

Downscaling of Wind Resources From Mesoscale Tendencies with URANS

Javier Sanz Rodrigo, Roberto Aurelio Chávez Arroyo Wind Energy Science Conference, Lynby, 26 June 2017

The NEWA Model-Chain

- ✓ Blending of mesoscale and microscal models
- ✓ **Systematically validated** with high-fidelity experiments over a range of conditions
- ✓ Uncertainty quantification

@mesoscale

- NEWA database of wind resource characteristics
- 30-year WRF down to 3 km resolution
 + downscaling to 100 m using WAsP
 (generalized wind methodology)
- Mesoscale multiphysics ensemble (UQ)

@microscale

- Design tools based on CFD (RANS or LES)
- Driven by (mesoscale) wind atlas inputs
- Include diurnal-cycle thermal stratification
- Surface-layer characterization based on aerial lidar scans of vegetation canopy
- Open source model built on OpenFOAM (NEWAfoam)

NEWA Meso-Micro Challenge

Determine the applicability range of meso-micro methods for the NEWA validation domain

Additional NEWA experiments

Design of the ABL model for Wind Energy applications

- > Add 1st-order physics to the flow model
 - Turbulence closure through a modified k-eps as proposed by Sogachev et al. 2012
 - Thermal stratification through energy eq.
 - Transient model
 - Inspired in Bass et al. 2010, instead of Idealized forcing, Sanz-Rodrigo et al. 2014 proposed to include large-scale "tendencies"
- Avoid adding physical complexity if this is not justified by improved performance
 - No humidity equation
 - No heat transfer by radiation or phase changes
 - No land-surface modeling
- Make best use of onsite measurements to calibrate the model
 - Nudging at microscale using typical wind energy measurements

- Bass P, Bosveld FC, Lenderink G, van Meijgaard E and Holtslag AAM. QJR Meteorol Soc (2010) 136 671-684
- Sanz-Rodrigo et al. J. Physics Conf. Ser. (2014) 753.
- Sogachev A, Kelly MC, Leclerc MY. (2012) Bound. Layer Meteorol; 145(2):307-327

Momentum Budget at Mesoscale: "Tendencies"

$$\frac{1}{f_c} \frac{\partial U}{\partial t} = -\frac{1}{f_c} \left(U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} + W \frac{\partial U}{\partial z} \right) + V - V_g - \frac{1}{f_c} \frac{\partial u'w'}{\partial z}$$

$$\frac{1}{f_c} \frac{\partial V}{\partial t} = -\frac{1}{f_c} \left(U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y} + W \frac{\partial V}{\partial z} \right) - U + U_g - \frac{1}{f_c} \frac{\partial v'w'}{\partial z}$$
Tendency
$$Advection$$

$$Coriolis Horizontal Pressure Gradient
$$Gradient$$

$$Gradient$$

$$Turbulence$$

$$Gradient$$

$$D_{tend} \approx U_{adv} + U_{cor} + U_{pg} + U_{pbl}$$$$

Coriolis parameter:

$$f_c = 2\Omega \sin \phi$$

SCM with Large-Scale Tendencies and Data Assimilation

- Mesoscale forcing
- Solved at microscale
- Data assimilation at microscale

$$\frac{1}{f_c} \frac{\partial U}{\partial t} = U_{adv} + V + U_{pg} - \frac{1}{f_c} \frac{\partial \overline{uw}}{\partial z} + U_{nud}$$

$$\frac{1}{f_c} \frac{\partial V}{\partial t} = V_{adv} - U + V_{pg} - \frac{1}{f_c} \frac{\partial \overline{vw}}{\partial z} + V_{nud}$$

$$\frac{\partial \Theta}{\partial t} = \Theta_{adv} - \frac{\partial \overline{w\theta}}{\partial z} + \Theta_{nud}$$

$$\delta_{nud} = \frac{\omega_z}{f_c} \frac{\left(\delta_{obs} - \delta\right)}{\tau_{nud}}$$

 $τ_{nud}$ = 10min : 1hr ω = 1 within measurements

• M-O at the surface based on mesoscale inputs

$$\Theta_{2} = \Theta_{0} + \frac{\theta^{*}}{\kappa} \left[\lg \left(\frac{2}{z_{0t}} \right) + \Psi_{h} \left(\frac{2}{L_{0}} \right) \right]; \quad \theta^{*} = -\frac{\overline{w'\theta'}}{u^{*}}$$

GABLS 3 (GEWEX Atmospheric Boundary Layer Studies)

- Stationary synoptic
- Clear skies
- No fog
- Substantial LLJ
- •6 years → 9 days → night of 1–2 July 2006

Mesoscale Tendencies from WRF during GABLS3

WRF-YSU

- ERA Interim
- 9 > 3 > 1 km
- 24 hr spin-up
- Tendencies from d02 (3 km)
- $L_{av} = 3x3 = 9 \text{ km}$
- t_{av} = 60 min (rolling average)

$$U_{\textit{tend}} \approx U_{\textit{adv}} + U_{\textit{cor}} + U_{\textit{pg}} + U_{\textit{pbl}}$$

GABLS3 Benchmark revisited for Wind Energy ABL models

Table 1: Summary of model simulations. Monin-Obukhov similarity theory (MOST) surface boundary conditions use either heat flux (H), 2-m (T_2) or skin temperature (T_{SK}) from WRF

Input	Turbulence	z-Levels	Surface B.C.
ERA Interim	YSU	46	Noah
ERA Interim,	MYJ, MYNN, QNSE,	46	Noah
GFS	TEMF, YSU		
ERA Interim	LES-TKE	101	Noah
ERA Interim	$YSU/k-\varepsilon$	70	MOST, H
WRF (ref)	<i>k-ε</i>	301	$MOST, T_2$
WRF (ref)	k-ε	500	$MOST, T_2$
WRF (ref)	k-ε	512	$MOST, T_{SK}$
WRF (ref)	<i>k-ε</i>	192	$MOST, T_{SK}$
WRF (ref)	Smagorinsky	128	$\overline{\text{MOST}, T_{SK}}$
WRF (ref)	LES-TKE	500	$MOST, T_2$
	ERA Interim ERA Interim, GFS ERA Interim ERA Interim WRF (ref) WRF (ref) WRF (ref) WRF (ref) WRF (ref)	ERA Interim ERA Interim, MYJ, MYNN, QNSE, GFS ERA Interim ERA Interim ERA Interim ERA Interim ERA Interim VSU/ k - ϵ WRF (ref) Smagorinsky	ERA InterimYSU46ERA Interim, GFSMYJ, MYNN, QNSE, TEMF, YSU46ERA InterimLES-TKE101ERA InterimYSU/ k - ε 70WRF (ref) k - ε 301WRF (ref) k - ε 500WRF (ref) k - ε 512WRF (ref) k - ε 192WRF (ref) s - s 128

 A fare agreement among all models with the implementation of the tendencies.

Almost all RANS models in the benchmark are based on the modified k-eps proposed by Sogachev et al. 2012

- Sanz Rodrigo J, et al. (2017). J. Phys: Conf. Ser. 854 012037
- Sogachev A, Kelly MC, Leclerc MY. (2012) Bound. Layer Meteorol; 145(2):307-327

A typical week: GABLS3 direction

A typical week: GABLS3 direction tendencies

Cabauw year 2006: From flow case to wind climate characterization

Wind Climate Classification: the common approach

Based on z/L at 10 m & velocity @ 140m (classification as used in Sanz-Rodrigo et al. 2014)

Annual Mean Profiles vs Stability VU wu NW ("North Sea") ESE ("GABLS3") SW ("Prevailing") Sector: [101.25, 123.75] Sector: [303.75, 326.25] Sector: [213.75, 236.25] VS 2000 1500 <u>E</u> 1000 500 12 16 12 12 16 12 $S_{pq} [ms^{-1}]$ $S [ms^{-1}]$ $S_{pg} [ms^{-1}]$ $S [ms^{-1}]$ $S [ms^{-1}]$ $S_{pq} [ms^{-1}]$ -20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 10 $(WD-WD_h)_{pq}$ [°] n $(WD-WD_h)_{pg}$ [°] n $(WD - WD_h)$ [°] n $(WD-WD_h)_{pg}$ [°] n $(WD-WD_h)$ [°] n $(WD-WD_h)$ [°] n

- As expected, mesoscale pressure gradient significantly change with direction.
- Its value changes significantly with stability and height.
- Therefore, it can provide important information missed by the microscale.

Sector-wise Annual Mean Diurnal Cycle

- However, bining has several drawbacks
 - We should be able to produce pseudo-stationary profiles consistent with the bined tendencies
 - Loss of time-dependent information from previous cycles
- Alternative to binning by stability (steady approach) to retain diurnal cycle dynamics (unsteady approach)

$$z_{ref} = 140 \text{ m}$$

30° bins

$$S_{140} > 4 \text{ m/s}$$

$$T = 12x24 = 288 h$$

Sector-wise Annual Mean Diurnal Cycle

Conclusions & Outlook

So far...

Under NEWA framework a:

- Meso-micro offline coupling method verified with GABLS3
- Methodology for annual wind resources based on 1D sector-wise mean diurnal cycles now under development for the "NEWA Meso-Micro Challenge"

Outstanding Challenges

- From statistics to "suitable" model forcings (smoothing, nudging, etc)
- 3D methodology for complex terrain: nesting 3D tendencies and boundary conditions
- Optimization of 360 cycle using surrogate model and other statistical methods
- $k-\varepsilon$ model of Sogachev et al. (2012) seems to require a calibration (I_{max} in complex terrain, etc)

Acknowledgements

This work has been produced with support from the following projects:

- *MesoWake*, European Comission FP7-PEOPLE-2013-IOF, 624562, http://www.windbench.net/mesowake-2014-2017
- NEWA, European Comission FP7-ENERGY-2013.10.1.2, 618122, http://www.neweuropeanwindatlas.eu/; MINECO, Spain, PCIN-2014-011-C07-02
- IEA Task 31 Wakebench Phase 2, International Energy Agency
- PRACE-MesoWake, PRACE 13th Call, MareNostrum, Barcelona

