KNI Applications of Open—source NoSQL Database
Systems for Astronomical Spatial and Temporal Data

Min-Su Shin (Korea Astronomy and Space Science Institute)

1. Introduction

What's NoSQL? Most astronomers are familiar with the SQL which have rows T
and columns in pre—defined fixed formats. NoSQL stores the data in many i o T . -
different formats such as key — value pairs (in Redis and Hbase/OpenTSDB). o b om o

884256 Firstname: Sam
Why NoSQL? While most SQL database systems do not scale well, many NoSQL s e it

SQL VS. NOSQL OVERSIMPLIFIED

SELEGIEEROIGUSTomErS=uIVHERE GEL customerhirstname,custonie rJJ taltie; J
LASIENAMEESTIUIE OITier: ;fJJ GUlEAWHIETE |J eName=Ayiitelock:

database-question/

solutions work well as described in the following figure.
| 2 Redis: NoSQL in-memory platform for astronomical spatial data

I
Writ e fully parallel I
and is bI k d b Node 1
I

I

I

I
. |

I

I

I

https://www.dynatrace.com/blog/nosql-or-rdbms-are-we-asking-the-right-questions/

Goal We test whether Redis can be used easily as a useful platform of i 110

data analysis in astronomy, particularly focusing on astronomical
spatial data and GEOHASH (i.e. Z—order space—filling curve) in Redis. ®|7 .2

Spatial Key Bmar'y Geohash
P=

1] ©

Latitude

1st Level

Possible applications Conitade >
— Implementation of fast astrometric calibration in memory. ey momoneaen searasres,

— Quick neighbor search and clustering with given positions and search radii.

Experiments a) modifying the source codes of Redis to support RA/DEC coordinates, b) ingesting a small dataset of
KMTNet DEEP-South time—series observations as Redis GEOHASH objects, ¢) conducting many neighbor searches,
and d) associating closely located measurements as a single cluster of measurements (i.e., constructing llght curves of

objects). The dataset includes about 13.2 million photometric measurements.

Results

— Redis API is already well designed, and we need only minor modifications of Redis for
the RA range instead of the longitude range.
— The following example Python code is used to ingest the 13.2 million measurements

—_

within 33 minutes (wall-clock time) in case of using a single thread in a server—class machine. 36”E |) b “f o
xample istribution o INa

— About 220 microseconds for neighbor search with Redis GEORADIUS and 4 arcseconds radius. sigleamplifier section

— About 12.8 measurements (i.e. 96.8%) are found in light curves with more than 30 measurements.

in_reader = csv.reader(use_csvfile, delimiter = ')
for row in in_reader:

db_member = db_member_prefix + ':' + row[0]
example: hgetall "amp1/kmtc.20150818.025457_1 .frame:34"
db_phot_key = db_member
db phot value = {RA' : row[3], DEC' : row[4], W
'MJD' : rowl[5], ' MAG' : row[6], MAGERR' : row[7]}
db_pos_RA = float(rowl[3])
db_pos_DEC = float(row[4])
redis_conn.geoadd(use_pos_key, db_pos_RA, db_pos_DEC, W
db_member)
redis_conn.hmset(db_phot_key, db_phot_value)

example: geopos pos "ampl/kmtc.20150818.025457_1.frame:34"

Experiments a) ingesting a small test dataset of time—series observations
acquired in VVV survey (see the example Python code below), b)

3. OpenTSDB: NoSQL database system for astronomical
temporal data

Goal We adopt OpenTSDB as a special large—scale time—series database
system for future big time—series data such as LSST level 1 alerts. The
expected alert rate is about 1 million per hour.

Possible applications
— Alert database of VOEvent streams from future time—domain surveys

such as ZTF survey.

=l=l
ars OPEN
S

http://opentsdb.net/

conducting many time—range searches, and c¢) conducting several object- i | K | K
‘ Network \ TSD RPC
Gear

based searches.

Results In the test environment composed of two low—cost old Pentium

HPG HBase RPC

machines, ngesting 2 milion messurments " . o || GTECS é'@"“a.;;.;;:; """ o

Lo Among the 40 million measurements, searching with a 7-day range HUFI"!B.I'"IS oane. mie) Y ki
, , 2115:00 2:06:52 : N OpenTSDB is a distributed, scalable Time Series Database (TSDB) written on top of HBase.
Time to ingest Slr;gl:angggf * Timetosearch g Single process OpenTSDB was written to store, index and serve metrics collected from computer systems
the data the data (secs) in master (network gear, operating systems, applications) at a large scale, and make this data easily

1:30:00 L1647 0.06 accessible and graphable.

0.04 url = http //192.168.0.134242/ap1/put
0:45:00 —— data — {
002 001008 “metric”: “use_ksmag’,
0:00:00 “timestamp” : utc,
All objects Single object Data ingestion “value”: use_ksmag
. . tags : {
— OpenTSDB is used successfully to manage a reasonable amount of time-— “use_jauname”: use_jauname
series data even in a poor computation environment like the test environment. ;)
4 PI an ret = request.post(url, data=json.dump(data))
— : " . ” url = “http://192.168.0.1:4242/api/query
E;cpepmen@ to improve pe;formance in both Redis an.d OpenTSDB systems. Tine-rang tp://192.168.0.4 4242/apilq
— Finding objects in time—series data as asteroid or transient candidates by searc &end=2017/08/24-23:59:59
.« o e] ofe . . &m=none:use_ksmag

exploiting the fast data accessibility in the NoSQL environments. ret = requests.get(URL)

