This is the preprint accepted for publication in the 1st International Workshop on MetaOS for the Cloud-Edge-IoT Continuum, April 22nd 2024, Athens,
Greece. This version is released under a CC-BY license according to the requirements of the Horizon Europe programme that has provided funding for this

work.
Enabling Cloud-native loT Device Management
Anastassios Nanos Ioannis Plakas
ananos@nubis-pc.eu iplakas@nubis-pc.eu
Nubis PC Nubis PC
Georgios Ntoutsos Charalampos Mainas
gntouts@nubis-pc.eu cmainas@nubis-pc.eu
Nubis PC Nubis PC
ABSTRACT Cloud-Edge-IoT Continuum (MECC’24). ACM, New York, NY, USA,

As the Internet of Things (IoT) continues to proliferate, the in-
tegration and management of IoT devices within higher-level
orchestration frameworks have become paramount. The di-
verse nature of IoT devices, along with their resource con-
straints, necessitate a holistic approach to orchestration for
seamless integration into cloud-native environments. While
K8s has emerged as the de-facto standard for container or-
chestration, its inherent complexity presents a significant
barrier to the management of such devices.

We look into the implications of bringing IoT devices
closer to the cloud-native ecosystem, highlighting the need
for orchestration simplification in the context of edge com-
puting. Furthermore, we advocate for a unified approach to
application deployment across the Cloud-Edge-IoT contin-
uum, highlighting deployment methodologies for diverse
and distributed applications. This work aims to contribute
to the implementation of a more cohesive and efficient con-
tinuum for the deployment and management of applications
in IoT environments. In particular we introduce simple en-
hancements to a popular IoT management framework (Akri)
to reduce expected resource utilization for Edge gateways
and take the first step towards a fully unified infrastructure
management solution, based on cloud-native concepts.

KEYWORDS

IoT, cloud-native, k8s, containers

ACM Reference Format:

Anastassios Nanos, loannis Plakas, Georgios Ntoutsos, and Char-
alampos Mainas. 2024. Enabling Cloud-native IoT Device Manage-
ment. In Proceedings of International Workshop on MetaOS for the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

MECC’24, April 22nd 2024, Athens, Greece

© 2024 Association for Computing Machinery.

6 pages.

1 INTRODUCTION

The advent of the Internet of Things (IoT) has ushered in an
era of unprecedented connectivity, transforming the way we
interact with and perceive the world [6]. As billions of IoT
devices spread throughout our environments [3], the need
for secure and robust device management with seamless inte-
gration into higher-level orchestration frameworks, becomes
increasingly pressing [7]. In this work, we address the piv-
otal role of IoT device management in the broader context of
orchestration, highlighting the challenges posed by resource
scarcity at the edge. While Kubernetes (K8s) has emerged
as the standard for container orchestration, its complexity
appears to be a bottleneck, particularly when orchestrating
applications on resource-constrained edge devices. We as-
pire to contribute to the development of more accessible and
efficient orchestration solutions that cater to the diverse and
resource-limited nature of IoT environments.

Specifically, we investigate the complexities of managing
IoT devices within the context of higher-level orchestration
frameworks and assess the challenges posed by resource
constraints at the edge [4], while examining their impact on
orchestration using K8s [2]. Additionally, we propose strate-
gies for simplifying popular IoT management frameworks
(KubeEdge and Akri) to enhance their usability for managing
IoT devices.

Building on common concepts introduced by the research
community [5], we introduce a unified approach to ap-
plication deployment across the whole continuum (Cloud,
Edge, IoT), fostering seamless operation in diverse multi-
architecture environments. Moreover, we contribute insights
and recommendations for the development and deployment
process of applications, bridging the gap between IoT device
management and higher-level orchestration.

The rest of this paper is organized as follows: Section 2
presents the challenges related to IoT device management.
In Section 3, we discuss the device management options

MECC’24, April 22nd 2024, Athens, Greece

available, mainly related to cloud-native solutions, namely
KubeEdge and Akri. Section 4 provides the design of our ap-
proach and the changes we introduce to Akri, while Section 5
concludes, presenting our plan and next steps.

2 MOTIVATION

The management of IoT devices presents several unique chal-
lenges due to the diverse nature of IoT ecosystems, the scale
of deployments, and the necessity for secure and efficient op-
erations. We group the identified challenges into three major
categories: (i) Firmware management, (ii) Orchestration, (iii)
Security and Onboarding.

Addressing these challenges requires a holistic approach
to IoT device management that involves robust security prac-
tices, scalable architectures, interoperable standards, and
efficient lifecycle management strategies. In this work, we
lay the ground for tackling some of these challenges using
well-known approaches from the Cloud ecosystem. Although
our work is far from complete, introducing mechanisms that
facilitate the integration of IoT devices as first-class citizens
to the rest of the infrastructure becomes a necessity. As IoT
continues to evolve, ongoing efforts are crucial to overcom-
ing these challenges and ensuring the reliable and secure
operation of IoT devices in diverse environments.

2.1 IoT Device Management Challenges

In what follows, we try to identify the key challenges related
to IoT device management.

2.1.1 Firmware management. Device heterogeneity is by far
the most critical challenge to address, as the diversity of hard-
ware is vast and there is no common standard or protocol
used by IoT device vendors. Ensuring seamless communica-
tion and interoperability among devices from different man-
ufacturers can be challenging. Over-the-air (OTA) Firmware
updates must be conducted efficiently and securely to address
vulnerabilities, introduce new features, and fix bugs. Imple-
menting effective rollback strategies in case an update fails
or causes issues is not only challenging, but critical as well.
The absence of universal standards for IoT devices can hinder
interoperability and create challenges in integrating devices
from different vendors. Devices using different communi-
cation protocols may struggle to communicate seamlessly
within an IoT ecosystem.

2.1.2 Orchestration. Managing a vast number of IoT devices
in large-scale deployments requires robust and scalable or-
chestration and device management solutions. The sheer
volume of data generated by numerous devices can strain
network bandwidth and storage capabilities, so an efficient
mechanism to store, filter, or even perform analytics on such
data is crucial.

Anastassios Nanos, loannis Plakas, Georgios Ntoutsos, and Charalampos Mainas

Additionally, IoT devices may operate in environments
with intermittent connectivity, leading to challenges in real-
time monitoring and management. Ensuring secure and reli-
able communication channels and protecting devices from
network-based attacks are ongoing concerns.

2.1.3 Security and Onboarding. Implementing strong au-
thentication mechanisms and proper authorization controls
is crucial for preventing unauthorized access. Ensuring end-
to-end encryption of data to protect sensitive information
from interception is also a constant challenge, as well as
the security handling throughout the entire device lifecycle,
from manufacturing to decommissioning.

Another key challenge is how to onboard a new hardware
device to administrative domains: streamlining the provi-
sioning and onboarding process for new devices, including
initial configuration and setup, is a major point of discussion.
The same stands for Zero-touch provisioning, in order to
minimize manual intervention during deployment.

Finally, challenges related to resource allocation, end-of-
life handling and regulatory compliance are also crucial, but
out of scope of this work.

2.2 Cloud-native ecosystem

The cloud-native concept represents a paradigm shift in the
way applications are designed, developed, deployed, and
managed. This would not have been possible without the
use of containers, an application packaging technology that
has revolutionized application deployment in diverse envi-
ronments.

Cloud-native refers to an approach in software develop-
ment and deployment that leverages cloud computing and
embraces key principles such as scalability, resilience, au-
tomation, and agility. Particular emphasis is given in the use
of containerization and micro-services as modern practices
to optimize the development and operational processes.

Essentially, containers are lightweight, portable, and iso-
lated units that encapsulate an application along with its
dependencies, libraries, and runtime. The key features of
containers consist of rapid deployment, efficient resource
utilization, and consistency among diverse environments.
The inherent interoperability aspect of containers gave them
a huge advantage when all others solution would require
considerable amount of engineering effort to package, diver-
sify and deploy. For instance, binary package management
systems suffer from dependency resolving issues and pollute
the surrounding software stack.

Containers provide flexibility in deploying applications
across diverse environments, including on-premises data cen-
ters, public clouds, and hybrid cloud setups. This flexibility
aligns with the evolving needs of organizations leveraging

Enabling Cloud-native loT Device Management

multiple cloud providers or maintaining a hybrid infrastruc-
ture.

Deploying containers on leaf devices poses several chal-
lenges due to the resource constraints and unique characteris-
tics of these devices. IoT devices typically have low-powered
processors, with limited support for generic operating sys-
tems, making it hard or even impossible to run containerized
applications. Additionally, IoT devices often have limited
RAM, and containers, along with their management stack,
can consume a significant portion of available memory. This
constraint may lead to performance issues and potential sys-
tem instability. Finally, storage space on IoT devices is often
severely limited. Containers and their associated images can
consume a considerable amount of storage.

As a result, the community has proposed alternative so-
lutions for initial integration of IoT devices to the cloud-
native ecosystem. Management frameworks (dashboards,
key-value stores, message queue systems) are running as
cloud-native micro-service deployments in Edge devices with
close proximity to the IoT infrastructure. To communicate
with the leaf devices, specialized micro-services are deployed
at these Edge devices, which essentially act as proxies/gate-
ways. In the next section we describe two of the most popular
cloud-native management frameworks for Edge/IoT devices:
KubeEdge and Akri.

3 10T DEVICE MANAGEMENT

In this section we briefly present available solutions for IoT
device management in K8s, namely KubeEdge and Akri. Addi-
tionally, we introduce the cloud-native concept, discuss how
these frameworks integrate with the cloud-native ecosystem
and elaborate on their merits and limitations.

3.1 Cloud-native concepts

Kubernetes (k8s) [1], stands as the preeminent open-source
container orchestration platform that plays a pivotal role
in the seamless deployment and management of container-
ized applications. At its core, K8s automates the deployment,
scaling, and operation of application containers, providing a
robust infrastructure for building, running, and orchestrat-
ing distributed systems. In the context of IoT, K8s serves
as a foundational layer for external service orchestration,
efficiently managing the life-cycle of micro-services that
facilitate IoT device functionality. K8s abstracts away the
complexities of underlying infrastructure, allowing develop-
ers to focus on building and deploying applications without
concerning themselves with the intricacies of service man-
agement and execution.

Contrary to Cloud and Edge deployments, IoT deploy-
ments present a particular challenge: hardware devices can-
not match the resource characteristics of general purpose

MECC’24, April 22nd 2024, Athens, Greece

devices. IoT devices are usually microcontrollers with min-
imal compute capabilities, limited support for general pur-
pose operating systems and specialized hardware to provide
network connectivity (BLE, Zigbee, etc.). As a result, the
cloud-native axiom does not hold as neither the hardware,
nor the software can support running containers, the ba-
sic block of the cloud-native deployment paradigm. In the
following sections we briefly analyse the chalanges related
to device management and in particular firmware load and
updating, and describe two of the most popular cloud-native
compatible IoT management frameworks.

3.2 Firmware management

Firmware updates play a critical role across diverse sectors
of IoT. In automotive applications, they are essential for
fortifying vehicle security, integrating new functionalities,
and rectifying performance bottlenecks to ensure safe and
efficient driving experiences. Transitioning to agriculture,
firmware updates enable precision farming methodologies,
optimize resource allocation, and integrate seamlessly with
IoT sensors to monitor crop health and environmental con-
ditions in real-time.

Furthermore, firmware updates are integral to optimizing
supply chain management processes in the retail sector. De-
vices such as smart shelves, tracking sensors, and inventory
management systems rely on these updates to enhance real-
time visibility, streamline logistics operations, and bolster
overall supply chain efficiency.

With up-to-date firmware releases, retailers can orches-
trate seamless coordination across their supply chains, mit-
igate disruptions, and effectively meet evolving customer
demands.

3.3 OTA updates

Over-the-air (OTA) updates are crucial in IoT deployments
as they enable the management and maintenance of devices
without requiring physical access. In the realm of IoT, where
devices are often distributed across diverse and sometimes in-
accessible locations, the ability to remotely update firmware
becomes paramount. OTA updates allow manufacturers to
address bugs, introduce new functionalities, and enhance
security measures without the need for physical access to
each device. This capability not only streamlines the mainte-
nance process but also minimizes downtime and operational
disruptions for end-users.

Additionally, in the dynamic landscape of 10T, where se-
curity threats continually evolve, the prompt deployment
of OTA updates becomes a fundamental strategy to fortify
devices against emerging vulnerabilities. Ultimately, the con-
cept of OTA firmware updates in the realm of IoT ensures

MECC’24, April 22nd 2024, Athens, Greece

(Control Plane

etcd
Configuration CRD

Protocol
Configuration

Kubernetes Akri
Scheduler Controller

! !

| API Server |<—>

Instance CRD

Protocol
Instance
Node —) r:JJ

[
K protocol leaf
Kubelet o «»| Discovery Customl F_' devices

Agent Handler broker

&

J

Figure 1: Akri high-level architecture

that connected devices remain resilient, adaptable, and ca-
pable of delivering optimal performance throughout their
operational life cycles.

3.4 KubeEdge and Akri

KubeEdge!, an open-source solution, expands the capabilities
of native containerized application orchestration and device
management to Edge hosts. Leveraging K8s, KubeEdge offers
essential infrastructure services for networking, application
deployment, and metadata synchronization between the IoT
devices and K8s.

Akri Akri Kubelet
Operator . - Controller ~ Agent
Apply

AL 4. ALY
Configuration

Custom
Broker

Detect New Configuration

Leaf

Device
Discover Device
Create Instance
o - Detect
Instance Change
Schedule
BrokerJob
allocate
Update Instance
with Reserved Slot
 frue
Run Pod
un Foc, .
Connection
Established.

Figure 2: Device Instantiation in AKkri

Akri (Agent for Kubernetes Resource and Infrastructure)?
is a framework designed to extend K8s for managing edge
devices and their resources in IoT environments. Akri fo-
cuses on enabling K8s to dynamically discover, expose, and
consume edge devices as resources within the cluster.

The core of Akri architecture consists of two main com-
ponents: the Agent and a custom Controller. To facilitate

Thttps://kubeedge.io/
2https://docs.akri.sh/

Anastassios Nanos, loannis Plakas, Georgios Ntoutsos, and Charalampos Mainas

configuration and device discovery, Akri comes with custom
resource definitions (CRDs) and Discovery Handlers.

The first custom resource, the Akri Configuration, is where
devices are defined. This allows Akri to understand what
kind of device it should look for. Akri’s Discovery Handlers
look for the device and inform the Agent of discovered de-
vices. The Agent then creates Akri’s second custom resource,
the Akri Instance, to track the availability and usage of the
device.

The Akri Controller enables the use of the device across
the cluster. It sees each Akri Instance (which represents a
leaf device) and deploys a ("broker") Pod that is tailored to
each IoT device and knows how to connect and use it.

Figure 2 visualizes the workflow of the instantiation of
a simple IoT device in Akri, along with the accompanying
BrokerJob Pod.

3.5 Current limitations

While both KubeEdge and Akri provide a notion of cloud-
native integration, supporting the whole life-cycle of IoT
devices remains an important challenge. Both frameworks fo-
cus on the device output, and data manipulation, rather than
the actual device management (firmware load and update,
systems telemetry, etc.). Supporting OTA updates requires
external tools, which may provide the needed functionality
but need to be adapted to the cloud-native concept, bringing
extra complexity and management burden. In this work, we
address the issue of firmware updates by building on Akri
and its mechanisms, facilitating the deployment of diverse
applications on IoT devices. In the following section, we
present two enhancements to the Akri architecture to ad-
dress this limitation and extend its functionality to handle
leaf devices at scale.

4 CLOUD-NATIVE IOT

In this section we elaborate on the changes we introduce
to the Akri architecture to accommodate the integration of
firmware update management of leaf devices in the cloud-
native concept. We first describe the prototype device we
use, along with the firmware we run and we go through the
changes we have introduced, focusing on points that could
further facilitate IoT device management on K8s.

4.1 IoT device firmware

To facilitate the development of our framework, we assume
a simple IoT device, running an open-source-based firmware
with OTA updates. We use a Rapsberry Pi Pico-W?, with
picowota®.

Shttps://www.raspberrypi.com/documentation/microcontrollers/
raspberry-pi-pico.html
4https://github.com/usedbytes/picowota

https://kubeedge.io/
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html
https://github.com/usedbytes/picowota

Enabling Cloud-native loT Device Management

Leaf
Device

Operator !
Normal boot ‘ﬁ

Connection !
Established
POST Reboot

Device reboots to
bootloader

poll until reachable |
L UGN
and flash updated app !

I
1
|
L
1

Device proceeds to boot
with updated app

Connection !

——>
Established '

Figure 3: Example device OTA firmware update work-
flow

The application we run is a simple blink app, provided as
part of the picowota examples, with additional FreeRTOS
support for handling application threads and exposing HTTP
endpoints for metadata querying and rebooting. The device
essentially supports the following operations:

e Initial boot: The device connects to a predefined SSID,
requesting an IP address via DHCP. Once connected,
a thread starts to blink the LED with a specified fre-
quency. At the same time, a separate thread is being
spawned, exposing two HTTP endpoints, one for meta-
data querying and the other one for rebooting the de-
vice.

e Metadata endpoint: Once a GET request is received,
the device responds with firmware version (embedded
in the bootloader & application binary).

e Reboot endpoint: Once a POST request is received,
the device reboots to the bootloader stage, waiting for
an updated application binary. The device uses the
existing credentials to connect to a predefined SSID,
asking for an IP address via DHCP.

e Firmware Flash: Upon the receipt of an updated bi-
nary, the device proceeds to boot normally, using the
updated application. The application is spawned as a
separate thread, and does not affect the exposed HT TP
endpoints.

Figure 3 visualizes the above steps in a sequence diagram.
In the following sections we describe the changes we intro-
duce to Akri, to support OTA updates on the example device
described above.

4.2 Discovery handlers

Akri has implemented IoT device discovery via a number of
protocols with diverse brokers and applications to demon-
strate usage. A Discovery Handler is anything that imple-
ments the DiscoveryHandler service and Registration client

MECC’24, April 22nd 2024, Athens, Greece

defined in the Akri’s discovery gRPC protobuf file. These Dis-
covery handlers run as their own Pods and are expected to
register with the Agent, which hosts the Registration service
defined in the gRPC interface.

Our custom implementation, in addition to performing the
expected operation (discovering the device and registering
with the Akri Agent), populates extra metadata from the
device, by querying specific HTTP device endpoints. The
information gathered refers to the firmware type, firmware
version, and an extra flag to allow updating or not (lock). This
flag prevents accidental device re-purposing.

Our enhanced Discovery handler, populates the Akri In-
stance with this additional metadata, triggering a specific
event when the lock flag is down and the configuration YAML
presents an updated / different firmware type or version.

4.3 Device Lifecycle management

The common lifecycle of an IoT device in Akri is shown
in Figure 1. Essentially, Akri assumes that the device is al-
ready functional and responsive, and manages application
functions that need to accompany the fleet of IoT devices
available. For instance, the common example Akri uses to
describe its architecture is a set of OVNF cameras, reachable
by their IP address.

I
Centia Instance 1 Akri Akri Kubelet ~ Custom Leaf
!) Controller ~ Agent Broker Device
Operator “------o__Z--o.
Connection

Update Established

PR
Configuration

77777777777777777777777777

Discover Device Change

Firmware
Flash
Schedule
FirmwareFlashJob

—_
allocate

Verify Instance
has a Reserved Slot

7777777

Run Pod
Connection
Established

Figure 4: Configuration Update and FirmwareFlash Job
trigger

In this example, it is assumed that any firmware updates,
or upgrades are handled by external tools, that may or may
not be deployed in the k8s cluster. Usually, such architectures
assume internet connectivity provided to the devices, and
their firmware polls a specific endpoint about updates. The
device itself then downloads the update and performs the
upgrade according to the recipe available by the vendor.

This approach presents a number of limitations: (a) first, it
is assumed that the devices have public connectivity. There
are numerous cases where this is not advised, as security and
privacy are crucial. (b) Second, there is no unified control of
the updates for these devices. If all devices are homogeneous

MECC’24, April 22nd 2024, Athens, Greece

and perform the same task, then this is not a major issue.
However, if there are diverse devices that perform different
functions, then managing the firmware is a completely or-
thogonal task than the actual function the devices perform.
Decoupling the firmware management from the actual ap-
plication brings additional management complexity, which
leads to significant managerial overhead.

The enhancement we introduce to Akri is the firmware
update Job. Essentially, it is a Brokerjob, triggered by an event
generated by an update in the configuration with the help
of the Discovery handler. The workflow of triggering such
an event is shown in Figure 4.

4.4 Firmware updates

Upon the trigger of a Firmware update event, the Controller
schedules a Firmware update Job, a terminating Kubernetes
Pod that handles the firmware device update operation. In
our initial implementation, the job issues a request to reboot
the device to Firmware update mode; waits for the device
to be discoverable again; flashes the updated firmware OTA;
and finally lets the device boot to the updated state. The
pod, upon successful completion, exits, and the Akri Con-
troller garbage-collects the completed job. This process is
in par with the example IoT device operation, described in
Section 4.1.

5 CONCLUSIONS

As we move towards the era of extreme heterogeneous com-
puting, the intricate relationships between IoT device man-
agement, orchestration complexities, and the unification of
application deployment in evolving IoT environments be-
come increasingly crucial. This work aims to advance our
understanding of these relationships and contribute to the
implementation of a more cohesive and efficient continuum
for deploying and managing applications in IoT environ-
ments.

We have described the challenges of managing low-
resource IoT devices within high-level orchestration frame-
works like Kubernetes, emphasizing the need for simplifi-
cation in orchestration, especially in edge computing sce-
narios. By advocating for a unified approach to application
deployment across the Cloud-Edge-IoT continuum, we aim
to ensure seamless operation of diverse applications in multi-
architecture environments.

Through the exploration of novel strategies for integrat-
ing IoT firmware and application management, along with
harmonizing orchestration across diverse IoT devices, this
work seeks to enhance the usability and efficiency of popular
IoT management frameworks. The proposed enhancements
to Akri are the first step towards a more streamlined and

Anastassios Nanos, loannis Plakas, Georgios Ntoutsos, and Charalampos Mainas

accessible management solution based on cloud-native con-
cepts.

Addressing the challenges posed by resource constraints
at the edge, we aspire to offer insights and recommendations
for bridging the gap between IoT device management and
higher-level orchestration. We plan to further pursue this
endeavor, upstream our changes to Akri and enhance device
support for this framework, while exploring the feasibility
of adding a customized container runtime, able to update IoT
devices directly.

ACKNOWLEDGMENTS

This work has been funded in part by the Horizon Eu-
rope research and innovation programme of the European
Union, under grant agreements no 101092912 (MLSysOps)
and 101136024 (EMPYREAN)).

REFERENCES

[1] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and
John Wilkes. 2016. Borg, Omega, and Kubernetes. Commun. ACM 59, 5
(apr 2016), 50-57. https://doi.org/10.1145/2890784

[2] Juan-Manuel Fernandez, Ivan Vidal, and Francisco Valera. 2019. En-
abling the Orchestration of IoT Slices through Edge and Cloud Microser-
vice Platforms. Sensors 19, 13 (2019). https://doi.org/10.3390/519132980

[3] Dragi Kimovski, Roland Matha, Josef Hammer, Narges Mehran, Her-

mann Hellwagner, and Radu Prodan. 2021. Cloud, Fog, or Edge:

Where to Compute? IEEE Internet Computing 25, 4 (July 2021), 30—

36. https://doi.org/10.1109/MIC.2021.3050613

Henna Kokkonen, Lauri Lovén, Naser Hossein Motlagh, Abhishek Ku-

mar, Juha Partala, Tri Nguyen, Victor Casamayor Pujol, Panos Kostakos,

Teemu Leppénen, Alfonso Gonzalez-Gil, Ester Sola, Inigo Angulo, Mad-

husanka Liyanage, Mehdi Bennis, Sasu Tarkoma, Schahram Dustdar,

Susanna Pirttikangas, and Jukka Riekki. 2023. Autonomy and Intelli-

gence in the Computing Continuum: Challenges, Enablers, and Future

Directions for Orchestration. arXiv:cs.MA/2205.01423

D. Spatharakis, I. Dimolitsas, G. Genovese, 1. Tzanettis, N. Filinis, E.

Fotopoulou, C. Vassilakis, A. Zafeiropoulos, A. Iera, A. Molinaro, and

S. Papavassiliou. 2023. A Lightweight Software Stack for IoT Interop-

erability within the Computing Continuum. In 2023 19th International

Conference on Distributed Computing in Smart Systems and the Internet

of Things (DCOSS-IoT). IEEE Computer Society, Los Alamitos, CA, USA,

715-722. https://doi.org/10.1109/DCOSS-10T58021.2023.00112

Shreshth Tuli, Fatemeh Mirhakimi, Samodha Pallewatta, Syed Zawad,

Giuliano Casale, Bahman Javadi, Feng Yan, Rajkumar Buyya, and

Nicholas R. Jennings. 2023. Al augmented Edge and Fog computing:

Trends and challenges. J. Netw. Comput. Appl. 216, C (jul 2023), 28.

https://doi.org/10.1016/j.jnca.2023.103648

A. Zafeiropoulos, E. Fotopoulou, C. Vassilakis, I. Tzanettis, C. Lom-

bardo, A. Carrega, and R. Bruschi. 2023. Intent-Driven Distributed

Applications Management Over Compute and Network Resources in

the Computing Continuum. In 2023 19th International Conference on

Distributed Computing in Smart Systems and the Internet of Things

(DCOSS-I0T). IEEE Computer Society, Los Alamitos, CA, USA, 429-436.

https://doi.org/10.1109/DCOSS-10T58021.2023.00074

[4

flan

[5

=

G

—

[7

[

https://doi.org/10.1145/2890784
https://doi.org/10.3390/s19132980
https://doi.org/10.1109/MIC.2021.3050613
https://arxiv.org/abs/cs.MA/2205.01423
https://doi.org/10.1109/DCOSS-IoT58021.2023.00112
https://doi.org/10.1016/j.jnca.2023.103648
https://doi.org/10.1109/DCOSS-IoT58021.2023.00074

	Abstract
	1 Introduction
	2 Motivation
	2.1 IoT Device Management Challenges
	2.2 Cloud-native ecosystem

	3 IoT Device Management
	3.1 Cloud-native concepts
	3.2 Firmware management
	3.3 OTA updates
	3.4 KubeEdge and Akri
	3.5 Current limitations

	4 Cloud-native IoT
	4.1 IoT device firmware
	4.2 Discovery handlers
	4.3 Device Lifecycle management
	4.4 Firmware updates

	5 Conclusions
	Acknowledgments
	References

