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DEFINE main function
    CALL functiontests (localfunctions) to make 
a tests array
END
 
DEFINE function firstTest (testCase)
    actualOutput = evaluate function by using 
known inputs
    expectedOutput = assign expected results
    VERIFY actualOutput equals expectedOutput
END

Figure 4: 16 manual test input sheets

Figure 5: Pseudocode for unit tests
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Figure 6: Test-driven development process
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• We plan to complete the testing framework for all current functionality of the code, fixing bugs and 
refactoring code as needed. 

• We will then revise the variable names and worksheet formats so that they follow a consistent style and 
make intuitive sense to the user. In the future, GRNmap will automatically detect when data are present 
for different strains, based on the worksheets present. 

• With these changes, the documentation will then be ready to be moved from our developer wiki to our 
front-end production web site for the users. 

• We will add new functionality so that GRNmap computes the within- and between-strain ANOVA p values 
for the expression data, not just the standard deviations. This will allow the user to judge the quality of 
the expression data upon which the model parameters are based.

The GRNmap software has been in development for over 7 years, but has only recently been 
refactored to a more modular function-based package and moved to GitHub where we employ its 
version control system. Because of GRNmap’s complexity and history of switching developers, we 
are trying to impose test-driven development post-hoc to make debugging easier. Our approach 
first involved creating manual tests for every combination of optimization parameters that the user 
enters (as shown in Figure 4). Next, we proceed to write automated tests for these 16 different 
inputs. The pseudocode in Figure 5 shows what a unit test would look like when coded. Once 
we’ve finished automating these tests, we will switch over to writing the failing tests first and follow 
the standard procedure for test-driven development (as shown in Figure 6).

GRNmap is a MATLAB software that models the gene regulatory network (GRN) dynamics of 
Saccharomyces cerevisiae, budding yeast, in response to the environmental stress of cold shock. 
Figure 1 shows the hypothesis network developed by our group throughout the years.

Our group consists of 4 teams in charge of generating and manipulating data as shown in Figure 2. 
• Wet Lab: Generates gene expression data from DNA microarrays. Individual gene deletion 

experiments are conducted at this stage in order to observe how each transcription factor affects 
the network. 

• Dry Lab: Transforms the wet lab data into log2 expression profiles for each deletion strain and works 
on data normalization and statistical analysis in order to generate the GRN. They compile the data 
into an Excel workbook. 

• GRNmap takes in the Excel file. It gives the user the option to estimate parameters or just run the 
forward simulation. The parameters that the user can manipulate are the production rates, 
threshold, plots generated, and model used to solve the differential equation. 

• Over the course of its development, we have improved on the functionalities of the software 
package. Since v1.0.8, changes we have made to the source code include changing the names 
of the worksheets in the input and output workbooks, computing standard deviations, 
optimization diagnostics outputted for each run (contains LSE, penalty term, and iteration 
count), computing minimum LSE and sum of squares error of individual genes, and saving the 
graphs according to their gene names. 

• Routine bug fixes were also performed on the packages. They include corrected estimated 
production rates and threshold parameters output worksheets, corrected computation for 
threshold for genes with no inputs, and corrected penalty computation for production rates. 

• These changes have been documented in our external GRNmap website (http://
kdahlquist.github.io/GRNmap/index.html) and GRNmap developer wiki (https://github.com/
kdahlquist/GRNmap/wiki) 

• The data outputted by GRNmap is used by GRNsight to visualize the network. A visual depiction of 
the hypothesis network developed by our group is shown in Figure 1. The network is represented as 
an adjacency matrix where each node represents a gene, each edge represents a regulatory 
relationship between the genes (activation/repression depending on the sign of the weight in the 
model).

Figure 1: A 21-gene 50-edge gene regulatory network 

 

Equation 2: Sigmoidal model used by GRNmap
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The rate of change in expression of each gene (xi) in the network is modeled by a differential 
equation (Equation 1) where p(x) is the production rate of the gene, λi is the degradation rate 
constant and xi is the expression profile of the gene. We model the production term, p(x), using two 
different models, the sigmoidal model (Equation 2) and the Michaelis-Menten model (not shown)

In the Sigmoidal model (Dahlquist et al., in press), Pi, is the production rate constant of a particular 
gene i, wij is the production weight of transcription factor j, and bi is the expression threshold.  

Written in MATLAB, GRNmap loads an Excel spreadsheet containing DNA microarray data provided as 
log2 ratios of expression for each gene in the network as inputs. It outputs another Excel sheet 
containing the estimated network weights, expression thresholds, and production rates. 

The software makes heavy use of two MATLAB functions: ODE45 and FMINCON. We use ODE45 to 
solve the model’s differential equation and we use FMINCON to estimate the parameters of the 
model using a penalized least squares fit criterion.
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Figure 2: DNA microarray data flow 
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