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Abstract 
The cytoskeleton builds and supports the complex architecture of neurons. It orchestrates the specification, growth, and com-
partmentation of the axon: axon initial segment, axonal shaft, presynapses. The cytoskeleton must then maintain this intricate 
architecture for the whole life of its host, but also drive its adaptation to new network demands and changing physiological 
conditions. Microtubules are readily visible inside axon shafts by electron microscopy, whereas axonal actin study has long 
been focused on dynamic structures of the axon such as growth cones. Super-resolution microscopy and live-cell imaging have 
recently revealed new actin-based structures in mature axons: rings, hotspots and trails. This has caused renewed interest for 
axonal actin, with efforts underway to understand the precise organization and cellular functions of these assemblies. Actin is 
also present in presynapses, where its arrangement is still poorly defined and its functions vigorously debated. Here we review 
the organization of axonal actin, focusing on recent advances and current questions in this rejuvenated field. 
 
Introduction 
The cytoskeleton allows cells to establish, maintain and trans-
form their shape. In neurons, this include cell differentiation, 
migration, polarization and development of their unique ar-
borization. Axons are very thin (~1 µm), long (up to 1m) and 
highly branched (>95% of the plasma membrane of a typical 
neuron) extensions, presenting unique challenges to the cyto-
skeletal organization (Kevenaar and Hoogenraad, 2015; 
Leterrier et al., 2017). The axonal architecture must be relia-
bly maintained for decades, but also adapt for optimal func-
tioning in a range of physiological conditions (Jamann et al., 
2018). On the one hand, the organization of axonal microtu-
bules and their associated proteins have been extensively 
studied, although numerous questions remain (Kapitein and 
Hoogenraad, 2015; Prokop, 2013). On the other hand, actin is 
well known to support morphogenesis via the dynamic for-
mation of structures such as lamellipodia, filopodia and stress 
fibers (Blanchoin et al., 2014). Axonal actin has indeed been 
recognized as a component of dynamic structures in develop-
ing axons such as the growth cone and nascent branches, with 
a less-studied role of structural support in mature axons 
(Gallo, 2013; Letourneau, 2009). However, this vision has 
been profoundly transformed by the discovery of new actin 
structures within axons such as rings, hotspots and trails 
(Leterrier et al., 2017; Roy, 2016). Most of our knowledge 
about axonal actin comes from dissociated neuronal cultures; 
these reductionist models have been invaluable for isolating 
the core cell-intrinsic processes described here, and a number 
of them – such as actin rings, hotpsots and trails – have been 
since described in more integrated models. This review aims 
at summarizing the current knowledge about axonal actin, 
with a particular focus on the compartments of mature axons: 
the axon initial segment, axon shaft and presynaptic boutons. 

We will concentrate on structural aspects, detailing the differ-
ent actin assemblies and their established or putative role, 
leaving mostly aside the myriad of molecular pathways and 
binding partners that affect actin assembly in various axonal 
compartments (for reviews see Coles and Bradke, 2015; 
Menon and Gupton, 2016). 

Dynamic actin during axon development 
The striking arrangement of enriched actin in structures such 
as the growth cone has captured the interest of many neuro-
scientists, from early electron and fluorescent microscopy 
work (Kuczmarski and Rosenbaum, 1979; Letourneau, 1983; 
Yamada et al., 1971) to the first live-cell imaging studies (Lin 
and Forscher, 1995; O'Connor and Bentley, 1993). The intrin-
sic dynamics of actin polymers, with biased incorporation of 
actin monomers at the barbed end and disassembly at the 
pointed end, naturally suggested a role for force generation, 
morphogenesis and cellular movement (Kirschner, 1980; 
Wessells et al., 1971). Actin is indeed crucial during axonal 
development: sprouting of the first neurites and subsequent 
axonal specification, elongation and branching are driven by 
dynamic actin-driven processes (Letourneau, 2009). We will 
only briefly describe these processes, and invite the interested 
reader to consult more comprehensive reviews on this subject 
(Fig. 1, Caceres et al., 2012; Omotade et al., 2017; Schelski 
and Bradke, 2017; Witte and Bradke, 2008).  
Role of actin instability and dynamics 
Shortly after plating, rounded neurons already exhibit an in-
homogeneous actin distribution, with actin enrichment and la-
mellipodium formation toward the site of the first neurite 
sprouting (Gärtner et al., 2014; S.-X. Zhang et al., 2016). Im-
portantly, dynamic actin assemblies are required for the initial 
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stages of neurite growth, as stabilization of actin with jas-
pakinolide blocks the emergence of neurites, whereas desta-
bilization with latrunculin or cytochalasin accelerates it 
(Flynn et al., 2012; S.-X. Zhang et al., 2016; Zmuda and Ri-
vas, 2000). Ena/VASP driven filopodium formation and sev-
ering by ADF/cofilin are required for remodeling actin during 
neurite sprouting (Dent et al., 2007; Flynn et al., 2012). The 
ensuing neurite extension also requires permissive actin insta-
bility (Flynn et al., 2012; Lu et al., 2013; Ruthel and Hollen-
beck, 2000), although actin disassembly has also been re-
ported to block neurite growth (Chia et al., 2016; Yamada et 
al., 1970). Axon specification occurs when one neurite starts 
to grow more rapidly and becomes the unique axon (Dotti et 
al., 1988), with a length-dependent reinforcement of axonal 
identity (Lewis et al., 2013; Schelski and Bradke, 2017; 
Yamamoto et al., 2012). This selective extension depends on 
the localized destabilization of actin and concurrent stabiliza-
tion of microtubules within the nascent axon (Bradke and 

Dotti, 1999; Witte et al., 2008; Zhao et al., 2017). Among the 
intricate pathways that orchestrates cytoskeletal remodeling 
during axon specification (Namba et al., 2015; Schelski and 
Bradke, 2017), actin destabilization depends on a 
cdc42/Rac/cofilin sequence (Garvalov et al., 2007; Nishimura 
et al., 2005). 
Actin in the growth cone  
The growth cone is a specialized structure at the extremity of 
neurites and axons that drives their growth and navigation 
during development (Fig. 1A, Lowery and Van Vactor, 2009). 
An extensive literature is devoted to the organization and role 
of actin in the growth cone, which will only be briefly sum-
marized here (Dent et al., 2011; Omotade et al., 2017). Actin 
shapes the tip of the growth cone, with a peripheral lamellipo-
dium from which dynamic filopodia emerge (Fig. 1D, Bray 
and Chapman, 1985; Korobova and Svitkina, 2008). A rear-
ward flow is established by the assembly of actin filaments at 
the extremity of the lamellipodium and filopodia coupled with 

their disassembly in the transi-
tion zone inside the growth 
cone (Schaefer et al., 2002; 
Suter and Forscher, 2000). 
Coupling of this rearward 
treadmilling to the substrate 
drives the forward advance of 
the growth cone (Forscher and 
Smith, 1988). In the central re-
gion, bundling by myosin-II 
creates transverse stress fibers 
that complement the rearward 
flow in resisting microtubule 
entry into the growth cone pe-
riphery (Medeiros et al., 
2006). Local destabilization 
within the fibers guides micro-
tubules along filopodia at the 
periphery, resulting in directed 
growth (Burnette et al., 2008; 
Schaefer et al., 2008). 
Actin waves along developing 
axons 
In neurons developing in cul-
ture, actin-based waves similar 
to growth cones traveling at ~3 
µm/min along the neurites and 
nascent axon have been de-
scribed (Fig. 1A & 1B, Ruthel 
and Banker, 1998). They are 
specific to immature, develop-
ing neurons and disappear after 
a few days in culture (Ruthel 
and Banker, 1999). They have 
been observed in organotypic 
slices (Flynn 2009), and also 
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Figure 1: Actin structures in the developing axon 
A. The axon of a developing neuron contains dynamic processes enriched in actin structures (purple filaments). 
Actin waves (left panel) travel along the axon (grey arrow) and contain actin filopodia as well as a denser region 
crosslinked by myosin-II (yellow). Nascent collateral branches (middle panel) emerge from an actin patch that 
develop into a filopodium and is later invaded by microtubules as it grows into a branch (grey arrow). Growth 
cones at the tips of the axon are motile processes (grey arrow) containing a peripheral lamellipodium from which 
filopodia emerge, and a more central part where myosins (yellow) crosslink and bundle actin into arcs. B. STim-
ulated Emission Depletion (STED) image of an actin wave along a developing axon labeled for actin (green), 
myosin-II (red) and microtubules (ßIII-tubulin, blue). Adapted from (Mortal et al., 2017). Scale bars, 5 µm. C. Live-
cell imaging sequence (time in hours) showing a collateral branch emerging from an axon with the initial concen-
tration of actin (red) and subsequent entry of microtubules (green). Adapted from (Dent and Kalil, 2001). Scale 
bar, 5 µm. D. Structured Illumination Microscopy (SIM) image of a growth cone labeled for actin, color coded for 
depth (blue to red, 0 to 1500 nm). Adapted from (Nozumi and Igarashi, 2017). Scale bar, 5 µm. 
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appear during axonal regeneration (Difato et al., 2011). 
Waves progress by filament treadmilling and Shootin-1 me-
diated coupling to substrate-bound L1-CAM (Katsuno and 
Sakumura, 2015). Waves are driven by actin dynamics, but 
also depend on microtubule via doublecortin coupling (Ruthel 
and Banker, 1998; Tint et al., 2009). Actin waves have been 
proposed to promote axonal growth and branching (Flynn et 
al., 2009; Ruthel and Banker, 1999), but see (Mortal et al., 
2017), by promoting neurite widening and microtubule-based 
transport (Winans et al., 2016). Interestingly, more waves 
travel along the neurite that will become the axon in immature 
multipolar neurons (Flynn et al., 2009). They could also rep-
resent a way to transport actin (Flynn et al., 2009; Tomba et 
al., 2017), although their low frequency (one or two per hour) 
and developmental downregulation argue against actin waves 
as the main vehicle for actin transport (Leterrier et al., 2017; 
see below). 
Actin dynamics for axon branching 
Actin is also implicated in branching during axonal growth 
(Armijo-Weingart and Gallo, 2017). Several modes of 
branching exist, the most commonly studied being collateral 
branching from the axon shaft (Gallo, 2011; Kalil and Dent, 
2014), which is also characterized in vivo (Andersen et al., 
2011; Hand et al., 2015). Actin remodeling occurs during the 
first steps of branching, with the formation of ~1-2 µm actin 
patches along the axon shaft (Fig. 1A, Ketschek and Gallo, 
2010; Loudon et al., 2006; Spillane et al., 2011). Around 20% 
of these patches give rise to a filopodium resulting from 
Arp2/3-mediated nucleation followed by bundling (Korobova 
and Svitkina, 2008; Spillane et al., 2011). Successful conver-
sion of an actin-based filopodium into an axon branch re-
quires invasion by microtubules unbundled from the axon 
shaft (Dent et al., 1999; Gallo and Letourneau, 1999). Unbun-
dling and microtubule entry into a nascent branch require the 
downregulation of actomyosin contractility (Fig. 1C, 
Ketschek et al., 2015). Moreover, crosstalk between actin and 
microtubules in this crucial step involves additional partners 
such septin (Hu et al., 2012) and drebrin (Ketschek et al., 
2016). 

Actin assemblies in the mature axon 
By contrast with the dynamic assemblies in developing neu-
rons, actin labeling along the axon shaft itself was initially 
considered as weak and unremarkable (Letourneau, 2009). 
Fluorescent labeling showed a uniform distribution of actin 
with occasional clusters (Kuczmarski and Rosenbaum, 1979; 
Letourneau, 1983; Spooner and Holladay, 1981), and electron 
microscopy could resolve a homogeneous submembrane pop-
ulation (Hirokawa, 1982; Tsukita et al., 1986) as well as more 
intra-axonal short filaments (Bearer and Reese, 1999; Fath 
and Lasek, 1988). In recent years however, super-resolution 
microscopy and live-cell imaging have profoundly trans-
formed this view, with the discovery of striking structures 
along the axon shaft such as the exquisitely organized actin 

rings or the dynamic hotspots and trails (Fig. 2, Leterrier et 
al., 2017). 
Actin rings 
In 2013, Xu et al. used Stochastic Optical Reconstruction Mi-
croscopy (STORM), a super-resolution microscopy technique 
that resolves details down to ~20 nm (instead of ~200 nm for 
classical epifluorescence, Maglione and Sigrist, 2013) to vis-
ualize phalloidin-labeled actin organization in neurons. 
STORM revealed the presence of submembrane actin rings, 
oriented perpendicularly to the axonal axis and regularly 
spaced every ~190 nm (Fig. 2A, Xu et al., 2013). This spacing 
value corresponds to the length of individual, extended spec-
trin tetramers (Bennett et al., 1982): spectrin appear as peri-
odic stripes along the axon when labeling the axonal ß2-spec-
trin and α2-spectrin, or the AIS-specific ß4-spectrin (Fig. 2B 
& 2C, Huang et al., 2017a; 2017b; Leterrier et al., 2015; Xu 
et al., 2013). Actin and spectrin thus form a membrane-asso-
ciated periodic scaffold (MPS) with actin rings connected by 
head-to-head tetramers of spectrin that bind actin on each side 
via the aminoterminus of the ß-spectrin subunits (Rasband, 
2013; Xu et al., 2013). This periodic scaffold has been ob-
served in living neurons (D'Este et al., 2015; Zhong et al., 
2014) and detected in various neuronal types and organisms, 
including worm, fly, rodent and human (Barabas et al., 2017; 
D'Este et al., 2016; He et al., 2016). Interestingly, a mono-
dimensional periodic scaffold is also detected along a minor-
ity of dendritic segments, along dendritic spine necks (Bär et 
al., 2016; D'Este et al., 2015; He et al., 2016), and within fine 
processes of oligodendrocytes (D'Este et al., 2016). In larger 
dendrites and in the cell body, a hexagonal organization of 
actin and spectrin is detected (Han et al., 2017), similar to the 
one found under the erythrocyte plasma membrane (Lux, 
2016; Pan et al., 2018). This suggests that the membrane ge-
ometry affects the actin/spectrin complex arrangement, with 
a 1D periodic scaffold in slender cylinders, and a 2D hexago-
nal pattern along flat membranes.  
Actin rings appear first at the proximal axon after two days in 
culture and are later found along the more distal axon (D'Este 
et al., 2015; Zhong et al., 2014). Interestingly, appearance of 
actin rings overlaps with the extinction of actin waves. This 
could mean that actin monomers that make the rings are 
brought by actin waves, or at least shows that actin can shift 
from dynamic to stable structures during axon maturation. 
However, the molecular mechanism driving the periodic ac-
tin/spectrin scaffold formation is still largely unknown (Leite 
and Sousa, 2016). Once formed, the scaffold is stable and im-
mobile over ~30 minutes, as shown by live-cell PhotoActiva-
tion Localization Microscopy (PALM) of photoactivable ß2-
spectrin (Zhong et al., 2014). Actin filaments within rings are 
associated with the capping protein adducin, further suggest-
ing that they are short and stabilized (Xu et al., 2013). 
The stability of the periodic actin/spectrin scaffold indicates 
that it has a structural role: the chain of flexible spectrins and 
rigid actin rings – similar to a vacuum cleaner hose – could 
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provide flexibility and resistance to axons, notably in the pe-
ripheral nervous system where they are subject to mechanical 
stress (Xu et al., 2013). Consistent with this mechanoprotec-
tive role of the actin/spectrin scaffold, axons of C. Elegans 
worms lacking ß-spectrin progressively break when the ani-
mal is moving (Hammarlund et al., 2007). FRET sensor 
probes inserted in ß-spectrin show that indeed, axons are un-
der constitutive tension in vivo (Krieg et al., 2014), a finding 
confirmed by modeling of the axon mechanical properties 

(Lai and Cao, 2014; Y. Zhang 
et al., 2017). Complementing 
the longitudinal contractility 
provided by spectrins, actin 
rings are likely to exert a radial 
myosin-based contractility: ad-
ducin depletion does not 
change the spacing of the rings 
but leads to larger axon diame-
ters (Leite et al., 2016), as does 
myosin inhibition (Fan et al., 
2017). Interestingly, the phos-
phorylated form of myosin 
light chain (pMLC, the activa-
tor of contractile myosin-II) 
was found to associate along 
actin rings at the axon initial 
segment (Berger et al., 2018). 
An interplay between the peri-
odic actin/spectrin scaffold and 
intra-axonal microtubule bun-
dles is also likely, as microtu-
bule perturbation partially im-
pairs the periodic scaffold 
(Zhong et al., 2014), and lack 
of actin rings can exacerbate 
microtubule defects along the 
axon (Qu et al., 2016). This in-
terplay exists at the mechanical 
level, with microtubule bun-
dles providing a resistive force 
against radial actomyosin con-
traction (Fan et al., 2017). 
Hotspots and trails 
In addition to submembrane 
actin assemblies, a few elec-
tron microscopy studies had re-
ported the presence of deeper 
intra-axonal actin filaments in-
terspersed among microtubules 
(Bearer and Reese, 1999; Fath 
and Lasek, 1988; Nagele et al., 
1988). Using a GFP-tagged 
calponin-homology domain of 
utrophin – a non-perturbing, 
high fidelity probe for filamen-

tous actin (Burkel et al., 2007; Melak et al., 2017; Patel et al., 
2017) – Ganguly et al. observed the dynamics of actin along 
axons (Ganguly et al., 2015). Beyond the random bidirec-
tional movement previously described (Chetta et al., 2015), 
they identified two new actin structures: static clusters of actin 
every 3-4 µm along axon shafts that appear and disappear 
within minutes called actin hotspots, and filaments up to 10 
µm in length that grow in both directions at ~1 µm/s, called 
actin trails (Fig. 2D). STORM corroborates the presence of 

Figure 2: Actin structures in the mature axon 
A. The mature axon contains specific actin structures (purple filaments). In the AIS (blue, left panel), submem-
brane actin rings are spaced every 190 nm by spectrin tetramers composed of α2- and ß4-spectrin (maroon). 
Actin ring filaments are capped by adducin (red) and associated with phospho-myosin light chain (pMLC) and 
myosin (yellow). Actin patches are also present inside the AIS. In the more distal axon (middle left panel), the 
periodic submembrane actin/spectrin scaffold is also present, based on α2/ß2-spectrin tetramers (green). The 
axon shaft also contains actin hotspots (middle right panel), clusters of actin at the surface of which dynamic trails 
polymerize (grey arrows) by a formin-dependent mechanism (yellow). In the presynapses contacting target neu-
rons (right panel), actin is present around the reserve pool of synaptic vesicles (light blue) that are linked by 
synapsin (yellow). Actin also contacts and organizes the readily-releasable pool of synaptic vesicles (RRP, dark 
blue) at the active zone (AZ), and at endocytosis sites at the periphery of the active zone (cyan). B. STORM 
image of an AIS labeled for actin (green) and ß4-spectrin (magenta). Adapted from (Leterrier et al., 2015). Scale 
bar, 1µm. C. STORM image of a distal axon labeled for actin (green) and the carboxyterminus of ß2-spectrin 
(magenta). Adapted from (Xu et al., 2013). Scale bar, 1 µm. D. Top: live-cell imaging sequence (1 second between 
each frame) of a neuron expressing the UtrCH-GFP, a probe for filamentous actin. A hotspot (purple arrowhead) 
generates a trail (magenta arrowhead). Scale bar: 10 µm. Bottom: Kymograph of the axon portion containing the 
segment shown as a sequence on top. The hotspot and trail seen on the sequence are labeled on the kymograph 
(purple and magenta arrowheads, respectively). Scale bars, 10 µm (horizontal distance, proximal to distal axon 
is left to right) and 20s (vertical time, descending). Adapted from (Ganguly et al., 2015). E. STED image of a 
presynapse labeled for actin (yellow on overlay), ß2-spectrin (magenta on overlay) and bassoon (cyan on overlay, 
dashed region on single channel images). Adapted from (Sidenstein et al., 2016). Scale bar, 0.5 µm. 
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actin clusters and longitudinal filaments along axons (Gan-
guly et al., 2015). In addition to this initial definition in cul-
tured neurons, hotspots and trails were recently observed in 
vivo in C. Elegans axons (Sood et al., 2017). Hotspots are 
likely to be generated by actin polymerization at the surface 
of static endosomes, as they colocalize with endosomal mark-
ers. Trails often appear to start from hotspots, and their exten-
sion is formin-dependent (Ganguly et al., 2015). 
What are the functions of hotspots and trails? Fast transport 
of vesicles and organelles along the axon occurs along micro-
tubules, and the presence of hotspots and trails could locally 
affect this transport. Indeed, actin rich regions can cause local 
traffic jams of axonal cargoes (Sood et al., 2017). Trails nu-
cleation likely occurs at the endosomal surface, pushing actin 
filaments away from the hotspot, and this can result in short-
range transport of actin itself. Depletion of trails using formin 
inhibitors results in altered presynaptic function, suggesting 
that trails could shuttle actin between presynapses (Ganguly 
et al., 2015). Moreover, the constant growth and of collapse 
of trails and their bias for the anterograde direction (55% 
against 45% retrograde) results in the slow transport of actin 
along the axon (Chakrabarty et al., 2017). Indeed, classic ra-
diolabeling studies have demonstrated that actin is transported 
with the SCb component of slow transport (1-4 mm/day, 
Black and Lasek, 1979; Mori and Kurokawa, 1981; Willard et 
al., 1979), and modeling shows that biased trails-mediated 
transport could result in similar overall speeds (Chakrabarty 
et al., 2017). 
A particular case: actin at the axon initial segment 
The AIS, located along the first 20 to 60 µm of the axon, con-
tains unique actin-based structures (Leterrier, 2018; C. Zhang 
and Rasband, 2016). The periodic actin/spectrin submem-
brane scaffold found along axons is present at the AIS, with 
spectrin tetramers formed by α2- and ß4-spectrin subunits 
(Fig. 2B, Huang et al., 2017a). In the middle of the spectrin 
tetramer between actin rings, ß4-spectrin binds to ankyrin G, 
which anchors a high density of ion channels and cell-adhe-
sion molecules (Leterrier, 2016; Rasband, 2010). This gener-
ates a diffusion barrier at the AIS: diffusion of membrane pro-
teins and lipids between the cell body and the distal axon is 
restricted by the concentration of membrane proteins coupled 
to the periodic actin/spectrin scaffold (Albrecht et al., 2016; 
Nakada et al., 2003; Winckler et al., 1999). The AIS also con-
tains actin patches that are readily seen by diffraction-limited 
imaging of actin probes and electron microscopy (Jones et al., 
2014; K. Watanabe et al., 2012). On super-resolution micros-
copy images, clusters close to the plasma membrane have 
been proposed to correspond to postsynaptic accumulation, as 
the AIS is innervated by GABAergic neurons (D'Este et al., 
2015). Deeper actin patches have a role in regulating vesicular 
trafficking to and from the axon (Al-Bassam et al., 2012). 
These Arp2/3-positive actin clusters are able to immobilize 
vesicular cargoes in a myosin-dependent manner (Balasanyan 
et al., 2017; Janssen et al., 2017; K. Watanabe et al., 2012). 
This is likely an intermediate step in a selective retrieval 

mechanism at the AIS allowing to reroute mistargeted soma-
todendritic cargoes before they reach the distal axon 
(Leterrier, 2018; Nirschl et al., 2017). 

Actin at presynapses 
Organization of actin at presynapses 
Ultimately, electric signals transmitted along the axon are 
transformed into calcium-dependent release of neurotransmit-
ters on the presynaptic side of chemical synapses (Fig. 2A). 
Since the first electron microscopy studies (Gray, 1959; Pa-
lay, 1956), a huge body of work has detailed the composition 
and organization of presynapses, culminating with quantita-
tive spatial proteomic approaches (Ackermann et al., 2015; 
Wilhelm et al., 2014). However, actin is particularly difficult 
to preserve and label in classical electron microscopy proce-
dures, and this prevented from a clear understanding of actin 
organization at presynapses (Cingolani and Goda, 2008; Rust 
and Maritzen, 2015). 
A combination of quick-freeze preparation – which mini-
mizes actin destabilization arising from osmium fixation 
methods – and labeling with myosin fragments or phalloidin 
identified a network of actin filaments associated with differ-
ent parts of the presynapse such as the active zone and distinct 
synaptic vesicle pools (Alonso et al., 1981; Fifková, 1985; 
Landis et al., 1988; Morales et al., 2000). The active zone is 
an electron-dense material that lines the presynaptic mem-
brane and contains a cluster of docked synaptic vesicles called 
the readily releasable pool (RRP) (Alabi and Tsien, 2012; 
Fowler and Staras, 2015). The active zone is enriched in actin, 
with filaments associated with RRP vesicles (Hirokawa et al., 
1989). Another population of synaptic vesicles, the reserve 
pool, is located more centrally in the presynapse, where they 
are linked by synapsin that forms ~30-nm filaments (A. A. 
Cole et al., 2016; Hirokawa et al., 1989; Siksou et al., 2009). 
Synapsins connect to 50-100 nm actin filaments organized in 
strands between and around the synaptic vesicles, or extend-
ing from the presynaptic membrane (Landis et al., 1988; Li et 
al., 2010; Siksou et al., 2007). Immunogold electron micros-
copy showed little actin labeling within the reserve pool, but 
more at the periphery, where new synaptic vesicles are gener-
ated by endocytosis (Bloom et al., 2003; Pechstein and 
Shupliakov, 2010).  
More recently, optical super-resolution techniques such as 
STORM and STED, which resolved the periodic actin-spec-
trin submembrane scaffold along of the axon, have shown that 
it is interrupted at presynapses (Fig. 2E, He et al., 2016; Siden-
stein et al., 2016). Actin enrichment can be observed adjacent 
to the active zone by super-resolution microscopy, but no pre-
cise organization of actin within presynaptic terminals has 
been determined by these techniques so far, probably because 
presynaptic actin signal is occluded by the larger enrichment 
of actin in adjacent postsynaptic spines (Korobova and 
Svitkina, 2010). Beyond this static vision, live-cell imaging 
demonstrates that a significant proportion of synaptic actin is 
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dynamic, with constant cycles of assembly and disassembly 
in the post- (Fischer et al., 1998) as well as presynaptic com-
partments (Colicos et al., 2001). Myosins are involved in 
shaping presynaptic actin (Kneussel and Wagner, 2013): 
movement of synaptic vesicles within the presynapse depend 
on the contractile myosin-II, suggesting that actin reorganiza-
tion can displace vesicles (Peng et al., 2012). By contrast, ex-
change of synaptic vesicles between neighboring boutons via 
a vesicle “superpool” (Darcy et al., 2006; Staras et al., 2010) 
has recently been shown to occur via processive myosin V-
mediated transport (Gramlich and Klyachko, 2017). 
Role of actin at presynapses 
Beyond its architecture, the precise function of actin at pre-
synaptic terminals is a disputed topic. Depending on the mod-
els and experimental conditions, actin perturbation can lead to 
enhanced or impaired synaptic vesicle release (Cingolani and 
Goda, 2008; Rust and Maritzen, 2015). Depolymerizing drugs 
such as latrunculin or cytochalasin have been shown to en-
hance release (Morales et al., 2000; Sankaranarayanan et al., 
2003), reduce it (J. C. Cole et al., 2000) or have no effect (Job 
and Lagnado, 1998; Sakaba and Neher, 2003). This suggests 
that the presynapse contains distinct actin structures with var-
ying sensitivity to actin-perturbing drugs and contrasted roles 
at different steps of the synaptic vesicle cycle (Bleckert and 
Photowala, 2012). Around the reserve pool, peripheral actin 
could have a corralling effect (Rust and Maritzen, 2015). In 
addition, actin filaments between the release pool and the 
readily-releasable pool (RRP) can support vesicle transport, 
allowing to replenish the RRP after stimulation (Owe et al., 
2009; Sakaba and Neher, 2003). Within the RRP at the active 
zone, actin has been proposed to guide vesicles to the precise 
sites of exocytosis via a myosin-II dependent mechanism (Lee 
et al., 2012; Miki et al., 2016). Actin also participates in clus-
tering the active zone machinery and reducing the area of ex-
ocytosis sites (Glebov et al., 2017). This leads to more precise 
and restricted vesicle release and could explain the “barrier” 
effect observed in a number of previous studies (Rust and 
Maritzen, 2015).  
Vesicular transport of synaptic vesicles to the active zone and 
their subsequent release upon stimulation is counterbalanced 
by endocytosis. Several distinct endocytic mechanisms have 
been described with varying kinetics, dependence on clathrin 
and/or dynamin, and size of the endocytosed vesicles (Jähne 
et al., 2015; Kononenko and Haucke, 2015; S. Watanabe et 
al., 2013). Importantly, all these endocytic pathways depend 
on actin assembly for proper functioning (Soykan et al., 2017; 
S. Watanabe et al., 2013; Wu et al., 2016). To clarify the role 
of actin in vesicle endocytosis and generally in the presynap-
tic organization and function, it is important to identify the 
distinct actin nanostructures involved. Here also, a combina-
tion of super-resolution microscopy and live-cell imaging 
should provide decisive structural and molecular insights, al-
lowing to target and observe distinct actin assemblies and 
tease apart their functions. 

Conclusion 
Thanks to the recent discovery of rings, hotspots and trails, 
axonal actin is back in the spotlight. These are exiting times 
for neuronal cell biologists armed with constantly improving 
labeling and imaging techniques to observe, quantify and per-
turb these structures. Future work will undoubtedly answer 
currently open questions: what are the molecular partners of 
these assemblies and how do they form? What are the rela-
tionships between these structures, and what regulates which 
actin structure is assembled depending on the time and place 
in the tight space of the axon? An interesting emerging model 
in non-neuronal cells is the competition between actin regula-
tors for the formation of distinct structures (lamellipodia, fi-
lopodia, stress fibers) (Burke et al., 2014; Davidson and 
Wood, 2016; Lomakin et al., 2015). This could apply to ax-
onal actin, with the added complexity of a developmental reg-
ulation in neurons between dynamic structures and stable as-
semblies. Finally, The constantly evolving cellular imaging 
and manipulation capabilities will likely help shine a new 
light on presynaptic actin, allowing to reconcile the conflict-
ing views of our current knowledge. 
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