

Molecular emission lines from simulations of AGN-driven molecular outflows

Alex Richings, Claude-André Faucher-Giguère CIERA, Northwestern University

16th March 2018

Observations of fast molecular outflows

. 0.03 0.3 Flux [Jy] 0.02 [Jy] Flux 0.01 0.1 0 0 1000 -1000 -500 500 -1000 -500 500 1000 0 0 Velocity [Km/s] Velocity [Km/s]

CO 1-0 line in Mrk 231

Feruglio et al. (2010)

Introduction

Acceleration of cold clouds

Scannapieco & Brüggen (2015)

Introduction

In-situ molecule formation

An energy-driven AGN wind

Simulations

- > 3D simulations of an isotropic AGN wind.
- > 1.6-5.0 kpc box, periodic boundary conditions.
- > Inject wind particles, initial $v = 30,000 \text{ km s}^{-1}$, $dP/dt = L_{AGN}/c$.

Simulations

- > 3D simulations of an isotropic AGN wind.
- > 1.6-5.0 kpc box, periodic boundary conditions.
- > Inject wind particles, initial $v = 30,000 \text{ km s}^{-1}$, $dP/dt = L_{AGN}/c$.

Chemistry

- > Evolve time-dependent chemistry of 157 species, including 20 molecules.
- > Most importantly: H_2 , CO, OH and HCO⁺.
- ➤ We assume a Milky Way dust-to-metals ratio.

Simulations

Parameters

$n_{\rm H}$ (cm ⁻³)	L _{AGN} (erg s ⁻¹)	Z / Z _{sol}
10	10^{46}	1.0
1	10^{46}	1.0
10	10^{45}	1.0
10	10^{46}	0.1

Simulations

nH10_L45_Z1

Simulations

Simulations H_2 outflow rates

Molecular Emission Lines

- ➤ We use the Monte Carlo radiative transfer code RADMC-3D (Dullemond et al. 2012).
- Interpolate particles from the simulations onto an AMR grid, with maximum spatial resolution of 0.07 pc.
- > Use non-equilibrium chemical abundances from the simulations.
- ➤ CO emission, warm (few hundred K) H₂ emission, and OH absorption.

CO 1-0 line emission

nH10_L45_Z1

$${0 \over \log_{10} W_{
m CO}} {1 \over {
m (Jy \ km \ s^{-1} \ arcsec^{-2})}}$$

Richings & Faucher-Giguère (2018)

Comparison with CObased observations

Richings & Faucher-Giguère (2018)

Comparison with CObased observations

Richings & Faucher-Giguère (2018)

Comparison with CObased observations

Richings & Faucher-Giguère (2018)

	$\alpha_{\rm CO} = M_{\rm H2} / L_{\rm CO}^{*}$		
Simulation	(1-0)	(2-1)	(3-2)
nH10_L46_Z1	0.13	0.08	0.06
nH10_L45_Z1	0.15	0.09	0.07
nH10_L46_Z0.1	1.77	0.82	0.80

*Units: M_{sol} (K km s⁻¹ pc²)⁻¹

	$\alpha_{\rm CO} = M_{\rm H2} / L_{\rm CO}^{*}$		
Simulation	(1-0)	(2-1)	(3-2)
nH10_L46_Z1	0.13	0.08	0.06
nH10_L45_Z1	0.15	0.09	0.07
nH10_L46_Z0.1	1.77	0.82	0.80

*Units: M_{sol} (K km s⁻¹ pc²)⁻¹

	$\alpha_{\rm CO} = M_{\rm H2} / L_{\rm CO}^*$		
Simulation	(1-0)	(2-1)	(3-2)
nH10_L46_Z1	0.13	0.08	0.06
nH10_L45_Z1	0.15	0.09	0.07
nH10_L46_Z0.1	1.77	0.82	0.80

*Units: M_{sol} (K km s⁻¹ pc²)⁻¹

	$\alpha_{\rm CO} = M_{\rm H2} / L_{\rm CO}^{*}$		
Simulation	(1-0)	(2-1)	(3-2)
nH10_L46_Z1	0.13	0.08	0.06
nH10_L45_Z1	0.15	0.09	0.07
nH10_L46_Z0.1	1.77	0.82	0.80

*Units: M_{sol} (K km s⁻¹ pc²)⁻¹

> Observations typically assume: $\alpha_{CO(1-0)} = 0.8 M_{sol} (K \text{ km s}^{-1} \text{ pc}^2)^{-1}.$

Warm H₂ Emission JWST Predictions

Warm H₂ Emission JWST Predictions

Richings & Faucher-Giguère (in prep)

Warm H₂ Emission JWST Predictions

Warm H₂ Emission JWST Predictions

Richings & Faucher-Giguère (in prep)

Warm H₂ Emission JWST Predictions

Summary

- ➤ Molecular outflow rates up to 140 M_{sol} yr⁻¹ formed within the AGN wind after 1 Myr.
- > CO to H₂ conversion factor at solar metallicity: $\alpha_{CO (1-0)} = 0.13 M_{sol} (K \text{ km s}^{-1} \text{ pc}^2)^{-1}.$
- > Strong warm H₂ emission, with $T_{exc} \sim 400$ K at solar metallicity.
- ➤ Warm H₂ emission observable by JWST out to redshift 1.6 at an SNR of 3 (redshift 1.5 at an SNR of 10).