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Abstract. We introduce MPAS-Albany Land Ice (MALI), a new, variable resolution land ice model that uses unstructured

Voronoi grids on a plane or sphere. MALI is built using the Model for Prediction Across Scales (MPAS) framework for

developing variable resolution Earth System Model components and the Albany multi-physics code base for solution of coupled

systems of partial-differential equations, which itself makes use of Trilinos solver libraries. MALI includes a three-dimensional,

first-order momentum balance solver (“Blatter-Pattyn") by linking to the Albany-LI ice sheet velocity solver, as well as an5

explicit shallow ice velocity solver. Evolution of ice geometry and tracers is handled through an explicit first-order horizontal

advection scheme with vertical remapping. Evolution of ice temperature is treated using operator splitting of vertical diffusion

and horizontal advection and can be configured to use either a temperature or enthalpy formulation. MALI includes a mass-

conserving subglacial hydrology model that supports distributed and/or channelized drainage and can optionally be coupled to

ice dynamics. Options for calving include “eigencalving”, which assumes calving rate is proportional to extensional strain rates.10

MALI is evaluated against commonly used exact solutions and community benchmark experiments and shows the expected

accuracy. We report first results for the MISMIP3d benchmark experiments for a Blatter-Pattyn type model and show that results

fall in-between those of models using Stokes flow and L1L2 approximations. We use the model to simulate a semi-realistic

Antarctic Ice Sheet problem for 1100 years at 20 km resolution. MALI is the glacier component of the Energy Exascale Earth

System Model (E3SM) version 1, and we describe current and planned coupling to other components.15

1 Introduction

During the past decade, numerical ice sheet models (ISMs) have undergone a renaissance relative to their predecessors. This

period of intense model development was initiated following the Fourth Assessment Report of the Intergovernmental Panel on

Climate Change (IPCC, 2007), which pointed to deficiencies in ISMs of the time as being the single largest shortcoming with

respect to the scientific community’s ability to project future sea-level rise stemming from ice sheets. Model maturation during20

this period, which continued through the IPCC’s Fifth Assessment Report (IPCC, 2013) and to the present day, has focused
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on improvements to ISM “dynamical cores” (including the fidelity, discretization, and solution methods for the governing

conservation equations (e.g., Bueler and Brown, 2009; Schoof and Hindmarsh, 2010; Goldberg, 2011; Perego et al., 2012;

Leng et al., 2012; Larour et al., 2012; Aschwanden et al., 2012; Cornford et al., 2013; Gagliardini et al., 2013; Brinkerhoff

and Johnson, 2013)), ISM model “physics” (for example, the addition of improved models of basal sliding coupled to explicit

subglacial hydrology (e.g., Schoof, 2005; Werder et al., 2013; Hewitt, 2013; Hoffman and Price, 2014; Bueler and van Pelt,5

2015); and ice damage, fracture, and calving (e.g., Åström et al., 2014; Bassis and Ma, 2015; Borstad et al., 2016; Jiménez

et al., 2017)) and the coupling between ISMs and Earth System Models (ESMs) (e.g., Ridley et al., 2005; Vizcaíno et al.,

2008, 2009; Fyke et al., 2011; Lipscomb et al., 2013). These “next generation” ISMs have been applied to community-wide

experiments focused on assessing (i) the sensitivity of ISMs to idealized and realistic boundary conditions and environmental

forcing and (ii) the potential future contributions of ice sheets to sea-level rise (see e.g., Pattyn et al., 2013; Nowicki et al.,10

2013a, b; Bindschadler et al., 2013; Shannon et al., 2013; Edwards et al., 2014b).

While these efforts represent significant steps forward, next-generation ISMs continue to confront new challenges. These

come about as a result of (1) applying ISMs to larger (whole-ice sheet), higher-resolution (regionally O(1 km) or less), and

more realistic problems, (2) adding new or improved sub-models of critical physical processes to ISMs, and (3) applying ISMs

as partially or fully coupled components of ESMs. The first two challenges relate to maintaining adequate performance and15

robustness, as increased resolution and/or complexity have the potential to increase forward model cost and/or degrade solver

reliability. The latter challenge relates to the added complexity and cost associated with optimization workflows, which are

necessary for obtaining model initial conditions that are realistic and compatible with forcing from ESMs. These challenges

argue for ISM development that specifically targets the following model features and capabilities:

1. parallel, scalable, and robust, linear and nonlinear solvers20

2. variable and / or adaptive mesh resolution

3. computational kernels based on flexible programming models, to allow for implementation on a range of High-Performance

Computing (HPC) architectures1

4. adjoint capabilities for use in high-dimensional parameter field optimization and uncertainty quantification

Based on these considerations, we have developed a new land ice model, the MALI model, which is composed of three25

major components: 1) model framework, 2) dynamical cores for solving equations of conservation of momentum, mass, and

energy, and 3) modules for additional model physics. The model leverages existing and mature frameworks and libraries,

namely the Model for Prediction Across Scales (MPAS) framework and the Albany and Trilinos solver libraries. These have

allowed us to take into consideration and address, from the start, many of the challenges discussed above. We discuss each of

these components in more detail in the following sections.30

1For example, traditional CPU-only architectures and MPI programming models versus CPU+GPU, hybrid architectures using MPI for nodal communi-

cation and OpenMP or CUDA for on-node parallelism.
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2 MPAS Framework

The MPAS Framework provides the foundation for a generalized geophysical fluid dynamics model on unstructured spherical

and planar meshes. On top of the framework, implementations specific to the modeling of a particular physical system (e.g.,

land ice, ocean) are created as MPAS cores. To date, MPAS cores for atmosphere (Skamarock et al., 2012), ocean (Ringler

et al., 2013; Petersen et al., 2015, 2018), shallow water (Ringler et al., 2011), sea ice (Turner et al., 2018), and land ice have5

been implemented. At the moment the land ice model is limited to planar meshes due to the planar formulation of the flow

models; however, we have an experimental implementation of the flow model for spherical coordinates that enables runs on

spherical meshes. The MPAS design philosophy is to leverage the efforts of developers from the various MPAS cores to provide

common framework functionality with minimal effort, allowing MPAS core developers to focus on development of the physics

and features relevant to their application.10

The framework code includes shared modules for fundamental model operation. Significant capabilities include:

– Description of model data types. MPAS uses a handful of fundamental Fortran derived types for basic model functional-

ity. Core-specific model variables are handled through custom groupings of model fields called pools, for which custom

accessor routines exist. Core-specific variables are easily defined in XML syntax in a Registry, and the framework parses

the Registry, defines variables, and allocates memory as needed.15

– Description of the mesh specification. MPAS requires 36 fields to fully describe the mesh used in a simulation. These in-

clude the position, area, orientation, and connectivity of all cells, edges, and vertices in the mesh. The mesh specification

can flexibly describe both spherical and planar meshes. More details are provided in the next section.

– Distributed memory parallelization and domain decomposition. The MPAS Framework provides needed routines for

exchanging information between processors in a parallel environment using Message Passing Interface (MPI). This20

includes halo updates, global reductions, and global broadcasts. MPAS also supports decomposing multiple domain

blocks on each processor to, for example, optimize model performance by minimizing transfer of data from disk to

memory. Shared memory parallelization through OpenMP is also supported, but the implementation is left up to each

core.

– Parallel input and output capabilities. MPAS performs parallel input and output of data from and to disk through the25

commonly used libraries of NetCDF, Parallel NetCDF (pnetcdf), and Parallel Input/Output (PIO) (Dennis et al., 2012).

The Registry definitions control which fields can be input and/or output, and a framework streams functionality pro-

vides easy run-time configuration of what fields are to be written to what file name and at what frequency through an

XML streams file. The MPAS framework includes additional functionality specific to providing a flexible model restart

capability.30

– Advanced timekeeping. MPAS uses a customized version of the timekeeping functionality of the Earth System Modeling

Framework (ESMF), which includes a robust set of time and calendar tools used by many Earth System Models (ESMs).
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This allows explicit definition of model epochs in terms of years, months, days, hours, minutes, seconds, and fractional

seconds and can be set to three different calendar types: Gregorian, Gregorian no leap, and 360 day. This flexibility helps

enable multi-scale physics and simplifies coupling to ESMs. To manage the complex date/time types that ensue, MPAS

framework provides routines for arithmetic of time intervals and the definition of alarm objects for handling events (e.g.,

when to write output, when the simulation should end).5

– Run-time configurable control of model options. Model options are configured through namelist files that use standard

Fortran namelist file format, and input/output are configured through streams files that use XML format. Both are com-

pletely adjustable at run time.

– Online, run-time analysis framework. See section Section 6.2 for examples.

Additionally, a number of shared operators exist to perform common operations on model data. These include geometric10

operations (e.g., length, area, and angle operations on the sphere or the plane), interpolation (linear, barycentric, Wachspress,

radial basis functions, spline), vector and tensor operations (e.g., cross products, divergence), and vector reconstruction (e.g.,

interpolating from cell edges to cell centers). Most operators work on both spherical and planar meshes.

2.1 Model Meshes

The MPAS mesh specification is general enough to describe unstructured meshes on most two-dimensional manifold spaces,15

however most applications use centroidal Voronoi tesselations (Du and Gunzburger, 2002) on a sphere or plane. This manuscript

focuses on applications with planar centroidal Voronoi meshes, with some additional consideration of spherical centroidal

Voronoi meshes. Voronoi meshes are constructed by specifying a set of generating points (cell centers), and then partitioning

the domain into cells that contain all points closer to each generating point than any other. Edges of Voronoi cells are equidis-

tant between neighboring cell centers and perpendicular to the line connecting those cell centers. A planar Voronoi tesselation20

is the dual graph of a Delaunay triangulation, which is a triangulation of points in which the circumcircle of every triangle

contains no points in the point set. Voronoi meshes that are centroidal (the Voronoi generator is also the center of mass of the

cell) have favorable properties for some geophysical fluid dynamic applications (Ringler et al., 2010) and maintain high quality

cells because cells tend towards equidimensional aspect ratios, and mesh resolution (where non-uniform) changes smoothly.

On both planes and spheres, Voronoi tesselations tend toward perfect hexagons as resolution is increased. Note that, while the25

MPAS mesh specification supports quadrilateral grids, such as traditional rectangular grids, they are described as unstructured,

which introduces significant overhead in memory and calculation over regular rectangular grid approaches.

Because MPAS meshes are two-dimensional manifold spaces, they are convenient for describing geophysical locations,

either on planar projections or directly on a sphere. Because they are unstructured, meshes can contain varying mesh resolution

and can be culled to only retain regions of interest. Planar meshes can easily be made periodic by taking advantage of the30

unstructured mesh specification. MPAS meshes are static in time. The vertical coordinate, if needed by a core, is extruded

from the base horizontal mesh. Each core chooses its own vertical coordinate system. A comprehensive suite of tools for the

generation of centroidal Voronoi tesselations on a plane or sphere has been developed, as well as tools for modifying existing
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Figure 1. MALI grids. a) Horizontal grid with cell center (blue circles), edge midpoint (red triangles), and vertices (orange squares) identified

for the center cell. Scalar fields (H , T ) are located at cell centers. Advective velocities (un) and fluxes are located at cell edges. b) Vertical

grid with layer midpoints (blue circles) and layer interfaces (red triangles) identified. Scalar fields (H , T ) are located at layer midpoints.

Fluxes are located at layer interfaces.

meshes (e.g., removing unneeded cells, coordinate transformations, etc.) and converting some common unstructured mesh

formats (e.g., Triangle, Shewchuk (1996)) to the MPAS specification.

The basic unit of the MPAS mesh specification is the cell. A cell has area and is formed by three or more sides, which are

referred to as edges. The endpoints of edges are defined by vertices. Figure 1 illustrates the relationships between these mesh

primitives. The MPAS mesh specification utilizes 36 fields that describe the position, orientation, area, and connectivity of the5

various primitives. Only four of these fields (x, y, z cell positions and connectivity between cells) are necessary to describe any

mesh, but the larger set of fields in the mesh specification provide information that is commonly used for routine operations.

This avoids the need for the model to calculate these fields internally, speeding up the process of model initialization and

integration.

MALI typically uses centroidal Voronoi meshes on a plane. Spherical Voronoi meshes can also be used, but little work has10

been done with such meshes to date. MALI employs a C-grid discretization (Arakawa and Lamb, 1977) for advection, meaning

state variables (ice thickness and tracer values) are located at Voronoi cell centers, and flow variables (transport velocity, un)

are located at cell edge midpoints (Figure 1). MALI uses a sigma vertical coordinate (specified number of layers, each with a

spatially uniform layer thickness fraction, see (Petersen et al., 2015) for more information):

σ =
s− z
H

(1)15

where s is surface elevation, H is ice thickness, and z is the vertical coordinate.

A set of tools supporting the MPAS Framework includes tools for generating uniform and variable resolution centroidal

Voronoi meshes. Additionally, the JIGSAW(GEO) mesh generation tool (Engwirda, 2017a, b) can be used to generate high

quality variable resolution meshes with data-based density functions very efficiently.
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3 The Albany Software Library

Albany is an open source, C++ multi-physics code base for the solution and analysis of coupled systems of partial-differential

equations (PDEs) (Salinger et al., 2016). It is a finite element code that can (in three spatial dimensions) employ unstructured

meshed comprised of hexahedral, tetrahedral, or prismatic elements. Albany is designed to take advantage of the computational

mathematics tools available within the Trilinos suite of software libraries (Heroux et al., 2005) and it uses template-based5

generic programming methods to provide extensibility and flexibility (Pawlowski et al., 2012). Together, Albany and Trilinos

provide parallel data structures and I/O, discretization and integration algorithms, linear solvers and preconditioners, nonlinear

solvers, continuation algorithms, and tools for automatic differentiation (AD) and optimization. By formulating a system of

equations in the residual form, Albany employs AD to automatically compute the Jacobian matrix, as well as forward and

adjoint sensitivities. Albany can solve large-scale PDE-constrained optimization problems, using Trilinos optimization pack-10

age ROL, and it provides uncertainty quantification capabilities through the Dakota framework (Adams et al., 2013). It is a

massively parallel code by design and recently it has been adopting the Kokkos (Edwards et al., 2014a) programming model to

provide manycore performance portability (Demeshko et al., 2018) on major HPC platforms. Albany provides several applica-

tions including LCM (Laboratory for Computational Mechanics) for solid mechanics problems, QCAD (Quantum Computer

Aided Design) for quantum device modeling, and LI (Land Ice) for modeling ice sheet flow. We refer to the code that discretizes15

these diagnostic momentum balance equations as Albany-LI. Albany-LI was formerly known as Albany/FELIX (Finite Ele-

ments for Land Ice eXperiments), and described by Tezaur et al. (2015a, b) and Tuminaro et al. (2016) under that name. Here,

these tools are brought to bear on the most complex, expensive, and fragile portion of the ice sheet model, the solution of the

momentum balance equations (discussed further below).

4 Conservation Equations20

The “dynamical core” of the the MALI ice sheet model solves the governing equations expressing the conservation of momen-

tum, mass, and energy.

4.1 Conservation of Momentum

Treating glacier ice as an incompressible fluid in a low-Reynolds number flow, the conservation of momentum in a Cartesian

reference frame is expressed by the Stokes-flow equations, for which the gravitational-driving stress is balanced by gradients25

in the viscous stress tensor, σij :

∂σij
∂xj

+ ρg = 0, i, j = 1,2,3 (2)

where xi is the coordinate vector, ρ is the density of ice, and g = is acceleration due to gravity2.

2In Equation 2 and elsewhere we use indicial notation, with summation over repeat indices.
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Deformation results from the deviatoric stress, τij , which relates to the full stress tensor as

τij = σij −
1

3
σkkδij , (3)

for which − 1
3σkk is the mean compressive stress and δij is the Kroneker delta (or the identity tensor). Stress and strain rate are

related through the constitutive relation,

τij = 2ηeε̇ij , (4)5

where ˙εij is the strain-rate tensor and ηe is the “effective”, non-Newtonian ice viscosity given by Nye’s generalization of Glen’s

flow law (Glen, 1955),

ηe = γA− 1
n ε̇

1−n
n

e . (5)

In Equation 5, A is a temperature dependent rate factor, n is an exponent commonly taken as 3 for polycrystalline glacier ice,

and γ is an ice “stiffness” factor (inverse enhancement factor) commonly used to account for other impacts on ice rheology,10

such as impurities or crystal anisotropy (see also Section 6.1). The effective strain rate ε̇e is given by the second invariant of

the strain-rate tensor,

ε̇e =

(
1

2
ε̇ij ε̇ij

) 1
2

, (6)

The strain rate tensor is defined by gradients in the components of the ice velocity vector ui:

ε̇ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1,2,3. (7)15

Finally, the rate-factor A follows an Arrhenius relationship

A(T ∗) = Aoe
−Qa/RT

∗
, (8)

in which Ao is a constant, (T ∗) is the absolute temperature (i.e., corrected for the dependence of melt temperature on ice

pressure), Qa is the activation energy for crystal creep, and R is the gas constant.

Boundary conditions required for the solution of Eq. 2 depend on the form of reduced-order approximation applied and are20

discussed further below.

4.2 Reduced-order Equations

Ice sheet models solve Eq. 2-8 with varying degrees of complexity in terms of the tensor components in Eq. 2-7 that are

accounted for or omitted, based on geometric scaling arguments. Because ice sheets are inherently “thin” – their widths are

several orders of magnitude larger than their thickness – reduced-order approximations of the full momentum balance are25

often appropriate (see, e.g., Dukowicz et al., 2010; Schoof and Hewitt, 2013) and, importantly, can often result in considerable

computational cost savings. Here, we employ two such approximations, a first-order-accurate “Blatter-Pattyn” approximation

and a zero-order, “shallow-ice approximation” as described in more detail in the following sections.

7



4.2.1 First-Order Velocity Solver and Coupling

Ice sheets typically have a small aspect ratio, small surface and bed slopes, and vertical pressure distributions that are very

nearly hydrostatic. These characteristics imply that reduced-order approximations of the Stokes momentum balance may ap-

ply over large areas of the ice sheets, potentially allowing for significant computational savings. Formal derivations involve

non-dimensionalizing the Stokes momentum balance and introducing a geometric scaling factor, δ =H/L, whereH andL rep-5

resent characteristic vertical and horizontal length scales (often taken as the ice thickness and the ice sheet span), respectively.

Upon conducting an asymptotic expansion, reduced-order models with a chosen degree of accuracy (relative to the original

Stokes flow equations) can be derived by retaining terms of the appropriate order in δ. For example, the first-order accurate

Stokes approximation is arrived at by retaining terms of O(δ1) and lower (The reader is referred to Schoof and Hindmarsh

(2010) and Dukowicz et al. (2010) for additional discussion3).10

Using the notation of Perego et al. (2012) and Tezaur et al. (2015a) 4, the first-order accurate Stokes approximation (also

referred to as the “Blatter-Pattyn” approximation, see Blatter, 1995; Pattyn, 2003) is expressed through the following system

of PDEs, −∇ · (2ηf ε̇1) + ρg ∂s∂x = 0,

−∇ · (2ηf ε̇2) + ρg ∂s∂y = 0,
(9)

where∇· is the divergence operator, s≡ s(x,y) represents the ice sheet upper surface, and the vectors ε̇1 and ε̇2 are given by15

ε̇1 =
(

2ε̇xx + ε̇yy, ε̇xy, ε̇xz

)T
, (10)

and

ε̇2 =
(
ε̇xy, ε̇xx + 2ε̇yy, ε̇yz

)T
. (11)

Akin to Equations 5 and 6, ηf in Equation 9 represents the effective viscosity but for the case of the first-order stress balance

with an effective-strain rate is given by20

ε̇e ≡
(
ε̇2xx + ε̇2yy + ε̇xxε̇yy + ε̇2xy + ε̇2xz + ε̇2yz

) 1
2 , (12)

rather than by Equation 6, and with individual strain rate terms given by,

ε̇xx =
∂u

∂x
, ε̇yy =

∂v

∂y
, ε̇xy =

1

2

(
∂u

∂y
+
∂v

∂x

)
, ε̇xz =

1

2

∂u

∂z
, ε̇yz =

1

2

∂v

∂z
. (13)

At the upper surface, a stress-free boundary condition is applied,

ε̇1 ·n = ε̇2 ·n = 0, (14)25

3In practice, additional scaling parameters describing the ratio of deformation to sliding velocity may also be introduced.
4Vectors and tensors are given in bold rather than using indices. Note that, in a slight abuse of notation, we have switched from using x1, x2, x3 to denote

the three coordinate directions to x, y, z.
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with n the outward normal vector at the ice sheet surface, z = s(x,y). At the bed, z = b(x,y), we apply no slip or continuity

of basal tractions (“sliding”),

u= v = 0, no slip

2µε̇1 ·n +βum = 0, 2µε̇2 ·n +βvm = 0, sliding,
(15)

where β is a linear-friction parameter and m≥ 1. In most applications we set m= 1 (see also Section 5.1.6).

On lateral boundaries, a stress boundary condition is applied,5

2µε̇i ·n− ρg(s− z)n = ρogmax(z,0)n, (16)

where ρo is the density of ocean water and n the outward normal vector to the lateral boundary (i.e., parallel to the (x,y)

plane), so that lateral boundaries above sea level are effectively stress free and lateral boundaries submerged within the ocean

experience hydrostatic pressure due to the overlying column of ocean water.

We solve these equations using the Albany-LI momentum balance solver, which is built using the Albany and Trilinos10

software libraries discussed above. The mathematical formulation, discretization, solution methods, verification, and scaling

of Albany-LI are discussed in detail in Tezaur et al. (2015a). Albany-LI implements a classic finite element discretization

of the first-order approximation. At the grounding line, the basal friction coefficient β can abruptly drop to zero within an

element of the mesh. This discontinuity is resolved by using an higher-order Gauss quadrature rule on elements containing

the grounding line, which corresponds to the sub-element parametrization SEP3 proposed in Seroussi et al. (2014). Additional15

exploration of solver scalability and demonstrations of solver robustness on large scale, high-resolution, realistic problems are

discussed in Tezaur et al. (2015b). The efficiency and robustness of nonlinear solvers are achieved using a combination of the

Newton method (damped with a line search strategy when needed) and of a parameter continuation algorithm for the numerical

regularization of the viscosity. The scalability of linear solvers is obtained using a multilevel preconditioner (see Tuminaro

et al. (2016)) specifically designed to target shallow problems characterized by meshes extruded in the vertical dimension, like20

those found in ice sheet modeling. The preconditioner has been demonstrated to be particularly effective and robust even in

the presence of ice shelves that typically lead to highly ill-conditioned linear systems. Because the momentum balance solver

is ≥ 95% of the cost of a typical forward model time step, the model performance reported on in Tezaur et al. (2015a, b) and

Tuminaro et al. (2016) is generally representative of overall MALI performance.

The Albany-LI first-order velocity solver written in C++ is coupled to MPAS written in Fortran using an interface layer.25

Albany uses a three-dimensional mesh extruded from a basal triangulation and composed of prisms or tetrahedra (see Tezaur

et al. (2015a)). When coupled to MPAS, the basal triangulation is the part of the Delaunay triangulation, dual to an MPAS

Voronoi mesh, that contains active ice and it is generated by the interface. Bed topography, ice lower surface, ice thickness,

basal friction coefficient (β), and three-dimensional ice temperature, all at cell centers (Table 1), are passed from MPAS to

Albany. Optionally, Dirichlet velocity boundary conditions can also be passed. After the velocity solve is complete, Albany30

returns the x and y components of velocity at each cell center and blue layer interfaces, the normal component of velocity at

each cell edge and blue layer interfaces, and viscous dissipation at blue each cell vertex and layer midpoints.

9



Table 1. Correspondence between the MPAS Voronoi tesselation and its dual Delaunay triangulation used by Albany. Key MALI model

variables that are natively found at each location are listed. Note that variables are interpolated from one location to another as required for

various calculations.

Voronoi tesselation Delaunay triangulation Variables

cell center triangle node H,T,u,v, Φ (MPAS)

cell edge triangle edge un (for advection)

cell vertex triangle center Φ (Albany)

The interface code defines the lateral boundary conditions on the finite element mesh that Albany will use. Lateral boundaries

in Albany are applied at cell centers (triangle nodes) that do not contain dynamic ice on the MPAS mesh and that are adjacent

to the last cell of the MPAS mesh that does contain dynamic ice. This one element extension is required to support calculation

of normal velocity on edges (un) required for advection of ice out of the final cell containing dynamic ice (Figure 2). The

interface identifies three types of lateral boundaries for the first-order velocity solve: terrestrial, floating marine, and grounded5

marine. Terrestrial margins are defined by bed topography above sea level. At these boundary nodes, ice thickness is set to a

small ice minimum thickness value (ε= 1 m). Floating marine margin triangle nodes are defined as neighboring one or more

triangle edges that satisfy the hydrostatic floatation criterion. At these boundary nodes, we need to ensure the existence of a

realistic calving front geometry, so we set ice thickness to the minimum of thickness at neighboring cells with ice. Grounded

marine margins are defined as locations where the bed topography is below sea level, but no adjacent triangle edges satisfy10

the floatation criterion. At these boundary nodes, we apply a small floating extension with thickness ε. For all three boundary

types, ice temperature is averaged from the neighboring locations containing ice.

4.2.2 Shallow-Ice Approximation Velocity Solver

A similar procedure to that described above for the first-order accurate Stokes approximation can be used to derive the so-

called “shallow-ice approximation” (SIA) (Hutter, 1983; Fowler and Larson, 1978; Morland and Johnson, 1980; Payne et al.,15

2000), in this case by retaining only terms of O(δ0). In the case of the SIA, the local gravitational driving stress is everywhere

balanced by the local basal traction and the horizontal velocity as a function of depth is simply the superposition of the local

basal sliding velocity and the integral of the vertical shear from the ice base to that depth:

u=−2(ρg)n
(ˆ z

b

A(s− z)ndz
)
|∇s|n−1∇s+ub (17)

where b is the bed elevation and ub is the sliding velocity.20

SIA ice sheet models typically combine the momentum and mass balance equations to evolve the ice geometry directly in

the form of a depth-integrated, two-dimensional diffusion problem (Hindmarsh and Payne, 1996; Payne et al., 2000). However

we implement the SIA as an explicit velocity solver that can be enabled in place of the more accurate first order solver, while
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Figure 2. Correspondence between MPAS and Albany meshes and application of boundary conditions for the first-order velocity solver.

Solid black lines are cells on the Voronoi mesh and dashed gray lines are triangles on the Delaunay Triangulation. Light blue Voronoi cells

contain dynamic ice and gray cells do not. Dark blue circles are Albany triangle nodes that use variable values directly from the co-located

MPAS cell centers. White circles are extended node locations that receive variable values as described in the text based on whether they are

terrestrial, floating marine, or grounded marine locations. Red triangles indicate Voronoi cell edges on which velocities (un) are required for

advection.

keeping the rest of the model identical. The purpose of the SIA velocity solver is primarily for rapid testing, so the less efficient

explicit implementation of Eq. 17 is not a concern.

We implement Eq. 17 in sigma coordinates on cell edges, where we only require the normal component of velocity, un:

un =−2(ρg)nHn+1|∇s|n−1 ds

dxn

ˆ σ

1

Aσndσ+ubn (18)

where xn is the normal direction to a given edge and ubn is sliding velocity in the normal direction to the edge. We average5

A and H from cell centers to cell edges. ds
dxn

is calculated as the difference in surface elevation between the two cells that

neighbor a given edge divided by the distance between the cell centers; on a Voronoi grid, cells edges are midway between cell

centers by definition. The surface slope component tangent to an edge (required to complete the calculation of∇s) is calculated

by first interpolating surface elevation from cell centers to vertices.

4.3 Conservation of Mass10

Conservation of mass is used to conduct ice sheet mass transport and evolution. Assuming constant density to write conser-

vation of mass in volume form, the equation relates ice thickness change to the divergence of mass and sources and sinks:

∂H

∂t
+∇ ·Hū = ȧ+ ḃ, (19)
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where H is ice thickness, t is time, ū is depth-averaged velocity, ȧ is surface mass balance, and ḃ is basal mass balance. Both

ȧ and ḃ are positive for ablation and negative for accumulation.

Eq. 19 is used to update thickness in each grid cell on each time step using a forward Euler, fully explicit time evolution

scheme. Eq. 19 is implemented using a finite volume method, such that fluxes are calculated for each edge of each cell to

calculate ∇ ·Hū. Specifically, we use a first-order upwind method that applies the normal velocity on each edge (un) and an5

upwind value of cell centered ice thickness. Note that with the First Order velocity solver, normal velocity is interpolated from

cell centers to edges using the finite element basis functions in Albany. In the shallow ice approximation velocity solver, normal

velocity is calculated natively at edges. MPAS Framework includes a higher-order flux-corrected transport scheme (Ringler

et al., 2013) for which we have performed some initial testing, but is not routinely used in the Land Ice core at this time.

Tracers are advected layer by layer with a similar equation:10

∂(Qtl)

∂t
+∇ · (Qtlū) = Ṡ (20)

where Qt is a tracer quantity (e.g., temperature – see below), l is layer thickness, and Ṡ represents any tracer sources or

sinks. While any number of tracers can be included in the model, the only one to be considered here is temperature, due to its

important effect on ice rheology through Eq. 8 and will be discussed further in the following section.

Because we employ a sigma vertical coordinate system with fixed layer fractions, after Eqs. 19 and 20 are applied, a vertical15

remapping operation is required. Overlaps between the newly calculated layers and the target sigma layers are calculated for

each grid cell. Assuming uniform values within each layer, mass, energy, and other tracers are transferred between layers based

on these overlaps to restore the prescribed sigma layers while conserving mass and energy.

4.4 Conservation of Energy

Conservation of energy is expressed through the three-dimensional, advective-diffusive heat equation:20

∂T

∂t
=

1

ρc

∂

∂xi

(
k
∂T

∂xi

)
−ui

∂T

∂xi
+

Φ

ρc
, (21)

with thermal conductivity k and heat capacity c. In Equation 21, the rate of temperature change (left-hand side) is balanced by

diffusive, advective, and internal (viscous dissipation – see Equation 28 for Φ) source terms (first, second, and third terms on

the right-hand side, respectively). In MALI we solve an approximation of Equation 21,

∂T

∂t
=

k

ρc

∂2T

∂z2
−ui

∂T

∂xi
+

Φ

ρc
, (22)25

in which horizontal diffusion is assumed negligible (van der Veen, 2013, p. 280) and k is assumed constant and uniform. The

viscous dissipation term Φ is discussed further below (Section 4.4.2).

Temperatures are staggered in the vertical relative to velocities and are located at the centers of nz−1 vertical layers, which

are bounded by nz vertical levels (grid point locations). This convention allows for conservative temperature advection, since

the total internal energy in a column (the sum of ρcT∆z over nz− 1 layers) is conserved under transport. The upper surface30
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temperature Ts and the lower surface temperature Tb, coincident with the surface and bed grid points, give a total of nz+ 1

temperature values within each column.

Equation 22 is solved using an operator splitting technique. At each time step, we first perform an implicit vertical solve

accounting for the diffusion and dissipation terms, and then we explicitly advect horizontally the resulting temperature.

4.4.1 Vertical Diffusion5

Using a “sigma” vertical coordinate, the vertical diffusion portion of Equation 22 can be discretized as:

∂2T

∂z2
=

1

H2

∂2T

∂σ2
. (23)

In σ–coordinates, the central difference formulas for first partial derivatives at the upper and lower interfaces of layer k are

∂T

∂σ

∣∣∣∣
σk

=
Tk −Tk−1

σ̃k − σ̃k−1
,

∂T

∂σ

∣∣∣∣
σk+1

=
Tk+1−Tk
σ̃k+1− σ̃k

, (24)

where σ̃k is the value of σ at the midpoint of layer k, halfway between σk and σk+1. The second partial derivative, defined at10

the midpoint of layer k, is then given by

∂2T

∂σ2

∣∣∣∣
σ̃k

=

∂T
∂σ

∣∣
σk+1
− ∂T

∂σ

∣∣
σk

σk+1−σk
(25)

By inserting Equation (24) into Equation (25), we obtain the discrete form of the vertical diffusion term in Equation 22:

∂2T

∂σ2

∣∣∣∣
σ̃k

=
Tk−1

(σ̃k − σ̃k−1)(σk+1−σk)
−Tk

(
1

(σ̃k − σ̃k−1)(σk+1−σk)
+

1

(σ̃k+1− σ̃k)(σk+1−σk)

)
15

+
Tk+1

(σ̃k+1− σ̃k)(σk+1−σk)
. (26)

To simplify some expressions below, we define the following coefficients associated with the vertical temperature diffusion,

ak =
1

(σ̃k − σ̃k−1)(σk+1−σk)
, bk =

1

(σ̃k+1− σ̃k)(σk+1−σk)
. (27)

4.4.2 Viscous Dissipation

The source term from viscous dissipation in Equation 22 is given by the product of the stress and strain rate tensors:20

Φ = σij ε̇ij = τij ε̇ij . (28)

The change to deviatoric stress on the right-hand side of Equation 28 follows from terms related to the mean compressive stress

(or pressure) dropping out due to incompressibility. Analogous to the effective strain rate given in Equation 6, the effective-

deviatoric stress is given by

τe =

(
1

2
τijτij

) 1
2

, (29)25
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which can be combined with Equations 28 and 6 to derive an expression for the viscous dissipation in terms of effective

deviatoric stress and strain,

Φ = 2τeε̇e (30)

Finally, an analog to Equation 4 gives

τe = 2ηeε̇e, (31)5

which can be used to eliminate ε̇e in Equation 30 and arrive at an alternate expression for the dissipation based on only two

scalar quantities

Φ = 4ηeε̇
2
e. (32)

The viscous dissipation source term is computed within Albany-LI at MPAS cell vertices and then reconstructed at cell

centers in MPAS.10

For the SIA model, dissipation can be calculated in sigma coordinates as

Φ(σ) =
σg

c

∂u

∂σ
· ∇s (33)

which can be combined with Eq. 17 to make:

Φ(σ) =−2σg

cρ
(gσρ)n+1(H|∇s|)n+1A (34)

We calculate Φ on cell edges following the procedure described for Eq. 18, and then interpolate Φ back to cell centers to solve15

Eq. 22.

4.4.3 Vertical Temperature Solution

The vertical diffusion portion of Equation 22 is discretized according to

Tn+1
k −Tnk

∆t
=

k

ρcH2

(
akT

n+1
k−1 − (ak + bk)Tn+1

k + bkT
n+1
k+1

)
+

Φk
ρc
, (35)

where ak and bk are defined in (27), n is the current time level, and n+ 1 is the new time level. Because the vertical diffusion20

terms are evaluated at the new time level, the discretization is backward-Euler (fully implicit) in time.

The temperature T0 at the upper boundary is set to min(Tair,0), where the mean-annual surface air temperature Tair is a

two-dimensional field specified from observations or climate model output.

At the lower boundary, for grounded ice there are three potential heat sources and sinks: (1) the diffusive flux from the

bottom surface to the ice interior (positive up),25

F bot
d =

k

H

Tnz −Tnz−1

1− σ̃nz−1
; (36)
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(2) the geothermal flux Fg , prescribed from a spatially variable input file (based on observations), and (3) the frictional heat

flux associated with basal sliding,

Ff = τb ·ub, (37)

where τb and ub are 2D vectors of basal shear stress and basal velocity, respectively, and the friction law from Equation 15

becomes5

Ff = β
√
u2
b + v2

b . (38)

If the basal temperature Tnz < Tpmp (where Tpmp is the pressure melting point temperature), then the fluxes at the lower

boundary must balance,

Fg +Ff = F bot
d , (39)

so that the energy supplied by geothermal heating and sliding friction is equal to the energy removed by vertical diffusion. If,10

on the other hand, Tnz = Tpmp, then the net flux is nonzero and is used to melt or freeze ice at the boundary:

Mb =
Fg +Ff −F bot

d

ρL
, (40)

where Mb is the melt rate and L is the latent heat of melting. Melting generates basal water, which may either be stored at

the bed locally, serve as a source for the basal hydrology model (See Section 5.1), or may simply be ignored. If basal water is

present locally, Tnz is held at Tpmp.15

For floating ice the basal boundary condition is simpler: Tnz is simply set to the freezing temperature Tf of seawater.

Optionally, a melt rate can be prescribed at the lower surface.

Rarely, the solution for T may exceed Tpmp for a given internal layer. In this case, T is set to Tpmp, excess energy goes

towards melting of ice internally, and the resulting melt is assumed to drain to the bed immediately.

If (40) applies, we compute Mb and adjust the basal water depth. When the basal water goes to zero, Tnz is set to the20

temperature of the lowest layer (less than Tpmp at the bed) and flux boundary conditions apply during the next time step.

4.4.4 Horizontal Advection

Temperature advection in any individual layer k is treated using tracer advection, as in Equation 20 above, where the ice

temperature Tk is substituted for the generic tracer Q. After horizontal transport, the surface and basal mass balance is applied

to the top and bottom ice surfaces, respectively. Because layer transport and the application of mass balance terms results in25

an altered vertical-layer spacing with respect to σ coordinates, a vertical remapping scheme is applied. This conservatively

transfers ice volume and internal energy between adjacent layers while restoring σ layers to their initial distribution. Internal

energy divided by mass gives the new layer temperatures.
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5 Model Physics

Physical processes currently implemented in MALI are a mass-conserving subglacial hydrology model and a small number of

basic schemes for iceberg calving. These are described in more detail below.

5.1 Subglacial Hydrology

Sliding of glaciers and ice sheets over their bed can increase ice velocity by orders of magnitude and is the primary control on5

ice flux to the oceans. The state of the subglacial hydrologic system is the primary control on sliding (Clarke, 2005; Cuffey

and Paterson, 2010; Flowers, 2015), and ice sheet modelers have therefore emphasized subglacial hydrology and its effects on

basal sliding as a critical missing piece of current ice sheet models (Little et al., 2007; Price et al., 2011).

MALI includes a mass-conserving model of subglacial hydrology that includes representations of any or all of water storage

in till, distributed drainage, and channelized drainage and is coupled to ice dynamics. The model is based on the model of10

Bueler and van Pelt (2015) with an additional component for channelized drainage and modified for MALI’s unstructured

horizontal grid. While the implementation follows closely that of Bueler and van Pelt (2015), the model and equations are

summarized here along with a description of the features unique to the application in MALI.

5.1.1 Till

The simple till component represents local storage of water in subglacial till without horizontal transport within the till. Evolu-15

tion of the effective water depth in till,Wtill is therefore a balance of delivery of meltwater,mb, to the till, drainage of water out

of the till at rate Cd (mass leaving the subglacial hydrologic system, for example, to deep groundwater storage), and overflow

to the distributed drainage system, γ:

∂Wtill

∂t
=
mb

ρw
−Cd− γt. (41)

In the model, meltwater (from either the bed or drained from the surface), is first delivered to the till component. Water in20

excess of the the maximum storage capacity of the till, Wmax
till , is instantaneously transferred as a source term to the distributed

drainage system through the γt term.

5.1.2 Distributed drainage

The distributed drainage component is implemented as a “macroporous sheet” that represents bulk flow through linked cavities

that form in the lee of bedrock bumps as the glacier slides over the bed (Flowers and Clarke, 2002; Hewitt, 2011; Flowers,25

2015). Water flow in the system is driven by the gradient of the hydropotential, φ, defined as

φ= ρwgzb +Pw (42)
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where Pw is the water pressure in the distributed drainage system. A related variable, the ice effective pressure, N , is the

difference between ice overburden pressure and water pressure in the distributed drainage system, Pw:

N = ρgH −Pw. (43)

The evolution of the area-averaged cavity space is a balance of opening of cavity space by the glacier sliding over bedrock

bumps and closing through creep of the ice above. The model uses the commonly used assumption (e.g. Schoof, 2010; Hewitt,5

2011; Werder et al., 2013; Hoffman and Price, 2014) that cavities always remain water filled (c.f. Schoof et al., 2012), so cavity

space can be represented by the effective water depth in the macorporous sheet, W :

∂W

∂t
= cs|ub|(Wr −W )− ccdAbN3W (44)

where cs is bed roughness parameter, Wr is the maximum bed bump height, ccd is creep scaling parameter representing

geometric and possibly other effects, and Ab is the ice flow parameter of the basal ice.10

Water flow in the distributed drainage system, q, is driven the hydropotential gradient and is described by a general power-

law:

q =−kqWα1 |∇φ|α2−2∇φ (45)

where kq is a conductivity coefficient. The α1 and α2 exponents can be adjusted so that Eq. 45 reduces to commonly used

water flow relations, such as Darcy flow, the Darcy-Weisbach relation, and the Manning equation.15

5.1.3 Channelized drainage

The inclusion of channelized drainage in MALI is an extension to the model of Bueler and van Pelt (2015). The distributed

drainage model ignores dissipative heating within the water, which in the real world leads to melting of the ice roof, and the

formation of discrete, efficient channels melted into the ice above when the distributed discharge reaches a critical threshold

(Schoof, 2010; Hewitt, 2011; Werder et al., 2013; Flowers, 2015). These channels can rapidly evacuate water from the dis-20

tributed drainage system and lower water pressure, even under sustained meltwater input (Schoof, 2010; Hewitt, 2011; Werder

et al., 2013; Hoffman and Price, 2014; Flowers, 2015).

The implementation of channels follows the channel network models of Werder et al. (2013) and Hewitt (2013). The evolu-

tion of channel area, S, is a balance of opening and closing processes as in the distributed system, but in channels the opening

mechanism is melting caused by dissipative heating of the ice above:25

dS

dt
=

1

ρL
(Ξ−Π)− cccAbN3S (46)

where ccc is the creep scaling parameter for channels.

The channel opening rate, the first term in Eq. 46, is itself a balance of dissipation of potential energy, Ξ, and sensible heat

change of water, Π, due to changes in the pressure-dependent melt temperature. Dissipation of potential energy includes energy
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produced by flow in both the channel itself and a small region of the distributed system along the channel:

Ξ =

∣∣∣∣dφdsQ
∣∣∣∣+ ∣∣∣∣dφds qclc

∣∣∣∣ (47)

where s is the spatial coordinate along a channel segment,Q is the flow rate in the channel, and qc is the flow in the distributed

drainage system parallel to the channel within a distance lc of the channel. The term adding the contribution of dissipative

melting within the distributed drainage system near the channel is included to represent some of the energy that has been5

ignored from that process in the description of the distributed drainage system and allows channels to form even when channel

area is initially zero if discharge in the distributed drainage system is sufficient (Werder et al., 2013). The term representing

sensible heat change of the water, Π, is necessitated by the assumption that the water always remains at the pressure-dependent

melt temperature of the water. Changes in water pressure must therefore result in melting or freezing:

Π =−ctcwρw (Q+ lcqc)
dPw
ds

(48)10

where ct is the Clapeyron slope and cw is the specific heat capacity of water. The pressure-dependent melt term can be disabled

in the model.

Water flow in channels,Q, mirrors Eq. 45:

Q=−kQSα1 |∇φ|α2−2∇φ (49)

where kQ is a conductivity coefficient for channels.15

5.1.4 Drainage component coupling

Eqs. 41-49 are coupled together by describing the drainage system with two equations, mass conservation and pressure evolu-

tion. Mass conservation of the subglacial drainage system is described by

∂W

∂t
+
∂Wtill

∂t
=−∇ · (VdW ) +∇ · (Dd∇W )−

[
∂S

∂t
+
∂Q

∂s

]
δ(xc) +

mb

ρw
(50)

where Vd is water velocity in the distributed flow, Dd is the diffusivity of the distributed flow, and δ(xc) is the Dirac delta20

function applied along the locations of the linear channels.

Combining Eq. 50 and Eq. 44 and making the simplification that cavities remain full at all times yields an equation for water

pressure within the distributed drainage system, Pw:

φ0

ρwg

∂Pw
∂t

=−∇ · q+ cs|ub|(Wr −W )− ccdAbN3W −
[
∂S

∂t
+
∂Q

∂s

]
δ(xc) +

mb

ρw
− ∂Wtill

∂t
(51)

where φ0 is an englacial porosity used to regularize the pressure equation. Following Bueler and van Pelt (2015), the porosity25

is only included in the pressure equation and is excluded from the mass conservation equation.

Any of the three drainage components (till, distributed drainage, channelized drainage) can be deactivated at runtime. The

most common configuration currently used is to run with distributed drainage only.
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5.1.5 Numerical implementation

The drainage system model is implemented using Finite Volume Methods on the unstructured grid used by MALI. State

variables (W,Wtill,S,Pw) are located at cell centers and velocities and fluxes (q,Vd,Q) are calculated at edge midpoints.

Channel segments exist along the lines joining neighboring cell centers. Eq. 50 is evaluated by summing tendencies from

discrete fluxes into or out of each cell. First-order upwinding is used for advection. At land-terminating ice sheet boundaries,5

Pw = 0 is applied as the boundary condition. At marine-terminating ice sheet boundaries, the boundary condition is Pw =

−ρwgzb, where ρw is ocean water density. The drainage model uses explicit forward Euler time-stepping using Eqs. 41, 50,

46, and 51. This requires obeying advective and diffusive Courant–Friedrichs–Lewy (CFL) conditions for distributed drainage

as described by Bueler and van Pelt (2015), as well as an additional advective CFL condition for channelized drainage, if it is

active.10

We acknowledge that the non-continuum implementation of channels can make the solution grid-dependent, and grid con-

vergence may therefore not exist for many problems (Bueler and van Pelt, 2015). However, for realistic problems with irregular

bed topography, we have found dominant channel location is controlled by topography, mitigating this issue.

5.1.6 Coupling to ice sheet model

The subglacial drainage model is coupled to the ice dynamics model through a basal friction law. Currently, the only option is15

a modified Weertman-style power law (Bindschadler, 1983; Hewitt, 2013) that adds a term for effective pressure to Eq. 15:

τb = C0Nub
m (52)

where C0 is a friction parameter. Implementation of a Coulomb friction law (Schoof, 2005; Gagliardini et al., 2007) and a

plastic till law (Tulaczyk et al., 2000; Bueler and van Pelt, 2015) are in development. When the drainage and ice dynamics

components are run together, coupling of the systems allows the negative feedback described by (Hoffman and Price, 2014)20

where elevated water pressure increases ice sliding and increased sliding opens additional cavity space, lowering water pressure.

The meltwater source term, m, is calculated by the thermal solver in MALI. Either or both of the ice dynamics and thermal

solvers can be disabled, in which case the relevant coupling fields can be prescribed to the drainage model.

5.1.7 Verification and Real-world Application

To verify the implementation of the distributed drainage model, we use the nearly exact solution described by Bueler and van25

Pelt (2015). The problem configuration uses distributed drainage only on a two-dimensional, radially-symmetric ice sheet of

radius 22.5 km with parabolic ice sheet thickness and a nontrivial sliding profile. Bueler and van Pelt (2015) showed that this

configuration allows for nearly-exact reference values of W and Pw to be solved at steady state from an ordinary differential

equation initial value problem with very high accuracy. We follow the test protocol of Bueler and van Pelt (2015) and initialize

the model with the near-exact solution and then run the model forward for one month, after which we evaluate model error due30
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Figure 3. Error in subglacial hydrology model for radial test case with near-exact solution described by Bueler and van Pelt (2015) for

different grid resolutions. a) Error in water thickness. × symbols indicate maximum error, and squares indicate mean error. Average error in

water thickness decays as O(∆x0.97). b) Error in water pressure, with same symbols. Average error in water pressure decays as O(∆x1.02).

to drift away from the expected solution. Performing this test with the MALI drainage model, we find error comparable to that

found by Bueler and van Pelt (2015) and approximately first order convergence (Figure 3).

To check the model implementation of channels, we use comparisons to other, more mature drainage models through the

Subglacial Hydrology Model Intercomparison Project (SHMIP)5. Steady state solutions of the drainage system effective pres-

sure, water fluxes, and channel development for an idealized ice sheet with varying magnitudes of meltwater input (SHMIP5

experiment suites A and B) compared between MALI and other models of similar complexity (GlaDS, Elmer) are very similar.

To demonstrate a real-world application of the subglacial hydrology model, we perform a standalone subglacial hydrology

simulation of the entire Antarctica Ice Sheet on a uniform 20 km resolution mesh (Figure 4). We force this simulation with basal

sliding and basal melt rate after optimizing the first-order velocity solver optimized to surface velocity observations (Figure

4a). We then run the subglacial hydrology model to steady state with only distributed drainage active and using standard10

parameter values. Results show a subglacial hydrologic state that is reasonable. For example, the subglacial water flux shows

5https://shmip.bitbucket.io/
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Figure 4. Subglacial hydrology model results for 20 km resolution Antarctic Ice Sheet. a) Basal ice speed calculated by the first-order

velocity solver optimized to surface velocity observations. This field and the calculated basal melt are the forcings applied to the standalone

subglacial hydrology model. b) Water flux in the distributed system calculated by the subglacial hydrology model at steady state.

similar spatial patterns to the basal sliding speed (Figure 4), suggesting a basal friction law based on the subglacial hydrologic

state could be configured to yield realistic ice velocity. Calibrating parameters for the subglacial hydrology model and a basal

friction law and performing coupled subglacial-hydrology/ice-dynamics simulations are beyond the scope of this paper; we

merely mean to demonstrate plausible behavior from the subglacial hydrology model for a realistic ice-sheet-scale problem.

5.2 Iceberg Calving5

MALI includes a few simple methods for removing ice from calving fronts during each model time step:

1. All floating ice is removed.

2. All floating ice in cells with an ocean bathymetry deeper than a specified threshold is removed.

3. All floating ice thinner than a specified threshold is removed.

4. The calving front is maintained at its initial location by adding or removing ice after thickness evolution is complete.10

This option does not conserve mass or energy but provides a simple way to maintain a realistic ice shelf extent (e.g., for

model spinup).
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5. “Eigencalving” scheme (Levermann et al., 2012). Calving front retreat rate, Cv , is proportional to the product of the

principal strain rates (ε̇1, ε̇2) if they both are extensional:

Cv =K2ε̇1ε̇2 for ε̇1 > 0 and ε̇2 > 0. (53)

The eigencalving scheme can optionally also remove floating ice at the calving front with thickness below a specified

thickness threshold (Feldmann and Levermann, 2015). In practice we find this is necessary to prevent formation of5

tortuous ice tongues and continuous, gradual extension of some ice shelves along the coast.

Ice that is eligible for calving can be removed immediately or fractionally each time step based on a calving timescale. To

allow ice shelves to advance as well as retreat, we implement a simple parameterization for sub-grid motion of the calving

front by forcing floating cells adjacent to open ocean to remain dynamically inactive until ice thickness there reaches 95% of

the minimum thickness of all floating neighbors. This is an ad hoc alternative to methods tracking the calving front position10

at sub-grid scales (Albrecht et al., 2011; Bondzio et al., 2016). In Section 8 below, we demonstrate the eigencalving scheme

applied to a realistic Antarctic ice sheet simulation. More sophisticated calving schemes are currently under development.

6 Additional Capabilities

6.1 Optimization

MALI includes an optimization capability through its coupling to the Albany-LI momentum-balance solver described in Sec-15

tion 4.2.1. We provide a brief overview of this capability here, while referring to Perego et al. (2014) for a complete description

of the governing equations, solution methods, and example applications. In general, our approaches are similar to those re-

ported on for other advanced ice sheet modeling frameworks already described in the literature (e.g., Goldberg and Sergienko,

2011; Larour et al., 2012; Gagliardini et al., 2013; Brinkerhoff and Johnson, 2013; Cornford et al., 2013) and focus (here)

primarily on optimizing the model velocity field relative to observed surface velocities. Briefly, we consider the optimization20

functional

J (β,γ) =

 
Σ

1

2σ2
u

|us−uobs
s |2 ds+

cγ
2

 
Σ

|γ− 1|2 ds+Rβ(β) +Rγ(γ), (54)

where the first term on the right-hand side (RHS) is a cost function associated with the misfit between modeled and observed

surface velocities, the second term on the RHS is a cost function associated with the ice stiffness factor, γ (see Equation 5),

and the third and fourth terms on the RHS are Tikhonov regularization terms given by25

Rβ(β) =
αβ
2

 
Σ

|∇β|2 ds, Rγ(γ) =
αγ
2

 
Σ

|∇γ|2 ds. (55)

σu is an estimate for the the standard deviation of the uncertainty in the observed ice surface velocities and the parameter

cγ controls how far the ice stiffness factor is allowed to stray from unity in order to improve the match to observed surface
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velocities. The regularization parameters αβ > 0 and αγ > 0 control the tradeoff between a smooth β field and one with higher-

frequency oscillations (that may capture more spatial detail at the risk of over-fitting the observations). The optimal values

of αβ and αγ can be chosen through a standard L-curve analysis6. The optimization problem is solved using the Limited

Memory BFGS method, as implemented in the Trilinos package ROL7, on the reduced-space problem. The functional gradient

is computed using the adjoint method.5

An example application of the optimization capability applied to a realistic, whole-ice-sheet problem is given below in

Section 8. Hoffman et al. (2018) present another application to the assimilation of surface velocity time series in Western

Greenland.

We note that our optimization framework has been designed to be significantly more general than implied by Equation 54.

While not applied here, we are able to introduce additional observational-based constraints (e.g., mass balance terms) and10

optimize additional model variable (e.g., the ice thickness). These are necessary, for example, when targeting model initial

conditions that are in quasi-equlibrium with some applied climate forcing. These capabilities are discussed in more detail in

Perego et al. (2014).

6.2 Simulation Analysis

As with other climate model components built using the MPAS framework, MALI supports the development and application15

of “analysis members", which allow for a wide range of run-time-generated simulation diagnostics and statistics output at user

specified time intervals. Support tools included with the code release allow for the definition of any number or combination

of pre-defined “geographic features” – points, lines (“transects”), or areas (“regions”) – of interest within an MPAS mesh.

Features are defined using the standard GeoJSON format (Butler et al., 2016) and a large existing database of globally defined

features is currently supported8. Python-based scripts are available for editing GeoJSON feature files, combining or splitting20

them, and using them to define their coverage within MPAS mesh files. Currently, MALI includes support for standard ice

sheet model diagnostics (see Table 2) defined over the global domain (by default) and / or over specific ice sheet drainage

basins and ice shelves (or their combination). Support for generating model output at points and along transects will be added

in the future (e.g., vertical samples at ice core locations or along ground-penetrating radar profile lines). In Section 8 below we

demonstrate the analysis capability applied to an idealized simulation of the Antarctica ice sheet.25

7 Model Verification and Benchmarks

MALI has been verified by a series of configurations that test different components of the code. In some cases analytic solutions

are used, but other tests rely on intercomparison with community benchmarks that have been run previously by many different

ice sheet models.
6We note that, while not done here, additional scalar parameters could be placed in front of R(β) and R(γ) in Equation 54 to differentially weight their

contributions to the cost function
7https://trilinos.org/packages/rol/
8https://github.com/MPAS-Dev/geometric_features
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Table 2. Standard model diagnostics available for an arbitrary number of predefined geographic regions.

diagnostic units

net ice area and volume m2, m3

net grounded ice area and volume m2, m3

net floating ice area and volume m2, m3

net volume above floatation m3

minimum, maximum, and mean ice thickness m

net surface mass balance kg yr−1

net basal mass balance kg yr−1

net basal mass balance for floating ice kg yr−1

net basal mass balance for grounded ice kg yr−1

average surface mass balance m yr−1

average basal mass balance for grounded ice m yr−1

average basal mass balance for floating ice m yr−1

net flux due to iceberg calving kg yr−1

net flux across grounding lines kg yr−1

maximum surface and basal velocity m yr−1

MALI currently includes 86 automated system regression tests that run the model for various problems with analytic solu-

tions or community benchmarks. In addition to checking the accuracy of model answers, some of the tests check that model

restarts give bit-for-bit exact answers with longer runs without restart. Some others check that the model gives bit-for-bit exact

answers on different numbers of processors. All but 20 of the longer running tests are run every time new features are added to

the code, and these tests each also include a check for answer changes. The verification and benchmark descriptions below are5

the most important examples from the larger test suite.

7.1 Halfar analytic solution

In (Halfar, 1981, 1983), Halfar described an analytic solution for the time-evolving geometry of a radially-symmetric, isother-

mal dome of ice on a flat bed with no accumulation flowing under the shallow ice approximation. This test provides an obvious

test of the implementation of the shallow-ice velocity calculation and thickness evolution schemes in numerical ice sheet mod-10

els and a way to assess model order of convergence (Bueler et al., 2005; Egholm and Nielsen, 2010). Bueler et al. (2005)

showed the Halfar test is the zero accumulation member of a family of analytic solutions, but we apply the original Halfar test

here.

In our application we use a dome following the analytic profile prescribed by Halfar (1983) with an initial radius of 21213.2

m and an initial height of 707.1 m. We run MALI with the shallow ice velocity solver and isothermal ice for 200 years and then15
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Figure 5. a) Root mean square error in ice thickness as a function of grid cell spacing for the Halfar dome after 200 years shown with black

dots. The order of convergence is 0.78. The red square show the RMS thickness error for the variable resolution mesh shown in b) with 1000

m spacing around the margin. b) Mesh with resolution that varies linearly from 1000 m grid spacing beyond a radius of 20 km (thick white

line) to 5000 m at a radius of 3 km (thin white line). The ice thickness initial condition for the Halfar problem is shown. This mesh requires

1265 cells for the 200 yr duration Halfar test case, while a uniform 1000 m resolution mesh requires 2323 cells.

compare the modeled ice thickness to the analytic solution at 200 years. We find the root mean square error in model thickness

decreases as model grid spacing is decreased (Figure 5a). The order of convergence of 0.78, consistent with the first-order

approximation used for advection.

We also use this test to assess the accuracy of simulations with variable resolution. We perform an addition run of the

Halfar test using a variable resolution mesh that has 1000 m cell spacing beyond a radius of 20 km that transitions to 5000 m5

cell spacing at a radius of 3 km (Figure 5b), generated with the JIGSAW(GEO) mesh generation tool (Engwirda, 2017a, b).

Root mean square error in thickness for this simulation is similar to that for the uniform 1000 m resolution case (Figure 5a),

providing confidence in the advection scheme applied to variable resolution meshes. The variable resolution mesh has about

half the cells of the 1000 m uniform resolution mesh.
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7.2 EISMINT

European Ice Sheet Modeling Initiative (EISMINT) model intercomparison consisted of two phases designed to provide com-

munity benchmarks for shallow-ice models. Both phases included experiments that grow a radially symmetric ice sheet on a

flat bed to steady state with a prescribed surface mass balance. The EISMINT intercomparisons test ice geometry evolution

and ice temperature evolution with a variety of forcings. Bueler et al. (2007) describe an alternative tool for testing thermo-5

mechanical shallow-ice models with artificially constructed exact solutions. While their approach has the notable advantage of

providing exact solutions, we have not implemented the non-physical three-dimensional compensatory heat source necessary

for its implementation. While we hope to use the verification of Bueler et al. (2007) in the future, for now we use the EISMINT

intercomparison suites to test our implementation of thermal evolution and thermomechanical coupling.

The first phase (Huybrechts et al., 1996) (sometimes called EISMINT1) prescribes evolving ice geometry and temperature,10

but the flow rate parameter A is set to a prescribed value so there is no thermomechanical coupling. We have conducted the

Moving Margin experiment with steady surface mass balance and surface temperature forcing. Following the specifications

described by Huybrechts et al. (1996), we run the ice sheet to steady state over 200 ka. We use the grid spacing prescribed by

Huybrechts et al. (1996) (50 km), but due to the uniform Voronoi grid of hexagons we employ, we have a slightly larger number

of grid cells in our mesh (1080 vs 961). At the end of the simulation, the modeled ice thickness at the center of the dome by15

MALI is 2976.7 m, compared with a mean of 2978.0 ± 19.3 m for the ten three-dimensional models reported by Huybrechts

et al. (1996). MALI achieves similar good agreement for basal homologous temperature at the center of the dome with a value

of −13.09◦ C, compared with −13.34± 0.56◦ C for the six models that reported temperature in Huybrechts et al. (1996).

The second phase of EISMINT (Payne et al., 2000) (sometimes called EISMINT2), uses the basic configuration of the

EISMINT1 Moving Margin experiment but activates thermomechanical coupling through Eq. 8. Two experiments (A and F)20

grow an ice sheet to steady state over 200 ka from an initial condition of no ice, but with different air temperature boundary

conditions. Additional experiments use the steady state solution from experiment A (the warmer air temperature case) as the

initial condition to perturbations in the surface air temperature or surface mass balance forcings (experiments B, C, and D).

Because these experiments are thermomechanically coupled, they test model ice dynamics and thickness and temperature

evolution, as well as their coupling. There is no analytic solution to these experiments, but ten different models contributed25

results, yielding a range of behavior against which to compare additional models. Here we present MALI results for the five

such experiments that prescribe no basal sliding (experiments A, B, C, D, F). Our tests use the same grid spacing as prescribed

by Payne et al. (2000) (25 km), again with a larger number of grid cells in our mesh (4464 vs 3721).

Payne et al. (2000) report results for five basic glaciological quantities calculated by ten different models, which we have

summarized here with the corresponding values calculated by MALI (Table 3). All MALI results fall within the range of30

previously reported values, except for volume change and divide thickness change in experiment C and melt fraction change in

experiment D. However, these discrepancies are close to the range of results reported by Payne et al. (2000), and we consider

temperature evolution and thermomechanical coupling within MALI to be consistent with community models, particularly

given the difference in model grid and thickness evolution scheme.
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Table 3. EISMINT2 results for MALI shallow-ice model. For each experiment, model name “EISMINT2” refers to mean and range of

models reported in Payne et al. (2000), where we assume the range reported in by Payne et al. (2000) is symmetric about the mean. For

experiments B, C, and D reported values are the change from experiment A results. MALI results that lie outside the range of values in Payne

et al. (2000) are italicized.

Experiment Model Volume Area Melt fraction Divide thickness Divide basal temperature

106 km3 106 km2 m K

A EISMINT2 2.128±0.0725 1.034±0.043 0.718±0.145 3688.3±48.3 255.6±1.4

MALI 2.097 1.030 0.637 3671.8 255.2

Experiment Model % change % change % change % change change (K)

B EISMINT2 -2.589±0.4735 0.0±0.0 11.836±9.3345 -4.9±0.658 4.6±0.259

MALI -2.258 0.0 16.832 -5.013 4.6

C EISMINT2 -28.505±0.602 -19.515±1.777 -27.806±15.6855 -12.9±0.7505 3.7±0.3075

MALI -27.529 -20.179 -35.521 -12.049 3.8

D EISMINT2 -12.085±0.618 -9.489±1.63 -1.613±2.8725 -2.2±0.266 -0.2±0.03

MALI -12.265 -9.459 -5.216 -2.092 -0.2

A long-studied feature of the EISMINT2 intercomparison is the cold “spokes” that appear in the basal temperature field of

all models in Experiment F and, for some models, experiment A (Payne et al., 2000; Saito et al., 2006; Bueler et al., 2007;

Brinkerhoff and Johnson, 2013). MALI with shallow-ice velocity exhibits cold spokes for experiment F but not experiment

A (Figure 6). Bueler et al. (2007) argue these spokes are a numerical instability that develops when the derivative of the

strain heating term is large. Brinkerhoff and Johnson (2013) demonstrate that the model VarGlaS avoids the formation of these5

cold spokes. However, that model differs from previously analyzed models in several ways: it solves a three-dimensional,

advective-diffusive description of an enthalpy formulation for energy conservation; it uses the Finite Element Method on

unstructured meshes; conservation of momentum and energy are iterated on until they are consistent (rather than lagging

energy and momentum solutions as in most other models). At present, it is unclear which combination of those features is

responsible for preventing the formation of the cold spokes.10

7.3 ISMIP-HOM

The Ice Sheet Model Intercomparison Project-Higher Order Models (ISMIP-HOM) is a set of community benchmark exper-

iments for testing higher-order approximations of ice dynamics (Pattyn et al., 2008). Tezaur et al. (2015a) describe results

from the Albany-LI velocity solver for ISMIP-HOM experiments A (flow over a bumpy bed) and C (ice stream flow). For all

configurations of both tests, Albany-LI results were within one standard deviation of the mean of first-order models presented15

in Pattyn et al. (2008), and showed excellent agreement with the similar first-order model formulation of Perego et al. (2012).
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Figure 6. a) Basal homologous temperature (K) for EISMINT2 Experiment A. b) Same for Experiment F. Figures are plotted following

Payne et al. (2000).

These tests only require a single diagnostic solve of velocity, and thus results through MALI match those of the standalone

Albany-LI code it is using.

7.4 MISMIP3d

The Marine Ice Sheet Model Intercomparison Project-3d (MISMIP3d) is a community benchmark experiment testing ground-

ing line migration of marine ice sheets and includes nontrivial effects in all three dimensions (Pattyn et al., 2013). The exper-5

iments use a rectangular domain that is 800 km long in the longitudinal direction and 50 km wide in the transverse direction,

with the transverse direction making up half of a symmetric glacier. The bedrock forms a sloping plane below sea level. The

first phase of the experiment (Stnd) is to build a steady state ice sheet from a spatially uniform positive surface mass balance,

with a prescribed flow rate factor A (no temperature calculation or coupling) and prescribed basal friction for a nonlinear basal

friction law. A marine ice sheet forms with an unbuttressed floating ice shelf that terminates at a fixed ice front at the edge of10

the domain. From this steady state, the P75R perturbation experiment reduces basal friction by a maximum of 75% across a

Gaussian ellipse centered where the Stnd grounding line position crosses the symmetry axis. The perturbation is applied for

100 years, resulting in a curved grounding line that is advanced along the symmetry axis. After the completion of P75S, a

reversibility experiment named P75R removes the basal friction perturbation and allows the ice sheet to relax back towards the

Stnd state.15

Pattyn et al. (2013) report results from 33 models of varying complexity and applied at resolution ranging from 0.1 to 20

km. Participating models used depth-integrated shallow-shelf or L1L1/L2L2 approximations, hybrid shallow-ice/shallow-shelf

approximation, or the complete Stokes equations; there were no three-dimensional first-order approximation models included.

This relatively simple experiment revealed a number of key features necessary to accurately model even a simple marine ice
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sheet. Insufficient grid resolution prevented reversibility of the steady state grounding line position after experiments P75S and

P75R. Reversibility required grid resolution well below 1 km without a subgrid parameterization of grounding line position,

and grids a couple times coarser with a grounding line parameterization (Pattyn et al., 2013; Gladstone et al., 2010). The steady

state grounding line position in the Stnd experiment was dependent on the stress approximation employed, with Stokes model

calculating grounding lines the farthest upstream and models that simplify or eliminate vertical shearing (e.g., shallow shelf)5

having grounding lines farther downstream, by up to 100 km. With these features resolved, numerical error due to grounding

line motion is smaller than errors due to parameter uncertainty (Pattyn et al., 2013).

We find MALI using the Albany-LI first-order velocity solver is able to resolve the MISMIP3d experiments satisfactorily

compared to the Pattyn et al. (2013) benchmark results when using a grid resolution of 500 m with grounding line param-

eterization. Results at 1 km resolution with grounding line parameterization are close to fully resolved. We first assess grid10

convergence by comparing the position of the steady state grounding line in the Stnd experiment for a range of resolutions

against our highest resolution configuration of 250 m (Figure 7). Without a grounding line parameterization, the grounding line

position appears unconverged, but with the grounding line parameterization, grid convergence occurs at 500 m resolution. The

converged grounding line position for the Stnd experiment with MALI is 534 km. This represents the first results published for

a three-dimensional, first-order stress approximation that we are aware of, and this grounding line position falls between that15

of the L1L2 and Stokes models reported by Pattyn et al. (2013), consistent with the intermediate level of approximation of our

model. The dissertation work by Leguy (2015) reported similar results for the Blatter-Pattyn velocity solver with grounding

line parameterization in the Community Ice Sheet Model.

Reversibility of the P75S and P75R experiments shows the same grid resolution requirement of 500 m, while the 1 km

simulation with grounding line parameterization is close to reversible (Figure 8). Our highest resolution 250 m simulation20

without grounding line parameterization does show reversibility at the end of P75R (not shown), but the results differ somewhat

from the runs with grounding line parameterization due to the differing starting position determined from the Stnd experiment.

Thus for marine ice sheets with similar configuration to the MISMIP3d test, we recommend using MALI with the grounding

line parameterization and a resolution of 1 km or less.

The transient results using the MALI three-dimensional first-order stress balance look most similar to those of the “SCO6”25

L1L2 model presented by Pattyn et al. (2013) in that it takes about 50 years for the grounding line to reach its most advanced

position during P75S. In contrast, the Stokes models took notably longer and the models with reduced or missing representation

of membrane stresses reached their furthest advance within the first couple decades (Pattyn et al., 2013).

In addition to MISMIP3d, we have used MALI to perform the MISMIP+ experiments (Asay-Davis et al., 2016). These

results are included in the MISMIP+ results paper in preparation and not shown here.30
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Figure 7. Grid resolution convergence for MISMIP3d Stnd experiment with (gray squares) and without (black circles) grounding line

parameterization.

Figure 8. Results of the MISMIP3d P75R and P75S experiments from MALI at increasing grid resolution: a) 2000 m, b) 1000 m, c) 500 m,

d) 250 m. Results for 250 m without grounding line parameterization (e) are also shown for reference. Plots follow conventions of Figures 5

and 6 in Pattyn et al. (2013). Upper plot in each subplot shows steady state grounding line positions for steady-state spin-up (black), P75S

(red), and P75R (blue) experiments. Lower plot in each subplot shows grounding line position with time for P75R (red) and P75S (blue)

at y=0 km (top curves) and y=50 km (bottom curves). 500 m and 250 m results are nearly identical. 250 m results without grounding line

parameterization are intermediate of those at 1000 m and 2000 m resolution with grounding line parameterization.
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8 Realistic Application: Antarctic Ice Sheet Spinup

To demonstrate a large scale, semi-realistic ice sheet simulation that exercises many of the model capabilities discussed above,

we apply MALI to the InitMIP-Antarctica experiments9. The overall goal of InitMIP is to explore the impact of different ice

sheet model initialization approaches on simulated ice sheet evolution. Following model initialization – via spin-up, optimiza-

tion approaches, or both – three 100 year forward model experiments are conducted in order to examine model response to (1)5

an unforced control run, (2) an idealized surface mass balance perturbation, and (3) an idealized sub-ice shelf melt perturbation.

Additional details of the experiments are described in Seroussi and others (2018)10 and additional details on the broader Ice

Sheet Model Intercomparison Project (ISMIP6, part of CMIP6) that InitMIP is a part of are described in Nowicki et al. (2016)

and Goelzer and others (2018).

The Antarctica model configuration we demonstrate here uses a 20 km uniform resolution mesh, an initial internal ice10

temperature field from Van Liefferinge and Pattyn (2013), and the optimization capability described above in Section 6.1 (note

that we optimize both β and γ in this case), along with observed surface velocities from Rignot et al. (2011) to obtain a realistic

model initial state (Figure 9a,b). Then, we perform a 1000 yr spin-up with evolving velocity, geometry, and temperature,

applying steady forcing of present-day estimates for surface mass balance and submarine melting (Lenaerts et al. (2012) and

Rignot et al. (2013), respectively) (Figure 9c,d). For temperature boundary conditions, we apply the steady geothermal flux15

field from Shapiro and Ritzwoller (2004) and the surface (2 meter) air temperature field from Lenaerts et al. (2012). We use

the “eigencalving” calving option (discussed in Section 5.2) with the K2 parameter tuned by ice shelf and include a minimum

calving front thickness threshold of 100 m. This standard spin-up, albeit much too short to come to full to equilibrium, removes

a substantial portion of the largest model transients (Figure 9d) and retains an ice sheet extent and ice speed field qualitatively

very similar to the observations (Figure 9a,c). The model state at this point serves as our final initial condition from which we20

run the control and sub-ice shelf melt perturbation experiments mentioned above. Simulation outputs for these two experiments

are shown in Figure 10.

In Figure 10 we use the online-analysis capability discussed above in Section 6.2 to present some of the broad features of the

initMIP sub-ice shelf melt perturbation experiment. The left column of Figure 10 shows area-integrated time series of sub-ice

shelf melt flux, grounding line flux, calving flux (left column; Gt yt−1), and the right column shows volume-above floatation25

(VAF), grounded area change, and floating area change (right column; percent change) measured over a few specific drainage

basins and their respective ice shelves. As expected, for the sub-ice shelf melt perturbation experiments the sub-ice shelf melt

flux time series show an approximately linear increase from the start of the simulation up to around 40 years, at which point

it plateaus for most ice sheet/shelf systems or, in the case of Pine Island / Thwaites (PT), rapidly drops off. This rapid drop in

sub-shelf melt for PT can be explained as the result of a rapid loss in ice shelf area, as supported by the plot showing loss of30

the majority of floating ice for the PT system. As expected due to a thinning ice shelf leading to reduced buttressing, the PT

system initially shows an increase in flux across the grounding line. A seemingly counterintuitive result for the PT system is

the subsequent rapid decrease in grounding-line flux after year 31, which closer examination reveals is due to grounding line

9Additional realistic applications of MALI to Greenland simulations are discussed in Shannon et al. (2013) and Edwards et al. (2014b).
10http://www.climate-cryosphere.org/wiki/index.php?title=InitMIP-Antarctica

31

http://www.climate-cryosphere.org/wiki/index.php?title=InitMIP-Antarctica


retreat into an area of relatively less slippery bed, whereby velocities at the grounding line slow down by ∼ 50− 100%. For

the Ross and Filchner-Ronne (FR) systems, we see a more muted decrease in grounded area and VAF as a result of the melt

perturbation, which is anticipated as the prescribed melt rate perturbations applied to these systems is more than four times

smaller. An additional counterintuitive result observed for the Amery system is that, despite a substantial loss of floating ice

area (and to a much lesser extent, grounded ice area), the overall VAF for this system increases following the melt perturbation,5

relative to the control run. A detailed examination indicates that the overall floating and grounded ice area loss for this system

occurs in smaller, isolated systems of this region rather than within the main Amery ice shelf. The increase in volume above

floatation in the run with increased basal melting relative to the control run can be explained for the same reason as in PT –

grounding line retreat into a stickier bed leads to decreased flux across the grounding line and retention of mass within the ice

sheet interior. Lastly, we note the strongly stochastic nature of the (annually averaged) calving flux, which varies over time by10

up to an order of magnitude for some systems. Overall, relative to the control run, calving fluxes are eventually lower for the

basal-melt perturbation experiment, which can be explained by the overall decrease in ice shelf thickness under conditions of

increased basal melting.

We note that, based on this coarse-resolution model configuration, our non-equilibrated initial conditions, and the idealized

climate forcing applied we do not attempt to interpret results from these experiments as predictive of real-world conditions15

(e.g., grounding line migration will be severely restricted and unrealistic due to our coarse resolution mesh). Rather, our aim

here is simply to demonstrate that when applied to large scale, whole-ice-sheet simulations on realistic geometries, MALI

is robust and evolves reasonably during multi-century-length, free-running simulations. Future work will include running the

complete set of initMIP experiments, taking advantage of the variable-resolution mesh capability to place adequate resolution

where needed, like at and near to grounding lines.20

9 Coupling to Energy Exascale Earth System Model

MALI is the current land ice model component of the U.S. Department of Energy’s Energy Exascale Earth System Model

(E3SM). E3SM is an Earth System Model with atmosphere, land, ocean, and sea ice components, linked through a coupler

that passes the necessary fields (e.g., model state, mass, momentum, and energy fluxes) between the components. E3SM,

which branched from the Community Earth System Model (CESM, version 1.2 beta10) in 2014, targets high resolution global25

simulations, and all components have a variable resolution mesh capability. The ocean (Ringler et al., 2013; Petersen et al.,

2015, 2018) and sea ice (Turner et al., 2018) components are also built on the MPAS Framework. Because the coupling between

E3SM and MALI is currently still fairly rudimentary, we include only a few additional details below and leave a more detailed

description to future work. Having all three of these E3SM components in the MPAS framework has simplified adding and

maintaining them within E3SM, because developments in the component driver code and build and configuration scripts made30

by one MPAS component can easily be leveraged by the others.

Physics at the ice sheet atmosphere interface are handled by the snow model within the E3SM Land Model (ELM; Zhu et al.

(2018); Ricciuto et al. (2018)). ELM’s snow model calculates ice sheet surface mass balance using a surface energy balance
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Figure 9. Model spin-up results for Antarctica at 20 km resolution. a) Ice surface speed from satellite observation (Rignot et al., 2013). White

contour line in each plot is the grounding line. Areas colored red exceed the maximum speed shown in the colorbar. b) Modeled ice surface

speed after optimization, plotted as in a). c) Modeled ice surface speed after 1000 years with evolving velocity, geometry, and temperature

and active eigencalving, plotted as in a). d) Time series of volume above floatation, grounding line flux, grounded area, and floating area

during 1000 yr spin-up.

model and, at each coupling interval, MALI passes the current ice sheet extent and surface elevation through the coupler to

ELM. The coupler then returns the surface mass balance and surface temperature calculated by ELM to MALI. These fields

are used within MALI as boundary conditions to the mass and thermal evolution equations (Sections 4.3 and 4.4). Currently,

runoff from surface melting is calculated within ELM and routed directly through E3SM’s runoff model, rather than being
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Figure 10. Model results for initMIP control (thin lines) and sub-ice shelf melt perturbation (thick lines) experiments for the Filchner-

Ronne (black), Lambert-Amery (purple), Ross (blue), and Thwaites and Pine Island Glacier (red) ice shelf systems. Combined systems are

composed of their respective ice shelves and the IMBIE basins (Shepherd et al., 2012) flowing into them from upstream.

passed to and used by MALI. The subglacial discharge model discussed above in Section 5.1 is not currently coupled to the

rest of E3SM.

Ongoing and future work on MALI and E3SM coupling includes: passing subglacial discharge at terrestrial ice margins to

the land runoff model in E3SM; passing surface runoff calculated in E3SM to the land ice model (for use as a source term in

the subglacial hydrology model); two-way coupling between the ocean and a dynamic MALI model11; discharge of icebergs5

(solid ice flux from MALI) to the coupler and from there to the ocean and sea ice models.

10 Conclusions and Future Work

We have described MPAS-Albany Land Ice (MALI), a higher-order, thermomechanically coupled ice sheet model using un-

structured Voronoi meshes. MALI takes advantage of the MPAS framework for development of unstructured grid Earth system

model components and the Albany and Trilinos frameworks for parallel, performance-portable, implicit solution of the chal-10

11Coupling to a static Antarctic ice sheet with ocean circulation in sub-ice shelf cavities is supported in E3SM version 1.0.0
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lenging higher-order ice sheet momentum balance through the Albany-LI velocity solver. Together, these tools provide an

accurate, efficient, scalable, and portable ice sheet model targeted for high resolution ice sheet simulations within a larger

Earth system modeling framework run on tens of thousands of computing cores, and MALI makes up the ice sheet component

of the Energy Exascale Earth System Model version 1.

MALI includes three-dimensional Blatter-Pattyn and shallow-ice velocity solvers, a standard explicit mass evolution scheme,5

a thermal solver that can use either a temperature or enthalpy formulation, and an adaptive time stepper. Physical processes

represented in the model include subglacial hydrology and calving. The model includes a mass-conserving subglacial hydrol-

ogy model that can represent combinations of water drainage through till, distributed systems, and channelized systems, and

can be coupled to ice dynamics. A handful of basic calving schemes are currently implemented, including the physically based

“eigencalving” method.10

We have demonstrated accuracy of the various model components through commonly used exact solutions and community

benchmarks. Of note, we presented the first results for the MISMIP3d benchmark experiments using a Blatter-Pattyn model,

and the results are intermediate to those of Stokes and L1L2 models, as might be expected. We also showed simulation results

for a semi-realistic Antarctic Ice Sheet configuration at coarse resolution, and this capability was facilitated by the optimization

tools within Albany-LI.15

A number of model improvements are planned over the next five years, focused heavily on improved representation of ice

sheet physical processes and Earth system coupling. An implicit subglacial hydrology model based on existing such models

(Werder et al., 2013; Hoffman and Price, 2014) is under development using the Albany framework. It will include optimization

capabilities, a technique which has yet to be applied to subglacial hydrology beyond a spatially-average, 0-dimension applica-

tion (Brinkerhoff et al., 2016). The difficulty in subglacial drainage parameter estimation remains one of the primary reasons20

drainage models have yet to be widely applied in ice sheet models. Improved calving schemes are also under development

using a continuum damage mechanics approach (Borstad et al., 2012; Duddu et al., 2013; Bassis and Ma, 2015). Additionally,

solid earth processes affecting ice sheets are planned future development, including gravitational, elastic and viscous effects.

Higher-order advection, through the flux-corrected transport (Ringler et al., 2013) and/or incremental remapping (Dukowicz

et al., 2010; Lipscomb and Hunke, 2004; Turner et al., 2018) schemes that are already implemented in MPAS, and semi-25

implicit time-stepping are planned. Finally, a high priority is completing coupling between ice sheet, ocean, and sea ice models

in E3SM.

11 Code availability

MPAS releases are available at https://mpas-dev.github.io/ and model code is maintained at https://github.com/MPAS-Dev/MPAS-

Release/releases. MPAS-Albany Land Ice is included in MPAS version 6. The Digital Object Identifier for MPAS v6 is (Zenodo30

link to be added when release is complete). The Albany library is developed openly at https://github.com/gahansen/Albany,

and the Trilinos library is developed openly at https://github.com/trilinos/Trilinos. Region definitions for analysis are openly

maintained at https://github.com/MPAS-Dev/geometric_features.
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Table A1. Physical constants.

Symbol Description Standard Value Units

g gravitational acceleration 9.81 m s−2

ρ density of ice 910 kg m−3

R gas constant 8.3145 kg m2 s−2 K−1 mol−1

ρw density of freshwater 1000 kg m−3

ρo density of ocean water 1028 kg m−3

c heat capacity of ice 2009 J kg−1 K−1

k thermal conductivity of ice 2.1 W m−1 K−1

L latent heat of fusion of water 3.35× 105 J kg−1

ct pressure melt coefficient 7.5× 10−8 K Pa−1

cw heat capacity of water 4.22× 103 J kg−1 K−1

Table A2. General variables and parameters.

Symbol Description Units

x,y (x1,x2) horizontal coordinates m

z (x3) vertical elevation m

nz number of vertical layers

t time s

σ "sigma" coordinate unitless

H ice thickness m

s upper surface elevation m

b lower surface elevation m

ȧ surface mass balance m s−1

ḃ basal mass balance m s−1

Qt tracer quantity

l layer thickness

Ṡ tracer sources and sinks
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Table A3. Ice dynamics variables and parameters.

Symbol Description Units

σij stress tensor Pa

τij deviatoric stress tensor Pa

τe effective deviatoric stress Pa

δij Kroneker delta

ε̇ij strain rate tensor s−1

ε̇e effective strain rate s−1

ηe effective ice viscosity Pa s

γ ice stiffening factor

n Glen’s flow law exponent

m basal friction law exponent

ui horizontal ice velocity vector m s−1

un horizontal advective ice velocity normal to cell edges m s−1

ub basal slip velocity vector m s−1

ū depth-averaged velocity m s−1

A ice flow rate factor s−1 Pa−n

A0 ice flow rate factor constant s−1 Pa−n

β basal friction coefficient Pa yr m−1

Table A4. Ice thermodynamics variables and parameters.

Symbol Description Units

T ice temperature K

T ∗ absolute ice temperature K

Tpmp pressure melting temperature K

Qa activation energy for crystal creep kg m2 s−2 mol−1

Φ viscous dissipation Pa s−1

Fd diffusive flux at ice base W m−2

Ff geothermal heat flux W m−2

Ff frictional heating W m−2
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Table A5. Subglacial hydrology variables and parameters.

Symbol Description Units

Wtill water layer thickness in till m

W water layer thickness at bed m

mb basal melt rate m s−1

Cd till drainage rate m s−1

γt overflow rate from till m s−1

φ basal hydropotential Pa DUPLICATE!!!

Pw basal water pressure Pa

zb bed elevation m

N ice effective pressure Pa

cs basal roughness parameter m−1

Wr maximum bed bump height m

ccd creep scaling parameter for distributed drainage

Ab ice flow rate factor for basal ice s−1 Pa−n

q water flow in distributed drainage system m2 s−1

kq conductivity coefficient for distributed flow m2α2−α1 s2α2−3 kg1−α2

α1 exponent on water thickness for water flow

α2 exponent on water pressure for water flow

S subglacial channel area m2

Ξ dissipation of potential energy in water flow J s−1 m−2

Π sensible heat change of water J s−1 m−2

ccc creep scaling parameter for channelized drainage

Q water flow in channelized drainage system m3 s−1

kQ conductivity coefficient for channelized flow m2α2−α1 s2α2−3 kg1−α2

qc water flow in distributed drainage system along a chan-

nel

m2 s−1

lc distance perpendicular to a channel where channel is

influenced by distributed flow dissipation

m

Vd water velocity of distributed flow m s−1

Dd diffusivity of distributed flow m2 s−1

δ Dirac delta function

φ0 notional englacial porosity

C0 basal friction parameter (s m−1)m
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Table A6. Calving variables and parameters.

Symbol Description Units

ε̇1, ε̇2 horizontal principal strain rates s−1

Cv calving velocity m s−1

K2 eigencalving parameter m s

Table A7. Optimization variables and parameters.

Symbol Description Units

J optimization functional

σu standard deviation of uncertainty in observed velocity m s−1

cγ control parameter for ice stiffness factor

αβ ,αγ regularization parameters
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