Using Photoionization Modeling and Line Diagnostics to Quantify Feedback from AGN Driven Outflows

D.M. Crenshaw, S.B. Kraemer, T.C. Fischer, H.R. Schmitt, D. Dashtamirova, C. L. Gnilka

Outline

- Motivation
- Sample, Data, Analysis
- Photoionization Modeling
 - Diagnostic Constraints
 - Model Inputs
 - Model Selection
- Results

The Big Picture

- NLR: ionized gas ~ 1-1000 pc
 Outflow or disturbed kinematics
- ENLR: ionized gas > 1000 pc
 - Primarily rotational kinematics
- Feedback from Outflows
 - Interaction with host galaxy

Outflows in the NLR of NGC 4151

Image Credit: Judy Schmidt

Motivation

- AGN drive powerful outflows that may provide galaxy scale feedback
- Fischer et al. (2013) found 17/53 Seyferts with clear biconical outflows

• Must quantify outflow rates
$$\dot{M} = \left(\frac{Mv}{\delta r}\right)$$
 and kinetic energies $E = \left(\frac{Mv^2}{2}\right)$

- Need spatially resolved measurements and detailed models
- Exploring the assumptions that go into simpler techniques

The Sample: Nearby AGN with OutflowsMarkarian 573 – 72 MpcMarkarian 34 – 213 Mpc(arXiv:1802.07734)(In Progress)

Observations

• Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS)

- low/medium dispersion, 0.2" slit, high spatial resolution, moderate S/N
- Apache Point Observatory (APO) Dual Imaging Spectrograph (DIS)
 - Medium dispersion, 2.0" slit, lower spatial resolution, high S/N

Analysis

• Fit [O III] in spectra with gaussians. Use as a template for other lines

• Get line ratios, correct for reddening

Model each position with Cloudy

• Calculate flux to mass scale factor

• Use scale factor and [O III] image to get M(r)

Distance (arcsec)

Photoionization Modeling

- Multi-component models with Cloudy v13.04 (Ferland et al. 2013)
- Quasi co-located gas with different physical conditions
- "HIGH", "MED", and "LOW" ionization components
- Input power law SED, abundances, dust, depletions
- Run grids constrained by diagnostics and geometry
- Compare observed line ratios to composite models normalized to Heta

Model Inputs: SED

- Power Law $L_{\nu} \propto \nu^{\alpha}$
 - $\alpha = -1.0$ for E < 13.6 eV
 - $\alpha = -1.5$ for 13.6eV to 500eV
 - $\alpha = -0.8$ for E > 500 eV
 - Low/High *E* cutoffs
- Absorbed SED for LOW ION
 - $Log(N_H) = 21.5 21.6$

Model Inputs: Abundances

- Determine observationally
- Oxygen abundance:
 - Storchi-Bergmann et al. 1998
 - Castro et al. 2017
- Mean = 1.29 Z_{\odot}
- Dust and depletions

Model Constraints

Model Output Line Ratios

Final Models

- Examine area, depth, and thickness of final model for physical consistency
- Use models to calculate mass: $M \propto N_H \left(\frac{L(H\beta)_{obs}}{F(H\beta)_{mod}}\right)$, then $S = \left(\frac{M \cdot n_H}{F_{[O III]}}\right)$

CLOUDY MODEL PARAMETERS

Distance from Nucleus (arcsec)	Comp ION Name	Ionization Parameter Log(U) (unitless)	Column Density $Log(N_H)$ (cm^{-2})	Number Density $Log(n_H)$ (cm^{-3})	Dust Content Relative to ISM	Input SED Type (I/F)	Fraction of Total Model	$\begin{array}{c} \operatorname{Log}(\mathbf{F}_{H\beta}) \\ \operatorname{Model} \\ \operatorname{Flux} \\ (\operatorname{cgs}) \end{array}$
$0.05 \\ 0.05 \\ 0.05$	High Med Low	-0.70 -1.40 -2.61	$19.80 \\ 21.40 \\ 22.60$	$4.37 \\ 5.07 \\ 3.90$	$0.0 \\ 0.5 \\ 0.5$	I I F	$\begin{array}{c} 0.25 \\ 0.60 \\ 0.15 \end{array}$	$-1.01 \\ 1.43 \\ 0.57$

Line Ratios for Position +0.05"

Revalski et al. 2018 - arXiv:1802.07734

Revalski et al. 2018 - arXiv:1802.07734

Summary

- Multi-component models needed at small radii to capture physical conditions
- We will also develop a streamlined methodology for additional AGN studies
- Additional work needed to characterize the hot X-ray and cold molecular gas
- Will compare results with SFRs and feedback models, not straightforward
- For model comparisons, focus on energetics not mass outflow rates