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Abstract

General purpose computational math systems such as SageMath systems
provides thousands of mathematical objects and tens of thousands of
operations to compute with them. We believe that a system of this scale
requires an infrastructure for writing and structuring generic code,
documentation, and tests that apply uniformly on all objects within certain
realms.
In this talk, we describe the infrastructure implemented in SageMath back
in the early ’10. It is based on the standard object oriented features of
Python, together with mechanisms to scale (dynamic classes, mixins, . . . )
thanks to the rich available semantic (categories, axioms, constructions).
We relate the approach taken with that in other systems (e.g. GAP), and
discuss open problems. This is meant as a basis for discussions: how are
the equivalent challenges tackled in proof systems? Is there ground for
cross-fertilization?



One challenge with general purpose math systems

Numbers: 42, 7
9 ,

I+sqrt(3)
2 , π, 2.71828182845904523536028747?

Matrices:

 4 −1 1 −1
−1 2 −1 −1
0 5 1 3

,

 1.000 0.500 0.333
0.500 0.333 0.250
0.333 0.250 0.200


Polynomials: −9x8 + x7 + x6 − 13x5 − x3 − 3x2 − 8x + 4

Series: 1 + 1x + 1
2x

2 + 1
6x

3 + 1
24x

4 + 1
120x

5 + · · ·

Symbolic expressions, equations: cos(x)2 + sin(x)2 == 1

Finite fields, algebraic extensions, elliptic curves, ...
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Combinatorial objects
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Graphs
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Geometric objects



Example: SageMath, a large library
of mathematics objects and algorithms

• 1.5M lines of code/doc/tests (Python/Cython)
+ dependencies

• 1k+ types of objets

• 2k+ methods and functions

• 200 regular contributors

Challenges

• How to structure this library?

• How to guide the user?

• How to promote consistency and robustness?

• How to reduce duplication?

• How to promote modularity?
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What does typical math library look like?

Computational kernels

• Grinding integers, vectors, polynomials, permutations, Gröbner
bases, permutations, combinatorial objects, ...

• All about data structures, memory management, parallelism
orchestration, assembly optimization, ...

Recipes to reduce to the above

• Applying definitions and theorems!
• Recipe: assuming C (x , y), F (x , y) can be computed by:

• A formula: Foo(x) + Bar(y)
• Some change of representation: FFT−1(Foo(FFT (x)))
• Mapping Foo on all elements of x and reducing with Bar
• ...

• A library of thousands of recipes

• A computation: recursive composition of dozens of them



Orchestrating recipes?

• for feature and expressiveness

• for performance

Some examples of orchestrators

• GAP’s method selection

• Sage’s method selection
With inspiration from Axiom, MuPAD, OOP, ...

• Sage’s coercion model

• GAP’s CAP project: Categories, Algorithms, and Programming

Main approaches

• Method selection

• Morphism discovery
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Example of recipe: binary powering

sage: m = 3

sage: m^8 == m*m*m*m*m*m*m*m == ((m^2)^2)^2

True

sage: m = random_matrix(QQ, 4)

sage: m^8 == m*m*m*m*m*m*m*m == ((m^2)^2)^2

True

• Complexity: O(log(k)) instead of O(k)!

• We would want a single generic implementation!
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Example: binary powering II

An algebraic realm

• Semigroup:
a set S endowed with an associative binary internal law *

We want to

• Implement pow_exp(x,k)
• Provide a recipe

• if x is an element of a semigroup
• then xk can be computed with pow_exp(x,k)

What happens if

• x is an element of a group? of a finite group?
Better recipes
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Selection mechanism

We want

• Design a hierarchy of realms and specify the operations there

• Provide recipes for these operations
Specify in which realm they are valid

• Specify in which realm each object is

We need a selection mechanism:

• to resolve the call f(x)

• by selecting the most specific recipe for f
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Sage’s hierarchy of realms (Categories)
Model math concepts: Finite sets, Groups, Fields, Graphs, ...
By a hierarchy of abstract classes:
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semigroupsunital magmas

monoidsinverse unital magmas

groups



Sage’s hierarchy of realms (Categories)
Model math concepts: Finite sets, Groups, Fields, Graphs, ...
By a large hierarchy of abstract classes:

semirings

commutative additive semigroups

sets with partial maps

monoids

objects

magmas

magmas and additive magmas

gcd domains

integral domains

euclidean domains

fields

unital magmas

principal ideal domains

rings

additive unital additive magmasadditive semigroups

additive monoids

additive magmas

additive inverse additive unital additive magmas

additive groups

additive commutative additive magmas

additive commutative additive associative distributive magmas and additive magmas

additive commutative additive associative additive unital distributive magmas and additive magmas

additive associative distributive magmas and additive magmas

domains

division rings

semigroups

commutative rings

commutative monoids

commutative magmas

unique factorization domains

commutative additive monoids

commutative additive groups

associative additive commutative additive associative additive unital distributive magmas and additive magmas

distributive magmas and additive magmas

rngs

sets



Sage’s hierarchy of realms (Categories)

Model math concepts: Finite sets, Groups, Fields, Graphs, ...
By a huge hierarchy of abstract classes:
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modules with basis over Rational Field

finite set algebras over Rational Field
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quotient fields
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finite coxeter groups
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tensor products of hopf algebras over Rational Field
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isomorphic objects of finite enumerated sets

infinite sets

integral domains

hopf algebras with basis over Rational Field

infinite enumerated sets

homsets of modular abelian varieties over Rational Field

hopf algebras over Rational Field

isomorphic objects of sets

lattice posets

algebras over Rational Field

algebras with basis over Rational Field

associative additive commutative additive associative additive unital distributive magmas and additive magmas

associative algebras over Rational Field

bialgebras over Rational Field

bimodules over Rational Field on the left and Rational Field on the rightbimodules over Rational Field on the left and Real Field with 53 bits of precision on the right bimodules over Univariate Polynomial Ring in x over Rational Field on the left and Univariate Polynomial Ring in x over Rational Field on the right

chain complexes over Rational Field

classical crystals quotients of semigroups

homsets of additive unital additive magmas

homsets of additive semigroups
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endsets

duals of coalgebras over Rational Field

duals of algebras over Rational Field

elements of Rational Field

duals of vector spaces over Rational Field

distributive magmas and additive magmas

discrete valuation rings

domains

division rings

coalgebras with basis over Rational Field

unital magma algebras over Rational Field

Totally insane???



Designing a hierarchy of realms

In general

• Hard problem: isolate the proper business concepts

• Recommendation: avoid large hierarchies
use instead object composition to separate concerns

In mathematics
• “Few” fundamental concepts:

• basic operations/structure: ∈, +, *, cardinality, topology, ...
• axioms: associative, finite, compact, ...
• constructions: cartesian product, quotients, ...

• Concepts known by the end users

• All the richness comes from combining those few concepts to
form many realms:
groups, fields, semirings, lie algebras, ...
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A hierarchy of realms based on mathematical categories

AbelianGroup

CancellationAbelianMonoid

AbelianMonoid

AbelianSemiGroup

BaseCategory

Algebra

ModuleRing

CommutativeRing

RightModule

DifferentialRing

PartialDifferentialRing

EntireRing

EuclideanDomain

PrincipalIdealDomain FactorialDomain

GcdDomain

Field

SkewField

FiniteCollection

IntegralDomainGroup

Monoid

HomogeneousFiniteCollection

OrderedSet

HomogeneousFiniteProduct

LeftModuleRng

SemiGroup

Matrix

Polynomial

QuotientField

SemiRing

SemiRng

Set

SquareMatrix

UnivariatePolynomial

VectorSpace

A robust hierarchy based on a century of abstract algebra



Pioneers 1980- I

Axiom (?), Aldor( 1990), MuPAD ( 1997)

• Bespoke language

• Selection mechanism: “object oriented programming”

• Hierarchy of“abstract classes”modeling the mathematical
categories

Example

category Semigroups:

category Magmas;

intpow := proc(x, k) ...

// other methods



Pioneers 1980- II

GAP 4, 1997

• Bespoke language

• One filter per fundamental concept:
IsMagma(G), IsAssociative(G), ...

• InstallMethod(Operation, filters, method)

• Method selection according to the filters that are know to be
satisfied by x

• Implicit modeling of the hierarchy

Example

powExp := function(n, k) ...

InstallMethod(pow, [IsMagma, IsAssociative], powExp)



Related developments

Focal (Certified CAS)

• Species

MathComp (Proof assistant) 2013-(?)

• Canonical structures

MMT (Knowledge management) (?)

• E.g. LATIN’s theories



Implementation in Sage (2008-)

Strategical choices

• A standard language (Python)

• Selection mechanism: object oriented programming

Specific features

• Distinction Element/Parent (as in Magma)

• Morphisms

• Functorial constructions

• Axioms

Constraints

• Partial compilation (Cython), serialization

• Multiple inheritance with Python / Cython

• Scaling!
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The standard Python Object Oriented approach

Abstract classes for elements

class MagmaElement:

@abstract_method

def __mul__(x,y):

class SemigroupElement(MagmaElement):

def __pow__(x,k): ...

A concrete class

class MySemigroupElement(SemigroupElement):

# Constructor, data structure, ...

def __mul__(x,k): ...



Standard OO: classes for parents

Abstract classes

class Semigroup(Magma):

@abstract_method

def semigroup_generators(self):

def cayley_graph(self): ...

A concrete class

class MySemigroup(Semigroup):

def semigroup_generators(self): ...



Standard OO: hierarchy of abstract classes

class Set: ...

class SetElement: ...

class SetMorphism: ...

class Magma (Set): ...

class MagmaElement (SetElement): ...

class MagmaMorphism(SetMorphism): ...

class Semigroup (Magma): ...

class SemigroupElement (MagmaElement): ...

def __pow__(self, k): ...

class SemigroupMorphism(MagmaMorphism): ...

Hmm, this code smells, doesn’t it?

• How to avoid duplication?
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Sage’s approach: categories and mixin classes

Categories

class Semigroups(Category):

def super_categories():

return [Magmas()]

class ParentMethods: ...

class ElementMethods: ...

def __pow__(x, k): ...

class MorphismMethods: ...

A concrete class

class MySemigroup(Parent):

def __init__(self):

Parent.__init__(self, category=Semigroups())

def semigroup_generators(self): ...

class Element: ...

# constructor, data structure

def __mul__(x, y): ...



Usage

sage: S = MySemigroup()

sage: S.category()

Category of semigroups

sage: S.cayley_graph()

sage: S.__class__.mro()

[<class ’MySemigroup_with_category’>, ...

<type ’sage.structure.parent.Parent’>, ...

<class ’Semigroups.parent_class’>,

<class ’Magmas.parent_class’>,

<class ’Sets.parent_class’>, ...]

Generic tests

sage: TestSuite(S).run(verbose=True)

...

running ._test_associativity() . . . pass

running ._test_cardinality() . . . pass

running ._test_elements_eq_transitive() . . . pass

...
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How does this work?

Dynamic construction, from the mixins, of:

• three hierarchies of abstract classes:
set element

magma element

semigroup elementunital magma element

monoid elementinverse unital magma element

group element

• the concrete classes for parents and elements
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How does this work?

Dynamic construction, from the mixins, of:

• three hierarchies of abstract classes:
set

magma

semigroupunital magma

monoidinverse unital magma

group

set element

magma element

semigroup elementunital magma element

monoid elementinverse unital magma element

group element

set morphism

magma morphism

semigroup morphismunital magma morphism

monoid morphisminverse unital magma morphism

group morphism

• the concrete classes for parents and elements



Summary

Explicit modeling of

• Elements, Parents, Morphisms, Homsets
• Categories: bookshelves about a given realm:

• Semantic information
• Mixins for parents, elements, morphisms, homsets:

Generic Code, Documentation, Tests (and Interoperability?)

Method selection mechanism

• Standard Object Oriented approach

• With a twist: classes constructed dynamically from mixins

Isn’t this gross overdesign?

• Deviation from standard Python, additional complexity

• Higher learning curve
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It’s all about scaling

sage: GF3 = mygap.GF(3)

sage: C = cartesian_product([ZZ, RR, GF3])

sage: c = C.an_element(); c

(1, 1.00000000000000, 0*Z(3))

sage: (c+c)^3

(8, 8.00000000000000, 0*Z(3))

sage: C.category()

Category of Cartesian products of commutative rings

sage: C.category().super_categories()

[Category of commutative rings,

Category of Cartesian products of distributive magmas and additive magmas,

Category of Cartesian products of monoids,

Category of Cartesian products of commutative magmas,

Category of Cartesian products of commutative additive groups]

sage: len(C.categories())

44
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Taming the combinatorial explosion

Categories for groups:

sets

magmas

semigroupsunital magmas

monoidsinverse unital magmas

groups
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Taming the combinatorial explosion

Categories for finitely generated finite commutative groups:

inverse unital magmas

finite inverse unital magmas groups

fg semigroups

finite comm unital magmas

fg finite monoids

fg finite comm monoids

fg comm monoids

finite comm fg magmas

fg finite groups

comm fg semigroups

finite groups

comm magmas

inverse unital fg magmas

semigroups

magmas

comm unital fg magmas

comm groups

fg finite comm groups

unital magmas

finite fg magmas

finite magmas

finite comm monoids fg groupsfinite inverse unital fg magmas

finite comm semigroups

finite comm magmas

finite unital fg magmas

unital fg magmas

finite comm groups

comm semigroups

fg monoidsfinite fg semigroups

comm unital magmas

finite comm inverse unital fg magmas

comm inverse unital magmas

finite comm inverse unital magmas

comm monoids

finite sets

fg magmas

comm inverse unital fg magmasfinite comm unital fg magmasfinite comm fg semigroups

finite monoids

comm fg magmasfinite semigroups finite unital magmas

sets

fg comm groups

monoids

Implemented categories: 17 out of ≈ 54
Explicit inheritance: 1 + 15 out of 32
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Taming the combinatorial explosion

All implemented categories for fields:

quotients of semigroups

subquotients of semigroups

unital magmas

additive monoids

rings

distributive magmas and additive magmas

sets with partial maps

Cartesian products of monoids

finite sets

additive commutative additive associative distributive magmas and additive magmas

Cartesian products of magmas

Cartesian products of magmas and additive magmas

division rings

subquotients of magmassemigroups

unique factorization domains

magmas and additive magmas

additive groups

semirings

additive semigroups

commutative additive monoids

Cartesian products of sets

Cartesian products of finite enumerated sets

Cartesian products of distributive magmas and additive magmas

metric spaces

commutative additive semigroups

Cartesian products of commutative additive groups

topological spaces

subobjects of sets

commutative magmas finite semigroups

Cartesian products of enumerated setsadditive unital additive magmas

finite commutative rings

Cartesian products of additive commutative additive magmas

Cartesian products of commutative rings integral domains

additive inverse additive unital additive magmas Cartesian products of additive unital additive magmas

enumerated sets

Cartesian products of additive magmas additive commutative additive magmas

additive associative distributive magmas and additive magmas

domains

objects

euclidean domains

additive magmas

additive commutative additive associative additive unital distributive magmas and additive magmas

rngs

finite fields

subquotients of sets

Cartesian products of semigroups

commutative rings

quotients of sets

fields

Cartesian products of unital magmas

finite monoids

magmas

Cartesian products of additive inverse additive unital additive magmas

gcd domains

isomorphic objects of sets

principal ideal domains

Cartesian products of additive semigroups

sets

finite enumerated sets

associative additive commutative additive associative additive unital distributive magmas and additive magmas

Cartesian products of commutative magmas subquotients of monoidscommutative monoids

monoids

commutative additive groups

Implemented categories: 71 out of ≈ 213

Explicit inheritance: 3 + 64 out of 121



Taming the combinatorial explosion

All categories:

WithBasisrings

UnitalAlgebrasringsCartesian products of vector spaces over fieldsduals of vector spaces over fields

topological spaces

unique factorization domains

unital g a p magmas

finite crystals

tensor products of vector spaces over fields

Cartesian products of vector spaces with basis over fields

coxeter groups

tensor products of crystals

commutative rings

complete discrete valuation fields

Cartesian products of commutative rings finite commutative rings

irreducible complex reflection or generalized coxeter groups

complex reflection or generalized coxeter groups

complete discrete valuation rings

complex reflection groups

CommutativeAlgebrasrings

g a p monoids

Cartesian products of groups

group algebras over rings

pointed sets

graded algebras over rings

graded algebras with basis over rings with realizations of graded hopf algebras with basis over rings

Connectedrings

graded modules with basis over rings

graded hopf algebras with basis over rings

groupoid

graded modules over rings

super modules over rings

super modules with basis over rings super algebras over rings

simplicial complexes

filtered modules over rings

sets

sets with partial maps

sets with grading

g a p enumerated sets

partially ordered monoids

connected topological spacescompact topological spaces

EltQ

ModularAbelianVarietiesQ

Cartesian products of additive semigroups

Cartesian products of algebras over rings

additive monoids

homsets of additive monoids

additive magmas

additive semigroup algebras over rings

g a p additive magmas Cartesian products of additive magmas

additive magma algebras over rings

additive unital additive magmas

well generated finite complex reflection groups

well generated finite irreducible complex reflection groups

finite irreducible complex reflection groups

finite g a p semigroups

finite g a p sets

homsets of right modules over rings and left modules over rings

filtered modules with basis over rings

Connectedrings

homsets of Hecke modules over Rational FieldHeckeModulesQ

tensor products of highest weight crystals

highest weight crystals

commutative groups

g a p groups

finite coxeter groups

groups

homsets of additive magmas

homsets of additive semigroups

set algebras over rings

generalized coxeter groups

enumerated sets

euclidean domains

facade sets

fields

domains endsets of modular abelian varieties over Rational Field

Cartesian products of enumerated sets

integral domains

infinite enumerated sets

HopfAlgebrasrings

HopfAlgebrasWithBasisrings

tensor products of hopf algebras with basis over rings

filtered algebras with basis over rings

super hopf algebras over rings

realizations of hopf algebras over rings

homsets

with realizations of additive unital additive magmas

homsets of additive unital additive magmasCartesian products of additive unital additive magmas

additive unital additive magma algebras over rings

additive inverse additive unital additive magmas

Cartesian products of additive inverse additive unital additive magmas

additive commutative additive magmas

Cartesian products of additive commutative additive magmas

additive commutative additive magma algebras over rings

additive groups

finite simplicial complexes

topological groups

bimodules over Category of rings on the left and Category of rings on the rightrings,rings

Bialgebrasrings

Cartesian products of algebras with basis over rings

tensor products of algebras over ringsAlgebrasWithBasisrings

tensor products of algebras with basis over rings

AssociativeAlgebrasrings

Algebrasrings

BialgebrasWithBasisrings

super bialgebras over rings

magma algebras over rings

Cartesian products of magmas

LeftModulesrings LeftModulesQ

commutative magmas

g a p magmas

commutative magma algebras over rings

Cartesian products of commutative magmas

j trivial magmas

finite complex reflection groups

tensor products of finite crystals

ring ideals

finite dimensional g a p modules with basis over rings

FiniteDimensionalAlgebrasWithBasisrings

FiniteDimensionalHopfAlgebrasWithBasisrings

FiniteDimensionalModulesWithBasisrings

Cartesian products of finite enumerated sets isomorphic objects of finite enumerated sets

finite enumerated sets

finite fields

posets

principal ideal domains

quotient fields

tensor products of regular crystals

regular crystals

RightModulesrings

AlgebraModulesQ[x] Cartesian products of modules over rings

affine weyl groups

algebra ideals

additive semigroups

additive unital g a p additive magmas g a p additive semigroups

additive commutative additive associative additive unital distributive magmas and additive magmas

WithBasisrings

MagmaticAlgebrasrings

MatrixAlgebrasrings

complete metric spaceswith realizations of metric spaces

metric spaces

duals of algebras over rings

homsets of modular abelian varieties over Rational Field

finite weyl groups

finitely generated magmas

realizations of unital magmas inverse unital magmasCartesian products of magmas and additive magmas

unital magmas

unital magma algebras over rings

subquotients of magmas

Cartesian products of inverse unital magmas

Cartesian products of unital magmas

g a p modules with basis over rings

magmas

magmas and additive magmas

weyl groups

VectorSpacesfields

finite monoids

filtered algebras over rings

finite groups

finite group algebras over rings

finite set algebras over rings

finite semigroups finite posets

finite permutation groups

commutative monoids

Cartesian products of monoids

monoid algebras over rings

Modulesrings

number fields

monoids

with realizations of monoids subquotients of monoids

Cartesian products of commutative additive groups

commutative additive group algebras over rings

ModulesWithBasisrings

tensor products of modules with basis over rings

commutative algebra ideals

commutative additive semigroups

commutative additive monoids

commutative additive groups

homsets of modules over rings

Endsetrings

commutative ring ideals

FiniteDimensionalrings

homsets of modules with basis over rings

duals of modules with basis over rings

Cartesian products of modules with basis over rings

tensor products of modules over rings

WithBasisfields

permutation groups

tensor products of vector spaces with basis over fields

quotients of algebras over rings

classical crystals

G-sets for Symmetric group of order 8! as a permutation group

gcd domains

function fields

g a p objects

finite finitely generated semigroups

finitely generated semigroups

subquotients of sets

with realizations of sets

realizations of sets

subobjects of sets

isomorphic objects of sets

quotients of sets

g a p sets infinite sets

finite generalized coxeter groups

Cartesian products of sets

bimodules over Rational Field on the left and Real Field with 53 bits of precision on the rightQ,R

ChainComplexesrings

tensor products of classical crystals

objects

duals of coalgebras over ringsrealizations of coalgebras over rings

super coalgebras over rings

tensor products of coalgebras over rings with realizations of coalgebras over rings

super coalgebras with basis over rings

tensor products of hopf algebras over rings

RightModulesR

finite sets

finite lattice posets

lattice posets

rngs

rings

semigroup algebras over rings

subquotients of finite setsg a p semigroups Cartesian products of semigroups subquotients of semigroups

quotients of semigroups

semirings

semigroups

schemes

division rings

distributive magmas and additive magmas

additive commutative additive associative distributive magmas and additive magmas

g a p modules over rings

Cartesian products of distributive magmas and additive magmas

additive associative distributive magmas and additive magmas

discrete valuation fields

crystals

associative additive commutative additive associative additive unital distributive magmas and additive magmas

discrete valuation rings

realizations of magmas

Coalgebrasrings

endsets

CoalgebrasWithBasisrings

Categories: 265 out of ≈ 250

Explicit inheritance: 70 out of 471



The hierarchy of categories as a lattice

inverse unital magmas

finite inverse unital magmas groups

fg semigroups

finite comm unital magmas

fg finite monoids

fg finite comm monoids

fg comm monoids

finite comm fg magmas

fg finite groups

comm fg semigroups

finite groups

comm magmas

inverse unital fg magmas

semigroups

magmas

comm unital fg magmas

comm groups

fg finite comm groups

unital magmas

finite fg magmas

finite magmas

finite comm monoids fg groupsfinite inverse unital fg magmas

finite comm semigroups

finite comm magmas

finite unital fg magmas

unital fg magmas

finite comm groups

comm semigroups

fg monoidsfinite fg semigroups

comm unital magmas

finite comm inverse unital fg magmas

comm inverse unital magmas

finite comm inverse unital magmas

comm monoids

finite sets

fg magmas

comm inverse unital fg magmasfinite comm unital fg magmasfinite comm fg semigroups

finite monoids

comm fg magmasfinite semigroups finite unital magmas

sets

fg comm groups

monoids

• ∧: objects in common

sage: Groups() & Sets().Finite()

Category of finite groups

• ∨: structure in common

sage: Fields() | Groups()

Category of monoids

Birkhoff representation theorem

An element of a distributive lattice can be represented as the meet
of the meet-irreducible elements above it
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The distributive lattice of categories

Basic concepts (meet-irreducible elements)

• 65 structure categories: Magmas, MetricSpaces, Posets, ...

• 34 axioms: Associative, Finite, NoZeroDivisors, Smooth, ...

• 13 constructions: CartesianProduct, Topological, Homsets, ...

sage: Groups().structure()

frozenset({Category of unital magmas,

Category of magmas,

Category of sets with partial maps,

Category of sets})

sage: Groups().axioms()

frozenset({’Associative’, ’Inverse’, ’Unital’})

Exponentially many potential combinations thereof

sage: Magmas().Associative() & Magmas().Unital().Inverse()

Category of groups
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Some more examples

sage: Mul = Magmas().Associative().Unital()

Category of monoids

sage: Add = AdditiveMagmas().AdditiveAssociative().AdditiveCommutative().AdditiveUnital()

Category of commutative additive monoids

sage: (Add & Mul).Distributive()

Category of semirings

sage: _.AdditiveInverse()

Category of rings

sage: _.Division()

Category of division rings

sage: _ & Sets().Finite()

Category of finite fields
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Full grown category
@semantic(mmt = ’Semigroup’)

class Semigroups(Category):

def super_categories():

return [Magmas()]

class ParentMethods: ...

@abstract_method

def semigroup_generators(self):

def cayley_graph(self): ...

class ElementMethods: ...

def __pow__(x, k): ...

class MorphismMethods: ...

class CartesianProducts:

def extra_super_categories(self): return [Semigroups()]

class ParentMethods:

def semigroup_generators(self): ...

Unital = LazyImport(’sage.categories.monoids’, ’Monoids’)



Implementation

Subposet of implemented categories

• Described by a spanning tree
adding one axiom/construction at a time

• Size: O(number of functions)

Fundamental operations

• joins, meets

• adding one axiom, applying one construction

Algorithmic

• Mutually recursive lattice algorithms

• Reasonable complexity (≈ linear)

For fun and profit: formally proving the correctness?



Implementation

Subposet of implemented categories

• Described by a spanning tree
adding one axiom/construction at a time

• Size: O(number of functions)

Fundamental operations

• joins, meets

• adding one axiom, applying one construction

Algorithmic

• Mutually recursive lattice algorithms

• Reasonable complexity (≈ linear)

For fun and profit: formally proving the correctness?



Implementation

Subposet of implemented categories

• Described by a spanning tree
adding one axiom/construction at a time

• Size: O(number of functions)

Fundamental operations

• joins, meets

• adding one axiom, applying one construction

Algorithmic

• Mutually recursive lattice algorithms

• Reasonable complexity (≈ linear)

For fun and profit: formally proving the correctness?



Implementation

Subposet of implemented categories

• Described by a spanning tree
adding one axiom/construction at a time

• Size: O(number of functions)

Fundamental operations

• joins, meets

• adding one axiom, applying one construction

Algorithmic

• Mutually recursive lattice algorithms

• Reasonable complexity (≈ linear)

For fun and profit: formally proving the correctness?



Method Resolution Order (MRO)

How is multiple inheritance handled in Python?

class A class B

class C(A,B)

MRO: C, A, B

class B class A

class D(B,A)

MRO: D, B, A

Method Resolution Order computed by the C3 algorithm:

• Compatible with subclasses

• Compatible with the order of the bases

• Local

Now, what about:
class E(C, D)

Cannot create a consistent method resolution order (MRO)!
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How to avoid MRO failures? Round 1

• Choose a global order on your classes

• Be consistent with it locally

• Failed!
C3 does not know about your order:

class B class A class C

class D(B,A)

class E(D,C)

MRO: E, D, B, A, C
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How to avoid MRO failures? Round 2

• Find some global order on your classes

• Be consistent with it locally

• Keeps failing over and over!

Math question: does there always exist some global order?
Answer: No!

A B C

D1

E1

D2

E2

D3

E3

F
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How to avoid MRO failures? Round 3

• Choose your global order

• Force C3 to use your order:

class A class B class C

class D(B,A)

class E(D,C,B,A)

MRO: E, D, C, B, A

• Always works! Yeah!

• But:
• Highly redundant: a maintenance nightmare!
• Kills the algorithmic complexity of C3, dir, ...
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How to avoid MRO failures? Round 4
C3 under control:

• Choose your global order

• Run an instrumented version of C3

• Force the usual C3 to use your order

Et voilà!

• Always works

• Negligible overhead

• Fully automatic and transparent

https://doc.sagemath.org/html/en/reference/misc/sage/

misc/c3_controlled.html

Hivert, T. 2022: Controlling the C3 super class linearization
algorithm arXiv:2401.12740 [math.CO]

For fun and profit: formally proving the correctness?

https://doc.sagemath.org/html/en/reference/misc/sage/misc/c3_controlled.html
https://doc.sagemath.org/html/en/reference/misc/sage/misc/c3_controlled.html
https://arxiv.org/abs/2401.12740
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Summary
• SageMath models a variety of mathematical objects

• Supported by a large hierarchy of categories
Bookshelves for:

• Semantic
• Generic Code, Documentation, Tests
• for parents, elements, morphisms, homsets
• Axioms, Constructions, ...

• Robust: based on a century of abstract algebra

• Using Python’s standard Object Oriented features

• Twist for scaling:
• Dynamic construction of hierarchy of classes from the semantic

information and mixin classes provided by the categories
• Lattice algorithms
• Control of the linearization for multiple inheritance (C3)

• Adoption?
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Additional benefits

Explicit representation of the knowledge

• Better formalization of the system

• Educational

• Easier to export

Tentative applications

• Interoperability?
DKKLPN 2016: Interoperability in the OpenDreamKit Project:
The Math-in-the-Middle Approach
arXiv:1603.06424 [cs.MS]

• Automatic generation of interfaces between systems?
Prototype: Sage-GAP interface

• Cross checking with other systems?

• Documentation and navigation systems?
Prototype: Sage-Explorer

https://arxiv.org/abs/1603.06424
https://github.com/nthiery/sage-gap-semantic-interface
https://github.com/sagemath/sage-explorer
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The paradigm is good; what about the implementation?

Natural in its context

• A dynamical language (Python)

• Object oriented programming

Outside of this context?

• In a language with static or gradual typing?

• Using templates or traits?
For example in C++ or Scala

• Using multimethods
For example in Julia / Oscar

• In proof systems?
Hierarchy builders are a growing thing, e.g. in Coq /
MathComp
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