

Applications of Open-source NoSQL Database
Systems for Astronomical Spatial and Temporal Data

Min-Su Shin (Korea Astronomy and Space Science Institute)
1. Introduction

What’s NoSQL? Most astronomers are familiar with the SQL which have rows
and columns in pre-defined fixed formats. NoSQL stores the data in many
different formats such as key – value pairs (in RedisRedis and Hbase/OpenTSDBOpenTSDB).

Why NoSQL? While most SQL database systems do not scale well, many NoSQL
solutions work well as described in the following figure.

3. OpenTSDB: NoSQL database system for astronomical
temporal data

Goal We adopt OpenTSDB as a special large-scale time-series database
system for future big time-series data such as LSST level 1 alerts. The
expected alert rate is about 1 million per hour.

Possible applications
- Alert database of VOEvent streams from future time-domain surveys
such as ZTF survey.

2. Redis: NoSQL in-memory platform for astronomical spatial data

Goal We test whether Redis can be used easily as a useful platform of
data analysis in astronomy, particularly focusing on astronomical
spatial data and GEOHASH (i.e. Z-order space-filling curve) in Redis.

Possible applications
- Implementation of fast astrometric calibration in memory.
- Quick neighbor search and clustering with given positions and search radii.

4. Plan
- Experiments to improve performance in both Redis and OpenTSDB systems.
- Finding objects in time-series data as asteroid or transient candidates by
exploiting the fast data accessibility in the NoSQL environments.

https://arstechnica.com/information-
technology/2016/03/to-sql-or-nosql-thats-the-
database-question/

https://www.dynatrace.com/blog/nosql-or-rdbms-are-we-asking-the-right-questions/

https://karussell.wordpress.com/2012/05/23/sp
atial-keys-memory-efficient-geohashes/

Experiments a) modifying the source codes of Redis to support RA/DEC coordinates, b) ingesting a small dataset of
KMTNet DEEP-South time-series observations as Redis GEOHASH objects, c) conducting many neighbor searches,
and d) associating closely located measurements as a single cluster of measurements (i.e., constructing light curves of
objects). The dataset includes about 13.2 million photometric measurements.

Results
- Redis API is already well designed, and we need only minor modifications of Redis for
the RA range instead of the longitude range.
- The following example Python code is used to ingest the 13.2 million measurements
within 33 minutes (wall-clock time) in case of using a single thread in a server-class machine.
- About 220 microseconds for neighbor search with Redis GEORADIUS and 4 arcseconds radius.
- About 12.8 measurements (i.e. 96.8%) are found in light curves with more than 30 measurements.

Example distribution of (RA, DEC) in a
single amplifier section.

in_reader = csv.reader(use_csvfile, delimiter = ' ')
for row in in_reader:
 # example: geopos pos "amp1/kmtc.20150818.025457_1.frame:34"
 db_member = db_member_prefix + ':' + row[0]
 # example: hgetall "amp1/kmtc.20150818.025457_1.frame:34"
 db_phot_key = db_member
 db_phot_value = {'RA' : row[3], 'DEC' : row[4], \
 'MJD' : row[5], 'MAG' : row[6], 'MAGERR' : row[7]}
 db_pos_RA = float(row[3])
 db_pos_DEC = float(row[4])
 redis_conn.geoadd(use_pos_key, db_pos_RA, db_pos_DEC, \
 db_member)
 redis_conn.hmset(db_phot_key, db_phot_value)

Experiments a) ingesting a small test dataset of time-series observations
acquired in VVV survey (see the example Python code below), b)
conducting many time-range searches, and c) conducting several object-
based searches.

Results In the test environment composed of two low-cost old Pentium
machines,

 http://opentsdb.net/

url = http://192.168.0.1:4242/api/put
data = {
 “metric”: “use_ksmag”,
 “timestamp”: utc,
 “value”: use_ksmag
 tags : {
 “use_iauname”: use_iauname
 }
 }
ret = request.post(url, data=json.dump(data))

url = “http://192.168.0.1:4242/api/query
 ?start=2000/01/01-00:00:00
 &end=2017/08/24-23:59:59
 &m=none:use_ksmag”
ret = requests.get(URL)

Data ingestion

Time-range
search

Time to ingest
the data

Single process
in master

Single process
in slave

Dual processes
in both master

and slave

Time to search
the data (secs)

 All objects Single object

Single process
in master

Single process
in slave

- OpenTSDB is used successfully to manage a reasonable amount of time-
series data even in a poor computation environment like the test environment.

