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Abstract 

The deactivation of nickel hydroxide films after prolonged storage times without use was studied. This 

study was carried out in the context of the Rotating Disc Electrode Voltammetry (RDEV) and 

Electrochemical Impedance Spectroscopy (EIS) when the nickel hydroxide film contacts an electroactive 

solution and a redox reaction occurs at the Au-Ni(OH)2|electrolyte interface. Deferasirox (4-(3,5-bis(2-

hydroxyphenyl)-1,2,4-triazol-1-yl) benzoic acid) was employed as redox species in solution. Limiting 

currents vs. electrode rotation rate dependences allowed one to obtain variation of the charge transport rate 

on the storage time. EIS was employed to obtain a more complete series of charge-transport parameters, 

that is, electron and ion diffusion coefficients and different interfacial resistances related to the gold/nickel 

hydroxide and nickel hydroxide/solution interfaces. 
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1. INTRODUCTION 

Nickel hydroxide is an important electroactive material that exhibits interesting electrochemical 

application [1-8]. Considering the important applications of nickel hydroxide electrodes, not 

many efforts have been made to study in detail their true durability and long-term stability. We 

have demonstrated in a previous work [9] that after storage without use for long time periods 

nickel hydroxide films deactivate, that is, the electron-transport rate is strongly reduced. The 

study reported in [9] was carried out in the context of the Rotating Disc Electrode Voltammetry 

(RDEV) for the interesting case where the nickel hydroxide-gold modified electrode contacts an 

electrolyte solution containing an electroactive substrate, such as, deferasirox (4-(3,5-bis(2-

hydroxyphenyl)-1,2,4-triazol-1-yl) benzoic acid) [9-12]. The present study is a continuation of the 

previous one [9], where Electrochemical Impedance Spectroscopy (EIS) was employed to obtain 

the change of a more complete series of transport parameters of nickel hydroxide films with the 

storage time without use, that is, ion and electron diffusion coefficients and different interfacial 

resistances related to the gold/nickel hydroxide and nickel hydroxide/solution interfaces.  
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2. EXPERIMENTAL  

The same electrodes and cell described in [9] were employed in this work. Electrode potentials 

are referred to the SCE in this work. Nickel hydroxide films employed here were also synthesized 

and stabilized as described in previous work [9]. These nickel hydroxide modified electrodes are 

called here, non deactivated (or immediately prepared). Fig. 1 shows a stabilized cyclic 

voltammogram at a scan rate 0.02 V s-1 in a 0.1 M NaOH solution for a non deactivated nickel 

hydroxide film whose voltametric charge value is 2 mC cm
-2

. It was demonstrated in [9] that 

when these films are stored without use for long time periods, they undergo a deactivation 

process which is reflected in their conducting properties. These films were called in [9] 

deactivated films. 

 

Figure 1. Cyclic voltammogram of a nondeactivated Au/Ni-hydroxide modified electrode.  

Electrolyte: 0.1 M NaOH. Scan rate:  0.02 V s
-1

. Voltammetric charge value of the nickel hydroxide film: Q 

= 2 mC cm
-2

. 

As in [9], steady-state experiments were performed here with both nondeativated and deactivated 

nickel hydroxide gold-modified electrodes in contact with a 0.1 M NaOH + 2 x 10-3 M 

deferasirox solution. Current-potential (I-E) curves were recorded at different electrode rotation 

rates (Ω). The electrode rotation rate Ω was controlled with home-made equipment that allowed 

one to select a constant Ω value in the range 50 rev min-1 < Ω < 8000 rev min-1. This electrode 

rotation rate was controlled with a digital phototachometer (Power Instruments model 891). 

Impedance diagrams were recorded within the potential region comprised between 0.35 V to 0.5 

V employing a PAR 309 system.  

 

AR grade chemicals were employed throughout. Ni(NO3)2 Fluka was employed. NaOH (Merck) 

was used without purification. The solutions were prepared with water purified as described in 

[11].  
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3. RESULTS AND DISCUSSION 
  

3.1. RDEV measurements  
 

Six nickel hydroxide films all of the same charge value (Q = 2 mC cm-2) were prepared. Each one 

of the 6 nickel hydroxide films, after being equilibrated within the potential region 0.0 V < E < 

0.6 V in the 0.1 M NaOH solution (Fig. 1), was stored in the same solution for different times 

periods (Table 1). As described in [9] steady-state current potential curves were also recorded in 

this work for both nondeactivated and deactivated nickel hydroxide films in the presence of 

deferasirox (not shown). Anodic diffusion-limited currents (ILim,a) are observed at E > 0.45 V (vs. 

SCE). Fig. 2 compares anodic limiting current vs. Electrode rotation rate (ILim,a vs. Ω1/2) 

dependences for nondeactivated and deactivated films. As can be seen from Fig. 2, the anodic 

limiting current for the nondeactivated film follows the Levich equation (linear ILim,a vs. Ω
1/2 

 

dependence). The behaviour is associated to a rapid electron-transfer mediation at the nickel 

hydroxide/deferasirox solution interface. As can be seen from Fig. 2, after a given Ω  value, the 

anodic limiting current for a deactivated film becomes independent of the electrode rotation rate. 

Also, as the more deactivated is the film, the lower is the electrode rotation rate at which a 

constant current value is reached. The constant currents are indicative of a deactivation process 

[9]. In Table 1 are listed the constant current values Iconst achieved for the different storage times 

at which the nickel hydroxide film of 2 mC cm
-2

 was subjected.  

 

 

Figure 2.  Levich representations (Ilim,a vs. Ω ½.
) for a nondeactivted (●) and different deactivated nickel 

hydroxide films. Solution: 0.1 M Na(OH) + 2 x 10–3 M deferasirox. Numbers indicate different storage 

times:  (1) 10 h; (2) 20 h; (3) 25 h; (4) 45 h; (5) 65 ; (6) 85 h. Q = 2 mC cm
-2

 (Г = 2.96 x 10
-8

 moles cm
-2

). 

 

 

 

 

 

 

 

 

 

 

 

 
Table 1.  Iconst values for deactivated nickel hydroxide films of different thickness. 

 

 

          a
 t/h 

       

b
10

6
Iconst/µµµµA 

    Q = 2 mC 

cm
-2

 

  
c
10

7
Dct/cm

2
 

s
-1

 

        10            775          2.14 

        20            550          1.52 

        25            455          1.26 

        45            320          0.88 

        60            290          0.80 

        80            270          0.75 
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Electrode area: 0.7 cm
2
.  

a
Storage time.  

b
Iconst constant current for the different deactivated films. 

Q is the voltammetric charge value for the different deactivated films c
Dct diffusion coefficient 

values extracted form Eq. (1). 

The constant current Iconst was interpreted in [9] employing Eq. (1): [13]: 

    Iconst = n F A Dct (co/φfilm)    (1) 

The charge transport process in different electroactive materials has been previously descried 

employing Eq. (1), where co is the total volumetric concentration of redox sites into the 

electroactive film and φfilm the film thickness. Dct represents a measure of the charge transport rate 

within the film. Then, the charge diffusion process across nickel hydroxide-gold modified 

electrodes is here described in terms of Eq. (1). The parameter n represents the number of 

exchanged electrons between Ni(II)/Ni(III) sites. A and F are the electrode surface area and the 

Faraday´s constant, respectively. The limiting current value at which ILim,a (= Iconst) becomes 

constant was considered in [9] as a representation of the maximum flux of charge transported 

across the electroactive film.  

 

Considering a uniform and homogeneous film (φfilm =Г/co), Eq. (1) can be written as: 

 

Iconst = n F A Dct (co
2
/Г)     (2) 

 

Considering that co remains constant, the deactivation of nickel hydroxide films was attributed in 

[9] to a reduction of the charge propagation rate, Dct (see third column in Table 1). The existence 

of a constant current Iconst in a deactivated electroactive film was explained in [9]. In this regard, 

the Iconst decrease with the storage time was here attributed to a Dct decrease. In this connection, 

the electron diffusion coefficient, Dct, has been expressed in terms of the mean distance between 

adjacent active redox sites (a) according to Dct = (a
2
ko) [20], where the constant ko shows an 

exponential decrease with the a increase [20]. Thus, the Dct decrease could explain the electron 

current Iconst decrease with the increase of the storage time [9].  

 

3.2 Impedance measurements 

Impedance measurements were also performed in the present work with nondeactivated and 

deactivated nickel hydroxide gold-modified electrodes of Q = 2 mC cm-2 contacting a 0.1 M 

Na(OH) + 2 x 10
–3

 M deferasirox solution at potential values E > 0.35 V. Nyquist diagrams at 

different electrode rotation rates for a nondeactivated nickel hydroxide film are shown in Fig. 3.  

 

Figure 3. Ac impedance diagrams in the Nyquist coordinates (-Z” versus Z) obtained at E = 0.5 V 

for a nondeactivated nickel hydroxide film. The different diagrams correspond to 
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differentelectrode rotation rates, Ω : (� ) 100 rpm; (∆) 200 rpm; (X) 300 rpm; (O) 600 rpm. 

Electrolyte:0.1 M Na(OH) + 2 x 10
–3

 M deferasirox solution. Q = 2 mC cm
-2

. Discrete points are  

experimental data and continuous lines represent the fitting by using the theory given in [21]. 

 

Impedance diagrams of each one of the six deactivated nickel hydroxide films indicated in Table 

1 exhibit two loops (Fig. 4). While the loop at low frequency is Ω dependent, the high-frequency 

semicircle is independent of this variable. However, the size of the high-frequency semicircle 

depends on the storage time (Fig. 5). In this regard, at a given Ω  value, the higher the storage 

time value is, the greater the high-frequency semicircle becomes. 

 

Fig. 4. Ac Impedance diagrams in the Nyquist coordinates (-Z” versus Z) obtained at E = 0.5 V 

for a deactivated nickel hydroxide film, storage time, 80 h.  

 

The different diagrams correspond to different electrode rotation rates, Ω : (■) 1000 rpm ; (▲) 

1500 rpm; (●) 3000 rpm. Electrolyte: 0.1 M Na(OH) + 2 x 10
–3

 M deferasirox solution. Q = 2 

mC cm-2. Discrete points are experimental data and continuous lines represent the fitting by using 

the theory given in [21]. 

 

Although several ac impedance diagrams at potential values within the range 0.35 V < E < 0.5 V 

(versus SCE) were recorded for different deactivated nickel hydroxide films, those shown in Figs. 

3 to 5 were considered as representative of the potential region where the redox reaction at the 

nickel hydroxide/deferasirox solution occurs. 

 

Fig. 5. Ac Impedance diagrams in the Nyquist coordinates (-Z” versus Z) obtained at E = -0.2 V and a 

constant electrode rotation rate, Ω = 3000 rpm, for three deactivated nickel hydroxide films: (O) t = 25 h; 

(■) t = 45 h; (∆) t = 80 h. Electrolyte: 0.1 M Na(OH) + 2 x 10
–3

 M deferasirox solution. Q = 2 mC cm
-2

. 

Discrete points are experimental data and continuous lines represent the fitting by using the theory given in 

[21]. 
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3.3 Interpretation of impedance spectra 

The general theory of ac impedance described by Vorotyntsev et al. in [21] was employed to 

interpret experimental impedance data of the gold-nickel hydroxide film/electrolyte system. It 

should be indicated that the theory developed in [21] is strictly valid when the charging of 

interfacial double layers is negligible, i.e., it does not account for the charging of the 

film|substrate and film|solution layers in parallel with the processes of injection of charge carriers. 

If this is not the case, a more complete model, such as the one developed by Vorotyntsev in [22], 

should have to be used. In this model [22], besides the traditional “double-layer” capacitance and 

interfacial charge-transfer resistances, two additional parameters for each boundary, “interfacial 

numbers” for each species and “asymmetry factors,” are introduced. Although we also fitted our 

experimental impedance diagrams with the model reported in [22], the fitting did not result much 

more precise than that using the model given in [21], and furthermore, the increasing 

mathematical difficulty of determining the numerous parameters of the model given in [22] from 

experimental data was a major drawback. Then, despite this last theoretical limitation, the model 

described in [21] concerning a uniform and nonporous film and no penetration of redox species 

from the solution was employed to interpret our experimental impedance diagrams.  

 

As in the present case one has the modified electrode geometry with a redox active electrolyte 

solution (m|film|es), Eq. (41) of Ref. [21] (Eq. (3) in this work) must be applied 

 

Zm|film|es = Rm|f + Rf + Rs + [Ze
f|s Ri

f|s + Wf Z12
m] (Ze

f|s + Ri
f|s + 2 Wf  coth 2ν )-1 

          
(3) 

 

where 

 Z12
m
 = Ze

f|s
 [coth ν + (te-ti)

2
 tanh ν] + Ri

f|s
 4ti

2
 tanh ν + Wf 4ti

2  
(4) 

 

In Eqs. (3) and (4): 

ν = [(jωφp
2)/4D]1/2 is a dimensionless function of the frequency ω, φp is the film thickness, D is 

the binary electron-ion diffusion coefficient, and ti and te are the migration (high frequency) bulk-

film transference numbers for anions and electrons, respectively. D and ti,e depend on the electron 

and ion diffusion rates (De and Di). Wf = [ν/jωφpCp] = ∆Rf/ν is a Warburg impedance for the 

electron-ion transport inside the electroactive film. ∆Rf (=φp/4DCp) is the amplitude of the 

Warburg impedance inside the film, and Cp is the redox capacitance per unit volume. 

 

Rf (=φp/κ) is the high-frequency bulk-film resistance, Rs the ohmic resistance of the bulk solution 

(κ is the high-frequency bulk conductivity of the film), Rm|f is the metal|film interfacial electron-

transfer resistance, and Ri
f|s is the film|solution interfacial ion-transfer resistance. 

Ze
f|s = (Re

f|s+Ws) is the electronic impedance, where Re
f|s is the interfacial electron-transfer 

resistance at the film|solution interface, and Ws is the convective diffusion impedance of redox 

species in solution, which contains the bulk concentrations of ox(red) forms, cox(cred), and their 

diffusion coefficients inside the solution, Dox(Dred). Also, it contains the Nernst layer thickness, δ. 

The electron-transfer resistance at the nickel hydroxide film/solution interface is defined in terms 

of the redox cuple concentration in solution [21].  

Diffusion of the redox forms from the bulk solution to the film|solution interface can be regarded 

as stationary through the diffusion layer thickness, expressed in cm by 

 

     δ = 4.98 Dox,red
1/3

 η1/6
 Ω 

-1/2
              (5) 
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where η is the kinematic viscosity of the solution in the same units as Dox,red, and Ω the rotation 

rate of the disk electrode in rpm. The rest of the constants have their usual meaning. This model 

also includes the impedance behavior of the electoactive material contacting the inactive 

electrolyte (absence of the redox couple in solution) by considering Ze
f|s→∞ in Eq. (3).  

 

3.4 Dependence of the different charge-transport parameters on the storage time  

Continuous lines on the impedance diagrams shown from Figs. 3 to 5 are simulated curves 

calculated by using Eq. (3). 

A good fitting was observed for the different impedance diagrams. The fitting procedure by using 

Eq. (3) was based on the CNLS (Complex Nonlinear Squares) method. A rigorous fitting 

procedure was performed according to the method described in previous works [23-26].  

In the simulations the number of transferred electrons, n, was assumed to be 1. In this regard, the 

redox system corresponding to the peaks shown in Fig. 1 can be represented by the following 

electrochemical reaction [27] 

Ni(OH)2 + HO
-
 ↔ NiO(OH) + H2O + e

-
    (I) 

 

or as done in [28,29], by: 

 

Ni(OH)2 ↔ NiO(OH) + H+ + e-     (II) 

 

The oxidation of deferasirox on the nickel hydroxide film surface can be represented as:  

Ni(II) → Ni(III) + 1e
-
     (III) 

 

Ni(III) + drug → Product + Ni(II)    (IV) 

 

Diffusion coefficient values around 10-5 cm2 s-1 were considered for deferasirox in solution. The 

bulk concentrations of the redox substrate species were considered equal (cox = cred = 2 x 10
-6

 mol 

cm-3). The nickel hydroxide film thickness was calculated on the basis of the expression φfilm = 

Г/co. By considering a charge value of Q = 2 mC cm
-2

, a nickel hydroxide film thickness about 27 

nm results. The value of the total redox site concentration obtained from RDEV measurements 

(3.86 x 10-3 mol cm-3 [9]) was employed to fit experimental impedance plots. The ohmic 

resistance of the solution in contact with the nickel hydroxide films, RS, was measured. A value 

RS ∼ 2.19 ohm cm2 was obtained. Then, by considering the high-frequency intercept of impedance 

diagrams of nickel hydroxide films in the presence and in the absence of deferasirox as Ro, the 

high-frequency bulk nickel hydroxide film resistance, Rf, was calculated as Rf = Ro - RS [30]. The 

latter value varied within the range 3.09 < Rf < 5.34 ohm cm2 and it seems not to be strongly 

dependent on the storage time. Then, Rf and RS values were imposed in the fitting. The remnant 

parameters contained in Eq. (3) (Rm|f, Ri
f|s, Re

f|s, Cp, De and Di) were calculated from the 

experimental impedance data by the fitting procedure described above. The first four parameters 

(Cp, Rm|f, Ri
f|s and Re

f|s) were varied without restraints during the fitting. However, some reference 

values were considered for De and Di. For the nondeactivated nickel hydroxide film thickness 

used in this work (φp = 27 nm), De and Di values were allowed to vary within the range 10
-7

-10
-11

 

cm
2
 s

-1
, in such a way that diffusion coefficient values lower than 10

-11
 were considered 

unrealistic for these thick films. That is, De and Di values lower than 10-11 were only obtained 

from impedance diagrams (not shown) of very thin nickel hydroxide films (QT,Red = 0.04 mC cm-

2, φp = 3 nm), where incomplete coating of the metal area by the thin nickel hydroxide film is 

possible. A contribution of the interfacial capacitance, CH, also considered as a fitting parameter, 

was included in order to represent the actual impedance diagrams from the calculated ones.  

 



International Journal of Advances in Chemistry (IJAC) Vol.2 No.1 February, 2016 

30 

 

Different charge-transport and charge-transfer parameters versus the storage time dependences, 

extracted from the fitting procedure described above, are shown from Figs. 6 to 11. 

 

The Cp versus storage time dependence is shown in Fig. 6. Starting from a Cp value of about 87 F 

cm-3, for a nondeactivated film, a decrease of Cp with increasing the storage time is observed. It 

should be kept in mind that these Cp values correspond to the oxidized state of the nickel 

hydroxide film. 

 

Figure 6. Redox capacitance (Cp) vs. storage time dependence. The value 87 F cm
-3 

for t = 0 corresponds to 

a nondeactivated nicel hydroxide film. Electrolyte: 0.1 M Na(OH) + 2 x 10
–3

 M deferasirox solution.  

Q = 2 mC cm-2. 

Nickel hydroxide film-solution interfacial ion-transfer resistance (Rion
Ni(OH)

2
/elect) and 

Gold/Ni(OH)2 interfacial electron-transfer resistance (R
gold/Ni(OH)2

) on storage time dependences 

are shown in Figs. 7 and 8, respectively. Rion
Ni(OH)

2
/elect as a function of  the storage time exhibits a 

different feature as compared with R
gold/Ni(OH)2. That is, while R

gold/Ni(OH)2 seems to Increase 

continuously within the whole storage time  range, Rion
Ni(OH)

2
/elect

 firstly exhibits a slight increase 

within the range 0 < t < 25 h and then, a strong increase is observed within the range 25 h < t < 80 

h. Also, the magnitude of Rion
Ni(OH)

2
/elect and R

gold/Ni(OH)2 change within the whole storage time  

range is different. Rion
Ni(OH)

2
/elect 

change is around one order of magnitude lower than R
gold/Ni(OH)2 

change. This difference could indicate that the high-frequency semicircle on impedance diagrams 

(Figs. 3 to 5) is mainly determined by Rgold/Ni(OH)2. The increase of interfacial Rgold/Ni(OH)2 resistance 

could be due to an increasing number of inactive sites at the Gold|Ni(OH)2 interface with the 

increase of deactivation. 

 

Nickel hydroxide/electrolyte interfacial electron-transfer resistance (Relectron
Ni(OH)2|elect

) values were 

also extracted from the fitting procedure. The feature of Relectron
Ni(OH)2|elect

 versus storage time 

dependence (Fig. 9) is similar to R
gold/Ni(OH)2 

versus storage time
 
dependence (Fig. 8). However, the 

Relectron
Ni(OH)2|elect values are around 20 times lower than Rgold/Ni(OH)2 values. Also, it is interesting to 

note that the Relectron
Ni(OH)2|elect change is lower than the Rion

Ni(OH)
2

/elect change, particularly at high 

storage times. The increase of interfacial Relectron
Ni(OH)2|elect

 resistance could be due to an increasing 

number of inactive sites at the Ni(OH)2|solution interface with the increase of deactivation. 
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Figure 7. Nickel hydroxide film-solution interfacial ion-transfer resistance as a function of the storage 

time. Electrolyte: 0.1 M Na(OH) + 2 x 10
–3

 M deferasirox solution. Q = 2 mC cm
-2

. 

 

Figure 8. Gold/Ni(OH)2 interfacial electron-transfer resistance (R
Gold/Ni(OH)2

) as a function of the storage 

time. Electrolyte: 0.1 M Na(OH) + 2 x 10–3 M deferasirox solution. Q = 2 mC cm-2. 

 

Figure 9. Interfacial electron-transfer resistance (Relectron
Ni(OH)2|elect

) as a function of the storage time. 

Electrolyte: 0.1 M Na(OH) + 2 x 10–3 M deferasirox solution. Q = 2 mC cm-2. 

 

Ion and electron diffusion coefficients versus storage time dependences are shown in Figs. 10 and 

11, respectively. Both diffusion coefficients decrease with the storage time increase. As was 

proposed from RDEV data, the decrease of Delectron with the increase of the storage time could be 

attributed to an increase of the hopping distance between remnant redox active sites after nickel 

hydroxide deactivation. Delectron values are nearly one order of magnitude higher than Dion values. 

In the present work, relative diffusion coefficient values (Delectron > Dion) refer to the oxidized state 
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of nickel hydroxide films. Another interesting difference between Delectron and Dion versus the 

storage time dependences can be observed by comparing Fig. 10 with Fig. 11. While Dion remains 

nearly constant for low storage times (0 < t < 25 h), Delectron decreases continuous and rapidly 

within this storage time range. This finding seems to indicate that although ion motion always 

controls the charge-transport process at nickel hydroxide films, the influence of the electron 

motion on the whole charge-transport process becomes more pronounced at a high storage times. 

Then, a break seems to be observed at around 25 h, in the Dion versus the storage time dependence. 

The break also becomes evident in nickel hydroxide film-solution interfacial ion-transfer 

resistance as a function of the storage time. (Fig. 7). It is possible that both parameters 

Rion
Ni(OH)

2
/elect and Dion are related to proton movements across the nickel hydroxide film|solution 

interface and inside the nickel hydroxide film, respectively. Diffusion of protons [31] has been 

considered to control both charge and discharge processes in many rechargeable battery systems 

[31]. A great discrepancy is observed between the proton diffusion coefficient values reported by 

the different researchers. It is found that diffusion coefficient of protons decreases from 3.4 x 10
-8

 

cm
2
 s

-1
 to 3.7 x 10

-9
 cm

2
 s

-1
 as the electrode changes from fully charged to 30% state of charge. 

The value of the diffusion coefficient further decreases by another one and a half order of 

magnitude to 6.4 x 10
-11

 cm
 2

 s
-1

 at the completely discharged state. Then, our values of Dion 

around 10
-8

 cm
2
 s

-1
 (Fig. 10) for the oxidized state of the nickel hydroxide film seems to be in 

coincidence with proton diffusion coefficient values reported for other researchers [31]. 

 

With regard to CH values, starting from a value of around 25 µF cm-2 for a nondeactivated nickel 

hydroxide film, CH decreases in a nearly continuous way as the storage time increases, reaching a 

value of about 10.4 µF cm-2 for t = 80 h (not shown). The CH decrease is similar to the RGold/Ni(OH)2 

increase (Fig. 8). Again, this effect could be assigned to the creation of inactive gaps in the redox 

site configuration at the nickel hydroxide film |gold interface with deactivation. 

 

 

Figure 10. Ion diffusion coefficient (Dion) as a function of the storage time. Electrolyte: 0.1 M Na(OH) + 2 

x 10–3 M deferasirox solution. Q = 2 mC cm-2. 

 

Fig. 11. Electron diffusion coefficient (Delectron) as a function of the storage time. Electrolyte: 0.1 M 

Na(OH) + 2 x 10–3 M deferasirox solution. Q = 2 mC cm-2. 
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4. CONCLUSIONS  

Nickel hydroxide films are deactivated under storage time without use. The reduction of the 

conductivity of nickel hydroxide films was demonstrated employing Rotating Disc Electrode 

Voltammetry and Impedance measurements in the presence of deferasirox. While the first 

technique allows one to obtain an electron diffusion coefficient value the second one allows one 

obtaining electron and ion diffusion coefficient values and different interfacial charge-transfer 

resistances. Ion diffusion coefficient values seem to be in agreement with proton diffusion 

coefficient values reported for nickel hydroxide in the field of rechargeable batteries. While both 

ion and electron diffusion coefficient values decrease with the deactivation of nickel hydroxide 

films, the different interfacial resistances increase as the storage time of the nickel hydroxide film 

increases. The results of this work demonstrate the limited durability of the nickel hydroxide 

films electrochemically synthesized under storage for prolonged time periods.  
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