
OpenCV hardware acceleration with vAccel
Maria Goutha*, Ilias Lagomatis*+, Anastassios Nanos*, Alexandros Patras+

*NUBIS PC, +University of Thessaly
{mgouth,ilago,ananos}@nubis-pc.eu, patras@uth.gr

Eurosys 2024, Athens, Greece
April 22nd-25th 2024

Motivation

Plugin change at Runtime

Initial Evaluation - native vs vAccel Challenges & Plan

Deployments in multi-tenant Cloud/Edge infra suffer
from poor isolation sandbox user code in microVMs

➜ Limited support for accelerator drivers

➜ Hardware partitioning – Porting of a device driver

➜ Paravirtualization – Porting of a virtual device driver

➜ Remote API – Porting of the framework

➜ Limited support for acceleration frameworks

➜ Huge code base

➜ Diverse dependencies

➜ Bound to a language

vAccel
➜ vAccel decouples the function call from its

hardware-specific implementation

➜ Features:
➜ Hardware-agnostic API
➜ Acceleration in function granularity
➜ Portability and interoperability

OpenCV Bindings

Obstacle Avoidance
➜ Stereo Calibration and Rectification
➜ Disparity Map and Depth Map
➜ Obstacle Avoidance

Initial Evaluation - Optical Flow (sparse / dense)

➜ Agnostic to the user

➜ Overload original OpenCV function (e.g.
calcOpticalFlowPyrLK())

➜ Parse arguments & serialize them

➜ Issue the vAccel OpenCV operation
(equivalent to vAccel GenOP)

➜ Go through the relevant plugin (virtio /
Transport or local)

➜ In the plugin, deserialize the arguments

➜ Call the respective OpenCV operation

Sparse - calcOpticalFlowPyrLK() Dense - calcOpticalFlowFarneback()

➜ Sparse behaves marginally better on the CPU

➜ Dense cannot cope with the frame rate on the
CPU, leading to frame drops.

➜ The plugin change is done at runtime

➜ 913-Frame video (OpenCV example)

➜ Hardware: Jetson AGX Orin

➜ generic & sandboxed containers

○ runc

○ AWS firecracker (kata-containers)

➜ Introduce a mechanism for vAccel to change the
backing plugin at runtime
➜ Requirements Bitmap
➜ Plugin features Bitmap

➜ Provide end-to-end function execution for the Obstacle Avoidance example
➜ Finetune CPU/GPU execution of OpenCV functions to optimize:

➜ power
➜ performance
➜ execution time

➜ Address argument serialization / deserialization
○ push logic to the transport layer (?)

➜ Address copy overheads (serde & transport)
➜ Simplify build process (CUDA/GPU support)

Naive example (OptFlow)
Benchmark Spec:
➜ Jetson AGX Orin
➜ local/VM execution
➜ AWS Firecracker
➜ CPU/GPU
➜ two frames for 1000

iterations (avg)

[1] vAccel: https://docs.vaccel.org
[2] vAccel OpenCV bindings: https://github.com/nubificus/opencv-vaccel
[3] Batuhan Hangün, Önder Eyecioğlu, Performance Comparison Between OpenCV Built in CPU and GPU Functions on Image Processing Operations, 2019, https://doi.org/10.48550/arXiv.1906.08819
[4] Jung Hyeonseok, Kyoseung Koo, and Hoeseok Yang. "Measurement-Based Power Optimization Technique for OpenCV on Heterogeneous Multicore Processor" 2019 Symmetry 11, no. 12: 1488. https://doi.org/10.3390/sym11121488
[5] Yuan, J., Jiang, T., He, X. et al. Dynamic obstacle detection method based on U–V disparity and residual optical flow for autonomous driving. Sci Rep 13, 7630 (2023). https://doi.org/10.1038/s41598-023-34777-6
[6] Alexandros Patras, Foivos Pournaropoulos, Nikolaos Bellas, Christos D Antonopoulos, Spyros Lalis, Maria Goutha, and Anastassios Nanos. 2024. A Minimal Testbed for Experimenting with Flexible Resource and Application
Management in Heterogeneous Edge-Cloud Systems. In Proceedings of the 2023 International Conference on Embedded Wireless Systems and Nnetworks (EWSN '23). Association for Computing Machinery, New York, NY, USA,
327–332.

Criteria:
➜ response latency
➜ energy consumption
➜ execution time

Runtime switch CPU/GPU

Acknoweldgements
The research leading to these results has
received funding from the European
Commision through Horizon Europe under
grant agreement no 101092912 (MLSysOps).

ML SysOps

