
Test-Driven Development and Functionality Improvements to GRNmap,
a Gene Regulatory Network Modeling Application

Trixie Anne Roque1, Kam D. Dahlquist2, Ben G. Fitzpatrick3 , and Dr. John David N. Dionisio1

1Department of Electrical Engineering and Computer Science, 2Department of Biology, 3Department of Mathematics,
Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045 USA

Acknowledgments

Initial
concentrations
are saved in x0.

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

timespan is created.
If no zero time is

present, it is added to
the vector

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

ode45 is called for
each of the deletion

strains.

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

Error matrix is
calculated. Graphs
are outputted every

100 iterations.

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

L, lse_out are
calculated.

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

penalty terms for
production rates and
thresholds are made.

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

L is modified by the
penalty terms and

then outputted.

general_least_squares_error

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

Initializes vector
containing
weights.

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

Create vector b with
some of the values

of the weights in
theta

No
(fix_b = 0)

Fixed thresholds?

Yes
(fix_b = 1)

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

Create vector P with
some of the values

of the weights in
theta

No
(fix_P = 0)

Fixed pro rates?

Yes
(fix_P = 1)

Invalid file?

Collect
microarray

data for each
strain

Add
simulation

parameters to
GRNStruct

Add control
parameters

to GRNstruct

Define initial
thresholds
vector as a

global variable

Initiate
additional

global
variables

[sigmoid][MM]

[No]

Fixed thresholds?

[Yes]

[No]

Fixed pro
rates?

[Yes]

Store the solution
arrays to log2FC.

model and the
times to log2FC.
simtime for each

strain.

Dialog box
prompts user

to choose
Excel input

sheet

Program gives
error message
and terminates

Read optimization
parameters sheet

and count the
number of strains

Define zero
vector for

thresholds as a
global variable

Calculate average
and standard dev
for all microarray

data.

Unpackage
control

parameters from
GRNstruct

Initialize
vector for
containing

weights

Set weights in
vector to given

production rates
for active genes

Calculate the
least squares

error of the initial
weight vector

Calculate new
optimized

weights using
fmincon

readInputSheet

[No]

Store the initial
and optimized

weights to
GRNstruct

[Yes]

lse

[Yes]

[No]

output

Model?

Estimate weights?

Generate plots for
each transcription

factor

Unpack data
that will be
written in

output sheet

Output simulation
information to
Excel sheets

Unpack data that
will go into the .

mat file

Program
Terminates

Save .mat file

Include
graphs?

GRNstruct
structure

with no data
inputs

GRNstruct
populated
with data

from Excel
sheet

[No]

lse

general_least_squares_error

Create upper
and lower
bounds.

Set weights in
vector to 0 for all

forced indices

initial guesses
(theta) vector

containing
weights,

thresholds,
and prorates

Fixed pro
rates?

Assign b with
some of the

values in theta

[Yes] [No]

Fixed
thresholds?

GRNstruct
with data
calculated
by the lse

routine

Store weights from
initial guesses

vector

Assign P with
some of the

values in theta

[No]

Store initial
concentrations

to x0 vector

Store time to
tspan1. If

there is no 0
time, add it
to tspan1

Initialize error
matrix and SSE

[Yes]

penalized
least

squares fit
criterion L

Sigmoid
model?

Call ode45 to
solve the

sigmoidal model
for each strain

Call ode45 to
solve the

michaelis-menten
model for each

strain

[Yes] [No]

Calculate error
matrix and SSE

Output graphs
every 100
iterations

Calculate sum
of errors vector
and assign to

lse output

Initialize
variable for
containing
thresholds

Fixed
thresholds? [No]

Use
thresholds
from input

sheet

Zero out
prorate vector

Calculate
penalty using

weights,
thresholds, and

prorate

[Yes]

[No]Fixed pro
rates?

Calculate L
using alpha,
penalty and

previous sum of
errors vector

[No]

[Yes]

Initial
concentrations
are saved in x0.

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

timespan is created.
If no zero time is

present, it is added to
the vector

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

ode45 is called for
each of the deletion

strains.

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

Error matrix is
calculated. Graphs
are outputted every

100 iterations.

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

L, lse_out are
calculated.

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

penalty terms for
production rates and
thresholds are made.

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

L is modified by the
penalty terms and

then outputted.

general_least_squares_error

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

Initializes vector
containing
weights.

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

Create vector b with
some of the values

of the weights in
theta

No
(fix_b = 0)

Fixed thresholds?

Yes
(fix_b = 1)

GRNmap first reads
the optimization

parameters sheet. It
figures out how

many strains there
are

Create vector P with
some of the values

of the weights in
theta

No
(fix_P = 0)

Fixed pro rates?

Yes
(fix_P = 1)

Invalid file?

Collect
microarray

data for each
strain

Add
simulation

parameters to
GRNStruct

Add control
parameters

to GRNstruct

Define initial
thresholds
vector as a

global variable

Initiate
additional

global
variables

[sigmoid][MM]

[No]

Fixed thresholds?

[Yes]

[No]

Fixed pro
rates?

[Yes]

Store the solution
arrays to log2FC.

model and the
times to log2FC.
simtime for each

strain.

Dialog box
prompts user

to choose
Excel input

sheet

Program gives
error message
and terminates

Read optimization
parameters sheet

and count the
number of strains

Define zero
vector for

thresholds as a
global variable

Calculate average
and standard dev
for all microarray

data.

Unpackage
control

parameters from
GRNstruct

Initialize
vector for
containing

weights

Set weights in
vector to given

production rates
for active genes

Calculate the
least squares

error of the initial
weight vector

Calculate new
optimized

weights using
fmincon

readInputSheet

[No]

Store the initial
and optimized

weights to
GRNstruct

[Yes]

lse

[Yes]

[No]

output

Model?

Estimate weights?

Generate plots for
each transcription

factor

Unpack data
that will be
written in

output sheet

Output simulation
information to
Excel sheets

Unpack data that
will go into the .

mat file

Program
Terminates

Save .mat file

Include
graphs?

GRNstruct
structure

with no data
inputs

GRNstruct
populated
with data

from Excel
sheet

[No]

lse

general_least_squares_error

Create upper
and lower
bounds.

Set weights in
vector to 0 for all

forced indices

initial guesses
(theta) vector

containing
weights,

thresholds,
and prorates

Fixed pro
rates?

Assign b with
some of the

values in theta

[Yes] [No]

Fixed
thresholds?

GRNstruct
with data
calculated
by the lse

routine

Store weights from
initial guesses

vector

Assign P with
some of the

values in theta

[No]

Store initial
concentrations

to x0 vector

Store time to
tspan1. If

there is no 0
time, add it
to tspan1

Initialize error
matrix and SSE

[Yes]

penalized
least

squares fit
criterion L

Sigmoid
model?

Call ode45 to
solve the

sigmoidal model
for each strain

Call ode45 to
solve the

michaelis-menten
model for each

strain

[Yes] [No]

Calculate error
matrix and SSE

Output graphs
every 100
iterations

Calculate sum
of errors vector
and assign to

lse output

Initialize
variable for
containing
thresholds

Fixed
thresholds? [No]

Use
thresholds
from input

sheet

Zero out
prorate vector

Calculate
penalty using

weights,
thresholds, and

prorate

[Yes]

[No]Fixed pro
rates?

Calculate L
using alpha,
penalty and

previous sum of
errors vector

[No]

[Yes]

Activity Diagram Shows How Data is Processed by GRNmap

GRNmap Uses ODE to Model Networks GRNmap Manipulates Data Provided by Our Group Test-Driven Development Process

References

DEFINE main function
 CALL functiontests (localfunctions) to make
a tests array
END

DEFINE function firstTest (testCase)
 actualOutput = evaluate function by using
known inputs
 expectedOutput = assign expected results
 VERIFY actualOutput equals expectedOutput
END

Figure 4: 16 manual test input sheets

Figure 5: Pseudocode for unit tests

Future Work

Figure 6: Test-driven development process

Write a unit test that
fails.

Write code for the
test so that that the
test no longer fails.

Refactor code as
necessary to

eliminate
redundancy.

Dahlquist, K.D., Fitzpatrick, B.G., Camacho, E.T., Entzminger, S.D., and Wanner, N.C. (2015)
Parameter Estimation for Gene Regulatory Networks from Microarray Data: Cold Shock
Response in Saccharomyces cerevisiae. Bulletin of Mathematical Biology, in press.

We would like to thank Juan S. Carrillo, Nicholas A. Rohacz, Katrina Sherbina, and Alondra J.
Vega, for previous work on the GRNmap program. This project was supported by the Summer
Undergraduate Research Program at Loyola Marymount University (T.A.R.), a Kadner-Pitts
Research Grant (K.D.D.), and the Clarence Wallen, S.J. Chair in Mathematics (B.G.F.).

• We plan to complete the testing framework for all current functionality of the code, fixing bugs and
refactoring code as needed.

• We will then revise the variable names and worksheet formats so that they follow a consistent style and
make intuitive sense to the user. In the future, GRNmap will automatically detect when data are present
for different strains, based on the worksheets present.

• With these changes, the documentation will then be ready to be moved from our developer wiki to our
front-end production web site for the users.

• We will add new functionality so that GRNmap computes the within- and between-strain ANOVA p values
for the expression data, not just the standard deviations. This will allow the user to judge the quality of
the expression data upon which the model parameters are based.

The GRNmap software has been in development for over 7 years, but has only recently been
refactored to a more modular function-based package and moved to GitHub where we employ its
version control system. Because of GRNmap’s complexity and history of switching developers, we
are trying to impose test-driven development post-hoc to make debugging easier. Our approach
first involved creating manual tests for every combination of optimization parameters that the user
enters (as shown in Figure 4). Next, we proceed to write automated tests for these 16 different
inputs. The pseudocode in Figure 5 shows what a unit test would look like when coded. Once
we’ve finished automating these tests, we will switch over to writing the failing tests first and follow
the standard procedure for test-driven development (as shown in Figure 6).

GRNmap is a MATLAB software that models the gene regulatory network (GRN) dynamics of
Saccharomyces cerevisiae, budding yeast, in response to the environmental stress of cold shock.
Figure 1 shows the hypothesis network developed by our group throughout the years.

Our group consists of 4 teams in charge of generating and manipulating data as shown in Figure 2.
• Wet Lab: Generates gene expression data from DNA microarrays. Individual gene deletion

experiments are conducted at this stage in order to observe how each transcription factor affects
the network.

• Dry Lab: Transforms the wet lab data into log2 expression profiles for each deletion strain and works
on data normalization and statistical analysis in order to generate the GRN. They compile the data
into an Excel workbook.

• GRNmap takes in the Excel file. It gives the user the option to estimate parameters or just run the
forward simulation. The parameters that the user can manipulate are the production rates,
threshold, plots generated, and model used to solve the differential equation.

• Over the course of its development, we have improved on the functionalities of the software
package. Since v1.0.8, changes we have made to the source code include changing the names
of the worksheets in the input and output workbooks, computing standard deviations,
optimization diagnostics outputted for each run (contains LSE, penalty term, and iteration
count), computing minimum LSE and sum of squares error of individual genes, and saving the
graphs according to their gene names.

• Routine bug fixes were also performed on the packages. They include corrected estimated
production rates and threshold parameters output worksheets, corrected computation for
threshold for genes with no inputs, and corrected penalty computation for production rates.

• These changes have been documented in our external GRNmap website (http://
kdahlquist.github.io/GRNmap/index.html) and GRNmap developer wiki (https://github.com/
kdahlquist/GRNmap/wiki)

• The data outputted by GRNmap is used by GRNsight to visualize the network. A visual depiction of
the hypothesis network developed by our group is shown in Figure 1. The network is represented as
an adjacency matrix where each node represents a gene, each edge represents a regulatory
relationship between the genes (activation/repression depending on the sign of the weight in the
model).

Figure 1: A 21-gene 50-edge gene regulatory network

Equation 2: Sigmoidal model used by GRNmap

iii
i xxp
dt
dx

λ−=)(

Equation 1

The rate of change in expression of each gene (xi) in the network is modeled by a differential
equation (Equation 1) where p(x) is the production rate of the gene, λi is the degradation rate
constant and xi is the expression profile of the gene. We model the production term, p(x), using two
different models, the sigmoidal model (Equation 2) and the Michaelis-Menten model (not shown)

In the Sigmoidal model (Dahlquist et al., in press), Pi, is the production rate constant of a particular
gene i, wij is the production weight of transcription factor j, and bi is the expression threshold.

Written in MATLAB, GRNmap loads an Excel spreadsheet containing DNA microarray data provided as
log2 ratios of expression for each gene in the network as inputs. It outputs another Excel sheet
containing the estimated network weights, expression thresholds, and production rates.

The software makes heavy use of two MATLAB functions: ODE45 and FMINCON. We use ODE45 to
solve the model’s differential equation and we use FMINCON to estimate the parameters of the
model using a penalized least squares fit criterion.

Wet Lab GRNsightDry Lab GRNmap

Figure 2: DNA microarray data flow

http://kdahlquist.github.io/GRNmap/index.html
https://github.com/kdahlquist/GRNmap/wiki

