LMU|LA

MecNair Scholars

Program

GRNmap Uses ODE to Model Networks

GRNmap is a MATLAB software that models the gene regulatory network (GRN) dynamics of
Saccharomyces cerevisiae, budding yeast, in response to the environmental stress of cold shock.
Figure 1 shows the hypothesis network developed by our group throughout the years.

HAPS SWi6 SKO1 »>MSS11 AFT2 HMO1
A A A
Sy
N Y
SWi4 CINS |« — PHD1 > YAPG6 [€ SKN7 FHL1
Y & Y
MBP1 > MAL33 HOT1 SMP1 FKH2 > ACE2 |« ZAP1
O “
Y
GLN3 > MGA2

Figure 1: A 21-gene 50-edge gene regulatory network

The rate of change in expression of each gene (x;) in the network is modeled by a differential
equation (Equation 1) where p(x) is the production rate of the gene, A; is the degradation rate
constant and x; is the expression profile of the gene. We model the production term, p(x), using two
different models, the sigmoidal model (Equation 2) and the Michaelis-Menten model (not shown)

dx. > dx;i(t) P;
L=p(x)=-AX = -d;x;(t
At Pi(x) = Ax, dt 1+exp(— Zj(wijxj(t))+bi) 240
Equation 1 Equation 2: Sigmoidal model used by GRNmap

In the Sigmoidal model (Dahlquist et al., in press), P;, is the production rate constant of a particular
gene i, wij is the production weight of transcription factor j, and b; is the expression threshold.

Written in MATLAB, GRNmap loads an Excel spreadsheet containing DNA microarray data provided as
logz ratios of expression for each gene in the network as inputs. It outputs another Excel sheet
containing the estimated network weights, expression thresholds, and production rates.

The software makes heavy use of two MATLAB functions: ODE45 and FMINCON. We use ODE45 to
solve the model’s differential equation and we use FMINCON to estimate the parameters of the
model using a penalized least squares fit criterion.

GRNmap Manipulates Data Provided by Our Group

[Wet Lab H Dry Lab]—m—[GRNsightJ

Figure 2: DNA microarray data flow

Our group consists of 4 teams in charge of generating and manipulating data as shown in Figure 2.

e Wet Lab: Generates gene expression data from DNA microarrays. Individual gene deletion
experiments are conducted at this stage in order to observe how each transcription factor affects
the network.

e Dry Lab: Transforms the wet lab data into log; expression profiles for each deletion strain and works
on data normalization and statistical analysis in order to generate the GRN. They compile the data
into an Excel workbook.

« GRNmap takes in the Excel file. It gives the user the option to estimate parameters or just run the
forward simulation. The parameters that the user can manipulate are the production rates,
threshold, plots generated, and model used to solve the differential equation.

e Over the course of its development, we have improved on the functionalities of the software
package. Since v1.0.8, changes we have made to the source code include changing the names
of the worksheets in the input and output workbooks, computing standard deviations,
optimization diagnostics outputted for each run (contains LSE, penalty term, and iteration
count), computing minimum LSE and sum of squares error of individual genes, and saving the
graphs according to their gene names.

e Routine bug fixes were also performed on the packages. They include corrected estimated
production rates and threshold parameters output worksheets, corrected computation for
threshold for genes with no inputs, and corrected penalty computation for production rates.

e These changes have been documented in our external GRNmap website (http://
kdahlquist.github.io/GRNmap/index.html) and GRNmap developer wiki (https://github.com/
kdahlquist/GRNmap/wiki)

e The data outputted by GRNmap is used by GRNsight to visualize the network. A visual depiction of
the hypothesis network developed by our group is shown in Figure 1. The network is represented as
an adjacency matrix where each node represents a gene, each edge represents a regulatory
relationship between the genes (activation/repression depending on the sign of the weight in the
model).

Activity Diagram Shows How Data is Processed by GRNmap

Test-Driven Development Process

Sigmoidal Michaelis Menten

Forward Only
Graph Estlmate p Graph

Estimate +

Forward

Estimate b, Estimate b, Fix b, Fix b, Fix p
Estimate p Fix p Estimate p

Graph Graph Graph Graph No Graph Graph Grap No Graph

Estlmate + Forward Only
Forward

No Graph No Graph No Graph No Graph No Graph No Graph

Figure 4: 16 manual test input sheets

DEFINE main function

CALL functiontests (localfunctions) to make
a tests array
END

DEFINE function firstTest (testCase)
actualOutput = evaluate function by using

known inputs
expectedOutput = assign expected results Write code for the W Re::gg;rsg‘:;jfoas
VERIFY actualOutput equals expectedOutput ?ﬁsommmmﬂm eliminate
est no longer fails.
END redundancy.
Figure 5: Pseudocode for unit tests Figure 6: Test-driven development process

The GRNmap software has been in development for over 7 years, but has only recently been
refactored to a more modular function-based package and moved to GitHub where we employ its
version control system. Because of GRNmap’s complexity and history of switching developers, we
are trying to impose test-driven development post-hoc to make debugging easier. Our approach
first involved creating manual tests for every combination of optimization parameters that the user
enters (as shown in Figure 4). Next, we proceed to write automated tests for these 16 different
inputs. The pseudocode in Figure 5 shows what a unit test would look like when coded. Once
we’ve finished automating these tests, we will switch over to writing the failing tests first and follow
the standard procedure for test-driven development (as shown in Figure 6).

4 Dialog box h Invalid file?

prompts user G;?Nstruct |
e—> tochoose rUcture readinputSheet se output
Excel input with no data 0 k Include
sheet inputs npackage _ _ graphs?
\ / : (No] control [No] Set weights in 2N Generate plots for Ise
[Yes] parameters from vector to 0 for all \/ each transcription
4) GRNstruct forced indices [Yes] factor
Program gives Read optimization Model? l general_least_squares_error
error message parameters sheet \/
' In|t|aI|ze initi
n erminates B [MM] l l[Singid] vector for Calculate the UnpaCk data I?tlrtmgtla%ﬁistgf Initialize Calculate
number of strains [Yes] least squares that will be -~ Store weights from Store initial [No] l able f ,
\ J ine initi containing Pt —1» containing initial guesses concentrations [Yes] variab'e for penalty using
Define zero Define initial weidhts error of the initial [No] written in weights, g Sl ouedE Call ode45 to containing weights,
l vector for thresholds 9 weight vector Output sheet thresholds, VEEHD to X0 vector asoI?/eetheto solve the thresholds thresholds, and
Collect thresholds as a vecloras a Fixed pro and prorates l sigmoidal model mr'ﬁggsll'fo':"eea";ﬁn . prorate
microarray global variable global variable rates?)\Estimate weights? " Fl)lf]eldd Store time to for each strain strain " Fli-(]e(ljd ,
data for each resholds? tspanf. If felioles: [No]
strain [Yes] [No] [Yes] \/ y Output simulation O Pt o 6 @
GRNstruct (No] information to time, add it l [
l l Sopulated Set weights in Calculate new Excel sheets [Yes] [No] to tspan1 1 s Calculate L
with data vector to given optimized)) thresholds using alpha,
el e R from Excel production rates weights using GRNstruct A;Scj:?:cﬁméh rg:t'ﬁ:'ztnedesrg’é from input penalty and
simulation Calculate average sheet for active genes fmincon with data values in theta sheet previous sum of
parameters to d standard d calculated Initialize error l errors vector
GRNStruct and standard dev by the Ise Unpack data that matrix and SSE _ J
for all microarray y P
routine will go into the . Output h
l data. utput graphs
. mat file every 100
_ / (Store the solutlom =Very
terations : No
Add control arrays to log2FC. Fixed pro [Yes] - ke F'X‘id rz)ro [No]
parameters Create upper model and the i igcrlneol’l?d l rates: L
to GRNstruct and lower émifnteo L%?zel;(gr'] Save .mat f|Ie [No] ' Calculate sum [Yes] Pea e
Initiate bounds. : ATEIR0S =R — 7| squares fit >
additional \ AEILE J l Assign P with) and assign to Zero out criterion L
global ! some of the Ise °|Utp“t prorate vector
variables . Program values in thetaJ
| [Saf(;eomien:gggl J [Terminates }
Fixed thresholds?
weights to $
GRNstruct

_ ruwrework Acknowledgments

« We plan to complete the testing framework for all current functionality of the code, fixing bugs and
refactoring code as needed.

o We will then revise the variable names and worksheet formats so that they follow a consistent style and
make intuitive sense to the user. In the future, GRNmap will automatically detect when data are present
for different strains, based on the worksheets present.

e With these changes, the documentation will then be ready to be moved from our developer wiki to our
front-end production web site for the users.

o We will add new functionality so that GRNmap computes the within- and between-strain ANOVA p values
for the expression data, not just the standard deviations. This will allow the user to judge the quality of
the expression data upon which the model parameters are based.

We would like to thank Juan S. Carrillo, Nicholas A. Rohacz, Katrina Sherbina, and Alondra J.
Vega, for previous work on the GRNmap program. This project was supported by the Summer
Undergraduate Research Program at Loyola Marymount University (T.A.R.), a Kadner-Pitts
Research Grant (K.D.D.), and the Clarence Wallen, S.J. Chair in Mathematics (B.G.F.).

Dahlquist, K.D., Fitzpatrick, B.G., Camacho, E.T., Entzminger, S.D., and Wanner, N.C. (2015)
Parameter Estimation for Gene Regulatory Networks from Microarray Data: Cold Shock
Response in Saccharomyces cerevisiae. Bulletin of Mathematical Biology, in press.

http://kdahlquist.github.io/GRNmap/index.html
https://github.com/kdahlquist/GRNmap/wiki

