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ABSTRACT 

In this paper a novel approach that adopts Convolutional 

Neural Networks (CNN) for the Beat Tracking task is 

proposed. The proposed architecture involves 2 convolu-

tional layers with the CNN filter dimensions correspond-

ing to time and band frequencies, in order to learn a Beat 

Activation Function (BAF) from a time-frequency repre-

sentation. The output of each convolutional layer is com-

puted only over the past values of the previous layer, to 

enable the computation of the BAF in an online fashion. 

The output of the CNN is post-processed by a dynamic 

programming algorithm in combination with a bank of 

resonators for calculating the salient rhythmic periodici-

ties. The proposed method has been designed to be com-

putational efficient in order to be embedded on a dancing 

NAO robot application, where the dance moves of the 

choreography are synchronized with the beat tracking 

output. The proposed system was submitted to the Signal 

Processing Cup Challenge 2017 and ranked among the 

top third algorithms. 

1. INTRODUCTION 

Rhythm analysis has been one the most important tasks in 

the Music Information Retrieval (MIR) community. The 

metrical structure of a music piece, comprising the met-

rical levels, their relations, the beats and the beat rate (i.e. 

tempo), fully describe its rhythm content as proposed in 

the Generative Theory of Tonal Music [1]. The exact beat 

locations are essential information of a music excerpt 

which describe various aspects of it, as for example tem-

po variations, expressive timing, temporal grouping of 

weak and strong accents within the meter etc.  

Automated beat estimation, usually found under the 

term of Beat Tracking, has been one of the fundamental 

tasks in the MIR field. Beyond the importance of the in-

formation that can be found in the beat locations for a 

music excerpt as mentioned before, the automatic estima-

tion of beats is important because it can serve as an in-

termediate step to tackle other MIR tasks, such as chord 

change detection [2], chord detection [3], the computation 

of beat-synchronous features for identifying cover songs 

[4], tempo estimation [5] and downbeat detection [6, 7] to 

name a few.  

A variety of different approaches can be found in the 

literature to tackle the beat tracking task. In an early 

work, Scheirer [8] deployed comb resonators on spectral 

energies to for a tempo and beat estimation system, where 

the response of the resonators was interpreted as the beat 

positions. Dixon presented BeatRoot [9], a beat tracking 

software based on inter-onset interval (IOI) clustering for 

tempo induction and multiple agents for finding the beats. 

In [10], the authors extended BeatRoot to a real-time beat 

tracking software named IBT. In [11] a dynamic pro-

gramming formulation for the beat-tracking task is pre-

sented. In a similar manner in [12] the output of a tempo 

estimation method was incorporated in a dynamic pro-

gramming based beat-tracking method. In [13] the au-

thors propose a two-state probabilistic model to handle 

discontinuities in beats caused by switching metrical lev-

els. Peeters and Papadopoulos [14] propose a probabilis-

tic framework, where beat positions are considered as la-

tent variables in order to extract downbeats and beats. In 

[15] a unified probabilistic framework in the context of 

rhythm analysis is proposed, consisting of a time-

invariant Bayesian network for modeling the relations of 

tactus, tatum and meter and the beat locations.   

More recent works incorporated Neural Networks 

(NN) for handling the Beat-Tracking task. A remarkable 

work was firstly presented in [16], where an onset detec-

tion method which was based on Bidirectional Long 

Short-Term Memory (BLSTM) Neural Networks was 

adapted to a beat tracking system. The performance of 

this method outperformed the state-of-the-art. In [17], 

under the assumption that humans perceive the rhythm in 

a relative manner with respect to the salient periodicities 

of a music excerpt, a cepstroid invariant neural network is 

proposed to estimate the beat positions.  

Although Convolutional Neural Networks (CNN) have 

been successful in many MIR applications such as onset 

detection [18], structure analysis [19], chord recognition 

[20] and genre classification [21, 22], to the best of our 

knowledge there are no works that deploy CNNs for the 

beat tracking task. CNNs have used recently for down-

beat tracking as in [23] and [24]. However, these methods 

apply the CNN on larger segments of beat synchronous 

features, i.e. a beat-tracking step (based on another tech-

nique) is preceded. In a very recent approach [25] a dance 
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Figure 2. Beat Locations, Beat Activation Function and 

Accent Features. 
 

Figure 1. Overview of the proposed method. 

genre classifier that is based on CNNs that model tem-

poral features is proposed. 

In this paper we propose a novel approach that adopts 

CNNs to handle the beat-tracking task. The CNN are 

used to learn a Beat Activation Function (BAF) from a 

time-frequency input representation. The resulting BAF is 

subsequently used to infer the beats with a dynamic pro-

gramming approach. The proposed method was embed-

ded on a dancing NAO
1
 robot application. Dancing robots 

[26] have gained some interest in both robotics and MIR 

scientific communities and is an essential application for 

human-robot interaction and entertainment [27]. In [28] 

the authors focused on the motion of a humanoid dancing 

robot without any music rhythm analysis. In [29] a simple 

beat-tracking system was embedded on the RoboNova 

and Hubo robots. In [30] a singing robot that synchroniz-

es its singing with the estimated beats is presented. In 

[31] the authors focused on eliminating the ego-motion 

and beat-synchronous noise caused by a real-time danc-

ing robot. 

The rest of the paper is organized as follows. Section 2 

will provide a brief overview of the proposed method. 

The algorithmic details of the beat-tracking method will 

be presented in Section 3. Technical and implementation 

details of the dancing robot application are discussed in 

Section 4. Section 5 is dedicated on the evaluation of the 

proposed method. Section 6 concludes this paper with 

discussion and future work directions. 

2. METHOD OVERVIEW 

An overview of the proposed method is shown in Figure 

1. From the input signal the time-varying features that 

capture the salient musical events are firstly computed. 

These features along with the Beat Activation Function 

derived from the ground truth data are used to train a 

Convolutional Neural Network (CNN). In the testing 

phase, the output of the CNN is interpreted as a prior 

probability of a time instant corresponding to a beat. The 

CNN output is processed further by a filter-bank of comb 

                                                           
1 
https://www.ald.softbankrobotics.com/en/cool-robots/nao 

resonators to capture the salient periodicities and estimate 

the music tempo, which along with the BAF are pro-

cessed by a Dynamic Programming Beat Estimation 

module. The aim of this module is to find a sequence of 

beats that are rhythmically consistent, and are dominant 

on the BAF. The beat tracking algorithm is embedded on 

a NAO robot. The robot reproduces an audio waveform, 

while in real-time it computes the beat locations. Conse-

quently, the NAO robot synchronizes its dancing move-

ments of the choreography to the predicted beats. 

3. METHOD DETAILS 

3.1 Feature Extraction 

A conventional front-end schema is used for feature ex-

traction. The input music signal is firstly downsampled to 

16 kHz. Downsampling is required in order to conform 

with NAO’s audio recording capabilities, since NAO can 

only record at 16 and 48 kHz
2
. At next, the amplitude 

spectrogram denoted by X is calculated, using a sliding 

window of 1024 samples shifted at 160 samples (100 Hz 

frame rate). Each frame is then processed by a mel-

filterbank of M bands to derive the mel-band amplitudes 

S. Next, the time difference of the logarithm of the ampli-

tudes S of consecutive frames is computed. Finally, the 

output features are half-wave rectified to derive the ac-

cent features A. 

3.2 Calculating a Beat Activation Function 

A Beat Activation Function (BAF) is a function of time 

that represents the salience or the probability of time in-

stants being beats. Figure 2 (a) shows the beat locations 

of a music excerpt, Figure 2 (b) shows the corresponding 

BAF, while in Figure 2 (c) the input features of the corre-

sponding music excerpt are shown. BAF is a smoother 

version of pulses at the beat locations and is derived by 

using a Gaussian curve around the beat locations. The 

aim of the Gaussian blurring is to decrease the sensitivity 

to less accurate beat annotations. The standard deviation 

                                                           
2 Although the current implementation does not use the micro-

phone, the use of the recording sampling rate was chosen for 

reasons of uniformity. 
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Figure 3. Convolution of periodic sequences with its 

rhythm elements. 

of each Gaussian is set to be inversely proportional to the 

beat period.  

In the proposed method a Convolutional Neural Net-

work is deployed to learn the BAF denoted by ���� from 

the accent features ����. The intuition for this choice is 

that a CNN can learn temporal patterns of the input fea-

ture space and map these features to the BAF space. An 

example of how a simple Convolutional Unit can learn a 

rhythmic pattern and outputs a BAF is shown in Figure 3. 

Figure 3a shows a pattern �� of length L and Figure 3b 

shows a rhythmic repetitive pattern of �� , � �

���, ��, ��, . . . . ���. We assume that beat positions should 

occur on the positive peak the ��. If r is convolved with 

�̃���� � ���� 
 �� the resulting vector will exhibit peaks 

with the same period as r, but in different positions (Fig-

ure 3c). However, if r (Figure 3e) is convolved with filter 

�̃� (Figure 3d) which is a circular shift of ��, then the re-

sulting output (Figure 3f) is in phase, i.e. exhibits peaks 

at the same locations, with r. This simple example indi-

cates that the CNNs are capable of producing a BAF that 

is synchronous with its input in a causal manner. If a se-

quence a of length N is convolved with a filter h of length 

L, the resulting sequence of length N-L+1 can be syn-

chronous with a target BAF cropped by L-1 samples from 

the beginning. In this way, we can compute a BAF in a 

causal manner, i.e. ���� is derived only from current and 

past samples of  � and ��: 

 
1

0
[ ] [ ] [ ]

L

i
b n h n i a n i

−

=
= − −∑ ɶ  (1) 

 where ����� � ��� 
 ��. 

The CNN architecture of the proposed method is 

shown in Figure 4. It consists of two convolutional layers 

and three dense layers. No max-pooling or other pooling 

step is applied anywhere, since this would reduce the 

frame rate, which is critical in the context of real-time 

beat tracking. The first convolutional layer consisting of 

�� filters of �� length is applied on the accent features A. 

This results to temporal sequences of dimension �� ��. 

Next, the dimension is reduced to dimensions of M and 1 

by applying the �� � 1  and � � 1   input-output feed 

forward layers respectively. As a non-linearity function 

of the CNN, the logistic function is applied to the output 

of each layer. The above process results to a 1-

dimensional temporal sequence of length � 
 �� � 1  

where N is the length of the input accent features A. The 

output  ����� of this subnet is further processed by the 2
nd
 

convolutional layer with ��  filters of ��  length. The re-

sulting temporal ����,��  sequence of dimension ��  is 

then reduced to a single-dimensional sequence ����  by 

applying a �� � 1 feed forward layer. As before, the lo-

gistic function is deployed at each layer. ���� is consid-

ered as the output of the network. For training the net 

work, the binary cross-entropy is used as the cost func-

tion. 

After the calculation of the BAF, the beat tracking 

problem can be seen as a peak selection step, which com-

prises of two steps. At first a dominant tempo is estimat-

ed and then the most salient peaks of the BAF that are 

rhythmically consistent with that tempo are selected. 

These two steps are presented in detail in the Sections 

3.3-3.5. 

3.3 Tempo Estimation 

The next important component of the beat-tracking meth-

od is the estimation of the music tempo. A central notion 

on rhythm analysis is the Periodicity Function (PF) [32] 

or Periodicity Vector, which is a function or vector that 

represents the salience of the rhythmic frequencies. In 

this approach, we compute a PF by processing the BAF 

by a bank of oscillators, each of which oscillates at a pe-

riod τ. The output ����� of the oscillator with period τ and 

input ���� is chosen as: 

 [ ] [ ] (1 ) [ ]o n o n a nτ τβ τ β= ⋅ − + − ⋅ . (2) 

The PF for period τ at the frame n is given by the maxi-

mum value of �� within the past period, i.e., 

 { }[ ][ ] max [ ], ...P n o k k n nττ τ= = − . (3) 

The PF is not calculated for every frame but every �� 

frames and for periods in the range � ∈ ����� , �� !�. In 

order to estimate a more reliable PF and cope with slight 

PF variations, the PFs are averaged for the last K values 

to get an smoothed PF  "�. The tempo period is then cal-

culated as the maximum value of "�. 

3.4 Beat Tracking as Dynamic Programming 

The Beat Estimation method is a modification and adap-

tation of the method presented in [12]. It is a dynamic 

programming method that finds an optimal path of a beat 

sequence that maximizes a cost function. Let #��$� denote 

the candidate beat positions, which are the positive peaks 

of the BAF. The first part of the beat tracking algorithm 

is to define a beat similarity of two candidate beats 

�� % �& as 
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Figure 5. Illustration of the real-time implementation of 

the beat-tracking method 

 
Figure 4. The Convolution Neural Network Architecture. 

 0( , ) ( , ) (1 ) [ ]i j T i j jd b b c d b b c o b d= ⋅ + − + , (4) 

where 

 ( )2

2

1
( , ) exp{ ln ( ) / }T i j j id b b b b τ

σ
= − − , (5) 

with τ in (5) being the tempo period and '(�� , �&) being 

the weighted sum of two terms plus the bias '*. The first 

term in (4) '+(�� , �&)  indicates if the beats �� , �&  are 

rhythmically consistent, and increases as the distance of 

�� , �& ap proaches the tempo period τ. The second term is 

related to the beat salience, and is equal to the value of 

the BAF. Finally, the term '* can be seen as a beat inser-

tion bias. Given a sequence #��$� of possible beats, a beat 

activation function ����  and a tempo period τ one can 

find the optimal path  #�∗�$ that maximizes the objective 

function 

 
1

* * *({ , }) ( , )
l ll

l L

O b l L d b b
−

∈

∈ =∑  (6) 

3.5 Real-Time Formulation of Beat Tracking 

The beat tracking model described in the previous section 

is not a straightforward online algorithm and has to be 

adapted to meet the real-time requirements. For setting 

the real-time formulation, we define four frame sets. Let 

us denote with �* the current frame. Then we define by 

- � #��$� the beat candidates (peaks of BAF) before �*, 

by . � #��
∗$�/ the optimal path of beats, by 0 � #��

∗$�/ 

the output of the real-time beat tracking before �* and by 

1 � #2�$�/  the expected beats of the �* frame. Note that 

#��
∗$�/ 3 #��

∗$�/, since . can be considered as the non-

causal output before �*	, while the set 0 is the causal out-

put before �*. A graphical illustration is shown in Figure 

5. When a new peak at frame �� is detected, then the hy-

potheses #��
∗$�5 , #��

∗$�5 , and #2�$�5  are updated as fol-

lows. Firstly, the optimal path of beats is recalculated 

#��
∗$�5 . Then, 1 � #2�$�5 is updated by adding a new ex-

pected beat  2̃ , which is the last beat ��  of . � #��
∗$�5 

plus the tempo period τ. Moreover, the expected beats 

close to 2̃ (based to a threshold) are removed. Next, if the 

current peak ��  is close enough (based to the same 

threshold) to an expected beat (added to 1 � #2�$�5  on a 

past frame), the �� is considered as a beat, it is added to 

0 � #��
∗$�5  and the corresponding expected beat is re-

moved from 1 � #2�$�5. In other words, a peak is instant-

ly classified as a beat, if it is close enough to an expected 

beat. Based on this formulation, the algorithm is almost 

online, with a latency of one frame, which is needed to 

decide whether a frame is peak or not. The algorithm can 

be summarized as follows: 

1) Initialize: - � #$, 1 � #$, . � #$, 0 � #$  

2) Get new frame n. 

3) Compute the BAF ���� 
4) If n is not peak GOTO 2. 
5) Compute distance of n to previous peaks. 

6) Get optimal beat sequence . � #��
∗$� before n. 

7) Add 2̃ � �� � � (�� is last beat of #��
∗$�) to E. 

8) Remove elements of E very close to 2̃. 

9) Get last element �̃ of R (if any). 

10) For each e in E: 

a. if (n close to e) and (� 
 �̃ 6 �/2) 
i. add e to R. 

ii. remove e from E. 
iii. This_frame_is_beat = True 

11) GOTO 2. 

The statement x close to y is defined to be true if |: 


;| % 4 frames. The second condition � 
 �̃ 6 �/2  in the 

statement 10a ensures that once a past frame is classified 

as beat, the frames that are close to this frame should not 

be classified as beats. 

4. THE DANCING ROBOT APPLICATION 

4.1 The NAO Robot 

For deploying the real-time beat tracking method to a 

dancing robot, a NAO Robot v4 was used as the target 

hardware. It runs on an Intel Atom Z530 CPU with 2 

cores at 1600Mhz, with 1GB RAM. The Operating Sys-

tem is the Linux based NAOqi, version 2.1.2. The NAO's 

kinematics include 25 motors; 2 motors for controlling 

the head, 4 motors for each arm, 2 motors for each hand, 

5 motors for each leg, plus 1 motor for controlling both 

hip's yaw pitch (Figure 6). The pose (or “state”) of the 

robot can be uniquely described by the state of the 25 mo-

tors, which are used to define NAO's dancing movements 

that are synchronous with the real-time beat tracking re-
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Figure 6. NAO’s motor map. 

sults. Although NAOqi has built-in functions for control-

ling the robot’s stability, steep movements should be still 

avoided. Apart from the robot's movements, NAO's eyes 

are used to show the beat-times that are calculated in real- 

time. Each eye consists of 8 leds. The color of NAO’s 

eyes is controlled to change on every beat. 

4.2 The Choreography Model 

NAO's dancing movements have been designed to be eas-

ily parameterized. We refer to this parameterization as the 

“Choreography Model (CM)”. The CM consists of a set 

of poses = � #=�, =�, … , =?$ and a @ � @  transition ma-

trix T of these poses. Each pose =�  is represented by the 

25 values that correspond to the state of each of the mo-

tors mentioned above. The (A, B) element of matrix T de-

notes the probability of moving to pose =&  given that 

NAO’s previous pose is =� . Thus, each row of T sums to 

one. In this way one can define different choreographies. 

The elements of T can be binary values, thus defining a 

deterministic sequence of positions, or can take values in 

the interval (0,1) defining a stochastic sequence, or 

mixed, i.e. certain groups of deterministic sequences can 

be mixed stochastically. The CM allows an easy way to 

define an arbitrary choreography, mixing different chore-

ographies (i.e. reusing =�) and change the choreography 

in real-time, as for example in the case where the chore-

ography is linked to a genre classifier. Although the CM 

poses contain information for the legs, for reasons of 

simplicity and to maintain the robot’s stability, the 

movement of the legs of the robot are overridden by an-

other simpler CM that considers only leg movements and 

involves only two poses, which realize the slight hip (or 

knee) movement of the robot that can be seen in the 

demonstration videos. 

4.3 Robot Dancing in Practice 

Since the robot cannot instantly move to the next pose 

when a beat is found, somehow the next beat-time has to 

be inferred beforehand. When a beat is found in real-time, 

then the next beat time is inferred by adding to the current 

beat time the tempo period (similarly to the expected beat 

notion of previous Section). Therefore, the predicted next 

beat that determines the robot’s movement, slightly dif-

fers from the actual prediction of the real-time beat track-

er. However, although such differences might be audible, 

they are not visible, i.e. they are not evident by human 

vision, as it can be seen in the demonstration video. Let’s 

consider the case that a beat is found by the real-time al-

gorithm at time instant 0.0 sec with a tempo at 60 BPM 

(i.e. period of 1 sec). Then the next beat will be inferred 

to be at 1.0 secs, and therefore the robot will start moving 

from its current pose to the next at 1.0 sec of a specific 

choreography. If the beat of the actual real-time algorithm 

is found a few msecs later of the inferred one (e.g. 

50 msecs), this difference will not be visible. Moreover, 

the robot will adapt its movement in order to complete its 

next move at 2.10 secs. This can be seen in the demon-

stration video, since robot's movements look natural and 

synchronous with the music despite the small variations 

from the true beat.  

However, in order to demonstrate the actual capability 

of the algorithm and make it clearly visible, apart from 

dance movement we incorporated an instant change in the 

color of the eyes when a beat is found. The colors used 

can also be parameterized as it is shown for the music ex-

cerpts in the demonstration video. Moreover, due to mo-

tor limitations of the robot, the robot dances on half time, 

i.e. the movement is planned for every second subsequent 

beat. Thus, every two beats (two color changes of the 

eyes) the robot completes one movement of the choreog-

raphy. 

5. EVALUATION 

5.1 Algorithm Parameters and Implementation De-

tails 

In this section some details of the implementation and 

parameters of the proposed method will be provided. Re-

garding the accent features (Eq. 1), the number of bands 

of the mel-filterbank was set to M=8, and the frame rate 

was set to 100 Hz (see Section 3.1). For the tempo esti-

mation phase,  the corresponding periods of the tempo 

analysis range (Eq. 4) were set to ���� � 350, �� ! �

700 ms. The size of the CNN is set to �� � 50, �� �

100, �� � 50 and �� � 200. The whole implementation 

is written in Python 2.7. The training functions were writ-

ten using the Lasagne/Theano
1
 libraries and run on a Tes-

la K40 GPU. The Binary Cross Entropy was used as the 

loss function of the network, which was trained using 

Nesterov momentum of 0.9 and a variable learning rate. 

Due to the robot’s software limitations, for the embedded 

algorithm only the Numpy library was used for calculat-

ing dot products. The algorithm runs at ~ 100% CPU sin-

gle core on the NAO robot and ~3 % CPU single core on 

an Intel i7.  

5.2 Beat-Tracking Performance 

The proposed method was submitted to the Real-Time 

Beat Tracking Challenge of the IEEE Signal Processing 

                                                           
1
  http://lasagne.readthedocs.io/en/latest/ 
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Cup 2017 [33]. It was a prerequisite that the submissions 

should have been implemented around creative applica-

tion of a real-time beat tracking algorithm that is embed-

ded on a device. The challenge was run in three phases. 

Initially, the teams were provided two datasets, an open 

dataset consisting of 25 excerpts that were annotated by 

the organizers, and a closed dataset, where the annota-

tions were not released to the participating teams. In the 

first phase each team had to submit annotations for three 

annotated excerpts of their choice (other than the open 

and closed datasets). One of these three pieces was se-

lected by each team as a challenge piece. The challenge 

pieces for all teams formed the challenge dataset, and the 

dataset consisting of the other two pieces submitted by 

each team, formed the team datasets. In the second phase 

each team had to submit the results of their algorithm for 

the closed and challenge datasets, while they were pro-

vided annotation for the team dataset to be used for train-

ing or fine tuning. The submissions were evaluated based 

on three criteria, the annotation quality, the beat-tracking 

performance and the novelty of the application. The beat-

tracking performance was measured by a metric based 

upon the standard AMLt, but instead of the arbitrary in-

clusion of double, half-time or off-beat tapping, the "al-

lowed" metrical levels were specified on an excerpt-by-

excerpt basis. In this way, the evaluation could cope with 

excerpts in odd meters in a more robust manner. After the 

2nd phase, the three best teams were selected to partici-

pate in the final phase of the competition at the ICASSP 

2017 conference. 

The Convolutional Neural Network of the proposed 

method was trained on three datasets, the GTZAN dataset 

[34], the Ballroom Dataset [35] and the SMC Mirex Da-

taset [36]. The parameters of Eq. (4), and (5) were tuned 

with a grid search on the open and the team submitted 

datasets which were used as validation set. The proposed 

method achieved a beat-tracking performance of 63.3% 

and 64.2% on the closed and challenge datasets respec-

tively, based on the modified AMLt metric and was 

ranked 6
th
 among 21 submissions regarding the beat-

tracking performance. Figure 7 presents the comparative 

beat tracking results for all submissions. Due to the or-

ganizers choice, the comparative results are provided 

anonymously. The video demonstration of the robot 

dancing for two excerpts can be downloaded from
1
.  

6. CONCLUSION AND FUTURE WORK 

In this paper a novel method that adopts CNNs for the 

beat-tracking problem is presented. CNN are proved to be 

capable to function in an online manner, i.e. the output of 

the CNN depends only on current and past values of its 

input, thus allowing a real-time implementation. The pro-

posed method was designed to be embedded on a NAO 

robot, and its parameters were optimized to meet the real-

time requirements rather than to optimize beat-tracking 

                                                           
1 http://mir.ilsp.gr/dance_robot.html 

performance in general. The proposed method was sub-

mitted in the IEEE 2017 Signal Processing Cup Beat 

Tracking Challenge and was ranked 6
th
 among 21 algo-

rithms. 

There are a number of challenges and future work im-

posed by the proposed method. Regarding the use of 

CNNs, a further investigation and experimentation of var-

ious network parameters, such as the network architec-

ture, the number and size of layers, the use of other than 

the sigmoid non-linearity functions, more relevant to the 

beat-tracking problem cost functions, or even the smooth-

ing procedure of the target BAF. Moreover, CNNs can be 

combined with other Neural Network types such as Re-

current Neural Networks, as for example in a setting that 

CNN will act as a feature preprocessing step to extract a 

smooth BAF, which will be further processed by an 

RNN. 

Apart from the CNN, other aspects can be further 

elaborated to increase the performance of the beat-

tracking algorithm. At first, the tempo estimation method 

may be improved, by considering more complex oscilla-

tors or other alternative Periodicity Analysis methods that 

can be found in the literature. Moreover, further pro-

cessing of the PF can be incorporated to the method, re-

ducing the so called “octave errors”. Regarding the beat 

tracking, it can be further improved to more sophisticated 

approaches, as for example with the use of agents [10] 

allowing smarter selection from the candidate beats. 

Regarding the robot itself, we plan to incorporate a 

genre classifier. This will allow the robot to change cho-

reographies on the fly, with respect to the music being 

played. Finally, it will be an important extension of the 

proposed method to handle audio streams recorded from 

the robot’s microphones instead of audio files. This 

would require either the training of the CNN to be made 

with data recorded from microphone, or by deploying de-

noising techniques. 
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