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Abstract 

This paper introduces a data-driven methodology for anomaly detection in industrial 

processes. Our focus is on minimizing misclassifications of normal operations and 

enhancing anomaly and outlier detection. This optimization is based on presumed ground 

truth (GT) labels associated with a dependent variable (isobutane concentration). 

Utilizing a moving-horizon approach on an extensive industrial dataset, we perform a 

comprehensive evaluation of filtering algorithms, and present a representative outlier 

classification. Secondly, effective anomaly detection, distinct from outlier detection, is 

achieved by integrating a regression model trained on measurements from independent 

process variables to fit the dependent variable. Trained regression models consistently 

achieve effective prediction, staying within an approved process tolerance. 
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1. Introduction 

Ensuring reliable control in any industrial plant necessitates the validation of real-time 

measurements. Anomaly detection proves effective in identifying subtle signs of 

malfunctions that could escalate into serious issues. While operators traditionally rely on 

periodic laboratory samples, there is a growing interest in integrating advanced 

algorithms to streamline this process and minimize operational burdens. Our focus 

encompasses the detection of outliers, representing sudden, sharp changes in the 

monitored signal, as well as distinguishing between the true dynamics of the process and 

anomalous dynamics caused by measurement disturbances. When anomalous 

measurements are detected, the operation room should be alarmed. 

We employ real-time data analysis to validate incoming online measurements, 

prioritizing simplicity — an essential factor for implementation on industrial hardware. 

Various methods, such as threshold or standard deviation filters (Afanasyev and 

Fedorova, 2019; Blázquez-García et al., 2021), have been explored for detecting outliers 

in univariate and multivariate time series data. Some papers consider calculating the local 

mean of a time series using exponentially decreasing weight factors for each prior 

measurement (Carter and Streilein, 2012; Roberts, 1959). An alternative involves a 

regression approach that utilizes data-based modeling to identify outliers in a multivariate 

context, leveraging the autoregressive nature of the model for a nuanced understanding 

of system dynamics (Yoon et al., 2022). Mathematical models, grounded in fundamental 
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laws of nature, offer a deeper grasp of complex process dynamics. For instance, a Kalman 

filter can be coupled with existing models to estimate the system state (Jin et al., 2022). 

Another alternative involves deep autoencoders (long short-term memory or 

convolutional neural network-based models), for enhancing productivity in complex 

time-series data from the industry (Tziolas et al., 2022). 

2. Methodology 

Our goal is to generate reliable outcomes of outlier detection in a one-dimensional vector, 

denoted as 𝑦(𝑡). This vector exhibits occasional unexplained behavior and is part of a 

broader time-series dataset encompassing all process variables over an extended time 

period, denoted as 𝑿. Initially, we enhance the signal clarity by filtering out random 

fluctuations and noise. As a dynamic model (essential for a Kalman filter) is unavailable, 

regression techniques offer a viable alternative. We conduct an analysis of the 

relationships among process variables within 𝑿 to detect existing trends in the dataset. 

2.1. Data Treatment 

Visual inspection effectively spots systematic errors, but not all are easily caught. This 

section explores multivariate data methods to address errors beyond visual detection. 

Three-standard-deviations rule. This widely used method assumes a normal data 

distribution. The 3-sigma interval T is defined based on the sample mean �̂� and the 

standard deviation σ in Eq. (1). Observations outside this interval are considered outliers, 

with approximately 99.7% of data expected within 3-sigma from the mean. We use: 

𝑇 = �̂� ± 3𝜎,   (1) 

𝑇𝑡𝑖
= �̂� ± χ𝑛,0.997

2 𝑺
1

2⁄ 𝑒.  (2) 

Eq. (2) uses the matrix square root 𝑺
1

2⁄  and unit vector e and χ
𝑛,0.997
2  is the quantile of 

the χ2 distribution with n degrees of freedom and a probability level of 99.7%. 

Minimum Covariance Determinant (MCD). This robust method (Rousseeuw and 

Driessen, 1999) detects outliers in multivariate data using the Mahalanobis distance: 

𝑑𝑀𝐶𝐷,𝑡𝑖
= √(𝒙(𝑡𝑖) − 𝒙)𝑇𝑺−1(𝒙(𝑡𝑖) − 𝒙)), (3) 

which shows the dissimilarity between a measurement 𝒙(𝑡𝑖) and the underlying 

probability distribution using the dMCD. It achieves robustness by iteratively identifying 

data subsets with the minimum determinant of the sample covariance matrix 𝑺, mitigating 

outlier influence. The process continues until the determinant of 𝑺 stabilizes. The methods 

discussed focus on global anomalies and may not effectively capture local deviations. We 

address this in the following text by taking the temporal dimension into account. 

2.2. Outlier Detection using Data Averaging 

This method targets unusual values in the local signal behavior within a window of size 

N, allowing flexibility in focusing on local, temporary, or global deviations based on the 

chosen N. The confidence interval in this method is computed as: 

  𝑇𝑡𝑖
= �̂�(𝑡𝑖) ± 𝑡𝑁,0.997√𝜎2/𝑁, (4) 

where tN,0.997 represents the inverse of Student’s t distribution (Student, 1908) with N 

degrees of freedom, and σ2 corresponds to the variance within the monitored window. 
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Statistical Mean. This method involves calculating the absolute mean of 𝑦(𝑡) over 

extended periods (N ranges from months to years). The detection criterion is based on (1). 

Temporal Mean. By evaluating the mean of consecutive data point differences Δ𝑦(𝑡𝑖) =
𝑦(𝑡𝑖)  −  𝑦(𝑡𝑖−1), we detect immediate variations in measurements. Outliers are identified 

when deviating from the interval in (1). 

Simple Moving Average (SIMA). A dynamic average, adapting to dataset changes, uses 

(5) with a fixed window of past measurements (Oppenheim, 1999). Observations outside 

the interval (4) are identified as outliers, highlighting inconsistencies in recent history. 

�̂�𝑡𝑖
=

1

𝑁
∑ 𝑦(𝑡𝑖−𝑗)

𝑁−1

𝑗=0
. 

  (5) 

Symmetric Moving Average (SYMA). When dealing with time-series data, our 

knowledge of future measurements is uncertain. Thus, we use this approach only for 

evaluating past detection outcomes. We compute the average as: 

�̂�𝑡𝑖
=

1

𝑁
∑ 𝑦(𝑡𝑖−𝑗)⌊(N−1)/2⌋

𝑗=−⌊(N−1)/2⌋
.  (6) 

Predictive Moving Average (PMA). We enhance SIMA with additional information 

from a prediction model to dynamically adjust its value based on other process variables. 

The predicted difference is added to the filtered value obtained from past measurements: 

�̂�𝑡𝑖
=

1

𝑁
∑ 𝑦(𝑡𝑖−𝑗)𝑁−1

𝑗=0 +  ∆�̂�(𝒙(𝑡𝑖)). (7) 

2.3. Anomaly Detection using Regression Methods 

We leverage predictive models to identify outliers of the dependent variable based on the 

positions of measurements relative to the model predictions. 

Ordinary Least Squares (OLS). A standard linear regression finds model parameters 𝜷 

by minimizing the squared 2-norm of differences of observed and predicted values: 

min𝜷   
1

2
∑ (𝑦(𝑡𝑖)

N
𝑖=1 − 𝜷𝑇𝒙(𝑡𝑖))2.  (8) 

LASSO. This method extends the regression by incorporating a penalty term based on 1-

norm, encouraging model sparsity (Santosa and Symes, 1986). It effectively identifies 

and reduces the impact of less relevant variables by solving (9), where λ balances model 

accuracy and overfitting. The ℓ1-penalization element leads some parameters to become 

zero, resulting in a less complex, more robust, and interpretable model. 

 min𝜷  
1

2
∑ (𝑦(𝑡𝑖)

N
𝑖=1 − 𝜷𝑇𝒙(𝑡𝑖))2 + 𝜆‖𝜷‖1.  

(9) 

 

Principal Component Regression (PCR). Principal Component Analysis (PCA) proves 

valuable in enhancing the interpretability of large, multi-dimensional datasets (Pearson, 

1901). By generating new uncorrelated variables, PCA maximizes variance, reducing 

data dimensionality while minimizing information loss. Subsequently, OLS or LASSO 

can be employed to learn the model in the latent space. The synergistic application of 

PCA and LASSO, denoted as PCA+LASSO, harnesses the strengths of both methods. 

3. Case Study 

The current industrial norm relies heavily on manual processes and lab sampling for 

anomaly detection. Incorporating an automated algorithm would ease this burden, 
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notifying operators only when an outlier is detected. Our investigation involves a 

comprehensive industrial dataset (Fáber et al., 2023) with >500 process variables. After 

preprocessing, we selected 377 entities with 15,907 measurements (𝑿 ∈ ℝ377×15,907). 

The monitored variable, 𝑦(𝑡), represents isobutane concentration, measured every 15 

minutes. Within the dataset, we identify three outlier types: level shifts, slow drifts, and 

additive outliers. Level shifts cause an instant change. The dataset is affected significantly 

with values potentially returning to the previous level. Drifts gradually deviate, forming 

challenging-to-detect outliers. Additive anomalies result in unusual values for a single 

observation, with subsequent points unaffected. The difference between an outlier and 

anomaly lies in time duration, deviation on short (hours) time scale stands for an outlier; 

if the deviation lasts longer and requires manual calibration, we classify it as an anomaly. 

4. Results 

Accurately evaluating anomaly detection methods relies on the presence of anomalies in 

the dataset. However, even plant operators may struggle to identify anomalies reliably in 

historical data. To address this, we construct ground truth (GT) labels using a seventh-

order SYMA, as shown in (6). This method identified 306 outliers among 15,907 

measurements. It is important to note that some outliers in the dataset might not be 

captured in the GT labels due to missing information from other process variables 𝑿(𝑡). 

In our evaluation of filter-based approaches, we tested various filter orders and 

determined that order 7 was the most effective. This choice was validated on a training 

set of 1,881 measurements, aligning closely with laboratory samples and resulting in the 

detection of approximately 7.07% of outliers. Subsequent testing on a 750-measurement 

dataset identified around 7.87% outliers. The inclusion of a higher number of past data 

points, compared to the SYMA (6), highlights the substantial noise present in the data. 

In regression analysis, models were trained to predict both isobutane concentration 

�̂�(𝑡) = 𝜷𝑇𝒙(𝑡) and the backward time difference of isobutane concentration �̂�(𝑡) =
𝜷∆

𝑇𝒙(𝑡) using methodology from Section 2.3. Before applying the algorithms, a 

preprocessing step utilized the MCD method to remove outliers from 𝑿 (Section 2.1). The 

dataset was randomly split into training and testing sets (80/20 ratio) for model learning 

and evaluation. Efficacy was assessed using the Root Mean Square Error (RMSE), with 

deviations indicating potential outliers: 

    RMSE = √
1

𝑁
∑ (𝑦(𝑡𝑖) − 𝜷𝑇𝒙(𝑡𝑖))2,𝑁

𝑖=1  (10) 

where N is the number of training points. Specifically, we considered the ±2×RMSE 

confidence interval over ±3×RMSE due to challenges in capturing dataset variability, 

especially in the presence of outliers among independent variables. 

We chose the first seven principal components for PCA-trained models, explaining 

approximately 62% of the overall variance using the elbow method. Additional 

components made minimal contributions, indicating saturation in capturing dataset 

variability. Similarly, for LASSO and the PMA, we applied thresholds of 0.08 and 0.8, 

respectively, to select relevant coefficients. This ensures that only impactful coefficients 

are retained, allowing for a more interpretable and effective regression outcome. The 

prediction model achieved RMSE values ranging from 0.4031 (LASSO) to 0.6655 

(PCA+LASSO), all within ±5% of isobutane concentration, meeting the industry-

standard confidence region. Variable selection by LASSO, OLS, and PCA provided 

insights into crucial features. LASSO identified n-butane concentration, olefin feed  
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concentration, and pressures of olefin and recycle streams. OLS also demonstrated 

reasonable variable selection, focusing on pressures at the deisobutanizer accumulator 

inlet/outlet. However, PCA exhibited less favorable outcomes, selecting compressor 

discharge, vibrations, and ventilation. Discussions with our industrial partner deemed this 

variable selection as unsuitable. When analyzing the prediction models, we observe a   

notable alignment between the fit by LASSO and laboratory measurements, prompting 

consideration of further investigation in future research. 

In predicting output differences, LASSO yielded the lowest RMSE (0.037) among 

regression methods, closely followed by OLS and PCA+LASSO (RMSE = 0.038). PCR, 

on the other hand, yielded a higher RMSE = 0.178. Selected variables coincide with those 

identified by regression models, substituting some with pressure/temperature differences. 

We analyze the performance 

of each method using 

confusion matrices derived 

from the predefined GT. 

True positives (TP) and false 

positives (FP) represent 

correctly and incorrectly 

classified non-anomalous 

measurements, respectively. 

True negatives (TN) and 

false negatives (FN) denote 

correctly and incorrectly 

identified outliers, respect-

ively. Results are shown in 

Table 1. The SM approach 

yielded poor results, dete-

cting no outliers (TN = 0), 

which was expected given 

the varying isobutane concentration range across different operation points. TM 

performed better, correctly identifying 97% of normal operation points (TP = 15,431) yet 

struggled with over 80% of outliers (TN = 61). SIMA detected 40% of overall outliers 

(TN = 122), with no foresight into upcoming measurements. PMA improved outlier 

detection compared to SIMA, reducing false predictions (FP from 1,048 to 1,011; FN 

from 184 to 181) and enhancing overall accuracy. The TP and TN rates improved as well 

(TP from 14,553 to 14,590; TN from 122 to 125). These adjustments yielded the best 

distribution of correctly classified data and reflect the improved use of latent information. 

We assessed the regression model (LASSO) using the ±2 × RMSE metric, and identified 

15 outliers (TN), showcasing its unique perspective on anomalies beyond the expected 

range of the dependent variable. These outliers (TN+FN) signify slow, gradual drifts 

Table 1: Confusion matrix entries for implemented outlier detection methods. 

Method TP TN FP FN 

Statistical Mean (SM) 15601 0 306 0 

Temporal Mean (TM) 15431 61 245 170 

Simple Moving Average (SIMA) 14553 122 184 1048 

Predictive Moving Average (PMA) 14590 125 181 1011 

Regression model 15175 15 291 426 
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requiring calibration. We illustrate the performance of the SIMA and PMA in Fig. 2 (left 

graph) using a selected period from testing measurements over multiple days. The fit in 

the latter approach enhances the mean value to better capture changes in the plant. The 

comparison reveals differences in outlier detection (red crosses vs. black squares), with 

the PMA offering additional information for more accurate predictions. While the 

approach may lead to a higher count of FN (identifying normal instances as outliers) 

concerning the GT (green circles), it simultaneously emphasizes accurately predicted 

instances. This method holds the potential to identify outliers that escaped detection by 

the SYMA, which lacked information about other independent variables 𝑿. 

5. Conclusions 

We studied outlier detection in the process variables. We employ moving-horizon filters 

and integrate regression-based prediction into our approach. Notably, this method 

successfully identifies 40% of the outliers while reducing false detections. Conversely, 

regression models, despite exhibiting lower outlier detection efficacy, provide a means to 

detect long-term anomalies. The overall fit of the models to the dependent variable, 

assessed through the computed RMSE criterion, falls within the approved process 

tolerance. In our future research, we aim to investigate the efficacy of regression 

approaches for detecting anomalous measurements, mainly slow gradual shifts. Our focus 

will extend to exploring non-linear transformations and dynamic sensor characteristics 

and to the development of a comprehensive and robust anomaly detection framework. 
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