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Abstract
One of the main hurdles of PGAS approaches is the dominance of MPI, which as a de-facto standard appears in
the code basis of many applications. To take advantage of the PGAS APIs like GASPI without a major change in the
code basis, interoperability between MPI and PGAS approaches needs to be ensured. In this article we consider an
interoperable GASPI/MPI implementation for the communication/performance crucial parts of the Ludwig and iPIC3D
applications. To address the discovered performance limitations, we develop a novel strategy for significantly improved
performance and interoperability between both APIs by leveraging GASPI shared windows and shared notifications.
First results with a corresponding implementation in the MiniGhost proxy application demonstrate the viability of this
approach.
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1 Introduction
The Message Passing Interface (MPI) has been considered
the de-facto standard for writing parallel programs for
clusters of computers for more than two decades. Although
the API has become very powerful and rich, having passed
through several major revisions, new alternative models that
are taking into account modern hardware architectures have
evolved in parallel. Such a model is the Global Address
Space Programming Interface (GASPI) Simmendinger
et al. (2015), with GPI-2∗ representing an open source
implementation of the GASPI standard.

The GASPI standard promotes the use of one-sided
communication, where one side, the initiator, has all the
relevant information for performing the data movement. The
benefit of this is decoupling the data movement from the
synchronization between processes. It enables the processes
to put or get data from remote memory, without engaging the
corresponding remote process, or having a synchronization
point for every communication request. However, some
form of synchronization is still needed in order to allow
the remote process to be notified upon the completion
of an operation. In addition, GASPI provides what is
known as weak synchronization primitives which update a
notification on the remote side. The notification semantics
is complemented with routines that wait for the update of a
single or a set of notifications. In passing we note that similar
weak synchronization primitives might also appear in the
upcoming MPI-4 standard Belli and Hoefler (2015). GASPI
allows for a thread-safe handling of notifications, providing
an atomic function for resetting a local notification. The
notification procedures are one-sided and only involve the
local process.

Thus, there is a potential of enhancing applications’
performance by shifting to one-sided communication like

in GASPI. There are two possibilities for such shift: 1.
Rewriting large legacy MPI codes to use a different inter-
node programming model is, in many cases, highly labor
intensive and, therefore, not appealing to developers; 2.
Replacing MPI with another API – such as GASPI – only
in performance critical parts of those codes is an attractive
solution from a practical perspective, but this requires both
APIs to interoperate effectively and efficiently on sharing
communication and on data management. In this article,
we address the latter and aim to study interoperability of
GASPI and MPI in order to allow for incremental porting
of applications. GPI-2 supports Machado et al. (2015) this
interoperability with MPI in a so-called mixed-mode, where
the MPI and GASPI interfaces can be mixed in a simple way.

As a case study, we consider two large-scale scientific
applications: iPIC3D Markidis et al. (2010) (see Section 4.1)
– an implicit Particle-In-Cell code for space weather
simulations; Ludwig Desplat et al. (2001) (see Section 4.2)
– a large scale Lattice-Boltzmann code for complex fluids.
We implement this classic strategy for coupling MPI and
GASPI on the communication-intensive halo exchange parts
in both applications. The performance results reveal some
performance issues due to the packing/unpacking of data
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from MPI derived datatypes to GASPI segments, clearly
indicating a need to revise our strategy.

Thus, in order to tweak the GASPI implementation and
programming model, both in terms-of-use and achievable
performance we have implemented a strategy for enhancing
the interoperability between MPI and GASPI using so-
called shared notifications (see Section 3) in the MiniGhost
Proxy application from Sandia Barrett et al. (2011).
We demonstrate the corresponding transition from a
flat MPI model towards a mixed-mode model which
interoperates with MPI and makes efficient use of the GASPI
communication primitives.

We provide further evidence that this strategy is beneficial
(see Section 5.4) by implementing a collective Allreduce
operation on top of this model. We compare against existing
state-of-the-art for Allreduce operations.

This article is structured as follows. Section 2 outlines the
classic way of coupling GASPI and MPI, while Section 3
introduces a novel strategy for better interoperability of the
two APIs. We describes three case studies in Section 4
and present their performance results in Section 5. Finally,
Section 6 draws conclusions and outlines future work.

2 State-of-the-art interoperability of GASPI
and MPI

Writing parallel programs that are mixing MPI and GPI-
2 communication sections is currently possible due to the
ability of GPI-2 to capture the environment of an existing
MPI running instance. For this purpose, GPI-2 must be
installed with a specific option pointing to the current MPI
installation used by the user. When running in mixed-mode,
GPI-2 is able to detect at runtime the MPI environment and
to setup its own environment based on this. Thus, in mixed-
mode GPI-2 is able to deliver the same information about the
ranks and the number of processes as MPI. In order to be able
to do this, MPI must be initialized before GPI-2.

Porting a MPI-based application to GPI-2 can be
done incrementally, by identifying independent MPI
communication sections and replacing them gradually with
GPI-2 communication sections, taking thus advantage of the
ability of GPI-2 to work in mixed-mode with MPI Markidis
et al. (2016). An important rule to follow here is to preserve
the application’s logic. Another aspect to take into account is
not to overlap MPI with GPI-2 communication sections. It is
also possible to encapsulate the GPI-2 code in a library and
call this from from a MPI program.

The GASPI standard offers the possibility to allow a
user to provide already allocated memory for the GASPI
segments. For instance, a buffer used in a MPI collective
operation can be reused as memory allocated for a segment.
Alternatively, memory allocated within a GASPI segment
can be used for the MPI communication. It is important to
note that when the memory for the segments is allocated
by the user, it is the user’s responsibility to free it after the
segment deletion.

Compared to MPI, which allows a flat model with several
MPI processes in a shared memory region, threads are
the recommended way to handle parallelism with GASPI
within nodes. The interoperability between flat MPI and
hybrid GASPI mode has been recently improved. The new

shared notification feature allows a smoother interoperability
between the flat MPI code with shared windows and GASPI.
In GASPI, notifications provide a mechanism for weak
synchronization of write processes to a memory segment.
Typically, the memory segment belongs to one GASPI
process local to the node. With shared notifications a GASPI
memory segment can be shared between several GASPI
processes.

3 A Strategy for Better Interoperability
between GASPI and MPI via Shared
Window Communication

Traditionally the GASPI programming model targets multi-
threaded or task-based applications. In order to support
a migration of legacy applications (with a flat MPI
communication model) towards GASPI, we have extended
the concept of shared MPI windows Rivas-Gomez et al.
(2017) towards a notified communication model in which
the processes sharing a common window become able to
see all one-sided and notified communication targeted at this
window.

Instead of implicit (via derived data types) or explicit
packing/unpacking of communication data, application can
share information about node local data layout, structure,
and computational state with the help of shared notifications.
As all node-local processes can access this shared data, the
node local explicit ghost cell exchanges in applications can
be replaced with the corresponding state notifications, where
the required data can be directly read from the neighboring
processes based on previously exchanged information of data
layout and type. Shared notifications hence can mitigate
the effect of MPI derived data types for applications which
makes use of MPI and GASPI interoperability in a flat MPI
communication model.

We believe that the correspondingly required program-
ming interface can be generic and – for node local exchanges
– common for both MPI and GASPI. The interface will
require an allocation of a shared memory segment across
node-local processes. It will require a universally accept-
able format for sharing of process local data layouts and
corresponding data offsets. It will require the ability to
automatically detect whether or not a neighboring process is
node-local; the latter information can be used to signal node-
local readiness for the ghost-cell exchange or to perform
explicit packing and/or unpacking into/from linear commu-
nication buffers for remote nodes. The interface will also
require the ability to trigger node-local notifications in shared
memory. This will include required memory fences between
neighboring node local processes. Last not least – by using
shared notifications – the interface becomes able to aggregate
data for remote nodes and to perform one single write to the
other node (for all local processes on that node) and notify all
remote local processes in one step. As all remote processes
can detect and access this common buffer, each remote pro-
cess/rank can retrieve the required partial data for its ghost
cell exchange. Therefore, this generic interface will facilitate
the interoperability of MPI and GASPI significantly.

Below we discuss in details the main concepts of
this generic interface. In particular, we outline shared
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notifications in GASPI and GASPI shared windows, as well
as present three strategies for boundary exchanges.

3.1 Notified communication
Notified communication is the primary means of commu-
nication in GASPI. In GASPI, data may be read/written
to local (read) or remote (write) memory asynchronously,
accompanied by a corresponding notification. Data then can
be processed locally (read), remotely (write) whenever the
corresponding notification has been flagged to the local
(read) or remote (write) memory. In summary, GASPI noti-
fied communications target local and remote completion for
one-sided communication.

3.2 GASPI Shared Windows
A GASPI Shared Window extends the concept of System-V
shared memory (also used in MPI shared windows) towards
notified communication in shared memory. In the System-
V model, shared memory is allocated per process but is
readable and writable for all local processes participating
in the corresponding procedure call. The allocated memory
always is restricted to a common shared memory region, but
allows for a moderate amount of flexibility in configuration
in order to support, for example, NUMA architectures.

Figure 1. Shared notifications in GASPI.

In GASPI, Shared Windows – the System-V concept
of shared application memory – is complemented with a
shared GASPI notification space, see Figure 1. Every local
process/rank with access to the common shared memory then
becomes able to read/write the common notification space.
This implies that every local process can see all incoming
messages for all other local ranks with access to the shared
application window.

3.3 Boundary Exchanges in Shared Memory
Boundary exchanges (or Ghost Cell Exchanges or halo
exchanges) are presumably the most prevalent communi-
cation pattern in Computer Science, where neighboring
elements or particles are exchanged between adjacent pro-
cessing units. In order to keep communication as simple
as possible, most MPI-Only applications will use the same
communication pattern for all exchanges, irrespective of
whether or not the neighboring elements actually share the
same memory. For weak scaling, where communication
requires a small fraction of total runtime, this approach is
certainly viable. For strong scaling scenarios, however, an
explicit use of shared memory can offer substantial benefits.

The following three figures (Figures 2 to 4) demonstrate
a potential migration strategy. The first, Figure 2 depicts the

Figure 2. To and from the linear communication buffer - up to
three copies are required.

current state-of-the-art: A linear communication buffer here
is assembled (either explicitly in the application or MPI-
internal via MPI data structures), the buffer then is transfered
to the receiver with a subsequent unpack. This strategy is
outlined in Section 2 for general purpose.

Figure 3. Semaphores in shared memory - flagging inner ghost
cells as readable.

The second, Figure 3 demonstrates a possible optimiza-
tion: Rather than packing/unpacking and sending we here
merely flag the inner ghost cells as readable by means of
a semaphore. Neighboring processing elements here become
able to directly update their process/rank - local outer ghost
cells. We note that a substantial part of this optimization
step, in principle, might be carried out by MPI internally,
where MPI derived datatypes would be directly converted
from source MPI datatype to target MPI datatype. We sub-
sequently will refer to this strategy as ‘1-copy’.

The third, Figure 4 demonstrates a complete removal of
outer ghost cells. As all ranks can directly access the solver
data of their neighbors in a commonly shared window, the
solver can avoid the ghost cell exchange entirely. Instead of
converting inner ghost cells from neighboring ranks to local
outer ghost cells, the solver here directly accesses inner ghost
cells from neighboring ranks. We subsequently will refer to
this strategy as ‘0-copy’.

3.4 Related Work
The idea for a zero-copy framework for ghost-cell exchanges
has been discussed in Besnard et al. (2015). Similar to
our work the authors strip away the node-local copying
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Figure 4. Sempahores in shared memory - reassigning outer
ghost cell access

of ghost-cell data and instead directly access the inner
ghost cells data structures of node-local (and neighboring)
ranks. This implementation relies on a ‘threads as processes’
(MPC) MPI implementation, while we start from a more
general approach: we directly use MPI shared memory
across multiple processes and run the solver (wherever we
subsequently need to be exchange corresponding data) in
these shared windows. Our work also conceptually extends
the work in Besnard et al. (2015), as we implement a model
where communication (not just computation) is visible for
all processes in the shared window. The implementation for
the pipelined Allreduce, which is presented in Section 5.4,
would not be feasible with the above implementation, as
all processes require access to node local communication to
optimally sustain the pipeline.

4 Case Studies
In this section, we introduce three test cases for our
study. That comprises two large scale scientific applications,
namely iPIC3D and Luwdig, and the MiniGhost mini-
application.

4.1 iPIC3D: implicit Particle-in-Cell Code
iPIC3D is a Particle-in-Cell (PIC) code for the simulation
of space plasmas in space weather applications during
the interaction between the solar wind and the Earths
magnetic field. The magnetosphere is a large system with
many complex physical processes, requiring realistic domain
sizes and billions of computational particles. The numerical
discretization of Maxwell’s equations and particle equations
of motion is based on the implicit moment method that
allows simulations with large time steps and grid spacing
still retaining the numerical stability. Plasma particles from
the solar wind are mimicked by computational particles. At
each computational cycle, the velocity and the location of
each particle are updated, the current and charge densities
are interpolated to the mesh grid, and Maxwell’s equations
are solved. Figure 5 depicts these computational steps in
iPIC3D.

iPIC3D is parallelized using domain decomposition and
message-passing communications: an iPIC3D simulation is
being run on a number of processors and on a network of
cells, so each processor handles a number of cells. However,
at certain intervals, each processor must find out the values of

Figure 5. Structure of the iPIC3D code.

the cells adjacent to those in its own domain. The procedure
of finding these values out is called halo exchange. To
achieve the full 3D halo exchange, the standard approach
of shifting the relevant data in each co-ordinate direction
in turn is adopted. This involves extensive communication
between processes and requires appropriate synchronization
– a receive in the first co-ordinate direction must be complete
before a send in the second direction involving relevant
data can take place, and so on. Note that only outgoing
elements of the distribution need to be sent at each edge.
In the particle mover part, hundreds of particles per cell
are constantly moved, resulting in billions of particles in
large-scale simulations. All these particles are completely
independent from each other, which ensures very high
scalability. MPI communication at this stage is only required
to transfer some of the particles from one cell or a subdomain
to its neighbor.

The iPIC3D MPI communication is dominated by non-
blocking point-to-point communication, occurring from
communication of particles and ghost cells among neigh-
boring processes (halo exchange), and by global reductions
resulting from solving two linear systems every simulation
time step. In order to reduce the communication burden
in iPIC3D, we aim at replacing the MPI communication
with the GASPI asynchronous one-sided communication on
the communication critical parts of the code such as halo
exchange in the field solver and with the GASPI reduction
communication in the iPIC3D linear solver, which is also a
part of the field solver.

4.1.1 Implementation Highlights The main halo exchange
routine uses non-blocking MPI and MPI derived datatypes.
MPI derived datatypes allow us to specify non-contiguous
data in a convenient manner and yet treat it as if it was
contiguous. GASPI requires the creation and later use of
the so-called GASPI segments. In the case of iPIC3D,
there is one GASPI segment per plane and direction. As
there are three planes and two directions per plane, iPIC3D
will require six different GASPI segments. The size of the
segments is defined as twice the size of buffer to be sent as
we will use the same segment to send and receive data from
the neighbor subdomains. As iPIC3D uses MPI datatypes,
complex data layouts, it is necessary to unpack the MPI
datatypes and copy the data contiguously into a GASPI
segment. Once the data has been sent and notified, we need
to put the data back from the GASPI segment to the original
buffer to be able to continue with the execution of iPIC3D.

To implement the halo exchange with GASPI, firstly the
field values belonging to the boundary are being copied to
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the local GASPI segment. Secondly, segments of neighbors
are being read to get their ghost cells and copied to the local
segment. The local copy does not require a barrier: each
process writes to its neighbor process’s segment directly and
sends a notification to that process in order to notify that
data writing has accomplished. The remote process does not
know that another process writes something into its memory
and will not wait for when data writing ends, until it receives
a notification from its neighbor. The remote process checks
for locally posted notifications to get the information about
changes related to a segment. Once a notification arrives,
the process starts to work with data related to that particular
notification.

In addition, the MPI reduction operations were replaced
with the GASPI communication in the linear solvers Saad
(2003) (Conjugate Gradient, CG, and Generalized Minimal
Residual, GMRes) to calculate the inner products and the
norm of vectors located on different processes.

4.2 The Ludwig Application
Ludwig Desplat et al. (2001) is a versatile code for the
simulation of Lattice-Boltzmann models in 3D on cubic
lattices. Some of the problems that could be simulated
with Ludwig include detergency, mesophase formation
in amphiphiles, colloidal suspensions, and liquid crystal
flows. Broadly, the code is intended for complex fluid
problems at low Reynolds numbers, so there is no
consideration of turbulence, high Mach number flows,
high density ratio flows, and so on. Ludwig uses an
efficient domain decomposition algorithm, which employs
the Lattice-Boltzmann method to iterate the solution on
each subdomain. The domain decomposition is carried out
by splitting a three dimensional lattice into smaller lattices
on subdomains and exchanging information with adjacent
subdomains Gray et al. (2015). For each iteration, Ludwig
uses MPI for communications with adjacent subdomains
using halo exchange Davidson (2008).

Figure 6. Lattice subdomain where the internal section
represents the real lattice and the external region the halo sites.

In the original implementation of the Ludwig halo
exchange, the number of messages sent and received by
each MPI process is reduced as much as possible. Each
subdomain needs to exchange data with its 26 neighbors

in three directions to continue with the solution of the
problem. This means that synchronization between the
different planes is required. To coordinate the solution,
communication between adjacent subdomains is required
after each iteration. This is done by creating halos around the
dimensions of the subdomain, i.e. extending the dimension
of the subdomain by one lattice point in each direction as
depicted in Figure 6. After each time step, MPI processes
will have to communicate a 2D plane of m velocities to their
adjacent MPI processes. Since each plane shares some sites
with the other planes, the exchange of information in each
direction should be synchronized before continuing with the
execution.

GASPI promotes the use of one-sided communication,
where the initiator has all the relevant information for
performing the data movement. This idea decouples the
data movement from the synchronization between processes
and it is especially relevant in applications that rely on
continuous halo communications between neighbors. We
aim at reducing the synchronization between subdomains by
porting Ludwig’s main halo exchange routines form MPI to
GASPI.

4.2.1 Implementation Highlights The halo exchange rou-
tine responsible for exchanging data between neighbor sub-
domains uses non-blocking MPI and MPI derived datatypes.
MPI derived datatypes allow us to specify non-contiguous
data in a convenient manner and yet treat it as if it was
contiguous.

GASPI requires the creation and later on use of what is
known as GASPI segments. A GASPI segment is a window
of memory allocated to be used with the GASPI model. In
our case we have created one GASPI segment per plane and
direction. Therefore, since we have three planes and two
directions per plane, we will require six different GASPI
segments. This number of GASPI segments is sufficient for
each subdomain to communicate its faces with its immediate
neighbors in the 3D space. The size of the segments is
defined as twice the size of buffer to be sent since we will
use the same segment to send and receive data from neighbor
subdomains.

Listing 1: GASPI pointers to GASPI segments in the YZ
plane.
i n t YZ size = lb−>n d i s t ∗NVEL∗ny∗nz ;

/∗ Segment s i z e i s e x a c t l y t w i c e t h e
s i z e o f t h e b u f f e r . ∗ /

c o n s t g a s p i s i z e t s e g s i z e = 2 ∗
YZ size ∗ s i z e o f ( double ) ;

/∗ segment i d s ∗ /
c o n s t g a s p i s e g m e n t i d t s eg id YZ L =

0 ;
c o n s t g a s p i s e g m e n t i d t seg id YZ R =

1 ;
g a s p i p o i n t e r t gptr YZ L , gpt r YZ R ;

/∗ p o i n t e r t o t h e r i g h t ∗ /
GASPIERROR( g a s p i s e g m e n t p t r ( seg id YZ L

, &gpt r YZ L ) ) ;
double ∗ pt r YZ L = ( double ∗ ) gp t r YZ L ;
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/∗ p o i n t e r t o t h e l e f t ∗ /
GASPIERROR( g a s p i s e g m e n t p t r ( seg id YZ R

, &gptr YZ R ) ) ;
double ∗ ptr YZ R = ( double ∗ ) gpt r YZ R ;

For purposes of clarity, Listing 1 shows the GASPI
pointer creation only in the YZ plane. For instance, in
the YZ plane, each created segment is assigned with an
independent id number. Hence, the data is already contiguous
in memory and, therefore, a simple copy directly from
the buffer that contains the data to a GASPI segment is
straightforward. However, since Ludwig uses MPI datatypes,
more complicated layouts of the data exist for other planes
and it is necessary to unpack the MPI datatypes and copy
the data contiguously into a GASPI segment. Once the data
has been sent and notified we need to recover the data back
from the GASPI segment to the original buffer to be able to
continue with the normal execution of Ludwig.

4.3 Migration of MPI-Only Applications:
MiniGhost

By combining the concept of shared GASPI windows with
dependencies between local ranks, we can migrate flat MPI-
Only applications towards an asynchronous communication
model. The explicit local communication in shared memory
here is replaced with data dependencies on shared
memory semaphores and the read-access to local ranks.
Communication across shared windows is replaced with a
dataflow-oriented notified GASPI communication.

In order to demonstrate this approach we have ported
the MiniGhost Barrett et al. (2011) mini-application from
the MPI-Only model to the GASPI Shared Windows
concept. MiniGhost is a Finite Difference code which
implements a difference stencil across a homogeneous
three dimensional domain. The application extracts the
communication pattern of CTH (Shock Physics, Sandia
Labs McGlaun et al. (1990)), a multi-material, large
deformation, strong shock wave, solid mechanics code and
has been developed as a tool to explore boundary exchange
strategies in stencil applications. The MiniGhost proxy
supports several options for stencil computations and two
main strategies for boundary exchange: A bulk synchronous
parallel with message aggregation for multiple boundary
exchanges (BSPMA) and a single variable aggregated faces
(SVAF) exchange. We here focus on the SVAF model. The
MPI-Only SVAF model is implemented in the form of a
classical MPI ghost cell exchange, where the posting of
MPI Irecv is followed by packing the communication
data into a linear communication buffer with a subsequent
call to MPI Isend. In passing we note, that in our work
we have used a minor optimization relative to the original
MiniGhost version: Instead of packing all required data and
subsequently sending, we pack and send per communication
buffer, which maximizes the potential to overlap the packing
procedure with sending data. In order to test for incoming
messages, a MPI Waitany function is called, which
allows for the moderate overlap of communication and
computation: The overlap of packing and unpacking of
sent/incoming linear communication buffers into/from the
local data structures. Once the entire ghost cell exchange is

complete the actual stencil computations of MiniGhost are
being started.

4.3.1 MiniGhost Implementations In order to further
explore the possible boundary exchange strategies of
MiniGhost beyond SVAF, we are comparing seven different
versions: The original MPI-Only SVAF version, two versions
which make use of MPI shared windows, two different
version which make use of GASPI shared windows (where
all four versions are ‘1-copy’) and also two ‘0-copy’ versions
which avoid the shared memory communication entirely.

The shared MPI implementation (MPI SHARED 1-
COPY) directly implements ‘1-copy’ for MiniGhost. Within
the node data solver data is allocated as a shared
segment. From an implementation point of view we
require the replacement of Fortran ‘allocate’ and associated
data structures with a Fortran pointer variable, where
the (page-aligned) value is returned from the call to
MPI Win allocate shared. We also require node local
information about the respective pointer offsets for the
neighboring ranks in the commonly shared MPI window. We
require information about local and non-local ranks and a
mapping from global to local ranks. We also require a rank-
local semaphore in shared memory in order to be able to
satisfy the data dependencies between neighbors. To that
end, we are using an atomic counter (a gcc intrinsic with
an implied memory fence) such that a node-locally visible
increment of the semaphore will guarantee the validity of
accessed data. The data we here access are the inner ghost
cells of local neighbor ranks, which are required for the
boundary exchange. Additionally, we enforce a node-local
shared memory barrier at the end of each iteration, such that
we can make sure that all inner-ghost cell data has been read
by the neighboring ranks.

In order to test the hypothesis of insufficient progress in
MPI message delivery, we have replaced the non-blocking
MPI send call with a blocking MPI send version (MPI
SHARED 1-COPY BLOCKING), such that we pack and
directly wait for completed communication in order to
minimize potential latency overhead due to the insufficient
progress in the MPI stack.

The GASPI SHARED 1-COPY version inherits most
of the implementation from the MPI SHARED 1-
COPY version. We here have replaced 2-sided MPI
communication with the notified communication from
GASPI. Instead of MPI send we are using 1-sided
gaspi write notify and instead of MPI Waitany
we use gaspi notify waitsome. We are using page-
aligned memory for solver and communication data and we
are using the concept of GASPI shared windows, where
notifications are visible across all ranks. The reason for
page-alignment is performance – write access to memory
pages will look the entire page for other ranks. We
hence strictly keep all solver and communication data
(including notifications) local to the processes and page-
aligned. While in this model the processes may read from
neighboring ranks, writing should only be occur to process
local memory (as returned a pointer value in the call to
MPI Win allocate shared).

The GASPI SHARED 1-COPY NO BARRIER imple-
mentation removes the above shared memory a barrier and
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introduces a second semaphore. Shared memory synchro-
nization then no longer is required once per iteration, but is
replaced with mutual data dependencies for ‘read’ and ‘have
read’.

The MPI and GASPI 0-COPY implementations follow
(within shared memory) the ‘0-copy’ concept and directly
update their inner ghost cell without a corresponding ghost
cell exchange. The data dependencies however obviously
still need to be observed.

We note that the potential for overlapping communication
and computation in MiniGhost is very small and restricted
to the packing/unpacking process. There is substantial
room for improvements: With, for example, communication
progressing while the actual stencil calculation is being
performed, we likely would see even better strong scaling
properties than the results we show in section 5.3.

5 Performance Results
In this section, we present the performance results and
findings for the two large scale applications (iPIC3D and
Ludwig) that implement the linear communication buffer
strategy. Then, we analyze in details the MiniGhost mini-
application that implements three different strategies for
migration in boundary exchanges.

5.1 iPIC3D Results
We perform our tests on the Beskow supercomputer (Cray
XC40) equipped with two 16-core @ 2.3 GHz Intel Haswell-
EP processors. To illustrate the scalability of the original
version and the GASPI-based version of the iPIC3D code,
we use two standard iPIC3D simulation cases Birn and Hesse
(2001); Markidis et al. (2014):

• GEM3D: a 3D magnetotail reconnection simulation
with respect to the Geospace Environment Modeling
(GEM) Reconnection Challenge;

• Magnetosphere3D: a 3D Earth radiation belts simula-
tion.

In addition to these simulation cases, we use two different
input data sizes (regimes) with a fixed number of iterations
(20) in the field solver:

• field-solver dominated regime: with a relatively small
number of particles (27 per cell), so that the most
computationally expensive part of the iPIC3D code
results in the Maxwell field solver;

• particle-mover dominated regime: it is characterized
by a large number of particles (1,000 per cell), which,
therefore, stresses the particle mover.

Hence, there are four different test cases (two simulation
types with two regimes). Here, we present only two of them
as the other two show similar pattern.

Figure 7 and Figure 8 show the results of the weak
scaling tests for iPIC3D simulations. The three-dimensional
decomposition of MPI processes on X-, Y- and Z-axes was
used, resulting in different topologies of MPI processes.
For the particle-dominated GEM 3D simulation on 64 cores
(4x4x4 MPI processes), 27x106 particles and 30x30x30
cells were used, and the simulation size was increased
proportionally to the number of processes.

32	cores	 64	cores	 128	cores	 256	cores	
MPI+GASPI	 3229.71	 3247.15	 3286.62	 3321.57	
MPI	 3255.67	 3309.29	 3358.88	 3381.59	
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Figure 7. Weak scaling results for the GEM 3D simulation of
the particle-mover dominated regime of iPIC3D on Beskow.

32	cores	 64	cores	 128	cores	 256	cores	
MPI+GASPI	 3299.85	 3489.03	 3623.85	 4075.51	
MPI	 3338.57	 3508.7	 3695.67	 4102.58	
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Figure 8. Weak scaling results for the Magnetosphere 3D
simulation of the field-solver dominated regime of iPIC3D on
Beskow.

For both plots, we can observe that the new version, based
on GASPI, is slightly faster (by 1-2%) on different number
of cores.

The challenge of a successful porting of iPIC3D to
GASPI depends on the optimal utilization of one-sided
communication mechanism to achieve performance gain
and scalability on pre-Exascale supercomputers. GASPI
provides the one-sided communication that facilitates
asynchronous procedures between processes. However, this
requires the local processes to manage the communication
in an optimized way to maximum the overlapping of
communication and computation. The trade-off between
asynchronicity and data synchronization requires further
investigation.

5.2 Ludwig Results
A set of performance tests were carried out on ARCHER, a
Cray XC30 system equipped with two 12-core @ 2.7 GHz
Intel Ivy Bridge processors. All simulations were executed
five times on fully populated nodes, i.e. using 24 MPI/GASPI
processes per node.

The time taken to transfer a message in the Ludwig
application is defined as T = t0 +B ×m, where t0 is the
startup time (µs) defined by the latency of the network,
B is the bandwidth (MBytes/s), and m is the size of the
message (MBytes). Thus, the time to transfer a message
depends on the network latency and bandwidth. The latency
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is independent of the size of the message being sent, but
dependent of the MPI implementation and network use.
Figure 9 shows the measured bandwidth against the message
size using Cray MPI. The bandwidth is low at very small
message sizes because the time spent to send each message
is dominated by the latency. As soon as the message size
is increased over 0.2 MBytes, the bandwidth quickly rises
to the maximum allowed by the fabric interconnect. We
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Figure 9. Bandwidth and message size on ARCHER, using the
OSU benchmarks MVAPICH (2018).

have also measured the amount of data required to be sent
and received from each process at the end of each iteration
in 1923 lattice size, as represented in Figure 10. As it is
possible to see, strong scaling becomes a challenge as the
number of nodes increases due to the reduction in size of the
messages sent indicating how relevant latency is in this kind
of communications.
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Figure 10. Data transfer size by each process at the end of
1923 lattice size simulation.

Figure 11 shows the strong scaling results of running
Ludwig on up to 3,072 processes on ARCHER. The
total time that Ludwig spends on the main stepping loop
is represented in Figure 11a, showing small difference
in performance between the pure MPI version and the
MPI+GASPI version of Ludwig; the performance overhead
is negligible with less than 1,000 processes. When narrowing
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Figure 11. Strong scaling results of Ludwig for a 1923 lattice
size on ARCHER.

our focus to the halo exchange (see Figure 11b), which is
one of the key components in the main stepping loop, we can
see that this performance penalty is low for low processes
count, but it grows as the number of processes increases. We
believe the reason of this effect is because when the number
of processes is low the message size is larger and as it could
be seen in Figure 9, the measured bandwidth is maximum
with package sizes over 5.5 MBytes. Thus, there is a direct
connection between the overhead in the halo exchange and
the total loop. Nevertheless, given the performance benefits
of one-sided communication in GASPI†, we attribute this
performance penalty to tedious process of unpacking and
packing back and forth between the MPI datatypes and the
GASPI segments.

5.3 MiniGhost Results
The following Figure 12 gives an overview over the obtained
results for the MiniGhost proxy application. All tests were
performed on an Infiniband FDR10 interconnect with Intel
Sandy Bridge with 2x8 cores per node. Throughout we have

†http://www.gpi-site.com/gpi2/benchmarks/
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used an 8x8x8 processor grid (512 ranks), while varying
the number of processed elements per rank; the number
of elements per rank grows as N3, where N is an even
integer. We note that for this processor grid a flat MPI-
Only model will require six explicit boundary exchanges for
our chosen 3D stencil (exchange of east, west, north, south,
top, and bottom neighbors). A shared model (on average)
will require only three explicit exchanges, as all east-west
communication can be handled within a socket and one half
of the north-south communication can be handled between
the two sockets.

We show the number of processed elements per rank
(x-axis), divided by the corresponding total runtime.
Essentially, Figure 12 hence plots the performance per node
in an application specific metric. Figure 12 includes both
communication and computation time. We observe that the
total runtime behavior can be split into two different areas:
a part which is dominated by available communication and
computation bandwidth (the right side of the plot with the
number of elements per rank equal or greater than 195,112)
and a strong scaling regime which exhibits super-linear
scaling due to cache effects both in communication and
computation (the left side of the plot with the number of
elements per rank smaller than 195,112).

For the bandwidth dominated part, we see a near constant
runtime per element. In this part, we hence would expect a
linear scaling behavior of the application. As the ‘0-copy’
implementations also require less node internal computation
effort (as we can avoid all intermediate copies) we can
save a moderate amount of CPU time relative to the ‘1-
copy’ or flat MPI implementation of the order of three
percents. Apart from this side effect, communication only
plays a minor part in this regime: The computational effort
here grows in third order with the number of elements
per dimension (N3) whereas the communication overhead
only grows quadratically with a factor of 6×N2. For large
numbers of elements, communication effectively drops out
of our performance metric.

In the strong scaling regime, the left side of Figure 12,
we see a more varied result. For strong scaling, the flat
MPI model is limited by the additional intra-segment
communication overhead, as we need to deliver twice
the amount of messages per rank for the flat MPI-Only
model. The shared memory MPI implementations (MPI
SHARED 1-COPY) performs slightly better, however the
relative performance gain is rather small: The message size
in this strong scaling regime remains moderate and most
communication data here resides in one of the caches.
Performance in this regime appears as dominated by latency
rather than bandwidth.

Given the fact that there is very few code changes relative
to MPI SHARED 1-COPY, the GASPI SHARED 1-COPY
version performs rather well. For small changes with the
number of elements per rank smaller than 10,000 we see a
substantial performance benefit in using the GASPI notified
communication model. An extrapolation of the bandwidth
dominated performance curve into this strong scaling regime
exhibits that – in terms of absolute scaling numbers – this
version would support a near linear speedup of around
2,744 elements per rank. Beyond this point to the left

(with shrinking numbers of elements per rank) however the
performance drops rapidly.

In order to get a more detailed insight into the
performance figures we show both computation and
communication contribution in separate plots. Figure 13
shows the computational performance in the strong
scaling regime as the number of processed elements per
computation wall-clock. Interestingly, here the MPI-Only
implementation outperforms all other implementations. A
possible explanation appears to be that memory management
per process is superior to all other implementations which
used shared windows: An MPI-Only memory management
for solver data can be handled in a more flexible (and entirely
process-local) manner, whereas memory for solver-data in
shared memory is restricted to a page-aligned memory
pointer as returned by MPI Win allocate shared. We
are currently investigating this issue in more details.

Figure 14 plots the ‘achievable bandwidth’, which in
this case is defined as the communication volume 6×
N2 divided by communication time. Strictly speaking the
value of 6×N2 only is applicable to flat MPI-Only. A
‘0-copy’ implementation for example only moves half of
the data (in our example of six neighbors in an 8× 8× 8
processor cube). For comparison, however, we have fixed the
communication volumes to this (equal) theoretical value.

While flat MPI-Only easily wins in scalar performance,
the communication performance of flat MPI-Only is only
moderate – and actually for the very same reasons. The loose
coupling between processes and non-existent use of shared
memory now becomes a bottleneck. Very interesting here is
the performance of MPI SHARED. As the ‘0-copy’ needs
to deliver half of the communication as the flat MPI-Only
version, the ‘0-copy’ implementation of MPI SHARED in
consequence delivers almost twice the performance. The ‘1-
copy’ implementation of MPI SHARED however delivers
near identical performance to flat MPI-Only – apparently the
single copy overhead equals the node-internal MPI overhead
for the considered messages sizes.

While the GASPI SHARED implementations are inferior
in scalar computation (as they use the identical shared
memory for solver data as MPI SHARED) they are
superior in communication. Especially, remarkable is the
GASPI SHARED 1-COPY implementation which – up
to around 5,000 elements per rank – apparently manages
to hide the entire intra-window communication (including
pack/unpack) within the inter-node communication. For a
value of around 8,664 elements per rank we then reach the
peak bandwidth of the network adapter. All implementations
here are equal, except for the ‘0-copy’ implementations,
which almost by definition are a factor of two faster than
the rest. Beyond this point, the MPI implementations need
to split available memory and network bandwidth between
the implementation and MPI itself. GASPI here with its
implementation of 1-sided communication on top of RDMA
performs slightly better.

In these experiments, we have used a rather small stencil
with six boundary exchanges. We also have used a system
with a very moderate number of cores. Still, we were able
to save a factor of two in terms of the requirements for
network bandwidth and communication for the ’0-copy’
implementation. In times of ever increasing core counts per
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Figure 12. Performance MiniGhost - Full application.
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Figure 13. Performance MiniGhost - Computation - Strong
scaling domain.
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Figure 14. Performance MiniGhost - Communication - Strong
scaling domain.

node, it is quite interesting to look at larger stencils and larger
core counts.

Let us consider an example: We assume we perform
a full 3 D stencil with 26 neighbors and we assume we
have a processor mesh with 512 cores (8× 8× 8) with
access to a common shared memory. The surface of this
processor mesh then would amount to 296 cores. The ratio of
outgoing communication (inter-node) to internal (intra-node)
communication would then drop from 1-1 to less than 1/4th.

A migration strategy from MPI-Only to a model, which
makes explicit use of shared memory (ideally as a ‘0-copy’
implementation), hence would deliver increasing returns for
an increased core count in future exascale systems – even
more so if we require a large number of communication
partners per rank.

5.4 Allreduce Communication in GASPI
Shared Windows

In order to validate this new programming paradigm of
shared notifications in GASPI, we also have implemented
an equivalent to the MPI Allreduce for large messages. The
implementation makes substantial use of pipelined rings. The
algorithm consists of two stages. In the first stage, each of
the N nodes performs a reduction of 1/N of the dataset (via
the pipelined ring, see Figure 15). At the end of this stage,
each node then contains a complete result of 1/N of the
data. In the second stage, the partial result from each node
is broadcasted to the other nodes (again in the pipelined ring,
see Figure 16) such that after the broadcast all nodes have
access to the complete reduced dataset.

Figure 15. Allreduce - pipelined ring: reduce stage for chunk id
3 for 15 nodes. After 14 steps all nodes have a complete partial
results.
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Figure 16. Allreduce - pipelined ring: broadcast stage. Again
we use a pipelined ring to broadcast the partial results to the
other nodes.

While the above algorithm allows for pipelining the set of
N chunks across all nodes, we can still improve this result: In
order to split the reduction and communication loads across
all processes (and not just all nodes), each of the N parts
is again subdivided into at least M parts (where M is the
number of processes per node) such that there are at least
N ×M messages in the ring at any point in time. The GASPI
shared notification model allows any process to detect any of
theseN ×M incoming asynchronous and one-sided notified
messages, to reduce and forward them along the pipelined
ring. In doing so, the GASPI implementation manages to use
the entire memory and network bandwidth of the system. For
the reduction, we have used here a global sum. Thus, we
can hide the complete reduction effort in the communication
costs. As long as the reduction effort is less time-consuming
than the corresponding communication, this will also hold
true for more complex reductions.

Figure 17 shows a comparison of Allreduce implemented
on top of GASPI shared windows against various Allreduce
MPI low-level implementations in Intel MPI 5.1.2. Those
are 1. Recursive doubling; 2. Rabenseifner’s; 3. Reduce +
Bcast; 4. Topology aware Reduce + Bcast; 5. Binomial
gather + scatter; 6. Topology aware binominal gather +
scatter; 7. Shumilin’s ring; 8. Ring; 9. Knomial; 10. Topology
aware SHM based flat; 11. Topology aware SHM based
Knomial. Some of these implementations feature an optimal
bandwidth term (Ring based or Rabenseifner’s), however
they are not able to leverage pipelining as efficiently as the
high-level GASPI Implementation. The problem here is not
restricted to MPI: We note that the underlying frameworks
(such as e.g. UCX Shamis et al. (2015)) for MPI point-to-
point communication are not able to make efficient use of
massively parallel notified communication either.

6 Conclusions
In this work, we studied the interoperability of GASPI
and MPI on large-scale applications, namely iPIC3D and
Ludwig, implementing rather a classic way of combining
both APIs. The original versions of both iPIC3D and Ludwig
– like many other MPI applications – use MPI datatypes.
That soon became a problem while interoperating with
GASPI since GASPI works on segments of data. This means

that we had to unpack the data from the MPI datatypes, copy
them to a GASPI segment, send them, and, then, unpack
the data. As this overhead occurs in the critical path of the
communication, packing and unpacking has a major impact
for the applications’ performance.

While in general packing cannot be avoided for inter-
node communication, we find that the best solution for intra-
node communication is to entirely replace this node-internal
communication with a set of mutual data dependencies in
shared memory. We directly read from the data structures of
the local (intra-node) neighbors. This strategy is applicable
for both programming models - MPI and GASPI. With an
increasing number of cores per node (and depending on
the number of required boundary (ghost-cell) exchanges
per rank), this strategy will yield increasing returns for the
implementation invest.

In order to complement this intra-node communication
strategy with an inter-node dataflow model, GASPI has
introduced a novel allocation policy for segments where
data and GASPI notifications can be shared across multiple
processes on a single node. Any incoming one-sided GASPI
notification will be hence be visible node-locally across all
node-local ranks. Using this policy as well as relying upon
the GASPI shared windows and GASPI shared notifications,
we developed a generic interface which can make use of
these shared memory segments for the specific purpose of
ghost cell exchanges. The interface does not only facilitate
the interoperability of MPI plus GASPI significantly, but
it is also substantially enrich the programming paradigm
of MPI shared windows. We conducted a set of successful
experiments using the MiniGhost Proxy Application and
obtained very convincing performance results.

With the clear gain of the new generic interface on
an example of the MiniGhost mini-application, we are in
progress of applying the same strategy in the halo exchange
part of the iPIC3D application. On the way to adopt this
generic interface in iPIC3D, we also aim to derive its proxy
and a corresponding implementation which makes use of
GASPI shared windows and shared notifications. In doing so,
we will be able to adopt the developed improved boundary
exchange pattern not only for particle-in-cell simulations but
also for fields such as complex fluids.
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