to be affected by transients 

due to the gradual dissipation of this retained charge (Fig 

1).  

 
Figure 1: EIT signal with distinct transient component C, 

present in period B because of remnant charge from current 

injection in period A 

The presence of such transients can affect the 

measurement accuracy of individual signals and 

subsequently, cause a reduction in image reconstruction 

accuracy unless an efficient mitigating strategy is adopted. 

This entails either waiting for the signal to settle 

adequately, thus incurring measurement delay, or deriving 

an estimate of the steady state value based on the transient 

affected measurements. A model based curve fitting 

technique to estimate EIT signal amplitude presented 

previously [3][4], is now validated experimentally through 

a succession of trials described in the next section.   

2 Method 

2.1 Experimental setup 

The EIT system used for this experimental study is the 64 

channel R3M instrument developed at the University of 

Manchester [5]. For the first set of experiments, a novel 

resistive phantom based on the wheel architecture [6] but 

expanded to include the effects of out-of-plane conduction 

and skin-electrode interface impedance is used. For the 

second set of experiments, the phantom used is a saline 

tank phantom with custom electrodes. The third and final 

set of data analysed in this study is from in vivo 

experiments performed on volunteers using commercially 

available ECG electrodes. The amplitude and frequency of 

excitation are chosen in accordance with typical values 

used in biomedical EIT applications. The duration of 

excitation is chosen so as to allow the recording of voltage 

signals for a significant period of time after the transient 

components have decayed to a negligible level. Due to 

limitations of bandwidth, only the demodulated versions 

i.e. in-phase and quadrature components of the measured 

voltage signals are stored and processed instead of the 

time-series of the measured samples. 

2.2 Amplitude estimation 

The model based estimation method presented in [4] is 

used to obtain estimates of the steady state values of the 

demodulated voltage signals. The estimates are then 

compared against the observed steady state signal values 

in order to quantify accuracy and precision of the 

estimation technique across a range of experimental 

conditions. Finally, the model based technique is 

benchmarked against standard alternative techniques to 

determine its relative merits and demerits. 

3 Conclusions 

The model based estimation method is seen to estimate 

amplitudes and time constants satisfactorily in both 

phantom as well as in vivo experiments. The impact of 

improved measurement accuracy on EIT images and its 

potential benefits to EIT based diagnostics need to be 

assessed next. 
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Abstract: Capacitively coupled electrical resistance 
tomography (CCERT) is a new kind of ERT that can 
realize contactless conductivity measurement. This work 
studies the basic performance of this new technique in 
biomedical application.  

1 Introduction 
Capacitively coupled electrical resistance tomography 
(CCERT) is proposed as a non-invasive ERT that can 
realize contactless conductivity measurement [1-2]. Its 
electrodes are not in direct contact with the medium, 
which means negative effects ((like electrode polarization 
and contamination in industrial application [2] and contact 
resistance in medical applications [3])) resulted from the 
contact measurement principle of conventional ERT [4] 
can be avoided and more broad applications may be 
available. This work is the first attempt concerning 
biomedical application of CCERT. First, mathematical 
model of a 12-electrode CCERT phantom was established 
to solve the forward problem and get the sensitivity matrix. 
Then, both measurements with only saline background 
and with a potato anomaly inside the background were 
obtained. Finally, image reconstruction was implemented 
with Tikhonov regularization method. 

2 Measurement Principle 

AC voltage
source

Excitation 
electrode

Detection 
electrode

Insulation pipe

Current

Equivalent 
resistor Coupling 

capacitance

C2C1 R

Current

Coupling 
capacitance

 
(a)                                  (b) 

Figure 1: Measurement principle of CCERT. (a) Sensor.  (b) 
Simplified equivalent circuit of an electrode pair. 

As shown in fig.1, the electrodes of CCERT are mounted 
equidistantly around the outer periphery of the pipe. For 
each electrode pair, the two electrodes, the insulation pipe 
and the conductive medium inside the pipe form coupling 
capacitances C1 and C2, and the conductive medium can 
be equivalent to a resistance R. So, with the excitation AC 
voltage applied, the current reflects the conductivity 
distribution between the electrode pair can be measured.  

3 Forward Modelling 
The model of CCERT can be described as 
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where σ(x,y), ε(x,y) and ϕ(x,y) are the spatial conductivity, 
permittivity and potential distributions. w=2πf is the 
angular frequency of the AC voltage source with the 
frequency f. Γn represent the boundaries of the ith 
electrode (i=1, 2, …, 12). n


 is the outward unit normal 

vector. a, b and c represent excitation electrode, detection 
electrode and floating electrodes, respectively. 

4 Research Results 
4.1 Sensitivity matrix 

Finite element method (FEM) is introduced to solve the 
forward problem [5] with 864 triangle meshes/elements. 
The inner diameter of the sensor is 102 mm and the 
electrode angle is 24°. The conductivity of the background 
and the object are σ0=0.05 S/m and σ1=0.10 S/m. For an 
electrode pair a-b, the sensitivity of the ith element is 

 

0

0
1 0( ) 

 









i
i a b a b
a b

a b

R RS
R

  (2) 

where, 0
a bR   represents the equivalent resistance between 

electrode pair a-b when the pipe is full of background 
(σ=σ0). i

a bR   is the equivalent resistance between electrode 
pair a-b when the conductivity of the ith element changes 
from σ0 to σ1 and the remaining elements still kept at σ0. 

4.2 Image reconstruction 

Experiments were carried out with saline (0.0575 S/m) 
and potato. Tikhonov regularization is introduced to 
implement image reconstruction. Fig. 3 shows the images 
reconstructed at three frequencies (400, 600 and 800 kHz). 

    
(a)                      (b)                        (c)                        (d) 

Figure 3: Reconstructed images. (a) Actual distribution. (b) 
400kHz. (c) 600kHz. (d) 800kHz. 

5 Conclusions 
This work verifies the feasibility and potential of CCERT 
in further biomedical applications. 
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Abstract: Wearable EIT can enable novel clinical 

strategies for patients suffering from chronic diseases. 

From this observation, our research group has developed an 

EIT vest based on our dry-electrodes cooperative-sensor 

architecture. This work is a quantitative evaluation of the 

noise of this EIT system. The standard deviation measured 

on three different resistors is lower than 9 mΩ. 

1 Introduction 

Recently, telemonitoring of vital signs has gained a lot of 

interest, especially for patients suffering from chronic 

diseases [1]. Telemonitoring systems need to be highly 

integrated in order to minimize the comfort impact on 

patients. We have developed a wearable system which 

closely monitors physiological parameters (including EIT) 

using our patented electronic architecture which we have 

tailored for wearable EIT [2]. 

This architecture of so-called “cooperative sensors” is 

based on active sensors connected in a bus arrangement 

with two unshielded wires [3], reducing a lot the complexity 

of the electrical connections and of the cabling for any 

number of sensors in the system. 

While this system was successfully tested on healthy 

volunteers and gave physiologically consistent results [2], 

a quantitative verification of its performance was missing. 

Here, we show the assessment of the system’s noise, one of 

the key performance indicators of EIT data acquisition 

systems. 

2 Methods 

Many EIT systems define their noise performances via the 

signal-to-noise ratio (SNR). However, SNR not only 

depends on the hardware quality, but also on the chosen 

stimulation and measurement patterns. Here, we used the 

test bench shown in figure 1 to focus on the assessment of 

the electronic circuits (i.e. current sources and voltage 

measurements). The setup contains one master sensor, two 

current injecting (type I) sensors, and two voltage 

measuring (type V) sensors. In each measurement, a current 

is injected between the type I sensors #1 and #2. This 

current flows through the calibration resistor Rcal, and the 

resulting voltage is measured by computing the difference 

between the voltages v1 and v2 (measured in the type V 

sensors #1 and #2). Rcal is set to three different values: 0 Ω 

(short circuit), 75 Ω and 150 Ω. 

3 Results 

Figure 2 shows a typical impedance measurement (with 

Rcal = 150 Ω) during a 10 s period. In this case, the maximal 

peak-to-peak noise is 51.9 mΩ and the standard deviation 

over the same period is 8.73 mΩ. Here, the bandwidth of 

the impedance measurement goes from DC to 20 Hz. 

Table 1 shows the peak-to-peak noise and the standard 

deviation measured for the three different values of Rcal. 

The measured noise does not significantly depend on Rcal. 

Therefore, most of the noise comes from the voltage 

measurement (i.e. the type V sensors). 

 
Figure 1: Test bench for noise performance assessment. 

 
Figure 2: Noise measured on a 150 Ω resistor. 

4 Conclusions 

We have presented the assessment of the noise performance 

of our wearable EIT system. The standard deviation 

measured on three different resistors was 8.58 mΩ – 

8.84 mΩ (measurement bandwidth: DC to 20 Hz). Since 

the noise is essentially the same for all resistor values, it 

mainly comes from the voltage-measurement (type V) 

sensors. Therefore, the global system performances can be 

enhanced by further improving the type V sensor 

electronics. For many EIT applications, the required 

bandwidth can be reduced, giving a lower noise amplitude 

without any modification of the sensor electronics. 
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Table 1: Absolute measured value, peak-to-peak noise, and standard deviation measured for the three different values of Rcal. 

Rcal value (Ω) measured value (Ω) peak-to-peak noise (mΩ) standard deviation (mΩ) 

0 0.0388 56.9 8.84 

75 75.75 48.7 8.58 

150 150.12 51.9 8.73 
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Abstract: Here, we optimize electrode material 
coatings in order to achieve the best accuracy in EIT 
reconstructions. The testing of nanostructured 
electrode interface materials consisting of platinum, 
iridium oxide, or PEDOT:pTS in saline tank 
experiments demonstrated that the PEDOT:pTS 
coating used in this study leads to more accurate 
reconstruction dimensions along with reduced phase 
separation between recording channels. 

1. Introduction 
Avoidance of off-target effects in disease treatment by 
electrical stimulation of autonomic nerves with 
electroceuticals is possible with fast neural EIT1,2. 
This was developed for brain imaging but has been 
adapted for imaging in nerve with a cylindrical cuff 
with 14 circumferential stainless-steel foil electrodes 
on silicone rubber, coated with platinum black, each 3 
x 0.47mm. With this, compound action potentials were 
imaged in rat sciatic nerve with a resolution of 0.3 ms 
and < 200 µm. However, image quality was limited by 
limited charge transfer, inconsistent electrode 
impedance and phase, as well as mechanical friability. 
The purpose of this study was to evaluate the 
properties of 3 new electrode materials, and test their 
performance in imaging fast neural activity in an in 
vivo setting.

2. Methods 
Electrodes were made from laser cut 12.5 µm-thick 
stainless-steel foil with silicone base and insulation to 
the above geometry. The electrode surfaces were laser 
ablated with 50 µm pitch to roughen the foil and 
electrochemically plated with platinum, iridium oxide 
or PEDOT:pTS. Saline tank experiments were 
performed for validation of the electrode performance 
for each material. In vivo imaging of fast neural 
activity in the vagus nerve of an anaesthetized sheep 
was then done using the identified best electrode 
material. 

3. Conclusions 
Performance of the PEDOT:pTS coating was the best. 
The impedance at 1 kHz and charge storage capacity 
after 800 cycles, determined through impedance 
spectroscopy and cyclic voltammetry, were 297 ± 1.04 
Ω and 89.39 mC/cm2 compared to 340 ± 1.02 Ω/77.82 
mC/cm2 for iridium oxide and 377 ± 1.02 Ω/44.96 
mC/cm2 for platinum. Phase shift between electrode 
pairs during EIT recording with a current of 100 µA 
and 9 kHz was significantly reduced for PEDOT:pTS 
at 0.49 ± 0.06º (p < 0.05) compared to 1.02 ± 0.07º and 
0.93 ± 0.08º for iridium oxide, and platinum 
respectively. Reconstruction of EIT data taken from 

the PEDOT:pTS and iridium oxide cuffs had 
improved shape accuracy while, PEDOT:pTS and 
platinum had improved size accuracy. PEDOT:pTS 
cuffs were then used to image compound action 
potentials of the recurrent laryngeal nerve from within 
the vagus nerve. 

Figure 1 – Bright field image of electrode surface with 
low and high magnification images of the
electrochemically deposited materials. Real 
impedance for each electrode material (including 
stainless-steel) on a 1.05 mm2 area electrode opening. 
Quantification of phase differences between 
electrodes during EIT injection for each material. The 
experimental set-up for the in vivo experiment and the 
recorded compound action potential with overlaid 
measured impedance change.
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Abstract: End-expiratory lung impedance (EELI) can be 

influenced by changes in lung aeration as well as by 

changes in intrathoracic fluid content. We assessed the 

effect of a routine fluid administration on EELI in 

critically ill patients and found a highly significant and 

clinically relevant decrease in EELI. 

1 Introduction 

There is an increasing interest in thoracic EIT as a bed-

side monitoring tool for patients in intensive care units 

(ICUs). Clinically, differences between inspiration and 

expiration (tidal impedance difference, TID) are used to 

monitor ventilation distribution [1] whereas changes in 

EELI are sometimes used to monitor changes in end-

expiratory lung volume (EELV) [2]. However, pulmonary 

bioimpedance may also be influenced by changes in 

intrathoracic fluid content [3]. We aimed to assess changes 

in TID and EELI during intravenous (iv) fluid 

administration according to routine clinical practice.  

 

2 Methods 

We performed a prospective observational clinical study 

including 25 mechanically ventilated ICU patients under 

monitoring with EIT (PulmoVista 500, Dräger, Lübeck, 

Germany) and transpulmonary thermodilution cardiac 

output (PICCO, Pulsion, München, Germany), who were 

clinically considered as requiring iv fluid administration. 

EIT and PICCO data were acquired 15 minutes before 

fluid administration (T1), from the start of fluid 

administration (T2) until the end of fluid administration 

(T3) and 30 minutes after fluid administration (T4). Fluid 

administration was performed by infusing 500 ml of 

crystalloid solution (Sterofundin ISO, Braun, Melsungen, 

Germany) over appoximately 15 minutes. We assessed 

changes in EELI and TID globally and regionally for the 

ventral and dorsal image region. Changes in EELI were 

assessed in comparison to T1 and normalized to the TID at 

T1. Statistical analysis was performed by Analysis of 

Variance (ANOVA) for repeated measures with 

Bonferroni post test.  

  

3 Results 

Before the beginning of fluid administration (T2), there 

was no significant change in EELI compared to T1. At T3, 

we found a change in EELI of -0.91 times TID at T1 

(p<0.0001) which persisted at T4 (-0.78 times TID at T1, 

p<0.0001). These findings were similar for the ventral and 

dorsal lung regions. TID did not differ globally nor 

regionally between T1-T4. All values of TID and EELI 

are summarized in table 1. 

 

Patients were ventilated with a mean tidal volume of 

598±133 ml (mean±standard deviation) which did not 

change significantly during the study period. During the 

study period, there were no differences in gas exchange or 

respiratory system mechanics. 

 

4 Conclusions 

Routine clinical fluid administration leads to a highly 

significant and clinically relevant decrease in EELI that 

cannot fully be explained by a loss in EELV. During fluid 

administration, monitoring of EELI may be unsuitable for 

monitoring changes in EELV.   
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Table 1: Tidal impedance distribution (TID) and change in end-expiratory lung impedance (EELI) in arbitrary units (a.u.) for the 

time points T1 (15 minutes before start of fluid administration), T2 (immediately before start of fluid administration), T3 

(immediately after end of fluid administration) and T4 (30 minutes after end of fluid administration). All values are given as 

mean±standard deviation. *, significantly different from T1. 

 

T1 T2 T3 T4 P 

TID (a.u.) 2041±850 2223±1009 2007±980 2122±1079 n.s. 

TID ventral (a.u.) 1248±576 1317±661 1221±613 1253±626 n.s. 

TID dorsal (a.u.) 787,4±453 906±491 796±490 868±572 n.s. 

EELI (a.u.) 318±215 385±333 -1023±428 * -831±853 * < 0,0001 

EELI ventral (a.u.) 192±155 240±226 -685±318 * -535±605 * < 0,0001 

EELI dorsal (a.u) 126±133 144±193 -338±202 * -297±518 * < 0,0001 
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Abstract: We investigated EIT examinations of neonates

and young infants taken in ICUs for effects of documented

clinical and nursing interventions. Specifically we analysed

endotracheal suctioning and found no significant difference

of EIT findings before, during and after the intervention.

1 Introduction

The Continuous Regional Analysis Device for neonate

Lung (CRADL) project is an EU-funded project that in-

cludes an observational study in which EIT technology is

applied to neonates and young infants in multiple ICUs

across Europe. 200 patients are planned to be included

for up to 72 hours of recording time. Secondary endpoints

of this study consider the effects of numerous documented

events, such as intubation/extubation, suctioning, or pos-

ture changes, on regional lung ventilation as measured with

EIT. Routine suctioning is a relatively common event which

is expected to have an effect on these findings, as has been

shown in adults[1].

2 Methods

The first step was the validation of the documented events

based on the video log. For each suctioning intervention,

the exact end of the intervention was noted along with the

location (oral/nasal vs. tracheal) and the used suctioning

system (open vs. closed). The EIT devices used were BB
2

(Swisstom, Landquart, Switzerland).

A breath detection algorithm optimised for neonatal use

was applied to generate tidal images showing the differ-

ences between inspiration and expiration. From these tidal

images, we assessed the ventrodorsal centre of ventilation,

the ventilated area (defined as percentage of image pixels

with impedance change ≥0.25*maximum pixel impedance

change in image), the global inhomogeneity index, the co-

efficient of variation and the tidal impedance variation[2].

These EIT findings were then compared in different

time intervals before/during/after the validated events using

R (Kruskal-Wallis test followed by Mann-Whitney U test

against before interval). The used intervals lasted 5 min and

started 10, 5, and 0 min before the validated end of event

for the before, during, and after interval, respectively.

3 Results

For our preliminary analysis, we assessed data sets from

90 patients for tracheal suctioning interventions, which oc-

curred 271 times in 22 of these patients (68% male, mean

weight 1911g, mean post menstrual age 33 weeks). None

of the mentioned EIT findings exhibited significant differ-

ences between the observed intervals (Table 1). These re-

sults hold true for suctioning with open and closed systems

individually.

4 Conclusions

With this analytic approach no significant differences in EIT

findings could be found between intervals before, during,

and after routine endotracheal suctioning maneuvers. These

results imply that regional ventilation is not significantly af-

fected by suctioning. This finding may be due to the small

catheter diameter resulting in low flow rates or due to leak-

age around the usually uncuffed tube.
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Table 1: Descriptive statistics and p-values for the observed EIT findings (preliminary results).

EIT finding before during after p-value

centre of ventilation % 51.60 (50.34-53.28) 51.61 (50.27-53.16) 51.95 (50.55-53.39) 0.55

ventilated area % 21.44 (17.67-25.17) 20.55 (17.89-25.19) 21.42 (18.29-25.03) 0.76

global inhomogeneity index 1.26 (1.19-1.46) 1.28 (1.20-1.46) 1.26 (1.20-1.51) 0.48

coefficient of variation 1.97 (1.80-2.37) 2.05 (1.81-2.41) 2.00 (1.80-2.39) 0.68

tidal impedance variation 0.40 (0.27-0.53) 0.41 (0.29-0.55) 0.36 (0.27-0.52) 0.29
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Abstract: Aortic pixels in electrical impedance 

tomography (EIT) images were detected in two pigs during 

apnoea periods using a novel algorithm. The locations were 

validated versus the aortic region segmented from 

computed tomography (CT) images of these pigs and the 

aortic region that was detected with the previously 

described peak prominence saline bolus injection method. 

1 Introduction 

Invasive peripheral catheterisation is currently the gold 

standard for clinical blood pressure (BP) measurement, 

although it is known that peripheral and central BP values 

can drift, in particular in critical illness [1]. Due to its fairly 

high sampling rate and non-invasiveness, EIT is a candidate 

technology for continuous, non-invasive monitoring of 

haemodynamic parameters like BP or stroke volume.  

When using EIT, an accurate detection of the aorta is 

important for calculation of haemodynamic parameters. 

Once the aorta has been detected, the waveform can be 

analysed. In this work, a novel algorithm for the detection 

of aortic pixels in EIT images is presented. 

2 Methods 

2.1 Study protocol 

The study was approved by the local authorities for animal 

care (approval no. 70/11).  EIT (Swisstom, Switzerland) 

and ECG (BIOPAC, USA) measurements, as well as CT 

volume scans were performed in two anaesthetised and 

mechanically ventilated animals. Apnoea was induced 

during which  a  saline  bolus (10 ml, 20 %)  was injected  

into  the  descending  aorta  to  increase regional 

conductivity contrast [2]. The EIT images were 

reconstructed with the GREIT reconstruction algorithm 

(nf=0.7, wr=0.2, ts=0.02) [3]. 

2.2 Aorta detection 

The developed algorithm is based on a discrimination 

function. This function can be thought of as a map that 

holds a certain value for each image pixel roughly 

representing the likelihood of this pixel being a part of the 

cardiovascular system. The discrimination function is the 

result of a pixel wise multiplication of three maps. Map 1 

represented the maximum of the cardiac waveform, Map 2 

the maximum of its derivative and Map 3 represents the 

power spectral density exhibited by each pixel in a range of 

0.75 to 1.5 times the cardiac frequency. For Map 1 and 2, 

ensemble averaging with ECG gating was used to obtain 

robust EIT time segments corresponding to cardiovascular 

modulations. Additionally, pixels closest to the border were 

penalised, because EIT is most sensitive in these regions 

leading to artefacts [4]. Finally, active regions from a tidal 

image and a cardiac image were excluded from the 

discrimination function (Figure 1).  

3 Results and Conclusions 

Figure 2 shows the results of the autonomous detection of 

the aortic region. A strong overlap between aortic regions 

detected by the novel algorithm presented in this work and 

by both reference methods, either CT-based (F1-score 

0.2414 and 0.25) or by the injection of a saline bolus [5] 

(F1-score 0.8125 and 0.5128), compare Fig. 2. In future 

work, a larger sample size and the aorta specific stroke 

volume will be evaluated. 
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 Figure 2. Left: The results of the discrimination function 

after applied threshold criterion. Right: the contours of the 

aortic region detected with three different methods.    

Figure 1. Schematic representation of the algorithm 

designed for aortic detection 
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Abstract: We describe a phase-contrast functional EIT

measure which is useful for measurements on patients re-

ceiving HFOV. The measure calculates the regional phase

offset, which appears to provide useful information on re-

gional lung mechanics.

1 Introduction

High frequency oscillatory ventilation (HFOV) is a type of

mechanical ventilation which uses rapid pressure oscilla-

tions (up to 15 Hz) around a constant distending pressure.

Since rapid oscillations permit low tidal volumes, HFOV is

understood to act as a lung protective mode of ventilation,

and is therefore seeing increasing use, especially for the del-

icate lungs of preterm infants. One concern with HFOV is

that the actual volume delivered to the patient is very dif-

ficult to monitor, and EIT has shown significant promise

for this application [1], since modern EIT hardware is fast

enough to capture the relevant volume changes.

Lung mechanics is typically characterized by parame-

ters of compliance (C = L
kPa ) and resistance (R = kPa

L·s ).

EIT-derived measures of volume are mostly proportional to

the dynamic compliance, but yeild no information on R.

Increases in tissue resistance reflects narrowing of airways

and changes in parenchyma. The time constant τ = RC

of tissue introduces a delay in the ventilation signal, which

results in a change of phase in the regional EIT signal.

We describe a measure of the regional phase change and

an algorithm to calculate it efficiently. We then show an

analysis of phase change during pneumothorax [2].

2 Methods

Using phasor notation, measurable quantities correspond

to the real component of signals. For a HFOV frequency

ω = 2πfHFOV, ventilator pressure (Airways Opening)

PAO = PMAP + ∆Pejωt. For an EIT image voxel v,

Vv − VMAP = Cv∆Pejω(t−τv) = Cv∆P (e−jωτv )ejωt

(assuming appropriate calibration). Thus, EIT amplitude

is proportional to the regional Cv , while EIT phase e−jωτv

is related to the regional time constant.

10 11 12

Voxel: Vv(t)

�✒
❅❘

10.5 11 11.5

p(t)w(t− ti)

q(t)w(t− ti)

✲

✲
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in-phase

quadrature
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Figure 1: Phase detection: voxel waveform (left) multiplied by

windowed p, q (centre) to produce (right) which are summed.

An EIT-phase fEIT image is calculated by processing

EIT waveforms as follows (fig. 1).

• Calculate the HFOV frequency and phase, either

from the ventilator or from the global EIT signal,

from which in-phase (p(t) = cosωt) and quadrature

(q(t) = sinωt) references are calculated.

• If the ventilator and EIT system are not perfectly

synchronized, we recommend detecting p(t) via a

narrow-band filter, and q(t) = H(s(t)) via the

Hilbert transform, H(·).
• A window w(t − ti) is chosen (triangular with 1 s

width); at each time of interest ti, calculate: pw =
w(t− ti)p(t− ti) and qw = w(t− ti)q(t− ti)

• For EIT voxel v with waveform Vv , P (ti) =
∫
pw(t−

ti)Vv(t)dt, and Q(ti) =
∫
pw(t− ti)Vv(t)dt.

• v(ti) has amplitude and phase of P (ti) + jQ(ti).
Phase is not calculated (set to zero) for low amplitude vox-

els. This approach may be accelerated in the frequency do-

main, using the relationship P (ti) =
∫
pw(t−ti)Vv(t)dt =

pw ⊗ Vv , which can be represented as the multiplication of

Fourier transforms. Thus P (ti), Q(ti) are samples of a win-

dowed narrow-band filter of Vv .

3 Results and Discussion

Fig. 2 analyses the data of [2] to calculate functional images

before and after the onset of pneumothorax. As expected, a

large volume of air enters the thorax, as shown in the Aer-

ation image. The distribution of ventilation, Compliance,

shows small changes. Interestingly, there is an contrast in

the Phase image before the onset of pneumothorax, in a lo-

cation which predicts the eventual gas buildup.

︷ ︸︸ ︷ ︷ ︸︸ ︷

Figure 2: Functional EIT images from data of [2]. Top: global

EIT signal vs. time (s). Vertical bars indicate time points at which

fEIT images are calculated (each scaled individually to maximum

value). Aeration: ∆EIT with respect to t = 0; Compliance: Am-

plitude ‖P + jQ‖; Phase: Phase of P + jQ.

In summary, we describe the calculation of phase func-

tional EIT images from EIT data during HFOV ventilation.

Such images promise additional information on the distri-

bution of lung mechanical properties. Our example shows

a promising application, which we are pursuing in a larger

set of data.

A number of engineering challenges to this analysis re-

main, such as the phase unwrapping of EIT-phase signals,

since phase must be consistent across a boundary. We cur-

rently do not unwrap phase, since our attempts to use classic

approaches did not yield useful images.

References

[1] GK Wolf et al, Ped Crit Care Med, 11:610–615, 2010

[2] Miedema M et al, Am J RCCM, 194:116–118, 2016.

28 19th International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT2018), Edinburgh



19th International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT 2018), Edinburgh 
 

Ion diffusion measurement using DT-MREIT  
Munish Chauhan1, Magdoom Kulam2, Alec Brown2, Thomas H Mareci2, and Rosalind J Sadleir1  

1SBHSE, Arizona State University, rosalind.sadleir@asu.edu  
2Dept. of Biochemistry & Molecular Biology, University of Florida 

 

Abstract: The ability to detect changes in tissue 

conductivity over time could provide novel diagnostic 

information. In this study, we used Diffusion Tensor 

Magnetic Resonance Electrical Impedance Tomography 

(DT-MREIT) to monitor temporal changes in the 

conductivity distribution of two different agarose gel 

phantom.  

1 Introduction 

Magnetic resonance electrical impedance tomography 

(MREIT) studies have focused primarily on reconstructing 

static and isotropic-conductivity distributions [1]. Recently 

devolved DT-MREIT methods can be used to reconstruct 

anisotropic conductivity tensors using MREIT and 

diffusion weighted images gathered from a subject [2]. In 

this study, we assess the ability of DT-MREIT to monitor 

temporal changes in the conductivity distribution of two 

different agarose gel phantom, using 1.5 mA imaging 

currents. 

2 Methods 

Imaging experiments were conducted on two cylindrical 

phantoms with a 10 cm diameter and 12 cm height. The first 

phantom (Phantom A) consisted of an annulus of agarose 

gel background material (~0.5 S/m), and agarose gel central 

cylindrical inclusion (~1.6 S/m). The second phantom 

(Phantom B) consisted only of only the agarose gel 

background material (~0.5 S/m). Both phantoms were 

imaged in a Philips 3T MRI scanner during external 

MREIT current injection. A current intensity of 1.5 mA 

with a frequency of ~10 Hz was applied to the surface of 

gel via carbon electrodes (~36 cm2) for two independent 

and orthogonal directions. T1-weighted, MREIT and DWI 

data were obtained in the same imaging session following 

[3] and co-registered for image reconstruction. Multiple 

MREIT runs were performed on each phantom to 

investigate ion diffusion. Reconstructed conductivities 

were compared with four-terminal conductivity 

measurements (HP 4192A) performed on separate bulk 

samples of each phantom material. The measured mean 

conductivity of inclusion and background material were 1.6 

S/m and 0.5 S/m, respectively.  

DWI data was processed to diffusion tensors using FSL. 

Calculation of JP was recovered from MREIT Bz by 

following [4] and was used to calculate diffusivity ratio [2], 

η. Finally, the conductivity tensor was obtained by 

multiplying the diffusion tensor by the η distribution. 

Reconstructed mean conductivities (MC) in each image 

were computed via MC=(λ1+λ2+λ3)/3, where λ1, λ2 and λ3 

were principal conductivity eigenvalues. 

3 Results  

 

Figure 1: Plot of independently determined mean conductivities 

and 95% confidence intervals for background (yellow shading) 

and inclusion (red shading) materials, compared with MC value 

95% confidence intervals in reconstructed ROIs of Phantoms A 

and B. Left figure shows locations of inclusion (red) and 

background (green) ROIs in Phantom A (left) and background 

material ROI in Phantom B (right).The conductivity of the 

inclusion decreased from around 1.6 S/m to 1.4 S/m over the 

course of the experiment and background material ROI increased 

from 0.6 S/m to 0.64 S/m. 

The peak concentration C was located at the centre of the 

disc, and can described for time t>0 using the expression 

C=C0(1-exp(-a2/4Dt)) [5]. We fitted MC values to this 

equation, and found an experimental diffusion constant of 

3.7×10-5 cm2sec-1 for the central inclusion, which is higher 

that the value of 1.88×10-5 cm2sec-1 calculated from the 

DWI data. Also, this value was higher than the previously 

reported measurements of 1.4×10-5 cm2sec-1 [6] and 

5.8×10−6 cm2sec-1 [5]. Perhaps the large diffusion value we 

observed results from the short time we allowed for 

diffusion mixing and/or because our phantom was larger 

overall than the materials used previously [5, 6]. 

4 Conclusions 

We reconstructed mean conductivities for two phantoms 

using DT-MREIT technique. The results indicate that DT-

MREIT could monitor the changing conductivity 

distribution resulting from the diffusion of ions within the 

agarose gel phantom. 
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Abstract: MR-based current density imaging (MR-CDI) 

techniques aim to measure current density vectors 

produced by external current injection throughout a tissue 

volume. Previous work used MR-CDI to measure the 

current flow between the T7-T8 and Fpz-Oz electrode 

montages during tDCS [2]. In this work, we compare 

current flow for F3-RS and F4-LS montages using a 

recently developed iterative technique for MR-CDI 

reconstruction.  

1 Introduction 

Transcranial direct current stimulation (tDCS) is a new 

neuro-modulatory technique. Success of tDCS treatment 

depends on the current flow inside the brain region. Many 

computational simulations have been performed using 

estimated conductivity distributions [1]. However, until 

recently, direct measurements of current distributions have 

not been possible. Recent work from Kasinadhuni et al. 

[2] demonstrated measured current density distribution for 

T7-T8 and Fpz-Oz electrode montages. These montages 

involve ‘in-plane’ current flow, but it is unclear how 
results may be affected by current flow out of the image 

plane. In this paper, we report experimental CDI results in 

human subjects for F3-RS and F4-LS electrode montages. 

We compared model-predicted current densities derived 

from subject-specific anisotropic volume conductor model 

obtained from T1 and DT-MRI scans with measured 

magnetic flux density data [3].   

2 Methods 

2.1 Human imaging experiment  

Two healthy human subjects were recruited for this study. 

All imaging experiments were performed in the same 

session using 3T Phillips Achieva scanner installed at UF 

McKnight Brain Institute. To build subject specific 

volume conductor models, T1-weighted MR images were 

acquired using 3D FLASH gradient echo sequence with 

FOV 240 x 240 x 160 mm3 and 1mm3 isotropic resolution. 

A subsequent, DT-MRI scan was also performed using 

HARDI protocol with 2 mm3 isotropic resolution. We also 

measured magnetic flux density data for three slices using 

a multi-gradient echo pulse sequence and a resolution of 

2.24 x 2.24 x 5 mm3. A detailed description of data 

acquisition and the volume conductor model generation 

can be found in [2].  

2.2 Reconstruction of current density image 

To reconstruct current density images, at the beginning we 

solve the Laplace equation and determine the model 

predicted current and magnetic flux density. In this step 

we assume that, the conductivity tensor is a scalar multiple 

of water diffusion tensor. We then iteratively updated the 

internal current density distributions by subtracting the 

measured and computed magnetic flux densities as [3],  

 𝐉𝑛+1 = 𝐉𝑛 + 1𝜇0 ቀ𝜕ሺ𝐵𝑧𝑒−𝐵𝑧ሻ𝜕௬ , − 𝜕ሺ𝐵𝑧−𝐵𝑧ሻ𝜕௫ , 0ቁ (1) 

where 𝐵௭𝑒  is the experimentally obtained magnetic flux 

density data and 𝐉𝑛, 𝐵௭𝑛 are the n-th computed current 

density vector and z-component of magnetic flux density 

data at nth iteration, respectively.  

3 Results  

Figure 1(a) shows MR magnitude image obtained during 

MREIT session. Magnitude of reconstructed current 

density distributions at the three slice positions (5th 

iteration) for F3-RS and F4-LS electrode montages are 

displayed in figure 1(b) and (c) respectively. The 

normalized arrows on figs 1(b) and (c) indicate current 

flow directions 

 
Figure 1: MR magnitude (A) and 5th iteration of reconstructed 

current density map inside the brain region for (B) F3-RS and 

(C) F4-LS montages at three slice locations (left to right). 

4 Conclusions 

Success of tDCS treatment depends on the current density 

distribution relative to brain anatomical structures. Our 

results shows that we can quantitatively visualize the 

current density distribution for off-plane distributions. We 

anticipate that quantitative visualization of the current 

density distribution in the brain will play an important role 

in monitoring tDCS treatments.  
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Abstract: Diffusion tensor magnetic resonance electrical 

impedance tomography (DT-MREIT) aims to measure the 

anisotropic electrical conductivity distribution inside the 

human body. Previous work used DT-MREIT to measure 

the anisotropic conductivity distribution inside the brain 

using the current flows between approximately in-plane 

T7-T8 and Fpz-Oz electrode montages. In this work, we 

compare the anisotropic conductivity distribution found 

for these montages and non-coplanar F3-RS and F4-LS 

electrode montages using a realistic head model. 

1 Introduction 

DT-MREIT combines DTI and MREIT to produce images 

of anisotropic electrical conductivity tensors of body 

tissues. It is based on the assumed linear relationship 

between the conductivity (۱) and water diffusion tensor 

(۲) [1]. DT-MREIT reconstructions determine the scaling 

factor (𝜂) images relating water diffusion tensors to 

measured magnetic flux density (𝐵௭) data [2]. Recent work 

from Chauhan et al. [3] demonstrated anisotropic 

conductivity distribution reconstructed using pairs of 

surface electrodes attached to the head at EEG locations 

T7-T8 and Fpz-Oz configuration (in-plane). A remaining 

question in DT-MREIT is how results are affected by 

changes in electrode location, especially ‘off-plane 

configurations’. To answer this, we have numerically 

compared reconstructed scale factors and conductivity 

tensors for both types of electrode montage. 

2 Methods  

We constructed realistic computational head models from 

T1-weighted MR images of 160 slices with 1mm3 

isotropic resolution. High angular resolution (HARDI) 

brain tissue anisotropy data was acquired using a 

subsequent DT-MRI scan. Eight tissue regions: skin, bone, 

muscle, fat, eyeball, grey matter (GM), white matter 

(WM) and cerebrospinal fluid (CSF) were segmented 

semi-automatically using FSL [3]. Two pairs of surface 

electrodes were attached to models at the T7-T8, and Fpz-

Oz locations. Another model was constructed to simulate 

the F3-RS, F4-LS electrode montages.  

We assigned isotropic conductivity values to skin (0.43 

S/m), bone (0.015 S/m), muscle (0.20 S/m), fat (0.01 S/m) 

and eyeball (0.50 S/m) regions. For the brain tissues (GM, 

WM, CSF), we used experimentally obtained diffusion 

tensor data [3] and scaled water diffusion data to 

approximate electrical conductivity tensors, using scale 

factor values of (GM-0.37, WM-0.57 and CSF-0.32 

S.sec/mm3). We then solved the Laplace equation for 

current densities, and generated simulated 𝐵௭ data at five 

slice positions in the mid-brain using the Bio-Savart law.   

In order to reconstruct scale factors  from simulated 𝐵௭ 

data, we first recover the current density data as in [4],   𝐉𝑛+1 = 𝐉𝑛 + 1𝜇0 ቀ𝜕ሺ𝐵𝑧−𝐵𝑧𝑛ሻ𝜕௬ , − 𝜕ሺ𝐵𝑧−𝐵𝑧𝑛ሻ𝜕௫ , 0ቁ (1) 

where, 𝐉𝑛, 𝐵௭𝑛 are the computed current density vector and 

z-component of magnetic flux density data at nth iteration.    

Using the iteratively updated current density data we then 

recovered scale factor images as in [2],  

 𝛁𝑙𝑛𝜂 × ሺ۲−1𝐉𝑛+1ሻ = 𝛁 × ሺ۲−1𝐉𝑛+1ሻ (2) 

3 Results 

Figure 1(a) and (c) display reconstructed scale factor 

images for the first slice position for T7-T8-Fpz-Oz and    

F3-RS-F4-LS electrode montages respectively. The 

respective diagonal components of the conductivity tensor 

are shown in figure 1(b) and (d). The relative L2 error for 

the same slice position was found to be 0.121 for T7-T8-

Fpz-Oz electrode montages whereas, for the F3-RS-F4-LS 

electrode montage this value was found 0.145. 

 
Figure 1: Reconstructed scale factor and diagonal components 

of reconstructed conductivity tensors relative to lab. frame for 

(top) in-plane and (bottom) off-plane montages. 

4 Conclusions 

Using numerical simulations, we found it is possible to 

reconstruct the conductivity tensor image for either in- or 

off-plane current injections. We also observed that the 

quality of reconstructed scale factor image deteriorated 

near boundaries (Fig. 1c). Because this study used a 

Harmonic-𝐵௭ type reconstruction algorithm [3], we 

speculate that this was due to the violation of the 

independence condition for the two current 

administrations. Practical considerations such as signal-to-

noise ratio in imaged planes with different montages must 

also be considered. Moreover, while DT-MREIT can 

reconstruct conductivity tensor images, it requires two 

current injections. For practical application such as tDCS, 

DBS, or electroporation it may be desirable to develop 

method using one current injection only.  
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Abstract: Functional Magnetic resonance electrical 

impedance tomography (fMREIT) is a potentially 
innovative technique for imaging neural activity. We 

tested fMREIT using a salamander retina as a neuronal 

activity source. We compared phase differences in MREIT 

imaging with and without light stimulation. 

1 Introduction 

Functional Magnetic resonance electrical impedance 

tomography (fMREIT) is a novel neural activity imaging 

technique [1-2] that involves application of small 

electrical currents to tissue. Conductivity changes in cell 

membranes during neural activity should be reflected in 

current flow patterns, causing differential phase 

accumulation in MR images. The salamander retina was 

used as a neural activity source in this study. We 

performed experiments where currents were applied 
synchronously with a light stimulus and compared these 

images with those collected without light stimulus, to 

determine if this activity could be detected in fMREIT 

phase images. A microelectrode array (MEA) was used to 

record the neuronal activity levels in between MREIT 

imaging protocols. 

2 Methods 

The retina was placed on a flexible multi-electrode array 

within a 3D-printed sample chamber. The sample chamber 

was then placed into an MR imaging probe within a small-

bore 18.8T magnet. MREIT currents were introduced via 

4 equally-spaced circular carbon electrodes attached to the 

wall of the sample chamber. Currents were applied using 
constant current source during the experiment, at an 

amplitude of 200µA and total pulse width of 18ms, 

between opposing pairs of electrodes. During data 

acquisition, current injection was synchronized with a 

multi spin echo MRI sequence [2] (figure. 1).  A white 

LED was used for light stimulation. LED control signals 

were synchronized to the current source. Experiments 

were split into two sets — the first involving light 

stimulation, and the second without light. MREIT phase 

images for each experiment were obtained by complex 

dividing positive and negative current MRI data. A 

homogeneous area within the retinal tissue was chosen as 
region of interest (ROI). Standard deviations in phase data 

within the ROI were calculated and compared. 

  
Figure 1: Spin-echo based MREIT sequence. The first 4 lines 
show the standard sequence and the following two lines represent 
MREIT current injections. 

3 Result 

The standard deviation of phase difference was found in 

the experiments (figure. 2), which could be caused by 

conductivity changes in retinal cell membranes.  

 
(a)                       (b)                          (c) 

Figure 2: fMREIT imaging results. (a) Magnitude image 

showing retina in sample chamber. Electrode numbers are 

overlaid on the image. (b) Subtracted phase image with current 

injection via electrodes 1 and 3 with and (c) without light 

stimulation. ROIs used to calculate standard deviations are 

shown as red triangles. 

4 Conclusion 

MREIT is potentially useful for functional analysis since 

its contrast directly relates to neuronal activity. The 
application of current injection makes it an advanced 

method for studying effects of brain stimulation caused by 

neuromodulation techniques such as transcranial direct-

current stimulation (tDCS) or deep brain stimulation 

(DBS). 
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Abstract: Multiple-frequency electrical impedance 

tomography (EIS) is applied for the detection of red blood 

cells (RBCs) aggreagbility in blood extracorporeal 

circulation systems. RBCs aggreagbility is obtained in the 
pulsatile blood flow based on the multiple-frequency 

parameter (relaxation frequency fc) from the Cole-Cole 

plot. From the experimental results, RBCs aggreagbility 

index AG in coagulation blood is found to decrease during 

thrombus formation. 

1 Introduction 

Blood extracorporeal circulation systems, such as left 

ventricular assist devices (LVAD), extracorporeal 
membrane oxygenation systems (ECMO), are widely 

utilized in medical science. However, due to the 

application of artificial pumps and tubes, patients are 

always facing the critical threat of thrombosis [1]. 

Recently, RBCs aggregability has been reported to be 

related to thrombus formation, since RBCs are involved in 
the coagulation process by the presence of phospholipids 

on their surfaces, activating the factor IX and so on [2]. 

In this study, multiple-frequency electrical impedance 

spectroscopy is applied to monitor the RBCs aggregability 

in the blood extracorporeal circulation system. Relaxation 

frequency fc is achieved from the Cole-Cole plot with the 
pulsatile flow, which is used to obtain the RBCs 

aggregability index AG. 

2 Methods 

2.1 Experimental setup 

The experimental setup is composed by one blood 

reservoir, one centrifugal blood pump, two pressure 

sensors, one impedance analyzer with four-terminal 

probes, one personal computer (PC), two electrodes, 

sampling ports, a syringe pump, a flow meter and blood 

circulation tubes. The impedance analyzer is connected 
with two stainless steel electrodes by four-terminal probes 

to measure the impedance of blood pulsatile flow. The PC 

is used to control the electrical impedance measurement 

system and save the data. 

2.2 Experimental conditions 

Fresh porcine blood with 1/10 tri-sodium citrate 

solution (3.28%) was used for the experiments. Calcium 

chloride solution (CaCl2) was added to the extracorporeal 
circulation system to form the thrombus. Pulsatile blood 

flow was generated by changing the rotational speed of the 

centrifugal blood pump with a pulsatile period of 40 s. 

Flow rate was kept at 2.70 L/min during 24 s, and after 

that blood flow was suddenly stopped and maintained at 0 
L/min for the remaining 16 s. The excitation current i was 

fixed at 0.1 mA. The impedance Z* and shift phase θ 

under the multiple-frequency from f1=100 kHz to f2=300 

MHz (101 points, log scale) were measured continuously 

during the experiment. The relaxation frequency fc was 

calculated by Cole-Cole plot using Z* and θ data, 
according to our previous research [3]. 

3 Results and Conclusions 

Fig. 2 shows the experimental results of relative 

relaxation frequency fcr during thrombus formation. The 

relative relaxation frequency fcr increases with the flow 

rate at the beginning, and it falls down in the case that 

flow stops. RBCs aggregability index AG is defined as the 

ratio of relaxation frequency fcr under tp=26 s and tp=30 s 
during the flow stop. RBCs aggregability index AG of 

porcine blood is found to decline gradually from AG=1.13 

to AG=1.12. 

Figure 2: Experimental results of porcine blood with 

Cacl2 solution 
This study confirms the feasibility to the detection of 

RBCs aggregability using relaxation frequency decrement, 

and brings new insights for the development of on-line 

thrombus monitoring technology. 
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Abstract: This  paper  demonstrates  the  biological

specimen experimental results that acquired from the MI-

EIM-V1A  system  that  adopts  the  planar  electrode

configuration.  We  have  measured  different  number  of

quail  eggs objects  inside an agar  phantom with a fixed

depth of saline in 24 mm.  Absolute and dividing image

method  have  been  used  to  demonstrate  resulting

reconstructed images. 

1 Introduction

The  MI-EIM-V1A system  has been developed for breast

cancer  detection. Biological  object  experiment  has  been

set  up  to  demonstrate  the  abilities  of  distinguishing  of

different substances with different electrical properties.

2 Methods

2.1 Experimental setup

Setup of hardware system is listed as below:

• 85 planar electrodes configuration

• Injecting current in 20 kHz and 50 kHz

• Testing tank  diameter  is  159.5  mm with 24  mm

depth, filled with test solution

2.2 The phantom

Quail eggs have been chosen as the testing objects, and the

eggs  are  containing inside  a concave  agar  breast  model

phantom. The phantom has been designed as below: 

Figure 1: Side view image of agar breast model with quail eggs 
inside. Conductivities of testing solution is 500 μS/cm, fat and 

gland layers are 500 and 800 μS/cm respectively, and whole 
quail egg object (egg white and yolk) is > 2000 μS/cm at 50 kHz.

There are 3 different models set up for inserting the eggs

into the agar phantom:

Figure 2: Top view of models from left to right: 01, 02 and 03.

2.3 3-D image reconstruction

The mesh for image reconstruction has 4 layers, 

and height of each layer is 6 mm. The actual position 

of the quail eggs should be laid between the second 

and forth layers.

Images are reconstructed using in-house 

developed image reconstruction software with single-

step method [1].

3 Results

The reconstructed images are analysed with two different

methods: Absolute image in single frequency and dividing

imaging by image-based frequency difference calculation.

We  expect  to  distinguish  biological  substances

(corresponding to yolk which is a single,  alive cell) from

the  non-biological  substances (including egg  white  and

agar container) in dividing imaging.

3.1 Reconstructed absolute conductivity images

Figure 3: Top 3 layers (out of 4) of reconstructed absolute

images in 50 kHz. Top layer is closest to testing tank surface. 
Models from left to right: 01, 02 and 03. Yellow indicates lower 

conductivity, while blue is higher. It can be seen that egg white 
has highest conductivity, while the centre of the object in second 

layer is considered as lower conductivity from absolute images.

3.2 Dividing imaging

Dividing image is calculated by dividing the reconstructed

absolute conductivity values  between  two  different

frequencies pixel by pixel:

Figure 4: Dividing images of 20 kHz / 50 kHz from left to right: 

01, 02 and 03; Layer being shown here is the 3rd layer from top.

The  quail  eggs  could  be  separated  from  the  dividing

images while they are hidden in absolute images.

4 Conclusions

This paper presents basic diagnostic function of the MI-

EIM-V1A system by using 2 frequencies in lower range.

To realize human tissue diagnostic ability, the system is

expected to measure impedance in higher frequency such

as 5 MHz in order to extract individual tissues electrical

properties.
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Abstract: Due to the lack of therapies for non-alcoholic 

fatty  liver  disease  (NAFLD),  there  is  a  need  for  robust 

measurement  for  successful  target  identification, 

validation  and  assessment  of  therapies.  Bioimpedance 

Spectrum (BIS) measurement is an excellent technique for 

early detection of NAFLD.

1 Introduction

Non-alcoholic  fatty  liver  disease  (NAFLD)  is  rapidly 

increasing in the general population of Western countries 

(NAFLD prevalence  is  20-30%) and it  is  becoming the 

most  common  liver  disease  worldwide.  It  would  be 

extremely  important  to  develop  a  method  for  easy 

performance at the bedside or in the outpatient ward for 

evaluation  of  the  risk  of  liver  disease.  Now  the  only 

technique that  is generally  used in the population is the 

liver ultrasonography, but it is known to underestimate the 

prevalence of fatty liver.

2 Methods

Liver  BIS  measurements  were  performed  with  four-

electrode data collecting technique. Fig. 1. shows the self-

developed  data  acquisition  method,  which  includes  the 

voltage generator, the reference resistor (10 kΩ) and a four 

channel  voltage measurement  device (lock-in amplifier). 

The application of this measurement method allows us to 

calculate  the  contact  impedance  (Zcont)  (1)  and  the 

bioimpedance  (Zx)  (2).  The  frequency  range  of  BIS 

measurements was 20 mHz – 90 kHz. Fig. 2. shows BIS 

data, which can be evaluated using the Cole-Cole model 

[1]. Although in higher frequency range (f > 10 Hz) our 

BIS  results  are  consistent  to  the  theoretical  model,  in 

lower  frequency  range  the  Cole-Cole  model  is 

inappropriate for modelling the BIS data.

2.1 Figures

Figure 1: Measurement setup; electrodes placed on 

the patient body

Figure 2: BIS measurement results

2.2 Equations

Calculation of contact impedance:

Z
cont

=R
ref
⋅
V

1
−V

4

V
4 (1)

Calculation of bioimpedance:

Z
x
=R

ref
⋅
V

2
−V

3

V
4 (2)

Cole-Cole equation:

Z ( jω )=R∞+
R

0
−R∞

1+( j ωτ )α (3)

where

τ is the time constant,

R∞ is the resistance if f →∞,

R0 is the resistance if f →0,

ω = 2π/f

3 Conclusions

In  our  research  work,  we  investigated  liver  fat  content 

using BIS.  It  can be  seen  in  Fig.  2.  that  the  Cole-Cole 

model is less applicable to evaluate the BIS data. Thus, in 

order  to  achieve  reliable  measurements  for  the  whole 

frequency  spectrum,  recently  we  are  working  on  the 

modification of the theoretical model.
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Abstract: 3D Hodgkin-Huxley and C nociceptor 50-fibre 

nerve models with normally distributed propagation 

velocities were developed to characterise dispersion over 

distance of impedance (dZ) during action potential (AP) 

propagation. The area of compound APs decreased with 

distance due to their biphasicity, but that of dZ did not. 

1 Introduction 

EIT allows imaging fast impedance changes during neural 

depolarization in brain or nerves [1]. In peripheral nerve, 

recording more than 10cm from excitation is hindered by 

dispersion and phase cancellation of the externally recorded 

biphasic compound AP, as fibre conduction velocities vary. 

In contrast, dZ due to ion channel opening is only a 

monotonic decrease and so might be expected not to 

disperse with distance. The purpose of this study was to 

develop a model of multiple unmyelinated fibres with 

distributed propagation velocities to simulate the effect of 

dispersion on a dZ over frequency. 

2 Methods 

Nerve fibres were modelled as 1D cables in a 3D space 

using FEM. Each fibre contained active ion channels 

modelled via Hodgkin-Huxley (HH) [2] or HH-type C-fibre 

equations [3]. Membrane potential and external field were 

simulated simultaneously using the feedback coupling 

system so that extracellular APs could be recorded together 

with the intracellular ones. Current injection and recording 

of the electric field were undertaken through external 

electrodes. The main equations used in the model can be 

found in [4]. 50-fibre HH and C-fibre nerves were 

modelled; fibres were uniformly distributed in a cylinder 

with a diameter of 2.4 cm for HH axons and 0.01 cm for C 

fibres. Velocities of the fibres were randomized with 

normally distributed intracellular resistances. For C fibres, 

the mean ri value was 0.0354 kOhm·cm and standard 

deviation of 0.005 kOhm·cm; for HH axons these values 

were 0.05 and 0.02 kOhm·cm respectively. The integral 

areas under the compound action potential and dZ curves 

were calculated at 10, 19, 25, 35, 45 cm for HH and 0.4, 

0.8, 1, 1.4 cm for C fibre nerves from the AP initiation point 

3 Results 

The amplitudes of compound APs and dZs fell with the 

distance along the fibre (Fig. 1a-d) for both HH and C-fibre 

nerves as the separate action potentials spatially spread 

along the fibre. However, the area under the absolute values 

of the AP curve was found to decrease with distance due to 

cancellation as the AP is bipolar (Fig. 1e,f, blue dashed 

line). Conversely, the area under the dZ curve was constant 

although the amplitude fell similarly to the AP case (Fig. 

1e,f, red solid line).  

 
Figure 1: Compound APs and associated dZs of nerve 

consisting of 50 HH axons (left column) or 50 C fibres (right 

column) measured at different distances from the AP initiation 

point (HH: 10, 19, 25, 35 and 45 cm; C: 0.4, 0.8, 1 and 1.4 cm). 

(a), (c) – CAPs; (b), (d) – dZs; (e), (f) – integral areas under the 

CAPs (blue dashed lines) and dZ (red solid lines) vs distance 

from the AP initiation point (i.p.). 

The CAP amplitude in the HH nerve fell by ~60% along 35 

cm, but dZ fell by ~50%; the same was true for the C fibre: 

around 60% and 50% along 1 cm. This indicates that dZ is 

visible at greater distances from the initiation point than 

CAPs. 

4 Conclusions 

Dispersion of the evoked CAP in nerve provides a technical 

obstacle to recording activity at distances greater than a few 

cm for unmyelinated, and a few tens of cm for large 

myelinated fibres. This study confirms the expectation that 

the evoked impedance changes could be measured, or 

imaged with EIT, at greater distances than possible with 

CAP recording. This appears to be mainly because the 

impedance change is largely monophasic and so does not 

cancel as changes from individual nerves desynchronise.  
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Abstract: Aiming for simulating regional ventilation 

signals we have developed a physical modulated thorax 

model of conductible silicone including pressurizable 

chambers for modulation of the regional impedance. Such 

model could provide standard test conditions for EIT-

algorithms. 

1 Introduction 

The major advantages of EIT over most other imaging 

methods in medicine are that EIT is i) applicable at the 

bedside, ii) radiation-free and iii) predestinated for 

imaging of the lungs. Consequently, thoracic EIT gives 

increasingly advanced insights into lung physiology 

during spontaneous breathing and mechanical ventilation.  

To our knowledge there are so far no physical models 

available for simulating regional with this technique. 

Aiming at simulating regional ventilation signals for EIT, 

we have developed a modulated physical model of the 

thoracic impedance. We hypothesized that this model 

allows simulating various conditions of regional 

ventilation with functional EIT. 

2 Methods 

The body of our physical model was manufactured of 

conductible silicone, consisting of base resin, conductive 

resin and diluting agent (Lianhuan Group, Shenzen, 

China). The components were thoroughly mixed and the 

resulting compound filled into an oval form of 32 cm and 

15 cm diameter. To model a reasonable ‘lung region’ by in 

the final form, open chambers were placed inside the non-

cured silicone compound. After complete polymerization, 

the body of the model was taken from the form and the 

edges were carefully cut. 

The holes in the ‘lung region’ were filled with elastic 

tubes of non-conductible silicone that were sealed on the 

one end and contained a connector for allowing pressure 

application on the other end. This way, by applying 

pressure to the elastic tubes, a certain force is applied to 

the material surrounding the respective hole, resulting in 

regional impedance changes. By connecting or disconnect-

ting single holes from the respective pressure application, 

different regional behaviour could be generated. Data were 

collected at 20 frames per second. 

2.1 Simulating shift in regional 

By pressurizing subsets of the pressure tubes, we 

simulated various positions of regional ventilation. For 

generating the required regional impedance changes, the 

pressure tubes were connected to a piston pump. 

3 Results 

 
 

Figure 1: Simulated EIT image of bilaterally ventilated lung. 

 

Simulations of regional lung ventilation (Fig. 1) could be 

generated using the model. Further, shifts in regional 

ventilation (lateral and ventral) and realistic global 

impedance curves during spontaneous breathing (Fig. 2) 

could be simulated with our model.  

 

 

 
Figure 2: Regional ventilation (left) and global impedance curves during 

simulated ventrally shifted (top) and single-sided (bottom) ventilation. 

 

4 Conclusions 

The proposed model of the thoracic electrical impedance 

allows simulating various conditions of regional 

ventilation in the respiratory system. Such model could be 

utilized for generating standard test conditions for EIT-

algorithms. 
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Abstract: We developed an “inside-out” static image re-

construction method from impedance measurements of hu-

man anisotropic muscle at rest using a needle device. We

were able to discriminate healthy from neurogenic and my-

opathic muscle.

1 Introduction

Recent developments in magnetic resonance imaging

(MRI) and ultrasound (US) techniques have enhanced

the diagnosis and evaluation of neuromuscular disorders

(NMD). However, both MRI and US have practical limi-

tations. For example, MRI is time-intensive to complete

and costly. US, on the other hand, requires considerable

examiner experience to perform adequately.

One modality well-suited for evaluating muscle at rest is

electrical impedance imaging (EII). However, perturbations

in electrode position and boundary errors can cause image

artifacts, and the resolution to detect internal structures in

the muscle from surface recordings is limited at best (i.e.

“outside-in” approach).

Here, we develop an “inside-out” EII reconstruction ap-

proach in which the electrodes are embedded within a nee-

dle device that is inserted into a muscle (fig. 1 A). The

method consists of estimating the impedivity of anisotropic

muscle to obtain the actual impedivity distribution. Then,

the EII represents a volume surrounding the needle device

and could potentially detect intrusions of fat deposition,

connective tissue or regions of inflammation.

2 Methods

We developed a two-step EII reconstruction algorithm to vi-

sualize the impedivity distribution of muscle. The first step

consists of estimating the longitudinal (L) impedivity κ̂L :=
α̂ κ̂α (Ω m) and transverse (T) impedivity κ̂T := κ̂α/α̂ (Ω
m) of anisotropic muscle from vertical impedance measure-

ments (fig. 1 B), where κ̂α and α̂2 are the estimated geo-

metric mean impedivity (Ω m) and the estimated anisotropy

ratio (dimensionless) of muscle, respectively, defined as

{
κ̂α := 1

D

∑D

n=1 ZnKd

α̂2 := 1
D

∑D

n=1
1

cos2 An

[
(2κ̂αde)

2

4r2 sin2 B(ZnKd+2κ̂α)2
− sin2 An

]
,

with Zn the measured impedance (Ω) using the nth elec-

trode configuration, K = 4π is a scaling factor (dimension-

less), de is electrode depth distance (m), D is the number

of electrodes within the same plane, r is the needle radius,

An := (θn + θn+1)/2 and B := (θn − θn+1)/2.

Figure 1: Rendering of a needle device with 4×16 electrodes on

the shaft. EI± and EV ± denote the current (red) and voltage (blue)

electrodes, respectively.

In the second step, we measure the impedance data us-

ing the conventional rotation scheme. Finally, image recon-

struction is then formulated as a linear least-squares model-

fitting problem.

3 Simulation results

We validate our method using numerical simulations us-

ing Comsol Multiphysics (Comsol, Inc., Burlington, MA,

USA). We evaluated both muscle with chronic neurogenic

disease (CND) with associated fat deposition (fig. 2 A) and

acute inflammatory myositis (IM) with scattered inflamma-

tory infiltrates in the muscle (fig. 2 B). In CND muscle, fat

deposition was simulated with less conductive regions as

compared to areas of healthy muscle tissue. Pockets of in-

flammation in IM muscle were simulated with intrusions

of more conductive regions in the muscle, whereas the sur-

rounding tissue was simulated as healthy muscle [1, 2].

A. CND

B. IM

Fat

Fat

Needle

Healthy
muscle

Needle

Healthy
muscle

Inflammatory
infiltrates

Simulation setting Reconstructed image

200 m

200 m

200 m

200 m

Figure 2: Impedance image for muscle with chronic neurogenic

disease (CND) (A) and inflammatory myositis (IM) (B).

4 Conclusions

Static EII using a needle device can detect microscopic al-

terations in muscle composition, thus having potential for

evaluation of NMD.
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Abstract: Our initial patient study of a combined 

ultrasound (US) and Electrical Impedance Tomography 

(EIT) system on a small cohort of patients has shown 

significant differences between longitudinal and transverse 

muscle fibre conductivity reconstructions – an important 

validation test - and has shown a capability to distinguish 

healthy from diseased tissue.  

1 Introduction 

Electrical Impedance Myography (EIM) has shown 

significant promise as a diagnostic tool capable of 

distinguishing healthy from diseased muscle tissue in a 

number of neuromuscular diseases [1]. Electrical Impedance 

Tomography (EIT) has the potential to enhance EIM and 

improve the clinical value by providing reconstructions that 

spatially map the EIM signatures and specifically 1) properly 

account for variations in skin/subcutaneous fat layers across 

patients and 2) differentiate contributions from different 

muscles within the tissue volume interrogated. This study 

presents a coupled ultrasound (US) and EIT system used to 

record data from a small cohort of patients.  

2 Methods 

A combined US/EIT system (Fig. 1A-B) was used to 

record measurements on both legs from a small cohort of 

patients (4) who had a neuromuscular disorder affecting at 

least one side. Repeated, longitudinal and transverse data 

were acquired from a total of nine sites. Data 

corresponding to each measurement consisted of the US 

image and EIT voltages. Segmented tissues from the US 

images were used to construct Finite Element Method 

(FEM) meshes and the regularization matrix of the 

forward and inverse problems, respectively.  

The inverse algorithm relied on a standard Gauss-

Newton approach employing generalized Tikhonov 

regularization. The error function is given by  

 𝐸ሺ𝜹𝝈ሻ = ‖𝐉𝜹𝝈 − ∆𝒗‖22 + 𝜆‖𝐋ሺ𝝈𝟎 + 𝜹𝝈 − 𝝈ோாிሻ‖22 (1) 

where  is the conductivity update, J is the Jacobian, L is 

the regularization matrix, 𝜆 is the Tikhonov regularization 

factor, 𝝈ோாி  is a reference conductivity, and ∆𝒗 is the 

vector difference between measured, 𝒗𝑀𝑒𝑎𝑠, and simulated 

voltages, 𝒗ௌ𝑖𝑚ሺ𝝈0ሻ. Soft-regularization is implemented by 

assigning muscle, skin/subcutaneous fat, and US gel 

conductivity values (from literature) of 𝝈ோாி  based on the 

location of each component. The L-matrix was diagonal 

with entries equal to the sensitivity of each inverse voxel. 

Absolute reconstructions were performed using 5 

iterations and Tikhonov parameter of 1e5 on frequencies 

of 10, 20, 40, and 80 kHz. The regularization approach is 

similar to that used in [2].  

 
Figure 1: The combined system was composed of the A. the US 

probe and sono-lucent electrode array. B. Longitudinal 

reconstructions were found to be larger (with significance) than 

transverse (example C-D). E. The phase at 80 kHz showed an 

ability to distinguish healthy from diseased tissue.   

Significant differences between longitudinal and 

transverse muscle reconstructs were found at frequencies 

of 20, 40, and 80 kHz (Fig. 1B). Example longitudinal and 

transverse EIT reconstructions from a single site overlaid 

on their respective US images (Fig. 1C-D) shows the 

expected result of a larger conductivity in the longitudinal 

direction. Significant differences between healthy and 

diseases tissue were observed at 80 kHz for permittivity 

and phase values of the transverse cases (Fig. 1E).  

3 Conclusions 

This is the first study of a combined US/EIT system showing 

an ability to obtain clinically relevant information on muscle 

condition. We hope to make minor modifications to the 

system and perform a larger clinical study. 
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Abstract: In this paper, we propose the use of electrical 

impedance tomography (EIT) to support children with 

nocturnal enuresis. We perform the first image-based 

threshold classification for determining the bladder state 

of ‘not full’ or ‘full’. The results demonstrate the strong 

promise for EIT as an aid for nocturnal enuresis. 

1 Introduction 

Nocturnal enuresis (also known as bedwetting or NE) is a 

common childhood condition with an overall prevalence 

between 9-12 % [1]. Where the condition is associated 

with daytime lower urinary tract symptoms, NE can 

constitute up to 40 % of paediatric urology clinic visits 

[2]. The impact of NE on the child is both medical and 

psychological, severely degrading a child’s quality of life 
[3]. 

Common treatments include pharmacological therapies 

and devices that alert after urination has occurred [4]. 

These treatments are reactive and have high relapse or 

discontinuation rates [4, 5].  

Electrical impedance tomography (EIT) is a low-cost, 

portable, and non-invasive medical technology that can be 

used to determine the bladder volume of patients [6]. The 

technology offers the potential to proactively treat 

nocturnal enuresis in children. 

Image-based classification allows the bladder volume 

to be determined. Image segmentation [7] and metrics 

such as the average conductivity index [8] and global 

impedance [7] have been previously related to bladder 

volume using EIT. However, for NE, the exact bladder 

volume does not need be determined; it is only necessary 

to detect when the bladder is nearing full. In this paper, we 

perform the first image-based threshold classification in 

bladder monitoring using EIT to determine the bladder 

state of ‘full’ or ‘not full’. 

2 Methods 

The electrical impedance dataset from Dunne et al. [9], 

with varying signal-to-noise ratio (SNR) and bladder 

volume, formed the basis for the image dataset in this 

paper. Using a SNR of 40 dB (one of the lower SNRs for 

existing EIT hardware [10]) and the GREIT image 

reconstruction algorithm [11], 99 2D noisy images were 

formed with a non-noisy reference image of an empty 

bladder (40 ml bladder). The bladder volumes used were 

{60:40:260, 280, 300:20:420} ml. The boundary between 

full and not full bladder volume was taken as 300 ml. The 

mean pixel intensity was then calculated for each image. 

3 Results & Discussion 

The bladder states of full and not full can be separated 

based on the mean pixel intensity alone, as shown in 

Figure 1. While some overlap is present in the 

distributions, multiple thresholds may be used to refine the 

certainity of predicting full or not full bladders. 

Probablistic machine learning may then be used within the 

uncertainity region to improve performance. The 

performance of the mean pixel intensity for threshold 

classifcation is shown in the receiver operating 

characteristic (ROC) curve in Figure 2, demonstrating that 

a good trade-off between true positive and false positive 

rates can be achieved. 

 
Figure 1: A histogram comparing the mean pixel intensity of 

each image for the two types of classifications: a not full bladder 

(blue) and a full bladder (orange). 

 
Figure 2: ROC curve for threshold classification using the mean 

pixel intensity of the reconstructed images.   

4 Conclusions 

This paper has proposed the use of EIT for support of 

nocturnal enuresis, and has shown that simple threshold 

classification based on reconstructed bladder images can 

be used to predict the bladder state of ‘full’ or ‘not full’. 
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Abstract: This work explores a novel electrical 

impedance imaging technique to monitor the drug 

responses of 3D cell spheroids in real-time. 

Reconstructions were compared between the cell culture 

with and without drug for the visualization of cell 

mortality. 

1 Introduction 

3D cell spheroids provide more convincing testing data 

than the 2D monolayer cells in the anticancer drug 

discovery and development [1]. However, current methods 

for 3D drug response monitoring are limited and they are 

either destructive or time-consuming. The miniaturised 

electrical impedance tomography (EIT) method is 

proposed that can non-invasively reconstruct the drug 

response of a cell spheroid in real-time. Previous work has 

demonstrated its feasibility in the image reconstruction of 

small spheroids [2]. The objective of this work is to 

demonstrate the application of EIT in the real-time 

monitoring of drug responses in 3D cell spheroids and its 

potential in drug evaluation. 

2 Methods 

2.1 Experiment design 

The MCF-7 breast cancer cell spheroids with 1.2 mm 

radius were cultured and formed as the objects under test 

using the liquid overlay method. Triton X-100 lysis buffer 

was added to the culture medium composed of Dulbecco's 

Modified Eagle Medium (DMEM) and fetal bovine serum 

(FBS) to prepare the 2% Triton X-100 solution, which can 

cause cell death in a short time by solubilizing the cell 

membrane proteins. Two experimental groups were set in 

this study. Two miniature circular EIT sensors with 7.5 

mm radius filled with 2% Triton X-100 solution and 

culture medium  separately. The MCF-7 spheroids were 

introduced to both sensors simultaneously and the 

boundary voltage variations were recorded for 30 minutes 

continuously with the biomedical EIT system developed at 

the University of Edinburgh [3]. 

 

 

2.2 Image reconstruction and data analysis 

In order to evaluate the effect of the drug to the spheroids, 

reference for the image reconstruction was taken at the 

time when the spheroids were introduced to the sensor. 

Since the spheroid is small, the iterative Basis Pursuit 

Denoise model [4] was adopted in the image 

reconstruction to improve the image quality. Figure 1 

shows the conductivity variation of the spheroid over 30 

minutes after it was placed into the drug. It can be seen 

that the conductivity of the spheroid in the 2% Triton X-

100 solution increased over time while the conductivity of 

the spheroid in the normal culture medium remained 

unchanged during the experiment. It means that the 

conductivity of the spheroids does not have a significant 

change in the culture medium. Whereas, the Triton X-100 

solution caused the destruction of the low conductive cell 

membranes. The increase of the spheroid conductivity 

continues for 20 minutes. Hence, it can be concluded that 

the drug response lasted for 20 minutes until all the cells 

in the spheroid lost their viability.  

3 Conclusions 

A drug response experiment with the tumour spheroids 

was conducted and monitored by the EIT in real-time. EIT 

can reconstruct images of the delicate conductivity 

variation in the small spheroids and it also provides the 

temporal information of the cell drug response. Therefore, 

it has the potential to be applied to the real-time non-

invasive 3D monitoring in drug discovery applications. 
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Figure 1: Reconstructed images for the spheroids in (a) 2% Triton X-100 solution and (b) culture medium.   
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Abstract: The probe with a circular array of electrodes 

and impedance spectroscopy system were developed to 

show the feasibility of screening tool for high grade 

cervical intraepithelial neoplasia (CIN) in women. Excised 

four CIN3 cervical tissue samples and two normal samples 

had difference in the reconstructed resistivity.  

1 Introduction 

Cervical cancer is the second most common cancer among 

women in the world. In Korea, it was ranked 7th among 

female cancer patients (15.1 per 100,000 population, 

2009), but it was much higher than in G20 countries [1]. 

Korean government recommends the cervical cancer 

screening every other year for women over 20 years old. 

However, current diagnostic methods such as PAP smear, 

biopsy, colposcopy and conization have limitations for 

simply examination, non-invasively. Since the highly 

stratified structure of cervical epithelium is changed as the 

cervical dysplasia progresses, the impedance spectrum 

will be different shape depending on the CIN grades. 

Previously, Brown et al. presented the potential of cervical 

impedance spectrometry as screening tool when doing 

colposcopy examinations [2]. In this study, we developed 

the new impedance spectroscopy with multiple electrodes 

and applied the localized electrical energy concentration 

algorithm to reconstructed resistivity in the probing region 

[3,4].    

2 Methods 

In order to reduce the negative sensitivity induced by the 

four-electrode measurement method and the influence of 

the surrounding tissue due to the current diffusion, we 

used multiple small electrodes on the surface of probe 

with localized energy concentration algorithm.  Fig.1 

shows the developed impedance spectroscopy system with 

10 mm probe including 16 small electrodes which 

arranged at regular intervals on two circles except of the 

reference electrode located at the centre. To select any 

four electrodes among the multiple electrodes, the 

measurement system consists of switching module and 

two IMM modules including one ground-type constant 

current source and a differential voltmeter. 

 

 
Figure 1: Impedance spectroscopy with multiple electrode probe 

and excised cervical tissue (normal case). 

We evaluated the feasibility of developed impedance 

spectroscopy system as a tool for the examination of 

cervical dysplasia and cervical cancer with the excised 

cervical tissue during conization. After conization, the 

impedance spectrum in the frequency range of 1-100 kHz 

was measured by injecting a current of 85-305 A. Also, 

the extracted tissue was examined by pathology to confirm 

the CIN grade. The difference of the reconstructed 

resistivity spectrum as shown in Fig. 2 was obtained by 

measurements for two normal subjects and four CIN 3 

grade patients. 

 

 
Figure 2: Reconstructed resistivity for four CIN3 samples and 

two normal samples (@ 1 – 100 kHz).   

3 Conclusions 

We developed the new impedance spectroscopy with 

multiple electrodes probe for examining the state of 

cervical tissue. The impedance spectral measurements 

from the excised female cervix in CIN3 and normal 

subjects corresponded with the predictions from the 

numerical simulations [5]. 
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Abstract: Most modern reconstruction algorithms for

EIT use regularization, using a penalty to impose spatial

smoothness. Several approaches exist to also impose tem-

poral smoothness. Here, we formulate spatio-temporal re-

construction in a simpler way that helps clarify the impact

of parameter choices.

1 Introduction

First, we intruduce notation for spatial and then spatio-

temporal (S-T) regularized time difference EIT reconstruc-

tion. S-T reconstruction can be formulated in (a) two stages

(spatial then temporal) [3], (b) via an augmented S-T matrix

[1], or (c) as a Kalman smoother [2]. Here we extend (b) to

provide a simplified and efficient calculation.

Regularized time-difference EIT image reconstruction,

seeks m̂, an optimum image m, to minimize the norm

‖d− Sm‖
Σ

−1

n

+ ‖m−m0‖Σ−1

x

(1)

for data d, and sensitivity matrix S. Measurement noise is

Gaussian ∼ N (0,Σn), and the image ∼ N (m0 = 0,Σx).
Using Σ−1

n = W tW , and and Σ−1
x = λLtL, we intro-

duce auxiliary (“whitened”) data, y, and image, x.

m̂ = L−1x̂, x̂ = (J tJ + λI)−1Jy, y = Wd (2)

where S = W−1JL. This may be seen from the solution

to (1), m̂ = (StΣ−1
n S + Σ−1

x )−1StΣ−1
n d, and thus x̂ =

L[Lt(J tW−tΣ−1
n W−1J + λI)L]−1LtJ tW−tΣ−1

n W−1y.

A matrix formulation of S-T regularization solves an

augmented-matrix forward problem, ỹ = J̃ x̃,

x̃ =





xf

xc

xp



 ỹ =





yf
yc
yp



 J̃ =





J 0 0
0 J 0
0 0 J



 = I ⊗ J, (3)

where f, c, p are future, current and past frame values,

with respect to the reconstruction frame of interest. Here

Σ̃n = I ⊗ Σn (since noise is independent between frames)

and Σ̃x = Γ ⊗ Σx, where Γ is symmetric with diagonal 1

and dereasing off-diagonal values. For example

Γ =





1 γ γ2

γ 1 γ

γ2 γ 1



, Γ−1 = 1

1−γ2





1 −γ 0
−γ 1 + γ2 −γ

0 −γ 1



 (4)

where 0≤γ<1 represents the correlation between frames,

and Γ−1 is tri-diagonal. The S-T reconstruction is thus

x̃ =
(

I ⊗ J tJ + Γ−1 ⊗ λI
)

−1
(I ⊗ J t)ỹ = R̃ỹ, (5)

where R̃ is the augmented S-T reconstruction matrix. This

S-T inverse matrix grows large with the number of frames.

2 Spatio-temporal inverse

The relation (I + δ)−1 = I − δ + δ2 . . . (valid when the

largest eigenvalue of δ is < 1) may be used to simplify (5).

R̃ =
(

I ⊗ (J tJ + λI) + (Γ−1 − I)⊗ λI
)

−1
(I ⊗ J t)

=
(

I ⊗M−1 +D ⊗ λI
)

−1
(I ⊗ J t)

=
(

(I ⊗M−1)[I + (I ⊗M)(D ⊗ λI)]
)

−1
(I ⊗ J t)

= (I +D ⊗ λM)−1(I ⊗M−1)−1(I ⊗ J t)

= (I + δ)
−1

(I ⊗M)(I ⊗ J t)

=
(

I − δ + δ2 − . . .
)

(I ⊗MJ t) (6)

= I ⊗MJ t − λD ⊗M2J t + (λD)2 ⊗M3J t − . . .

where M=(J tJ + λI)−1, D=Γ−1 − I and δ=λD ⊗ M .

Reconstruction in (6) is first a spatial inverse, followed by

temporal smoothing terms, where each time step is succes-

sively “filtered” by λM . Contributions from the past and

future are thus blurred both in time and space.

Using the singular-value decomposition, J = UΣV t,

and M = V (Σ2 + λI)−1V t. Thus each kth term MkJ t

= V (Σ2 + λI)−kΣU t. Finally, the S-T image at frame t,

m̃t = L−1x̃t can be calculated from post-filtering spatial-

only images x̂t+i at offsets i from the current frame, as

x̃t = x̂t −
T
∑

i=−T

(

[λD]iM + [(λD)2]iM . . .
)

x̂t+i (7)

where [D]i represents the ith offset on the centre row; for

D ∈ R
2T+1×2T+1, [D]i is the (T+1, T+1+i)th element.

3 Results and Discussion

Fig. 1 shows sample results. An S-only reconstruction per-

forms equally for moving and still targets, but with worse

noise. Using temporal, then spatial regularization [3] of-

fers improvements, like the S-T solution shown last, but the

moving target is blurred in space.

In conclusion, we develop an efficient formulation for

the S-T regularization of [1]. This approach clarifies how

temporal regularization results in blurring in both space and

time for each time-offset. This differs from successive S

then T regularization [3], which does not introduce the ad-

ditional S blur.

Figure 1: Images of a rotating contrast (with added noise) which

stops at the 7th frame. Top: Spatial-only solution Middle: Tempo-

ral then spatial solution, Bottom: S-T solution, via (7)
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Abstract: Multiple high-resolution electrical impedance

tomography frames are reconstructed within a sparse

Bayesian learning framework. Both intra-frame spatial

clustering and inter-frame temporal continuity are learned

and exploited in an unsupervised manner by using hierar-

chical Bayesian model and structure-aware priors.

1 Introduction

To facilitate accurate, low-cost, and prompt-response diag-

nosis in emergency scenarios, fast and high-spatiotemporal-

resolution Electrical impedance tomography (EIT) is in

high demanding. We expand upon previous sparse Bayesian

learning (SBL) based method [1, 2] in this work, and recon-

struct sequential EIT frames with an enhanced resolution .

2 Methods and Test Results

The inverse model for simultaneously recovering multiple

frames can be expressed as

∆YN×L = JN×M∆KM×L +V, (1)

where J is the Jacobian matrix. ∆Y, ∆K, and V are the

matrices respectively containing the differential measure-

ment vectors, conductivity change frames, and noise. (1)

is termed multiple measurement vector (MMV) model in

compressive sensing community. We assume in this work

that all frames of ∆K share identical or similar sparse sup-

port, i.e., inter-frame temporal continuity exists, which is a

reasonable assumption in EIT since the variations of pixel

amplitudes are slow compared to the frame rate. On the

other hand, the non-zero entries in each frame are also as-

sumed to exhibit intra-frame spatial correlation as in [2].

We assume the following priors for the vec-

torized weight and noise matrices: vec(∆K
T) ∼

N (0, diag {γ1B1, . . . , γgBg} ⊗A), vec(∆V
T) ∼

N (0, γ0I⊗A), where A and B are respectively la-

tent parameters controlling the inter-/intra- frame cor-

relations. Then the conductivity map can be estimated

from the maximum a posteriori mean of the posterior

p (∆K |∆Y ) = N (µ,Σ). Alternating-learning approach

[3] is adopted during the learning process to estimate one

of A and B in a whitened model towards another. We use

expectation maximization method to update each latent pa-

rameter. The computational complexity is approximately

O(M3) when L is small compared to M .

In the experiment, a saline solution of blue jet ink with

a conductivity of 4.21 S/m is prepared. A piston syringe

is used to inject the solution into the sensor. The recovered

EIT images of five diffusion stages are shown in Table 1,

where a clear advantage of the proposed method in terms of

spatial resolution and artifacts reduction can be observed.

3 Conclusions

We reconstruct sequential EIT frames with enhanced spa-

tial resolution by imposing spatiotemporal prior within the

SBL framework. Real-data experiments demonstrate the ef-

fectiveness of the proposed approach.
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Table 1: Successive reconstructed EIT frames and truth from video snapshots.

Truth

ℓ1 regularization

Proposed approach
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Abstract: A neural network (NN) approach is presented 

for estimating cardiac output from noisy bioimpedance 

data. Our innovation is to train the NN with a subject-

specific database of synthetic training examples. The NNs 

are shown to be robust to poorly-contacting electrodes on 

a measured tank and simulated thorax experiment.  

1 Introduction 

Adverse cardiac events account for more than 1 million 

hospitalizations per year in the United States [1]. Thus the 

ability to pro-actively monitor cardiovascular health is 

crucial. EIT is a promising technology to non-invasively 

and continuously monitor cardiac output (CO), an 

important cardiac diagnostic metric. Although EIT appears 

more promising than commercial electrical bioimpedance 

systems, there remain significant concerns of errors due to 

several sources, including, electrode contact issues. This 

study presents results from an algorithm based on deep 

neural networks (DNN) that is robust to faulty electrodes.   

2 Methods 

The steps of the proposed CO monitoring system (Fig. 1) 

are 1) Collect good data from a series of patients in a 

controlled clinical setting and perform EIT reconstructions 

and metric extraction, 2) Correlate metrics with stroke 

volumes, 3) Synthesize a database of training samples that 

realistically models various measurement errors, such as 

electrodes with partial contact, and 4) Train a DNN on the 

synthetic data so that it can accurately estimate stroke 

volume or CO when presented with actual, noisy 

measurements.  

A measured tank experiment (Fig. 2A) was performed 

where two different DNNs were trained on synthetic data, 

and then used to estimate the area of an inclusion from 

surface impedance measurements. Three of the electrodes 

used for measurements were partially occluded, as might 

be encountered in a realistic, non-ideal setting. In a second 

experiment, the DNN were used to estimate stroke volume 

from bioimpedance measurements of a simulated chest 

phantom, which again included partially-occluded 

electrodes. Simulations and reconstructions used 

Dartmouth’s custom software [2].  

One can clearly see that DNN1 works well in both 

experiments regardless of knowledge of which electrodes 

are bad (Figs. 2B-C), and that by simply removing bad 

electrodes EIT reconstructions themselves can work rather 

well (Fig. 2B). 

 
Figure 2: A. The cylindrical tank setup, and the mean absolute 

percent error for tank and simulated chest experiments. The 

DNNs were trained on databases that either assumed or did not 

assume knowledge of which electrodes were ‘bad’. DNN1 is 

a denoising autoencoder followed by a Gaussian process 

regression model, while DNN2 is a multilayer feedforward 

neural network. 

3 Conclusions 

Although, there are challenges to implement the full 

proposed CO monitoring approach, the results appear 

promising and highlight the robustness of DNNs. 
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Abstract: Physiotherapy according to Vojta is used for dis-

orders of the central nervous and the postural and muscu-

loskeletal system. The therapists exert a variable pressure

at certain points of the human body, triggering motoric re-

flexes which have previously been unavailable to the pa-

tients (reflex locomotion). We propose to use electrical

impedance tomography as a tool to monitor the muscle ac-

tivity of patients via data patterns. Thereby, the therapist

receives feedback as to whether he or she is exercising the

therapy correctly.

1 Introduction

Patients and their relatives are often unsure whether previ-

ously taught therapy instructions are carried out correctly

and comprehensively when at home and without the aid of

an expert. This becomes particularly difficult when phys-

iotherapy is performed on another person. In the case of

Vojta therapy these persons are babies, often not older than

3 weeks [1]. In this paper we introduce a new technical sys-

tem for the treatment support of infants and toddlers suffer-

ing from a central nervous system disorder. With the aid

of our systems, parents can monitor the muscle activation

of their childs while under therapy and thus, gain insights

about the quality of their therapy execution.

2 System Design

Our multi-level layered EIT system can be seen in figure

1(a). The top level consists of a rechargeable battery board,

which enables the mobile power supply without cable con-

nection. One layer beneath is a controller board that con-

trols the EIT system and interprets and outputs the mea-

sured values. The two lower levels contain the EIT system.

On one circuit board (upper) there are mainly the functions

of signal generation and selecting the correct feed channel

for the current [2]. The lower circuit board contains the

evaluation units for the measurement signals. These include

selecting the voltage channels, differential amplifers and an

analog-to-digital converter (ADC). All layers are stacked

over pin headers, which convert the electrical connection

and the mechanical hold in parallel. The entire system has

a size of 10 x 9 x 6 cm and can be used mobile due to its di-

mensions. Furthermore, the battery shield and the WLAN

module underlines this aspect. An electrode belt with 16

electrodes has been developed for use on the body, which

adjusts elastically to the lower thorax.

3 Results

We attached the system with the electrode belt to two test

persons in the area of the hip in order to check our assump-

tions. The hip is one of the places where a good phsyiother-

apy execution will most likely cause muscle activity. For

our test, we conducted a comparative trial between a relaxed

person (see figure 1(b)) and a person with very tense back

and abdominal muscles (see figure 1(c)). As can be seen

in the corresponding figures, a clear distinction between re-

laxed and tense muscles can be made. This suggests, that

the system used can be helpful for supporting parents and

relatives when executing the Vojta therapy at home. A sub-

sequent pattern recognition on the activated muscles may

in the future help the practitioners to monitor their therapy

execution, document progress and thus gain confidence in

their own actions.
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Figure 1: Results of muscle activity measurement with EIT: The developed EIT system can be seen under (a); Under (b) the test person

with loose trunk muscles sits on a chair, i. e. is not strained muscularly (X-axis: Amount of measurements, Y-axis: Voltage); Under (c)

the test subject is sitting on a chair with strained rum muscles (X-axis: Amount of measurements, Y-axis: Voltage)
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Abstract: A quasi-2D EIT-optical dual modality sensor for 

cellular imaging was investigated. The design of the micro 

EIT sensor was demonstrated. High-resolution conductivity 

contrast arising from MCF-7 cell aggregates was obtained 

in multiple experiments by using adaptive group sparsity 

constraint. 

1 Introduction 

Non-destructive cellular aggregate imaging technique with 

preferable spatial-temporal resolution is enormous 

demanded for long-term study of biological behaviour or 

capture transient cellular dynamics, such as cell culture 

process and cell-drug interaction [1, 2]. Being able to 

observe such processes as they happen within the cell 

aggregate adds a vital extra dimension to understanding of 

physiological behaviours. Yet, few such techniques have 

been comprehensively investigated and maturely applied. 

This work aims to bridge the gap by demonstrating 

proof-of-principle that bioimpedance imaging based on a 

quasi-2D micro EIT sensor is well suited for real-time, 

high-resolution cell aggregates imaging. This represents a 

non-destructive cell viability assay based on membrane 

integrity. The proposed method also sets the stage for 

implementing multi-modality cellular imaging by 

combining EIT and optical sensing techniques. 

2 Quasi-2D EIT Sensor 

A quasi-2D EIT sensor with the ability of simultaneously 

incorporating optical sensing modalities was designed for 

real-time imaging of 2D cellular activities. Fig. 1 presents 

the sensor’s schematic and the manufactured sensor. The 

sensor was directly fabricated on a printed circuit board. 

The diameter and height of sensing chamber is 14 mm and 

1.6 mm. Around the circumference of the sensing region, 

16 gilded micro electrodes were fabricated by using half 

hole process. The bottom of the sensor was sealed with a 

transparent glass substrate to facilitate microscopic 

observation while impedance measurement is performed.  

 
Figure 1: The quasi-2D micro EIT sensor. The first row gives the 

schematic; the second row shows the manufactured sensor. 

Image reconstruction for the proposed sensor was 

based on an adaptive group sparsity constrained algorithm 

named AGS, which was developed by the authors and 

details can be found in [3]. This method combines sparsity 

and underlying structural information of conductivity to 

reduce the degree of freedom, which is formulated as: 
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where ||Δσ||w,2,1 is the weighted l2,1 norm. wi is the weight, 

and its value can be calculated according to the method 

given in [3]. 

3 Cell Aggregates Imaging Results 

Two 3D cultured MCF-7 human breast cancer cell 

aggregates were imaged in the experiments. The diameter 

of each cell spheroid is approximately 2 mm leading to a 

diameter ratio of 14.29% with respect to the sensor. Four 

phantom imaging tests were performed as shown in Fig. 2. 

In the experiments, the injected current’s frequency was 10 
kHz and its amplitude was approximately 1.5 mA peak to 

peak. Image reconstruction was performed based on the 

conventional 2D model by using the AGS method with a 

maximum iteration number 500. The experiment results 

assured that high-resolution conductivity contrast arising 

from the cell aggregates can be obtained. 

 
Figure 2: Experiment results. The first row shows four phantoms; 

the second row gives the image reconstruction results.  

4 Conclusions 

Based on the experiment results, conclusion can be drawn 

that by using the designed quasi-2D EIT sensor and AGS 

algorithm, high quality tomographic images of MCF-7 cell 

aggregates can be generated based on the real-time 

measurements. The promising results lay a solid foundation 

for performing EIT-optical dual modality cellular sensing 

in the near future. 
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Abstract: Fixed muscle contractures occur in primary 

neuromuscular conditions; the muscle is unable to extend 

to its full length due to fibrosis. EIT could serve as a 

valuable tool to assess for abnormal fibrosis. Here we 

performed finite element model analyses to evaluate the 

potential of EIT to fibrotic bands in muscle.  

1 Introduction 

Over the past 15 years, a number of studies have shown 

the potential value of electrical impedance methods in the 

evaluation of neuromuscular disease. Most of this work 

has used 4-electrode impedance technique, rather than EIT; 

since muscle is fairly homogeneous, such an approach is 

not unreasonable. However, in conditions in which there is 

substantial intramuscular heterogeneity, EIT has the 

potential to serve a valuable role.  

One relatively common condition that can affect 

skeletal muscle is that of a contracture. A contracture 

causes inability to fully extend a joint/muscle. It can be 

caused from long-term immobility, a primary muscle 

injury, such as a tear, or a chronic muscle disease with 

associated tissue destruction and fibrotic scaring.  

There is an increasing interest in primary contracture 

prevention and potential therapy. Yet, current technologies 

for assessing contractures are fairly limited, and include 

only MRI and ultrasound imaging. A convenient 

bedside/clinic based tool, could find wide application in 

primary medical and rehabilitative care. 

2 Methods 

We used conventional time difference frequency 

difference EIT applied to the surface of the limb at rest 

and during sustained contraction. Electrostatic simulations 

were performed using using Comsol Multiphysics 

(Comsol, Inc., Burlington, MA, USA) and MATLAB (The 

Mathworks, Natick, MA, USA) using the impedivity 

properties of tissues obtained from an online database [1]. 

We increased the impedivity of healthy and diseased 

muscle during contraction 20% and 10%, respectively. We 

included several inclusions representing fibrous tissue. 

The models for relaxed and contracted muscle are shown 

in fig. 1.  The model did not incorporate any change in 

shape due to the contraction, and thus simulated a 

isometric contraction.  

3 Simulation results 

In this simple model we show bands of fribrous tissue in 

both healthy and diseased muscle while it is at rest. In the 

healthy muscle, these represent fascial planes, whereas in 

the disease muscle, these may be due to, in part, to 

primary muscle fibrosis. With contraction, in the healthy 

muscles, the tissue lengthens normally and the fibrous 

bands become invisible on the EIT reconstruction. In the 

diseased muscle, when the muscle is extended, the fibrous 

bands continue to remain relatively unchanged in diameter 

as compare to baseline, and thus causing heterogeneities in 

the image, suggestive of persistent fibrotic alterations.   

  

 

 
Figure 1: Modelling geometries and reconstruction results. 

4 Conclusions 

This FEM study suggests a new application for EIT: namely 

using EIT to assess contraction limitation induced by the 

presence of abnormal connective tissue. Future work will 

focus on obtaining actual human data in patients with primary 

neuromuscular disease with or without associated 

contractures and making assessments during both isometric 

contractions (not shape change) and isotonic contractions 

(with elongation of the muscle).  
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Abstract: The performance of a novel multi-sensor 

electrical impedance tomography (EIT) system integrated 

in a wearable vest was examined in 50 healthy adults. 

Ventilation-related impedance changes measured with EIT 

were adequately assessed in most of the studied scenarios 

with the worst performance determined during walking. 

1 Introduction 

The clinical use of EIT currently focuses on critically ill 

mechanically ventilated patients treated in intensive care 

units. EIT is applied to continuously monitor regional lung 

ventilation and for adjusting the ventilator settings in these 

patients [1]. Recent clinical studies carried out in 

spontaneously breathing patients suffering from chronic 

lung diseases [2-4] highlight the potential use of EIT in 

mobile patients for assessing the deterioration of their lung 

function and the effects of therapy. Patients with chronic 

obstructive pulmonary disease, asthma or cystic fibrosis 

might specifically benefit from wearable and remote EIT 

monitoring ideally combined with simultaneous 

acquisition of additional bio-signals. 

2 Methods 

A wearable multi-sensor vest was developed within the 

EU-funded project WELCOME [5]. The sensors integra-

ted in the garment allowed the continuous measurement of 

electrical bioimpedance (used in EIT and for detection of 

breathing rate (BR)), ECG (used to measure the heart rate 

(HR)), peripheral O2 saturation (SpO2), chest sound and 

body activity. Four male and four female vests in the M, 

L, XL and XXL sizes were provided. The study was 

carried out on 50 healthy adult volunteers, 23 women (37 

± 9 yr) and 27 men (38 ± 11 yr). It was approved by local 

and federal authorities, written informed consent was 

obtained from all subjects.  

The aims of the study were to establish the safety of the 

vest, the presence and plausibility of the signals and assess 

the comfort of wearing using questions with a Likert scale. 

The individual examinations were carried out in two 

phases. The vest was taken off and put on again in 

between to assess the reproducibility of findings. Phase 1 

consisted of four intervals comprising quiet tidal 

breathing, deep breathing, forced full expiration and 

repeated quiet breathing in seated position. Phase 2 

consisted of nine intervals. The first four were identical 

with phase 1, followed by periods of walking, sitting, 

lying, sitting and writing. Selected signals (BR, HR, 

single-lead ECG, SpO2 and body activity) were streamed 

continuously on a mobile phone using Bluetooth and all 

signals downloaded via WiFi after the end of examination. 

3 Results 

WELCOME vests were safe, no adverse events occurred. 

All intended bio-signals were recorded. The quality of EIT 

recordings in each study phase, based on the presence of 

ventilation-related impedance changes in four and nine 

periods respectively, is presented in Figure 1. Excellent 

and very good quality was achieved in 66% of subjects in 

phase 1 and 62% in phase 2. Disturbed EIT signal was 

mostly detected during walking, where ventilation-related 

variation was reliably identified in only 20% of subjects. 

 
Figure 1: Numbers of subjects with bad, acceptable, good, very 

good and excellent measurement of ventilation-related 

impedance changes during the examination phases 1 and 2.  

Assessment of body activity was excellent, ECG, HR, BR 

rendered plausible results. SpO2 was systematically too 

low, chest sound quality was inadequate. The comfort of 

wearing was positively rated with the highest scores 

achieved for the skin-friendliness of the garment. 

4 Conclusions 

The safety and performance of the first fully wearable 

remote EIT system with parallel acquisition of multiple 

bio-signals was validated in healthy subjects. Our 

preliminary results imply that monitoring of patients at 

their homes using EIT might be achievable in the future. 
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Abstract: Three materials will be characterized in order to

generate a conductive and flexible neonatal thoracic phan-

tom. Such model is going to mimic the deformation en-

countered in a lying position while a boundary reconstruc-

tion and EIT imaging are carried out.

1 Introduction

Despite the fact that several phantoms are available to clin-

icians for training purposes, none of these can mimic the

skin conductivity. Therefore, saline-filled tanks, made of

insulating materials and featuring metallic nodes, are usu-

ally adopted to perform pilot measurements for EIT recon-

structions [1, 2]. Recently, a common cylindrical tank has

been upgraded into a geometrically accurate skull keeping

the insulating material [3]. The use of a conductive mate-

rial has been introduced for an anatomically accurate pelvic

phantom cast for EIT [4] and a 3D printed breast model for

Microwave Imaging [5].

Following the development of a prototype for the thoracic

boundary reconstruction [6], the need for a conductive, flex-

ible and closable phantom arose. Hence, this work aims to

model the lungs area inside an anatomically accurate neona-

tal thorax, which could be squeezed to mimic the respiration

movement while an EIT belt is in place. The goals of the

study consist into comparing the material performances and

validating the boundary reconstructions.

2 Methods

Three different materials have been selected to develop the

thoracic prototypes.

• A carbon impregnated polyurethane foam (Teknis Lim-

ited, UK). Five samples, featuring the same cross-section

(10mm x 10mm) and different lengths, have been tested

by means of a Solartron 1260 impedance analyzer. The

resistance and the absolute permittivity have been mea-

sured by sweeping the frequency up to 2MHz. Succes-

sively, the conductivity and the relative permittivity have

been calculated.

• A mix of a silicone (75%), carbon black powder (15%)

and graphite powder (10%) [5], which needs to be syn-

thesized. Carbon black powder has been preferred over

carbon fibres in order to promote the isotropy of the gen-

erated material.

• A carbon filled thermoplastic polyurethane Palmiga 95-

250 (Creative Tools, Sweden) has been acquired among

the newest filaments available for 3D printing.

3 Results

The relative permittivity of foam samples is shown in Fig-

ure 1. The curing of the second material has been inhib-

ited either while using a platinum-cure silicone Transil 20

(Mouldlife, UK) or a water white clear urethane Clear Flex

30 (Smooth-On, US). The same result has been observed

even changing the methodology and the percentages.

Figure 1: Relative permittivity calculated for each sample of the

carbon impregnated polyurethane foam tested by means of an

impedance analyzer.

4 Discussion

The curing inhibition, which surprisingly has not been ex-

perienced in previous works, could be related to impurities

(e.g. sulphur) contained in the graphite. Further syntheses

will be attempted. Following the dielectric characterization

of samples for each material, two main comparisons will be

addressed. Firstly, the materials performance, in terms of

conductivity and versatility, will be evaluated for the same

thoracic boundary. Such study appears to be novel to the

best of the authors knowledge. Secondly, the phantoms will

be used to validate the shape detection and reconstruction.

Hence, the EIT reconstructed image of each undeformed

phantom will be compared to the corresponding arbitrary

deformed one.
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Abstract: A field theory employing Green’s functions is 

used to develop an imaging algorithm of weak conductivity 

variations in EIT. The algorithm results in a linear system 

of equations whose solution gives both the potential and the 

conductivity distributions. 

1 Introduction 

EIT imaging of soft deep-body tissues, away from the skin, 

challenges the numerous existing image reconstruction 

algorithms. Part of the difficulty is to image significantly 

small inhomogeneous internal conductivity variations 

without resorting to memory-expensive inverse problem 

solution ways [1].  

2 Methods 

2.1 The Forward Problem 

Consider a 2D medium with conductivity  and two 

point electrodes sourcing and sinking current  and be 

placed at  and  respectively. The EIT’s equation is 

  (1) 

where  is the potential and r is the observing 

position. Assuming no other current sources are present and 

integrating over the domain of interest , with the use of 

Green’s theorem [2], we get the integral equation 

Where  is the position vector within  where integration 

takes place. Let σ0 be the homogeneous conductivity 

reference and G be a Green’s function solution of the 

homogeneous Laplace’s equation . 

Assuming a circular area of radius  and keeping the 1st 

Fourier series term, the Green’s function gives 

 

Where ,  and  are the angles of  

respectively. For small conductivity variation e.g. when 

 it is  and the homogeneous 

potential V0 equals the Green function’s solution.  

2.2 The Inverse Problem 

To solve the inverse problem near the centre, the internally 

inscribed orthogonal parallelogram of the circle is 

discretized to square pixels, with Δα side length. Each pixel 

corresponds to a conductivity contribution  such that 

 

Where  are the central point coordinates of 

an arbitrary pixel and  are the central 

coordinates of the referring pixel. Parameter  must be 

small enough to avoid aliasing. Taking the gradient of Eq. 

(4) and using it in Eq. (2) we replace the non-linear term 

. Using the midpoint integral rule, the inhomogeneous 

part of equation 2 is written as 

 

In Eq. (5), vector  is the position of the voltage observation 

points. Taking into consideration the homogeneous and 

inhomogeneous model measurements, the problem 

concludes to a linear system of equations , where  

is the measurement vector,  is the unknown vector of the 

coefficients  and the entries of  are 

 

Where  refer to the current electrode pairs and 

 refer to the voltage pairs. In order to have a well-defined 

problem, the total number of pixels is chosen in such a way 

to equal the number of the total measurements. Since  is 

close to singular, the system is solved using the biconjurate 

gradient’s method with preconditioner [3].   

3 Results 

For the testing, inhomogeneous models were created using 

the FEMM along with the MATLAB tool. The electrode 

measurements were computed using Εq. (2) assuming 

opposite strategy with 32 electrodes and a reconstruction 

performed using the back-projection algorithm. Then, 

conductivities were calculated using the method described. 

 
Figure 1: Image reconstruction of two small conductivities near 

the centre: EIDORS (centre), described approach (right).  

4 Conclusion 

This approach of EIT conductivity imaging provides a 

relatively simple and alternative way to image deep-body 

soft tissue conductivity variations. Applications could be 

developed in chest imaging and breast cancerous 

inhomogeneities detection. 
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Abstract: In lung EIT, using the method in [1], two lungs

tend to merge together for obese people. To handle this

problem, a strong regularization term containing the geo-

metrical information of two lungs should be added. We

performed a pilot study on providing the constraint using

deep learning method. Numerical simulations validate the

theory.

1 Introduction

EIT has potential applications in continuously monitoring

the function of lung of human body due to its ability to

reconstruct a high temporal resolution conductivity image.

EIT way of lung imaging is based on minimizing the mis-

match between the boundary measured voltage data and the

data from solving the forward model with the same bound-

ary conditions. Due to the ill-posedness nature of EIT, ex-

isting methods of the minimizing procedure is usually ac-

companied with a regularization term. However, we found

that in many cases the traditional regularization such as

Tikhonov regularization does not work for the lung imag-

ing; e.g. for obese people, two lungs are merged in the

reconstructed image [1]. In this paper, we propose a deep

learning method to provide a priori geometrical information

including sizes, shapes and locations of two lungs. Numer-

ical results validate the proposed method.

2 Methods

2.1 Conventional lung EIT method

Let Ω be the chosen imaging slice of the imaging object, the

lung. The conductivity distribution of the lung is dependent

on the time variable t. We denote σt(r) as the conductivi-

ty distribution of Ω at r = (x, y) ∈ Ω and the time t. Note

that for EIT-based lung imaging, we are aiming at the recon-

struction of the conductivity changes with respect to t, ∂σt

∂t
.

In an E-channel EIT system, to probe ∂σt

∂t
, we inject sev-

eral sinusoidal currents i(t) = I cosωt (ω/2π ≤ 1 MHz)

through selected electrode pairs (Ep(j), Eq(j)) attached on

∂Ω, the boundary of Ω. We can measure the voltage dif-

ference V t
jk = ut

j |Ep(k)
− ut

j |Eq(k)
, where p(j) and q(j) are

two different numbers chosen in {1, 2, · · · , E}, ut
j is the

induced voltage potential corresponding to the j-th injec-

tion current. Denoting V
t = (V t

12, V
t
23, · · · , V

t
EE), the con-

ventional methods for the reconstruction of ∂σt

∂t
from ∂

∂t
V

t

is based on minimizing Φ[∂σ
t

∂t
] =

1

2
‖Sσ0

∂σt

∂t
− ∂Vt

∂t
‖2 +

λReg(∂σ
t

∂t
), where the first term is the fidelity term while

the second term is regularization term with a regularization

parameter λ > 0, Sσ0 is the sensitivity matrix [2, 3]. Un-

fortunately, the conventional regularization such as [1] does

not work for a human body with a thick obese since their

lungs are closely located and far from the boundary com-

paring to the people with normal weights. Hence, we need

to add a strong constraint containing the geometrical infor-

mation of two lungs to handle the ill-posedness for this sit-

uation.

2.2 Proposed method based on deep learning

In this section, we proposed a deep learning method for

providing the geometrical information of two lungs. We

learn a function f : ∂Vt

∂t
7→ φφφt from many training data

{(
∂Vt

j

∂t
,φφφt

j)}
N
j=1, where φφφt is a vector contains the informa-

tion of the sizes, locations and shapes of two lungs. In our

paper, f is achieved from

f = argminf∈UMLP

1

N

N∑

j=1

||f(
∂Vt

j

∂t
)− φφφj ||2, (1)

where UMLP is the MLP net. Hence, ∂σt

∂t
could be recon-

structed from the minimizing procedure containing the ge-

ometrical information f(∂V
t

∂t
).

3 Results

We used two ellipses which is close to each other to mim-

ic the lungs of obese people. The number of training data

is 5000 with different sizes, locations and shapes of the el-

lipes. The following figure shows the reconstruction result

using the proposed method.

Figure 1: Scheme of the training and the simulation results.

4 Conclusions

This pilot study shows that deep learning method can be

used to provide a reliable geometric constrained informa-

tion in lung EIT for the obese people.
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Abstract: The human tissues show a frequency depen-

dent behavior due to the existence of insulating membranes.

fdEIT takes account of the frequency-dependent character-

istics of tissues and is promising for the quantification of

the volume of fat which is frequency-independent.

1 Introduction

Subcutaneous fat is stored below the layers of skin which is

not necessarily hazardous to your health. Visceral abdom-

inal fat is stored deeper in the abdomen which is wrapped

around major organs like the liver, pancreas and your kid-

ney. Too much visceral fat creates can lead to inflamma-

tion and high blood pressure. It is important to quantify

the amount of visceral fat and muscle inside of abdomen

for the long-term health. Bioimpedance spectroscopy (BIS)

for body composition analysis [5] has been used to quantify

the composition of the human body. The objective of this

study is to evaluate the capability of the proposed method in

non-invasively quantifying the amount of visceral abdomi-

nal fat through the weighed frequency difference electrical

impedance tomography [1–3].

2 Methods

Let Ω denote the interested two-dimensional region embed-

ded with multiple cells Ck, k = 1, · · · , Nc as shown in Fig-

ure 1.

E1

E2

E3

E4
E5

E6

E7

E8

E9

E10

E11

E12
E13

E14

E15

E16

Ωe

Ωf Ck

Figure 1: The configuration model of multi-frequency electrical

impedance tomography system.

The circular layer Ωf and Ωe are assumed to have fre-

quency independent electrical properties. The cell denoted

as C = ∪
Nc

k=1
Ck is surrounded by uniform-thickness mem-

brane:

d ≪ d(Ck) < d(Ω).

When a sinusoidal current with an angular frequency ω
(0 ≤ ω/2π ≤ 106) is applied through boundary ∂Ω of

Ω, the induced frequency dependent complex potential uω

satisfies the following system:
{

∇ · (γω∇uω) = 0, in Ω,

γω ∂uω

∂ν
= g, on ∂Ω,

(1)

where γω = σ + iωǫ is the admittivity distribution with

conductivity σ and permittivity ǫ, ν is the outward unit nor-

mal vector and g is the magnitude of the current density on

∂Ω due to the injection current [4].The admittivity distribu-

tion inside Ω is assumed to be piecewise constant in each

subdomain which can be written as

γω =















γω
f = σf + iωǫf , in Ωf ,

γω
e = σe + iωǫe, in Ωe,

γω
c = σc + iωǫc, in C,

γω
m = σm + iωǫm, in Membrane,

(2)

Since the thin layers are assumed to be insulating,then

σi ≈ 0 ≪ σb < σc. (3)

The collected voltages Vω at ωk can be written as [3, 4]

Vk = [V k
1,1, V

k
1,2, · · · , V

k
p,q · · · , V

k
Ne,Ne

], (4)

Figure 2: The Colo-plot of V3,10 collected between E10, E11

when current is injected through E3, E4 .

3 Numerical simulations

Figure 3: Numerical simulation models and result
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Abstract: The potential effect of deformation of thorax 

on extracted clinical parameters in neonatal lung EIT is 

investigated based on developed pre-term models.  

1 Introduction 

Unfortunately knowledge regarding the precise 

anatomical and mechanical properties of neonatal chest 

(more specifically pre-terms) is quite limited. One of 

the main reasons for this is a rarity of medical images, 

a consequence of their critical medical conditions at 

birth, constant movements and hazardous effects of 

some imaging techniques, such as CT. Previously [1] 

we had shown using more age-appropriate models 

could lead to changes in the final clinical parameters 

such as silent spaces. However, the evaluation of such 

changes is extremely challenging since there is no 

reference to be used as standard for comparison. 

During the modelling of pre-term neonates a 

considerable deformation in thorax has been observed. 

This is because the rib cage bones are not yet calcified 

and hence are soft and flexible. The deformation can 

have impacts on the extracted parameters both by 

affecting the reconstruction procedure because of 

deviation from the forward model and also on 

parameters such as silent spaces which are calculated 

from lung contour. Below an example of foetus with a 

gestational age (GA) of 29 wk is shown in-utero, 

demonstrating how the thorax and left lung have been 

affected. In neonatal lung EIT, the patients are 

positioned supine or prone and therefore the weight 

distribution is significantly different. 

 

 

 

Figure 1: Thorax Deformation (a) Left arm pressing the thorax 

pushing left lung away (b) corresponding 3D model 

2 Method 

In addition to the quality of the reconstructed image 

breath rate is used to investigate the effect of 

deformation of the thorax during the EIT monitoring. 

The advantage of exploiting breath rate as a reference 

scale lies in the fact that it can be computed directly 

from measured voltages and independently from 

reconstructed images [2]. The change in shape will be 

simulated using structural mechanics analysis and 

compared against the unchanged model implementing 

the same inverse method and parameters. 

3 Results 

The 3D models have been developed directly based on 

MRI image from foetuses in gestational ages Fig. 2.  

 

 

 

Figure 2: FEM models with projected electrodes; (a) 19  wk, 17.5 

cm of circumference (b) 38 wk with 29.17 cm   

4 Discussion 

This paper presents the first FEM models for three 

foetuses in the GA range of 19 to 38 wk. Comparisons 

are made to assess the effect of improving the accuracy 

of the geometric features as opposed to scaling models 

from older infants to achieve approximate solutions 

and its effect on clinical parameters extracted from 

reconstructions based on these models.   
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Abstract: There is a need for a free, open-source software 

for producing segmentations of medical images and, from 

these segmentations, producing high-quality tetrahedral 

meshes suited for use in solving the EIT problem with 

finite element methods. This paper describes the use of 3D 

Slicer for producing and visualizing these meshes. 

1 Introduction 

Many medical applications, such as EIT, use finite 

element methods for various types of analysis. These 

methods require high-quality tetrahedral meshes of 

anatomical structures as inputs. Many software options 

exist for segmenting anatomical structures and for creating 

tetrahedral meshes of those structures, but many of these 

options require commercial licenses and lack integration 

between segmentation and meshing capabilities. In fact, 

many in the EIT community use different software 

platforms for segmenting and meshing. This abstract 

describes the use of 3D Slicer [1,2], a free and open-

source program for both performing segmentations and 

creating and visualizing tetrahedral meshes.   

2 Methods 

Here, we describe the use of 3D Slicer to perform image 

segmentation, create high-quality tetrahedral meshes from 

these segmentations, and visualize tetrahedral meshes that 

can be used for EIT reconstruction. 

2.1 Segmentation 

Image segmentation in 3D Slicer is primarly done through 

the Segmentations and Segment Editor modules. These 

easy to use modules include many common segmentation 

techniques, ranging from manual operations such as 

drawing and contouring to more automatic techniques 

such as thresholding, region growing, and graph cut 

techniques. These modules also include common post-

processing operations such as morphological operations, 

smoothing, island removal, hole filling, and interpolation 

from sparse contours. Figure 1b shows a chest MRI 

segmented into background, chest, and lung segments 

using region growing from manually-placed seed points.  

2.2 Meshing 

Following segmentation, the resulting label map can be 

turned into a high-quality tetrahedral mesh using the 

SegmentMesher extension [3] available via the Slicer 

Extension Manager. The SegmentMesher extension 

interfaces 3D Slicer with two powerful meshing libraries: 

Cleaver [4] and TetGen [5]. It will export the 

segmentation to the chosen mesher and automatically load 

back in and display the resulting mesh for verification. 

This mesh can then be saved and used for EIT 

reconstruction. Figure 1c shows a mesh created via 

Cleaver loaded into 3D Slicer. 

2.3 Visualization 

3D Slicer also includes powerful visualization tools for 

volumetric meshes. Figure 1 shows the ability to both 

view and clip the model in 3D (1c) as well as show it 

overlaid on the image it was generated from (1b). There is 

also support for visualizing scalar fields defined on the 

mesh if there are specific values at each vertex.  

3 Conclusions 

3D Slicer is a powerful, free, and open-source program 

that allows for creating and visualizing high-quality 

tetrahedral meshes of anatomical structures. 
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Abstract: EIT reconstruction in 3D domain suffers from a

large number of unknown parameters associated with the

FEM method. To circumvent this difficulty we developed

a  classification-reconstruction  method  based  on  an

efficient labeling algorithm through a conditional random

field model.

1 Introduction

EIT measurment is commonly modeled within the finite

element model (FEM) framework.  EIT reconstruction is

an ill-posed inverse problem. One issue that induces such

ill-posedness  is  the  huge  number  of  free  parameters

associated with the FEM modeling in comparison to the

limited number of independent voltage measurements. As

a consequence, the optimal solution of the inverse problem

is  not  unique and unstable  to  noise.  To circumvent  this

problem,  different  regularization  methods  have  been

applied to restrict the freedom the underlying parameters.

An attempt  to  regularize  the  reconstruction is  based  on

FEM elements  clustering,  by forcing the FEM elements

within each element cluster sharing the same impedance

[1, 2]. In previous studies, the clustering methods either

require  a  patient-specific  CT  image  or  have  a  high

computational  complexity.  In  this  study,  we  present  an

efficient approach of such cluster based regularization by

applying  a  conditional  random  field  model.  The

computation of the proposed method is efficient for 3D

reconstruction.

2 Methods

Given  the  voltage  measurement,  an  efficient  linear

reconstruction  which  employs  a  pre-calculated

reconstruction  matrix  can  be  performed.  The  FEM

elements  are  clustered  with  respect  to  their  initially

reconstructed  impedance  intensities  and  geometrical

proximity.  For  each  FEM elements,  a  feature  vector  is

generated by combining its  geometrical  position and  its

initial  conductivity  intensity.  Associate  to  each  FEM

elements, there is a random label variable defined over a

fixed  label  set.  Each  label  indicates  a  cluster  that  an

element  belongs  to.  By  connecting  each  two  of  these

random label variables, a fully connected random field can

be formed. We are interested in the probability distribution

of  the  random label  variables  in  the  random field.  The

collection  of  the  feature  vectors  is  identified  as  an

observation of the fully connected label random field. The

observed  feature  vectors  and  the  hidden  random  field

formed  a  conditional  random  field  model  [3].  The

probability  distribution  of  each  random  label  variable

conditioned  on  the  feature  vectors,  i.e.,  the  conditional

probability of each label associated with an FEM element,

can be determined efficiently[3]. On each FEM element,

the label in the label set which has the largest probability

was  assigned.  The  FEM elements  are  grouped  into  the

same  cluster  if  they  are  assigned  with  the  same  label.

Within each cluster, the elements are forced to share the

same conductivity. Hence,  the degree of  freedom of the

inverse problem has been reduced. A conjugate gradient

solver  has  been  applied  on  these  clusters  for  fast

reconstruction.  This  framework  is  summarised  as  the

flowchart in Fig. 1.

Figure 1: The flowchart of the proposed method.  

3 Conclusions

The  performance  of  the  proposed  framework  has  been

examined on 3D image reconstruction in the simulation.

An extruded 3D lung and  heart  model  is  employed for

simulation  (Fig.  2  (A)).  The  reconstructed  images  have

been demonstrated in Fig. 2, with a top-down view. The

3D FEM mesh has 27,578 nodes. The proposed algorithm

is implemented in C++ and Python. The total computation

time including the initial reconstruction is around 2s on a

laptop with an i5-7200U CPU. 

Figure 2: A 3D Simulation of the proposed framework
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Abstract: Electrical Impedance Tomography (EIT) 

derived parameters indicating regional airway obstruction 

were correlated with the ‘Total Brody Score (TBS)’ from 

a computerized tomography (CT) scanning scoring system 

to investigate the suitability of EIT to evaluate the severity 

of cystic fibrosis (CF) related lung disease.  

1 Introduction 

Pulmonary function testing (PFT) and computerized 

tomography (CT) scanning are common methods in 

diagnosis and progress monitoring in patients with cystic 

fibrosis (CF) related lung disease. Compared to PFT 

which provides numeric data, the analysis in CT scanning 

is more subjective and depends on the experience of the 

radiologist. Thus, Brody et al. created a scoring system for 

the analysis of CT scans which should enable a 

comparable and quantifiable assessment of pulmonary 

abnormalities in CF [1]. The scoring system considers 

anatomical and physiological abnormalities, such as 

bronchiectasis or mucous plugging, on a lobar basis. The 

so-called ‘Total Brody Score (TBS)’ includes all lung 
lobes. However, the analysis of CT scans of the whole 

lung is very time-consuming, cost intensive and requires a 

lot of experiences. 

In this study, the correlation between Electrical Impedance 

Tomography (EIT) derived parameters indicating regional 

airway obstruction and the TBS was investigated to figure 

out if EIT might be suitable to evaluate the severity of CF 

related lung disease.                             

2 Methods 

Ethical approval of the study was obtained by the LMU 

Hospital of the University of Munich. 

2.1 Determination of the Total Brody Score 

Two radiologists determined the TBS of 10 CF patients (3 

female and 7 male, age 35.2 ± 8.4 years, weight 63.9 ± 

13.0 kg, height 177.0 ± 10.0 cm, (mean ± SD)), 

respectively. The mean value of TBS was calculated for 

each patient.  

2.2 EIT data collection, processing and evaluation  

EIT measurements were carried out (Pulmovista 500®, 

Dräger Medical, Lübeck, Germany) on the mentioned CF 

patients during normal tidal breathing and a forced vital 

capacity (FVC) manoeuvre [2] to determine regional 

impedance changes within the lung related to FVC and the 

forced expiratory volume in one second (ΔIFVC and 

ΔIFEV1). EIT data were collected with a frame rate of 30 

Hz at the 3rd and 5th intercostal space (ICS), respectively. 

EIT image reconstruction was performed by using the 

Dräger EIT Data Analysis Tool 6.1 (Dräger Medical, 

Lübeck, Germany). A low-pass Butterworth filter of the 

3rd order with a cut-off frequency of 50 min-1 was 

employed to exclude pulsatile components of the EIT 

signal. Regions of interest (ROI) were determined by 

utilizing a linear regression fit [3]. Lung areas were 

defined by pixel values higher than 20% of the maximum 

regression coefficient within the functional EIT image 

resulting from the linear regression fit [4].  

Regional ratios of ΔIFEV1 and ΔIFVC were assessed with the 

data obtained at the 3rd and the 5th ICS for each patient. 

Within each thorax section, the median of regional 

ΔIFEV1/ΔIFVC were calculated and correlated with the mean 

TBS (Figure 1).           

 
Figure 1: Mean Total Brody Score (TBS) of 10 cystic fibrosis 

(CF) patients in dependency of the median of regional 

ΔIFEV1/ΔIFVC determined within the 3rd and the 5th intercostal 

space (ICS), respectively.   

3 Conclusions 

The mean values of TBS of the 10 CF patients showed a 

higher correlation with the medians of regional 

ΔIFEV1/ΔIFVC obtained within the 5th ICS compared to the 

medians of ΔIFEV1/ΔIFVC calculated within the 3rd ICS. 

Since the TBS comprises the whole lung, differences in 

correlations are most likely based on the lung volume 

captured at the different thorax sections by EIT. However, 

results indicate that EIT is suitable to assess the severity of 

CF-related lung disease.        
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Abstract: Results of EIT measurements on the human 
thorax are dependent from the position of electrode plane. 
In order to quantify and correct for the influencing factors, 
3D FEM thorax models from CT data of patients are 
constructed and used for numerical simulations. 

1 Introduction

EIT devices for clinical application in lung monitoring 
currently use electrodes in a transversal plane at the 
thorax. However, several investigations [1-3] showed a 
considerable influence of the cranio-caudal position of the 
electrode plane on the results of absolute (a-EIT) and
functional EIT (f-EIT) as well. One of the reasons is the 
inhomogeneity of the lung itself. On the other hand, 
geometrical elements as different thorax and lung shape or 
different distances of the planes and corresponding lung 
segments to the boundaries of the body and to other 
organs will influence the results. Therefore, information 
from different planes is not fully comparable. In order to 
investigate the various influencing factors of the plane 
position on the results of f-EIT and a-EIT, simulations on 
realistic 3D FEM models of human thorax are performed.
On the basis of the known parameter distributions in the 
models (e.g. homogeneous lung) reconstructed parameters
can be evaluated quantitatively and corrected accordingly.

2 Methods

3D Finite Element Models of human thorax are 
constructed from CT data of patients with healthy lungs by 
segmentation using Simpleware (Synopsys Inc., Mountain 
View, US). The meshes are imported into COMSOL 
Multiphysics (v5.0-5.3a, COMSOL AB, Stockholm,). The 
general procedure is principally described in [4]. 
Resistivities of the thorax and of the organs are set
according to literature [5]. Resistivity of the lung is set in 

steps of 1 �m from 3 to 20 �m simulating a whole breath
from deep expiration to deep inspiration. Electrodes are
attached to the thorax as points in several planes and 
simulations were done assuming different drive patterns. 
From the simulated data sets of voltage differences, 
images of resistivity changes were reconstructed using 

GREIT [6] and images of absolute resistivity by a 
modified SIRT algorithm [7] with azimuthal averaging.

3 Results and Conclusions

Results show a significant influence of the electrode plane 
position on both the reconstructions of resistivity changes 
and absolute resistivities. Fig.1 shows an example with 16 
electrodes per plane and adjacent drive pattern in each 
plane. Generally, reconstructed resistivity appears to be 
higher in the right lung than in the left and in the upper 
plane higher than in the middle and bottom ones. Also 
resistivity changes are affected in a similar way. The 
reason for this is assumed to be the location of the planes 
at the lower end of the lung. The model with
homogeneous thorax without lungs was used to calculate 
geometric correction factors in each plane. Tomograms of 
a-EIT calculated with these factors (right column) show 
nearly exact lung shapes and smaller differences between 
planes. Remaining differences are not due to thorax shape 
but due to position on lower end of the lung! In further 
investigations, universal approaches for correction of real 
measurements (a-EIT and f-EIT) in different planes are to 
be derived from simulations on models from a variety of 
different patients (different shapes, ages, gender).
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Abstract: Magnetic Resonance Electrical Impedance 

Tomography (MREIT) has been used to measure low 

frequency (~10 Hz) electrical conductivity properties. Here, 

finite element simulations are used to show that it should be 

possible to measure electrical properties at frequencies in 

the range 10-~8000Hz using current waveform modulation. 

We also show imaging results that demonstrate differential 

signals can be measured in phantoms containing dialysis 

membranes with different thicknesses and permittivity 

characteristics. 

1 Introduction 

MREIT has typically been used to image low-frequency 

electrical properties of tissue [1]. Since, electrical 

properties of biological tissue are complex and frequency 

dependent, and show large variation in the range between 

10 Hz and 1000s of Hz. Therefore, it is of interest to 

determine if MREIT can image frequency dependence 

separate from other stray conductive or scanner dependent 

effects. In this study, we performed simulations to 

determine the spectra of modulated MREIT waveforms and 

determined critical frequencies of a semipermeable 

membrane in a simulated phantom. Finally, we imaged 

several semipermeable membranes using spin-echo MREIT 

techniques and modulated MREIT waveforms. 

2 Methods 

A standard MREIT current waveform (cycle length of 100 

ms, and a duty cycle of 64% [2,3]) was constructed using 

MATLAB, using a 10-kHz sample rate. The modulated 

waveform was created by multiplying a rectified 500 Hz 

sine wave, sampled at the same 10 kHz rate, with the 

standard waveform. The spectrum of the standard 

waveform was principally at 10 Hz, and rectification of the 

modulating function resulted in its spectrum having peaks 

at both 10 Hz around 1000 Hz. A two-dimensional 

COMSOL (Burlington, MA) model of a conducting square 

(10 cm) was constructed for FEM simulations. A cellulose 

membrane-like (thickness 72 nm [4]) inclusion was 

modeled using the COMSOL AC/DC Module contact 

impedance boundary condition. The conductivity and 

relative permittivity of the membrane were set to be 10-7 

S/m, and 3 respectively. The conductivity of the medium 

surrounding and within the membrane was 1 S/m, and its 

relative permittivity was 80. A normal current density of 1 

A/m2 was applied at the upper edge, and the lower edge was 

grounded.  

An experiment was performed using membrane from Fisher 

(S25645A, 0.8-inch diameter) which had molecular weight 

cut-offs of 12k and 3.5k. MR Spin-echo imaging was 

performed using a 7T Bruker MRI (Billerica, MA) with 

bore diameter 20cm, located at the BNI, AZ, USA. Imaging 

parameters were: Field of view = 80x80 mm2, matrix size = 

100×100, TR/TE = 1000/40 ms, slice thickness = 5 mm, 

averages = 4, injected current amplitude (I±) = 2.5mA, Tc= 

36ms, and total scan time = 400s. MR phase measured 

during separate positive and negative current injection were 

combined to compute the z-component of the magnetic flux 

density (Bz) and cancel the effect of systematic phase 

artifacts. Differences between magnitude images at 

different frequencies were compared. 

3 Results 

Figure 3. (a) The simulated magnitude of the complex current 

density as a function of frequency. Since the membrane did not 

conduct at low frequencies, the current density within the 

membrane was low below around 100 Hz, but as frequency 

increased the current distribution became more uniform. (b) 

Comparison of differences between positive and negative current 

magnitude images, showing pattern differences in magnitude 

images between different frequencies and 0 Hz for non-

conducting (top) and conducting membranes. 

4 Conclusions 

We believe these results indicate that it may be possible to 

use MREIT to image frequency dependent properties of 

biological tissues. 
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Abstract: A questionnaire to validate the clinical 

usefulness of 14 previously published EIT parameters was 

completed by 32 clinicians with different degrees of 

experience in EIT.  

1 Introduction 

The use of EIT in neonatal and paediatric patients is still 

rather limited compared with the use in adult patients. 

Nonetheless, several clinical studies have been published 

showing the potential of EIT chest monitoring in this 

fragile patient population, as summarized in the recent 

consensus article [1] with a specific online supplement 

dedicated to the EIT use in neonates, infants and children. 

EIT has been applied in the delivery room, neonatal and 

paediatric intensive care units, operation theatres and 

pulmonary function labs to assess regional lung function 

and its disease- and treatment-related changes.  

The limited availability of EIT devices that are CE-

marked for the use in neonates and infants is probably one 

of the reasons why the numbers of clinical studies in 

neonatology and paediatrics are relatively small and why 

EIT is not routinely used in this setting. Another reason is 

the general lack of a consensus on the most adequate EIT 

measures needed for clinical decision-making. 

Therefore, we have conducted a survey among neonato-

logists and paediatricians active in EIT research with the 

aim of obtaining their personal assessment of multiple 

parameters that can be derived from EIT recordings.  

2 Methods 

36 clinicians with variable degrees of experience with EIT 

were asked to complete a questionnaire to evaluate 14 

established EIT parameters: respiratory rate (RR), heart 

rate (HR), relative tidal volume (VT,rel), absolute tidal 

volume (VT,abs), ventral-to-dorsal centre of ventilation 

(CoVvd) and ventilation ratio (VRvd), right-to-left centre of 

ventilation (CoVrl) and ventilation ratio (VRrl), low tidal 

variation regions (LTVR), regional respiratory system 

compliance (Crs), global inhomogeneity index (GI), 

coefficient of variation (CV), regional respiratory time 

constants (τe) and change in end-expiratory lung 

impedance (∆EELI). The questionnaire included a brief 

description of each parameter and its possible clinical 

applications. Clinicians were asked to evaluate the EIT 

parameters on a numerical rating scale ranging from 0 (not 

useful) to 7 (very useful). We used descriptive statistics 

(mean ± standard deviation) and compared the ratings of 

different EIT parameters with one-way analysis of varian-

ce (ANOVA) for repeated measures with Bonferroni post-

test for multiple comparisons.  

3 Results 

34 clinicians responded to our invitation to fill in the 

questionnaires. 32 colleagues (clinical experience 

19.4 ± 9.1 yr, experience with EIT 7.7 ± 5.8 yr) from 12 

countries on three continents (Australia, Europe, South 

America) completed the questionnaire. 2 colleagues 

declined the invitation because of illness and cessation of 

working as a medical doctor. 2 colleagues did not react in 

spite of repeated invitations. 

The ratings differed significantly among the parameters 

(p < 0.0001) with the highest scores given to GI (6.28 ± 

0.87), LTVR (6.16 ± 0.94), ∆EELI (6.16 ± 0.87) and 

CoVvd (6.13 ± 1.45). The lowest rating was obtained for 

HR (4.19 ± 2.26, p < 0.01 vs. all other parameters except 

for VT,abs). There were no other statistically significant 

differences between parameter ratings. All results are 

presented in Table 1. 

4 Conclusions 

Among the parameters in the questionnaire, GI index, 

LTVR, ∆EELI and CoVvd were deemed particularly useful 

for neonatal use by a heterogeneous group of clinicians 

with various degrees of EIT experience. To establish a set 

of clinically relevant EIT measures undeniably not only 

subjective clinicians´ assessments but also evidence-based 

data will be needed. 
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Table 1: Ratings for various EIT parameters, given on a 7 point scale (1-7), where 1 represented the worst and 7 the best possible 

rating. RR, respiratory rate; HR, heart rate; VT,rel, relative tidal volume; VT,abs, absolute tidal volume; CoVvd, ventral-to-dorsal centre 

of ventilation; VRvd, ventral-to-dorsal ventilation ratio; CoVrl, right-to-left centre of ventilation; VRrl, right-to-left ventilation ratio; 

LTVR, low tidal variation regions; Crs, respiratory system compliance; GI, global inhomogeneity index; CV, coefficient of variation; 

τe, regional respiratory time constants; ∆EELI, change in end-expiratory lung impedance. 

Parameter RR HR VT,rel VT,abs CoVvd VRvd CoVrl VRrl LTVR Crs GI CV τe ∆EELI

Rating  5.22 4.19 5.84 5.34 6.13 5.88 5.97 5.69 6.16 5.69 6.28 5.81 5.56 6.16 

SD 1.93 2.26 1.35 1.81 1.45 1.34 1.31 1.45 0.94 1.33 0.87 1.21 1.56 0.87 
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Abstract: Present lung EIT systems typically employ 

measurements made from electrodes describing a single 

transverse section through the chest. The sensitivity of 

measured transfer impedances to regional conductivity 

variation decreases with distance from this electrode 

plane. The full benefits of 3D reconstruction can only be 

realised when a 3D approach is also applied in the 

measurement of transfer impedances. A 64-channel EIT 

system is described that combines the flexibility and 

precision needed for the rapid experimental investigation 

of candidate 3D measurement strategies. Results from 

both phantom and human tests are presented. 

1 Introduction 

The continued reliance of lung EIT on a single annular 

arrangement of electrodes appears to be motivated more 

by ease of electrode application to the patient than the 

suitability of such arrangements for the measurement task. 

Indeed, the diminishing sensitivity of the transfer 

impedances with distance from the electrode plane 

suggests that such an arrangement cannot be optimal when 

the state of the upper and lower regions of the lungs is to 

be determined. Despite obvious interest in tidal 

conductivity variation in these ‘far from plane’ regions, 

there has been surprisingly little investigation of 3D 

measurement in human lung EIT, with even a recent 

‘multiplanar’ EIT case study [1] relying on measurements 

from a single plane of electrodes. Crabb [2] demonstrated 

lung EIT from two planes of 16 electrodes, an 

arrangement previously shown [3] to be able to image an 

axially-varying conductivity inhomogeneity. Fully 3D 

electrode arrangements have long been standard in cranial 

EIT, where the skull does not lend itself to representation 

as the extrusion of a constant cross-section, and in 

industrial EIT, where multi-planar electrode arrangements 

are well established in the study of mixing and flow, e.g. 

[4]. These latter multi-planar electrode arrangements can 

be viewed as a boundary case, operable either as a co-

operative group of planar systems, in which current flow 

is between electrodes within the same plane, or in a fully 

3D manner, with interplane currents.  

Attempts to determine optimal electrode arrangements 

by simulation have been frustrated by uncertainties 

associated with modelling errors. In this paper we describe 

efforts to experimentally characterise the performance of 

candidate electrode arrangements and measurement 

paradigms, using a highly flexible 64-channel EIT system 

developed within the R3M project.  

2 Methods 

Measurements of transfer impedance are made in resistor 

and saline tank phantoms and in human subjects using the 

R3M EIT system. This system uses a parallel 

measurement architecture to allow high precision 

measurements of transfer impedance at frame rates above 

30 fps. Although it is not intended that such a complex 

and costly system be deployed clinically, it provides a 

powerful tool for the rapid evaluation of strategies for 

future lung EIT systems. The system is controlled from a 

Java™ client providing full control of measurement 

parameters, down to the level of a single current-injection. 

Individual measurement requests are queued, allowing 

complex measurement protocols to be realised with a 

minimum of effort. 

All measurements embody a ‘fully 3D’ ethos. Resistor 

phantoms are used for initial system validation. Saline 

tank phantom measurements are made in a torso-sized 

cylindrical tank featuring 4 planes of 16 equally-spaced 

electrodes. Measurements made on this tank phantom 

compare the effectiveness of in-plane and inter-plane 

current injection, including quantitative comparison of 

reconstruction results with those achievable from a single 

plane electrode arrangement. Initial human trials echo the 

electrode arrangements and measurement paradigms used 

in the tank (Figure 1). Subsequent human trials examine 

the potential advantages of alternative electrode 

arrangements.  

 
Figure 1: Corresponding saline tank and human trial electrode 

arrangements 

3 Conclusions 

Our measurements allow objective comparison of 2D and 

3D approaches to EIT data collection 
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Abstract: Using multiple planes of electrodes, EIT can

reconstruct three-dimensional images. For thoracic imag-

ing, such a configuration appears to offer useful advantages,

such as better slice specificity and reduced off-plane sensi-

tivity. We describe a simulation study to determine recom-

mendations for separation of the electrode planes.

1 Introduction

Most thoracic EIT studies have used a single plane of elec-

trodes to reconstruct 2D images, which are sensitive to con-

ductivity changes above and below the plane. Using two

planes, it is possible to better control the vertical sensitiv-

ity of EIT [2], even if the goal is to reconstruct a better 2D

slice [1]. Practically, however, it is important to have spe-

cific recommended configurations for two-plane EIT. Here

we seek to understand the influence of the separation dis-

tance (s) between the electrode planes.

2 Methods and Results

Fig. 1 shows the configuration. The body is an elliptical

cylinder with minor diameter 1.0. Small sagittal-plane con-

trasts simulated at height h above the centre of the planes.
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s
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Figure 1: Left: One- and two-plane electrode configuration using

the square pattern and skip=4; Right: Simulation geometry with

electrode planes separated by s and a target h above the centre.

Reconstructions are shown for a single target position

(fig. 2) for values of s, skip and Noise Figure (NF).
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Figure 2: Reconstructed centre-slice images for an off-centre tar-

get moving vertically away from the centre plane, for NF=1 and

the indicated plane separation. Image amplitude is normalized to

the 1×32 reconstruction at each h.

For 1×32 there is a severe position error with increasing

h; targets above the plane are “pushed” to the centre. 2×16

shows less position error, but produces artefacts, especially

for skip=0. For s > 0.4 resolution gets significantly worse.

To quantify the off-plane contribution, fig. 3 shows the

normalized amplitude response for various algorithm pa-

rameters. We note that 1×32 shows poor off-plane sensi-

tivity. There is a compromise between slice uniformity and

slice thickness, which is worse at lower NF.
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Figure 3: Normalized amplitude response (sum of in-plane image

pixels divided by the value on the centre slice) for targets in the

central sagittal plane. Each image has horizontal axis from cen-

tre to minor-axis side and vertical axis from h = −1.5 to 1.5.

Contours at 75%, 50% and 25% and only positive values shown.

3 Discussion

For thoracic EIT with two electrode planes, we study the

choice of plane separation, s as a function of minimum tho-

racic diameter. We recommend a value between s = 0.4

and 0.6 (about 10 cm, adult) as the best compromise be-

tween off-plane rejection, thin imaging slice, in-plane reso-

lution, and rejection of off-plane contrasts.
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Abstract: There is significant interest in possible monitor-

ing of pulmonary oedema with EIT. One novel idea is to ob-

serve the short-term redistribution of lung fluid in patients

following posture changes. We report on initial results in

human subjects and a novel fEIT measure.

1 Introduction

Pulmonary oedema is the accumulation of extra-vascular

fluid in the lungs. It impairs gas exchange and lung func-

tion, and can occur due to left-ventricular insufficiency or

lung tissue injury. There would be considerable clinical

benefit to a non-invasive ability to monitor the amount and

location of oedema, and EIT has been proposed for this ap-

plication by several studies (e.g. [1]). Results have been

mixed, largely because it is difficult to distinguish slow

changes in lung fluid from slow changes in FRC or drift

in the electronics.

Recently a novel functional approach to monitor lung

fluid [2] has been validated in pigs; lavage-injured animals

were laterally tilted (roll) to each side. With increasing

oedema, fluid filled the dependent spaces and ventilation

moved more to the non-dependent lung.

The goal of this study is to examine whether these re-

sults can be reproduced in patients, and to develop relevant

EIT-analysis methods.

2 Methods and Results

Subjects were adults diagnosed with ARDS, and were mon-

itored with an invasive Pulse-Induced Contour Cardiac Out-

put (PiCCO) which can be used as a gold-standard measure

of lung water content (although not reported here).

The experimental protocol involves posture changes, as

shown in fig. 1, and analysis of the EIT signal in the ten min-

utes following the posture change from which functional

EIT parameters are calculated. On each day of the experi-

ments (normally three days), patients are positioned at 45°

to the left, 45° to the right and supine. Slow EIT changes af-

ter posture change were analysed, based on our assumption

that extra-vascular fluid will slowly redistribute, followed

by gas volumes.

We define two new fEIT measures based on the EIT im-

age sequence after posture change: 1) redistribution of ven-

tilation, RoV= b−a

VT

, and 2) redistribution of fluid, RoF= c

VT

,

where tidal volume, VT =

∑
ai, for each pixel i.

                             0                                                    10 min

a

b

c
......

Figure 1: Block diagram of functional data analysis. After posture

change, the envelope of tidal breathing (after rejecting outliers) of

each EIT pixel waveform is analysed (↑ corresponds to ↑ρ)

Fig. 2 shows representative results for a patient on day

3 of treatment. On day 1, the left tilt image was similar, but

no change was seen for the right tilt.
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Figure 2: Left and right tilt results, for 10 min following each pos-

ture change. Left: end-inspiratory images (→ then ↓) at 0, 2, 4, 6,

8 and 10 minutes. Middle: time course of left and right image half

and fitted trend. Right: fEIT images, RoF (top) and RoV (bottom).

This patient had severe left-lung oedema (fig. 3), which

is consistent with the observed EIT results. With either tilt,

there is little change in the right lung, which is more healthy.

When tilting left, the left lung loses gas volume, especially

in the non-dependent areas. When tilting right, the left lung

loses fluid or gains gas volume.

Figure 3: X-ray (left) and Transverse CT image (right) of patient

in a supine position. Note severe left-lung oedema.

3 Discussion

We investigate EIT-measures of lung fluid, based on posture

change-induced EIT signals. The idea is to supplement the

assumptions of symmetry in the methodology of [2], since

oedema is typically heterogeneous.

We develop two new fEIT measures which can be cal-

culated from a patient in the minutes after a posture change.

In this patient and others, the pattern of changes appears

consistent with the distribution of oedema. In future work,

we will focus on validating our calculations against PiCCO

measures in these patients.
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Abstract: This  paper’s  work  was  based  on  previous 

simulation  studies  [1].  The  aim of  the  research  was  to 

modify the 3D breast  model in simulation for  obtaining 

closer results to images that reconstructed from real data 

acquired by our EIM system.

1 Introduction

An electrical impedance mammography (EIM) system [2] 

using 85 planar electrodes has been developed for breast 

cancer  detection.  Massive  simulation  studies  have  been 

done with different  simulation  models,  however  images 

obtained from simulation were  still  found to have large 

different from human results. Hence, further studies have 

been carried out in terms of human breast  anatomy and 

enhanced drawing method using higher resolution mesh.

2 Methods

Below sections  introduce  the  two major  differences  (as 

described  in  sections  2.1  and  2.2)  observed  between 

results  obtained  from  breast  model  using  in  previous 

simulation  study  (figure  1)  and  real  data  from  human 

object measurement.

Figure 1: Breast model using in previous simulation study.

2.1 Structure inside the breast

The breast was typically defined using 4 different tissues 

in  previous  studies:  skin,  fat,  gland  area,  and  nipple. 

According to other anatomy study references [3, 4], gland 

area actually could be further defined by ducts and lobule.

Figure 2: Look inside the breast (left); Duct, lobule, terminal 

duct and ductile (right)

Electrical  properties  of  duct  and  lobules  are  difference 

from gland area, which are now considered as independent 

object  in the breast  model.  The updated breast  structure 

could be realized in high resolution mesh from the updated 

model presented in section 3.

2.2 Nipple

Nipple has higher conductivity than fat. As such a small 

higher conductivity circular object would usually be seen 

on  the  bottom layer  of  reconstructed  volunteer  images. 

Besides the x-y location of nipple was usually assumed to 

be located in the centre location of the breast, however it 

is not, and should stay close to the rear side of the body.

3 Results

Below shows the design of the updated 3D breast model, 

value 0 of X and Y axis indicate the centre position:

Figure 2: Different views of the updated 3D breast model.

A 2D mesh with 502 nodes and 930 elements is applied in 

the reconstruction process, and the whole model is divided 

into 4 layers. Conductivity of saline, fat, gland area, nipple 

and ducts were set as 0.05, 0.05, 0.08, 0.08 and 0.09 S/m 

respectively.  Figure  3 shows the  reconstructed images of 

the  above  model,  the  normalized  (0  to  1)  value  of 

boundary  between  saline/fat  (blueish  green)  and  gland 

area (yellow) on the colorbar is around 0.7 to 0.8, which is 

slightly lower than the actual value.

Figure 3: Reconstructed 3D breast image in simulation.

Below  figures  are  the  3D  image  reconstructed  from 

volunteer experiment. Similar structure of fat, gland area 

and nipple could be seen. 

Figure 4: Reconstructed 3D image of a volunteer experiment.

4 Conclusions

Studies in human breast anatomy are carried out in order 

to enhance the similar between simulation and real system. 

This  could  help  us  customize  the  image  reconstruction 

algorithm for breast imaging.
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