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Abstract

The MPAS-Seaice sea-ice model is presented. MPAS-Seaice uses the Modeling

for Prediction Across Scales (MPAS) framework and Spherical Centroidal Voronoi Tes-

sellation (SCVT) unstructured meshes. The MPAS-Seaice velocity solver uses the varia-

tional discretization of the divergence of internal stress operator used by the CICE Sea-ice

model, but adapted for the polygonal cells of MPAS meshes, or alternatively an integral

(“weak”) formulation of the divergence of internal stress operator, and the Elastic-Viscous-

Plastic (EVP) rheology. An incremental remapping advection scheme is used for mass

and tracer transport. These formulations are validated with idealized test cases. MPAS-

Seaice shares the sophisticated column physics and biogeochemistry of CICE, and can be

used with quadrilateral meshes to reproduce the results of CICE. Global simulations with

realistic forcing have validated MPAS-Seaice against similar simulations with CICE and

against observations. MPAS-Seaice is the current sea-ice component of the Energy Exas-

cale Earth System Model (E3SM).

1 Introduction

Sea ice, the frozen surface of the sea at high latitudes, is an important component of

the Earth climate system. Rejection of salt during sea-ice formation helps drive the ther-

mohaline circulation [Killworth, 1983], and its high reflectivity has a significant impact

on planetary albedo and can help drive the polar amplification of climate change through

an albedo feedback mechanism [Ingram et al., 1989]. Numerical modeling of sea-ice dy-

namics and thermodynamics is an important tool in understanding global climate. One

of the most popular sea-ice models currently in use is CICE [Hunke et al., 2015]. CICE

approximates the sea-ice cover as a continuous fluid, and uses an Elastic-Viscous-Plastic

(EVP) rheology to describe the relationship between stress and strain in that fluid [Hunke

and Dukowicz, 1997]. This rheology adds a numerical elasticity to the Viscous-Plastic rhe-

ology of Hibler III [1979] to allow explicit time-stepping and parallelization of the algo-

rithm. CICE uses a quadrilateral structured mesh, and has been used with both displaced

pole [Smith et al., 1995] and tripolar [Murray, 1996] grids. The strain rate and divergence

of internal ice stress operators used by CICE are based on a variational principle [Hunke

and Dukowicz, 1997] and account for metric effects in the curvilinear coordinates [Hunke

and Dukowicz, 2002].
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Recently, unstructured mesh climate models have been gaining popularity [e.g. Ringler

et al., 2013; Wang et al., 2014]. Unstructured meshes allow the concentration of model de-

grees of freedom in regions of interest, improving computational efficiency, while avoid-

ing the difficulties of the open boundary conditions present in limited-domain regional

models. Several unstructured sea-ice models have been developed. Hutchings et al. [2004]

proposed a finite-volume, cell-centered discretization. The Unstructured-Grid CICE [UG-

CICE; Gao et al., 2011] model, which is built on the FVCOM framework [Chen et al.,

2009], also uses a finite-volume formulation. In contrast, a finite-element discretization

was proposed by Lietaer et al. [2008]. The Finite-Element Sea Ice Model [FESIM; Danilov

et al., 2015] also uses a finite-element discretization of its dynamics equations. Both UG-

CICE and FESIM use triangular elements in their mesh.

Another unstructured modeling framework to be recently developed is the Modeling

for Prediction Across Scales (MPAS) framework, which uses a Voronoi tessellation of the

sphere to form a mesh [Ringler et al., 2010]. Consequently, grid cells in MPAS meshes

are polygons with four or more sides, rather than triangles. Several climate model com-

ponents have been built with the MPAS modeling framework, including ocean [MPAS-O;

Ringler et al., 2013], atmosphere [MPAS-A; Skamarock et al., 2012] and land ice [MPAS-

LI; Edwards et al., 2014] models. Here, we describe a new MPAS model for sea ice:

MPAS-Seaice. This model uses a ‘B’ Arakawa type grid [Arakawa and Lamb, 1977] with

sea-ice velocity on cell vertices and tracers at cell centers. Two discretizations of the mo-

mentum equation are implemented: one based on the variational scheme used by CICE

[Hunke and Dukowicz, 2002] and another using the integral (“weak”) form of the relevant

operators. MPAS-Seaice uses the same EVP rheology and column physics as CICE. Sea-

ice tracer transport uses an incremental remapping scheme [Lipscomb and Hunke, 2004;

Lipscomb and Ringler, 2005] modified for the MPAS mesh. In section 2, we describe the

modeling approach used in MPAS-Seaice, focusing on the solution of the sea-ice momen-

tum equation and tracer transport. In section 3 we validate this new model, both with ide-

alized test cases and with global simulations, and conclude in section 4. We focus in this

paper on simulations with quasi-uniform global meshes: variable resolution meshes and

computational performance will be considered in later publications.
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2 Model description

2.1 The MPAS framework

The MPAS mesh consists of a Spherical Centroidal Voronoi Tessellation (SCVT),

as described in Ringler et al. [2010], and consists of a primary mesh of the Voronoi cells

tessellated on the sphere and a dual triangular Delaunay mesh, formed from joining the

Voronoi cell centers into a triangulation. The primary mesh cells have their Voronoi gen-

erating points coincident with the centroid of the cell. The mesh consists of three types of

points arranged on the sphere: the Voronoi cell center points, vertex points of the Voronoi

cell and edge points at the midpoint of the Voronoi cell edges (see Figure 1). The mesh is

constructed so that a line joining neighboring cell centers is perpendicular to the edge that

line passes through. On a typical quasi-uniform MPAS mesh the majority of the cells are

hexagons, but at least twelve pentagons are needed to complete the tessellation. In general,

the cells are not regular polygons and may consist of polygons with edge numbers greater

or equal to four. As well as quasi-uniform grids, meshes can be generated with regions

of enhanced resolution, allowing computational effort to be focused in regions of inter-

est. The MPAS mesh standard can also represent the quadrilateral meshes used by CICE,

where four instead of three edges meet at each vertex. With these quadrilateral meshes the

dual mesh is also quadrilateral.

2.2 Velocity solver

MPAS-Seaice uses a ‘B’ Arakawa type grid [Arakawa and Lamb, 1977] with both

components of velocity defined at cell vertices and sea-ice concentration, volume and

other tracers defined at cell centers (see Figure 1). When using CICE-like quadrilateral

meshes, this allows the velocity solver algorithm of MPAS-Seaice to reduce to that of

CICE, allowing CICE and MPAS-Seaice to use identical test cases and allow rapid test-

ing and development.

In CICE the velocity components are aligned with the quadrilateral mesh. This is

not possible, in general, with MPAS-Seaice since a SCVT MPAS mesh does not have

edges with perpendicular directions as in a quadrilateral mesh. Instead, the velocity com-

ponents at a given MPAS vertex are defined as eastwards (u) and northwards (v), irre-

spective of the orientation of edges joining that vertex. Such a definition, however, would

result in a convergence of v components at the geographic North Pole and strong metric
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Figure 1. Schematic representation of three cells in an example MPAS mesh. The mesh is composed of

cell centers (circles), cell edge points (triangles), and cell vertices (squares). The dual triangular Delaunay

mesh is formed by joining cell centers (dashed line). MPAS-Seaice uses a ‘B’ type grid, with both velocity

components defined at cell vertices. Unlike traditional quadrilateral meshes, the directions of the velocity

components in MPAS-Seaice are not in general aligned with the cell edges.

terms in the velocity solution. Consequently, in addition, we rotate these definitions of u

and v so that their pole lies on the geographical equator at 0◦ longitude.

To prognose sea-ice velocity we solve the same sea-ice momentum equation as CICE

[Hibler III, 1979; Hunke and Dukowicz, 1997]:

m
∂u

∂t
= ∇ · σ + τa + τw − k̂ × m f u − mg∇Ho . (1)

Here m is the mass of snow and ice per unit area, u is the sea-ice velocity, σ is the ice

internal stress tensor, τa and τw are the horizontal stresses due to atmospheric winds and

ocean currents respectively, k̂ is the unit vector normal to the Earth surface, f is the Cori-

olis parameter, g is the acceleration due to gravity and Ho is the ocean surface height.

The second to last term represents the Coriolis force and the last term represents the force

due to the ocean surface tilt. Only the divergence of internal stress and ocean surface tilt

terms depend on horizontal differential operators. During coupled simulations the ocean

model provides the ocean surface tilt term, whereas in non-coupled simulations we assume
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that the ocean currents are in geostrophic balance so that

mg∇Ho = m f k̂ × uo (2)

where uo is the ocean surface velocity. Consequently, only the divergence of internal

stress depends on the properties of the horizontal grid employed, and only adaptations to

this stress term are required to adapt the velocity solver of CICE to MPAS meshes. The

other terms in the momentum equation are solved in an identical way to CICE.

Determination of the divergence of the internal stress can be broken down into three

stages:

1. The strain rate tensor is determined from the velocity field.

2. The stress tensor at a point is determined, through a constitutive relation, from the

strain rate tensor at that point.

3. The divergence of this stress tensor is calculated.

As in CICE we use an Elastic-Viscous-Plastic (EVP) rheology [Hunke and Dukowicz,

1997] for the constitutive relation. This step does not depend on the details of the hori-

zontal mesh and we use the same formulation as CICE. We develop two schemes to calcu-

late the strain rate tensor and the divergence of internal stress on MPAS meshes. A vari-

ational scheme is based on that used in CICE [Hunke and Dukowicz, 2002], whereas a

weak scheme uses the line integral forms of the symmetric gradient and divergence opera-

tors. These schemes are described in the following sections.

2.2.1 Variational Scheme

We develop a variational scheme for calculating the divergence of stress based on

that of Hunke and Dukowicz [2002] but adapted for arbitrarily shaped and sided convex

polygons. This scheme is based on the fact that over the entire domain, Ω, and ignoring

boundary effects, the total work done by the internal stress is equal to the dissipation of

mechanical energy: ∫
Ω

u · (∇ · σ)dA = −
∫
Ω

(σ11 Ûε11 + 2σ12 Ûε12 + σ22 Ûε22)dA. (3)

Here Ûε is the strain rate tensor and the integrals are area integrals over the whole model

domain. The work done over the whole domain can be split into a sum over the contribu-

tion to the work done from each cell on the dual Delaunay mesh. Each dual cell on the
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dual mesh consists of a triangle surrounding a single vertex point where the discretized

velocity is defined. Equation 3 can then be written as

nd∑
i

∫
i

u · (∇ · σ)dA = D(u1, u2, ..., un, v1, v2, ..., vnd
) (4)

where the left-side sum is over the nd cells of the dual mesh, the integral is an area inte-

gral over each dual cell, and the dissipation of mechanical energy has been written as a

function of the discretized velocity components. Writing the two components of the diver-

gence of stress as Fu = (∇ · σ)u and Fv = (∇ · σ)v , then

nd∑
i

∫
i

(uFu + vFv)dA = D(u1, u2, ..., un, v1, v2, ..., vnd
). (5)

If we assume that within the dual cell the velocity is constant, it follows that

nd∑
i

(uiFui + viFvi)Aui = D(u1, u2, ..., un, v1, v2, ..., vnd
) (6)

where Aui is the area of the dual mesh cell. The variation of these expressions with re-

spect to the u component of the discretized velocity at a particular vertex point j is given

by
∂

∂u j

nd∑
i

(uiFui + viFvi)Aui =
∂

∂u j
D(u1, u2, ..., un, v1, v2, ..., vnd

) (7)

Assuming Fu and Fv are not functions of velocity,

Fuj =
1

Auj

∂

∂u j
D(u1, u2, ..., un, v1, v2, ..., vnd

). (8)

Fv is obtained in a similar way by taking the variation of D with respect to vj . The dissi-

pation of mechanical energy, D, can be split into three terms:

D = D1 + D2 + D3 (9)

with

D1 = −

∫
σ11 Ûε11dA, D2 = −

∫
2σ12 Ûε12dA, D3 = −

∫
σ22 Ûε22dA. (10)

We will calculate the contribution to Fu and Fv from D1. Similar contributions come

from D2 and D3. Using the expression for Ûε11 in terms of the velocity components and

latitude φ, D1 becomes

D1 = −

∫
σ11

[
∂u
∂x
−
v tan φ

r

]
dA (11)

where x and y are locally Cartesian coordinates, with x in the rotated due eastwards di-

rection and y in the rotated due northwards direction, φ is the latitude, and r is the radius

of the Earth. The second term in Ûε accounts for the metric effects of the curved domain
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[Batchelor, 1967]. The integral can be broken up into a sum over the np cells in the pri-

mary mesh:

D1 = −

np∑
k

∫
k

σ11

[
∂u
∂x
−
v tan φ

r

]
dA (12)

where the integral is over the interior area of the kth cell. To perform this integral we use

a set of basis functions,Wl , to represent functions within a cell of the primary mesh. If

a function, ψ, has a value of ψl at vertex l of a cell, then the value of the function at a

position (x, y) within the cell can be approximated as

ψ(x, y) =
nv∑
l

ψlWl(x, y) (13)

where the sum is over the nv vertices of the cell in the primary mesh. Using those basis

functions, equation 12 can be written as

D1 = −

np∑
k

∫
k

[
nv∑
l

σ11lWl ·

nv∑
m

(
um

∂Wm

∂x
−

tan φ
r

vmWm

)]
dA (14)

where the derivative with respect to x has been taken inside the summation. Rearranging

D1 = −

np∑
k

nv∑
l

nv∑
m

σ11l

(
um

∫
k

Wl
∂Wm

∂x
dA −

tan φ
r

vm

∫
k

WlWmdA
)
. (15)

In moving the integral, we have assumed that φ, the latitude, is constant in the cell. The

terms involving integrals are now only a function of the geometry of the mesh and can be

calculated once during the initialization phase of the model run. Defining

Sx
lm =

∫
k

Wl
∂Wm

∂x
dA (16)

and

Tlm =

∫
k

WlWmdA. (17)

we have

D1 = −

np∑
k

nv∑
l

nv∑
m

σ11l

(
umSx

lm −
tan φ

r
vmTlm

)
. (18)

Taking the variation with respect to a discretized velocity component at a particular vertex

point, j, as in equation 8, now gives us the contribution from D1 to the components of the

divergence of stress tensor at that velocity point:

(∇ · σ)D1
u j
=
δD1
δu j
= −

np∑
k

nv∑
l

σ11lS
x
l j (19)

(∇ · σ)D1
vj
=
δD1
δvj
=

np∑
k

nv∑
l

σ11l
tan φ

r
Tl j (20)
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Only cells that border the vertex point j contribute to the k sum over cells. The total di-

vergence of stress at the point j is then the sum from the contributions from D1, D2, and

D3:

(∇ · σ)u j = (∇ · σ)
D1
u j
+ (∇ · σ)D2

u j
+ (∇ · σ)D3

u j
(21)

(∇ · σ)vj = (∇ · σ)
D1
vj
+ (∇ · σ)D2

vj
+ (∇ · σ)D3

vj . (22)

All that remains now is to determine the stress for each cell at its vertices. As in the for-

mulation in CICE, each cell has its own values of the stress at its vertices, so each vertex

has several values of the stress, each corresponding to a different surrounding cell. The

stresses are calculated from the strain rate tensor at each vertex using the constitutive rela-

tion. Including metric effects [Batchelor, 1967] the strain rate tensor is given by:

Ûε11 =
∂u
∂x
−
v tan φ

r
(23)

Ûε22 =
∂v

∂y
(24)

Ûε12 =
1
2

(
∂u
∂y
+
∂v

∂x

)
+

u tan φ
2r

. (25)

The strain rate tensor at cell vertex l is then given by

Ûε11l =

nv∑
m

um
∂Wm

∂x

����
l

−
vl tan φl

r
(26)

Ûε22l =

nv∑
m

vm
∂Wm

∂y

����
l

(27)

Ûε12l =
1
2

(
nv∑
m

um
∂Wm

∂y

����
l

+

nv∑
m

vm
∂Wm

∂x

����
l

)
+

ul tan φl
2r

(28)

The derivatives of the basis functions are taken at cell vertex l.

In MPAS-Seaice we provide two options for the choice of basis functions,Wl: Wach-

spress basis functions and Piece-Wise Linear (PWL) basis functions. Both basis functions

have a value of one on vertex l and zero on the other vertices of a cell, and are linear on

the cell boundaries. The Wachspress basis functions are smooth rational polynomials in

the cell interior [Dasgupta, 2003]. The integrals of the Wachspress basis function within a

cell are performed using the eighth order quadrature rules of Dunavant [1985]. PWL ba-

sis functions divide the polygonal cell into sub-triangles and use a linear basis within each

sub-triangle [Bailey et al., 2008]. To divide the polygonal cell into sub-triangles, a point is

chosen within the cell and sub-triangles formed using this point and two adjacent vertices.

The central point in the cell, xc , is chosen as

xc =
nv∑
i

αixi (29)
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where the sum is over the nv vertices of the cell each with position xi . The simplest choice

for the αi is to set them all equal to the inverse of the number of cell vertices, 1/nv . For

quadrilateral meshes the Wachspress basis functions reduce to the bilinear basis functions

used in CICE.

2.2.2 Weak Scheme

n6

n5
n4

n3

n2 n1

n1

n3

n2

(a) (b)

Figure 2. Contour integration lines used by the weak scheme. (a): Strain rate at cell centers (circle) are

calculated from line integrals around primary mesh cells (solid line). (b): Divergence of stress at cell ver-

tices (square) are calculated from line integrals around the dual mesh cells (solid line). Directions of normal

vectors used in the integrals are shown for both figures.

For the weak scheme we use line integrals around cells in the primary and dual

meshes to calculate the strain rate tensor and the divergence of stress, respectively. To de-

termine the strain rate tensor we start from the following vector identity:

∇ · (u ⊗ v) = (u · ∇)v + (∇ · u)v (30)

and from the divergence theorem:∫
Ω

[∇ · (u ⊗ v)] ∂Ω =

∮
S

[n · (u ⊗ v)] ∂S =
∮
S

[(n · u)v] ∂S (31)

where n is a normal vector to the surface S and ⊗ is the tensor product. If equation 30 is

integrated over Ω, using equation 31 we obtain∫
Ω

[(u · ∇)v + (∇ · u)v] ∂Ω =
∮
S

[(n · u)v] ∂S (32)
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If u is chosen as constant then ∇ · u vanishes as does the second term in equation 32.

Taking, also, u sequentially as the cartesian unit vectors spanning Ω and summing the

results we obtain ∫
Ω

[∇v] ∂Ω =
∮
S

[n ⊗ v] ∂S (33)

The symmetric version of this operator is then obtained as:∫
Ω

[∇Sv] ∂Ω =

∮
S

[n ⊗ v + v ⊗ n] ∂S (34)

The strain rate at a point is then obtained from the limit

Ûε = ∇Sv = lim
A→0

1
A

∮
1
2
[n ⊗ v + v ⊗ n] dl (35)

where the integral is around a closed loop with area A and normal vector n, and v is the

sea-ice velocity. To determine the strain rate tensor at the centers of the primary mesh,

we take this integration around the edges of the cells in the primary mesh. First the cell

is projected onto a flat tangent plane perpendicular to the vector joining the center of the

sphere to the cell center. We take the sea ice velocity at a cell edge as the average of the

values on the two vertices forming that edge projected onto the tangent plane:

Ûε ′ = 1
A

ne∑
i

1
2
[ni ⊗ vi + vi ⊗ ni] li (36)

Here, A is the area of the primary cell, the summation is over the ne edges of the pri-

mary cell, ni is the normal vector to the edge i that lies in the tangent plane, vi is the

edge velocity and li is the length of edge i. We use the tangental projection of the velocity

and account for metric terms separately. The full strain rate tensor including these metric

terms is [Batchelor, 1967]:

Ûε11 = Ûε
′
11 −

v tan φ
r

(37)

Ûε22 = Ûε
′
22 (38)

Ûε12 = Ûε
′
12 +

u tan φ
2r

(39)

where the prime symbol signifies a strain rate without metric terms. The stress, which is

determined from the strain rate tensor using the constitutive relation, is now defined on

cell centers. To find its divergence we use the divergence theorem:∬
∇ · σdA =

∮
[σ · n] dl (40)

or

∇ · σ = lim
A→0

1
A

∮
[σ · n] dl (41)
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for the divergence of stress at a point. The divergence of internal stress is determined at

primary cell vertices (where the velocity is defined and momentum equation solved) by

performing a sum around the edges of the dual mesh on a tangent projected plane, tan-

gental to the primary cell vertex. The vertices of the dual mesh are the cell centers of the

primary mesh where the strain rate has been determined. The divergence of stress at pri-

mary cell vertices is then given by

(∇ · σ)′ = 1
Ad

nc∑
i

[σi · ni] li (42)

where Ad is the area of the dual mesh cell, the sum is over the nc vertices of the dual

mesh, li is the length of the i edge of the dual mesh, and ni is a normal vector to the i

edge on the projected plane. As before, this gives a result without taking into account

metric effects of the mesh. With those effects the divergence of stress is:

(∇ · σ)u = (∇ · σ)
′
u −

2σ12 tan φ
r

(43)

(∇ · σ)v = (∇ · σ)
′
v +
(σ11 + σ22) tan φ

r
(44)

where the components of σ are approximated as the average of the values on the dual

mesh vertices.

2.3 Transport

To transport sea ice fractional area and various tracers, MPAS-Seaice uses an incre-

mental remapping (IR) algorithm similar to that described by Dukowicz and Baumgardner

[2000], Lipscomb and Hunke [2004] (henceforth LH04) and Lipscomb and Ringler [2005]

(henceforth LR05). The LH04 scheme was designed for structured quadrilateral meshes

and is implemented in CICE [Hunke et al., 2015]. The LR05 scheme was implemented on

a structured SCVT global mesh consisting of quasi-regular hexagons and 12 pentagons.

For MPAS-Seaice the IR scheme was generalized to work on either the standard

MPAS mesh (hexagons and other n-gons of varying sizes, with a vertex degree of 3 as

in LR05) or a quadrilateral mesh (with a vertex degree of 4 as in LH04 and CICE). Since

MPAS meshes are unstructured, the IR scheme had to be rewritten from scratch. Most of

the code is mesh-agnostic, but a small amount of code is specific to quad meshes as noted

below.

Here we review the conceptual framework of incremental remapping as in [Hunke

et al., 2015] and describe features specific to the MPAS-Seaice implementation. IR is de-
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signed to solve equations of the form

∂m
∂t
= −∇ · (um) (45)

∂(mT1)

∂t
= −∇ · (umT1), (46)

∂(mT1T2)

∂t
= −∇ · (umT1T2), (47)

∂(mT1T2T3)

∂t
= −∇ · (umT1T2T3), (48)

where u = (x, y) is the horizontal velocity, m is mass or a mass-like field (such as density

or fractional sea ice concentration), and T1, T2 and T3 are tracers. These equations de-

scribe conservation of quantities such as mass and internal energy under horizontal trans-

port. Sources and sinks of mass and tracers (e.g., ice growth and melting) are treated sep-

arately from transport.

In MPAS-Seaice, the fractional ice area in each thickness category is a mass-like

field whose transport is described by (45). (Henceforth, “area” refers to fractional ice area

unless stated otherwise.) Ice and snow thickness, among other fields, are type 1 tracers

obeying equations of the form (46), and the ice and snow enthalpy in each vertical layer

are type 2 tracers obeying equations like (47), with ice or snow thickness as their parent

tracer. When run with advanced options (e.g., active melt ponds and biogeochemistry),

MPAS-Seaice advects tracers up to type 3. Thus, the mass-like field is the “parent field”

for type 1 tracers; type 1 tracers are parents of type 2; and type 2 tracers are parents of

type 3.

Incremental remapping has several desirable properties for sea ice modeling:

• It is conservative to within machine roundoff.

• It preserves tracer monotonicity. That is, transport produces no new local extrema

in fields like ice thickness or internal energy.

• The reconstructed mass and tracer fields vary linearly in x and y. This means that

remapping is second-order accurate in space, except where gradients are limited

locally to preserve monotonicity.

• There are economies of scale. Transporting a single field is fairly expensive, but

additional tracers have a low marginal cost, especially when all tracers are trans-

ported with a single velocity field as in CICE and MPAS-Seaice.
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The time step is limited by the requirement that trajectories projected backward from

vertices are confined to the cells sharing the vertex (i.e., 3 cells for the standard MPAS

mesh and 4 for the quad mesh). This is what is meant by incremental as opposed to gen-

eral remapping. This requirement leads to a CFL-like condition,

max(|u|∆t)
∆x

≤ 1, (49)

where ∆x is the grid spacing and ∆t is the time step. For highly divergent velocity fields,

the maximum time step may have to be reduced by a factor of 2 to ensure that trajectories

do not cross.

The IR algorithm consists of the following steps:

• Given mean values of the ice area and tracer fields in each grid cell and thickness

category, construct linear approximations of these fields. Limit the field gradients to

preserve monotonicity.

• Given ice velocities at grid cell vertices, identify departure regions for the transport

across each cell edge. Divide these departure regions into triangles and compute

the coordinates of the triangle vertices.

• Integrate the area and tracer fields over the departure triangles to obtain the area,

volume, and other conserved quantities transported across each cell edge.

• Given these transports, update the area and tracers.

Since all fields are transported by the same velocity field, the second step is done only

once per time step. The other steps are repeated for each field.

With advanced physics and biogeochemistry (BGC) options, MPAS-Seaice can be

configured to include up to ∼40 tracer fields, each of which is advected in every thickness

category, and many of which are defined in each vertical ice or snow layer. In order to

accommodate different tracer combinations and make it easy to add new tracers, the tracer

fields are organized in a linked list that depends on which physics and BGC packages are

active. The list is arranged with fractional ice area first, followed by the type 1 tracers,

type 2 tracers, and finally type 3 tracers. In this way, values computed for parent tracers

are always available when needed for computations involving child tracers.

We next describe the IR algorithm in detail, pointing out features that are new in

MPAS-Seaice.
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2.3.1 Reconstructing area and tracer fields

The fractional ice area and all tracers are reconstructed in each grid cell (quadilater-

als, hexagons or other n-gons) as functions of r = (x, y) in a cell-based coordinate system.

On a sphere, r lies in a local plane that is tangent to the sphere at the cell center. The

state variable for ice area, denoted as ā, should be recovered as the mean value when inte-

grated over the cell: ∫
A

a(x, y)dA = āAC, (50)

where AC is the grid cell area. Equation 50 is satisfied if a(r) has the form

a(r) = ā + αa∇a · (r − r̄), (51)

where ∇a is a cell-centered gradient, αa is a coefficient between 0 and 1 that enforces

monotonicity, and r is the cell centroid:

r̄ =
1

AC

∫
A

rdA. (52)

Similarly, tracer means should be recovered when integrated over a cell:∫
A

a(r)T1(r)dA = āT̄1 AC,∫
A

a(r)T1(r)T2(r)dA = āT̄1T̄2 AC,∫
A

a(r)T1(r)T2(r)T3(r)dA = āT̄1T̄2T̄3 AC .

(53)

These equations are satisfied when the tracers are reconstructed as

T1(r) = T̄1 + αT1∇T1 · (r − r̃1),

T2(r) = T̄2 + αT2∇T2 · (r − r̃2),

T3(r) = T̄3 + αT3∇T3 · (r − r̃3),

(54)

where the tracer barycenter coordinates r̃n are given by

r̃1 =
1

āAC

∫
A

radA,

r̃2 =
1

āT̄1 AC

∫
A

raT1dA,

r̃3 =
1

āT̄1T̄2 AC

∫
A

raT1T2dA.

(55)

The integrals in (55) can be evaluated by applying quadrature rules for linear, quadratic

and cubic polynomials as described in Section 2.3.3.

Monotonicity is enforced by van Leer limiting [van Leer, 1979]. The reconstructed

area and tracers are evaluated at cell vertices, and the coefficients α are reduced as needed
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so that the reconstructed values lie within the range of the mean values in the cell and

its neighbors. When α = 1, the reconstruction is second-order accurate in space. When

α = 0, the reconstruction reduces locally to first-order.

2.3.2 Locating departure triangles

The next step is to identify the departure region associated with fluxes across each

cell edge, and to divide the departure region into triangles. Figure 3a illustrates the ge-

ometry for the standard MPAS mesh. The edge has vertices V1 and V2. Each edge is ori-

ented such that one adjacent cell (C1) is defined to lie in the left half-plane and the other

(C2) in the right half-plane. The departure points D1 and D2 are found by projecting ve-

locities backward from V1 and V2. The shaded departure region is a quadrilateral contain-

ing all the ice transported across the edge in one time step. In addition to C1 and C2, the

departure region can include side cells C3 and C4. The side cells share edges E1 to E4

and vertices V3 to V6 with the central cells C1 and C2.

V3 V4

E2

V2

E4

V6

C4

D2

C1

C2

D1

E1

V1

E3

V5

C3

V3 V4

E1

D1
C3 C1 C4

E2

V7 V8
E5 V1 V2 E6

D2C5
C6

C2

E3 E4

V5 V6

(a) (b)

Figure 3. (a): Schematic showing transport across a cell edge on a standard MPAS mesh with 3 edges

meeting at each vertex. The letters C, E and V denote cell centers, edges and vertices, respectively. Points

D1 and D2 are backward trajectories, and the departure region is shaded. (b): Schematic showing transport

across a cell edge on a quadrilateral MPAS mesh with 4 edges meeting at each vertex.

The edges and vertices in Figure 3a are defined in a coordinate system lying in the

local tangent plane at the midpoint of the main edge, halfway between V1 and V2. These

coordinates are pre-computed at initialization. During each time step, departure triangles

are found by locating D1 and D2 in this coordinate system, and then looping through the
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edges to identify any intersections of line segment D12 (i.e., the segment joining D1 and

D2) with the various edges. If D12 intersects the main edge, then the departure region

consists of two triangles (one each in C1 and C2) rather than a quadrilateral (as shown in

the figure). If D12 intersects any of edges E1 to E4, the departure region includes trian-

gles in side cells.

Each departure triangle lies in a single grid cell, and there are at most four such

triangles. There are two triangles in the central cells (either one each in C1 and C2, or a

quadrilateral that can be split into two triangles), and up to two triangles in side cells. The

triangle vertices are a combination of cell vertices (V1 and V2), departure points (D1 and

D2), and intersection points (points where D12 crosses an edge).

Figure 3b shows the geometry for a quadrilateral mesh. In this figure the departure

region consists of two triangles, but it could also be a quadrilateral as in Figure 3a. For

the quad mesh there are two additional side cells (C5 and C6), edges (E5 and E6) and

vertices (V7 and V8). The search algorithm is designed such that the code used to find de-

parture triangles for the standard mesh is also applied to the quad mesh. For quad meshes

only, there is additional logic to find intersection points and triangles associated with the

extra edges and cells. This is the only mesh-specific code in the run-time IR code. For

the quad mesh there are at most six departure triangles: two in the central cells and one

in each of the four side cells. If the edges meet at right angles as shown in the figure, the

maximum is five triangles, but this is not a mesh requirement.

Once triangle vertices have been found in edge-based coordinates, they are trans-

formed to cell-based coordinates, i.e., coordinates in the local tangent plane of the cell

containing each triangle. (Coefficients for these transformations are computed at initializa-

tion.) Triangle areas are computed as

AT =
1
2
|(x2 − x1)(y3 − y1) − (y2 − y1)(x3 − x1)| . (56)

2.3.3 Integrating the transport

Next, ice area and area-tracer products are integrated in each triangle. The integrals

have the form (50) for area and (53) for tracers. Since each field is a linear function of

(x, y) as in (51) and (54), the area-tracer products are quadratic, cubic and quartic polyno-

mials, respectively, for tracers of type 1, 2 and 3.
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The integrals can be evaluated exactly by summing over values at quadrature points

in each triangle. Polynomials of quadratic or lower order are integrated using the formula

I =
AT

3

3∑
i=1

f (x′i). (57)

The quadrature points are located at x′i = (x0 + xi)/2, where x0 is the triangle midpoint

and xi are the three vertices. The products involving type-2 and type-3 tracers are cubic

and quadratic polynomials, which can be evaluated using a similar formula with 6 quadra-

ture points:

I = AT

[
w1

3∑
i=1

f (x1i) + w2

3∑
i=1

f (x2i)

]
, (58)

where x1i and x2i are two sets of three quadrature points, arranged symmetrically on tri-

secting medians of the triangle, and w1 and w2 are weighting factors. Coefficients and

weighting factors for these and other symmetric quadrature rules for triangles were com-

puted by Dunavant [1985]. These integrals are computed for each triangle and summed

over edges to give fluxes of ice area and area-tracer products across each edge.

2.3.4 Updating area and tracer fields

The area transported across edge k for a given cell can be denoted as ∆ak , and the

area-tracer products as ∆(aT1)k , ∆(aT1T2)k and ∆(aT1T2T3)k . The new ice area at time

n + 1 is given by

an+1 = an +
1

AC

∑
k

±∆ak, (59)

where the sum is taken over cell edges k, with a positive sign denoting transport into a

cell and a negative sign denoting outward transport. The new tracers are given by

Tn+1
1 =

anTn
1 +

1
AC

∑
k
±∆(aT1)k

an+1 ,

Tn+1
2 =

anTn
1 Tn

2 +
1
AC

∑
k
±∆(aT1T2)k

an+1Tn+1
1

,

Tn+1
3 =

anTn
1 Tn

2 Tn
3 +

1
AC

∑
k
±∆(aT1T2T3)k

an+1Tn+1
1 Tn+1

2
.

(60)

Dukowicz and Baumgardner [2000] showed that (60) satisfies tracer monotonicity, since

the new-time tracer values are area-weighted averages of old-time values.

2.4 Column physics

CICE has sophisticated vertical physics and biogeochemical schemes, which include

vertical thermodynamics schemes [Bitz and Lipscomb, 1999; Turner et al., 2013; Turner
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and Hunke, 2015], several melt-pond parameterizations [Flocco et al., 2010; Holland et al.,

2012; Hunke et al., 2013], a delta-Eddington radiation scheme [Briegleb and Light, 2007;

Holland et al., 2012], schemes for transport in thickness space [Lipscomb, 2001], represen-

tations of mechanical redistribution [Lipscomb et al., 2007], and sea-ice biogeochemistry

[Jeffery and Hunke, 2014; Jeffery et al., 2016; Duarte et al., 2017]. To include these devel-

opments in MPAS-Seaice, the column physics and biogeochemistry in CICE has been ex-

tracted into a separate library, which performs column calculations on individual grid cells

with no knowledge of the details of the horizontal mesh used by the host model. This col-

umn package, now called IcePack, is used by both CICE and MPAS-Seaice.

3 Model validation

3.1 Velocity solver

To validate our implementation of the MPAS-Seaice velocity solver we investigate

several idealized test cases. The first involves determining the divergence of internal stress

on a unit sphere, from an analytical velocity field, assuming a simple linear constitutive

relation of the form σ = Ûε . The expected analytical divergence of stress can also be cal-

culated and compared to the results of MPAS-Seaice, thus validating the algorithms for

calculating the strain rate and divergence of stress outlined in section 2.2. We use spher-

ical harmonic functions Y for the analytical velocity fields with u(θ, φ) = Ym=3
l=5 (θ, φ) and

v(θ, φ) = Ym=2
l=4 (θ, φ) where u, v, the latitude, φ, and the longitude, θ, are on the rotated

geographical mesh (see section 2.1). Figure 4 shows a histogram of errors between the

u component of the analytical divergence of stress calculated for the above spherical har-

monic velocity fields and that determined for MPAS-Seaice. All three velocity solver op-

tions described in section 2.2 are shown. In general the errors are low, except higher-error

tails in the distribution are present for both variational scheme methods. To determine the

cause of these tails in the error distribution we examine spatial maps of the error for the

three schemes. We find that errors are largest, as expected, around the pentagonal cells

present in the mesh. Figure 5 shows the error around one of the pentagonal cells for the

three methods. Both variational schemes have significantly larger errors here than the

weak scheme resulting in the tails in the error distribution. Convergence of error with

grid resolution is an important property of numerical discretizations. We calculated the L2

error norm for regions of the grid with latitude, |φ| > 20◦ (so that the poles of the rotated

mesh were excluded) for four different grid resolutions. The L2 error norm was calculated
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Figure 4. Error in the calculation of divergence of stress from an analytical velocity field for a spherical test

case. The error is given as the absolute value of the difference between model and analytical stress divergence

divided by the maximum analytical stress divergence on the sphere. The results are plotted as histograms for

the two variational schemes (using Wachspress and PWL basis functions) and the weak scheme.

from

L2 =

√∑
Adi( fi − f̂i)2∑

Adi f̂ 2
(61)

where the sum is over grid vertices in the region of interest, Adi is the area of the dual

cell surrounding vertex i, and fi and f̂i are the u components of the divergence of stress

for the model results and analytical calculation respectively. Figure 6 shows that the L2

error norm for the above test case scales linearly with grid resolution for all three velocity

solver methods.

Since the MPAS framework and MPAS-Seaice support quadrilateral grids, direct

comparisons can be made between MPAS-Seaice and CICE. For idealized planar test

cases it is possible to set up MPAS-Seaice to be have a virtually identical velocity solver

algorithm to CICE. This is achieved by using the Wachspress basis function with the vari-

ational scheme and defining the u and v velocity component directions in the same sense

as CICE. To compare MPAS-Seaice to CICE, we use a simple test case, similar to that

used in Hunke [2001]. This test case has a square planar domain of size 80km. Ice thick-

ness is fixed at 2m, while ice concentration increases linearly in the eastwards direction

from zero at the western boundary to one at the eastern boundary, and no snow is present.
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Figure 5. Detail of error in calculation of stress divergence from an analytical velocity field for a spherical

test case. Detail is shown around one of the pentagonal mesh cells. The error is the difference between the

model and analytical stress divergence divided by the maximum value of the analytical stress divergence on

the sphere.

Only the velocity solver is active, with no advection or column physics. The sea ice is

forced by atmospheric winds and ocean currents. The atmospheric wind forcing has the

form

ua = 5 − 3 sin
2πx
Lx

sin
πy

Ly
ms−1 (62)

va = 5 − 3 sin
2πy
Ly

sin
πx
Lx

ms−1 (63)

while the ocean currents have the form

uo = 0.1
2y − Ly

Ly
ms−1 (64)

vo = −0.1
2x − Lx

Lx
ms−1 (65)

where x and y are the horizontal position and Lx and Ly are the domain size in the u

and v directions respectively. These forcing velocity fields are shown in Figure 7. Sea-

ice velocity was simulated for four time steps (each of length 1 hour), which was suffi-

cient time for the ice state to relax to the elliptical yield curve. Figure 8 shows a com-

parison of the modeled eastwards velocity and divergence of stress component between

CICE and MPAS-Seaice. In this comparison MPAS-Seaice uses an identical quadrilat-

eral mesh to CICE. The eastwards component of wind stress pushes the sea ice against
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Figure 6. Scaling of L2 error norm against grid resolution for calculation of the u component of the diver-

gence of stress on the unit sphere from an analytical velocity field for a spherical test case. Grid resolution is

the mean distance between cell centers where φ > 20◦.

the east model boundary, and it is here that significant internal sea-ice stresses are present

(see Figure 8e). The figure also shows that the three MPAS-Seaice schemes for calculating

divergence of stress are capable of reproducing the results of CICE. As expected the vari-

ational scheme with Wachspress basis function best reproduces the results of CICE, since

this algorithm is most similar to CICE. Differences with CICE appear as noise, a function

of incompletely damped elastic waves from the EVP rheology [Hunke, 2001]. Figure 9

shows similar results for the same test case but with MPAS-Seaice using a regular hexago-

nal mesh. Here differences between the weak and variational scheme with PWL basis and

the variational scheme with Wachspress basis are larger than for quadrilateral meshes, but

still small. All the schemes have stress states that lie within or on the elliptical yield curve

for both quadrilateral and hexagonal meshes (Figure 10).

3.2 Transport

To verify that the incremental remapping transport scheme works as expected, we

ran two test cases on a global spherical grid, following LR05. In each case there is a

steady eastward velocity field given by u = (u0 cos θ, 0), where u0 = (2πR)/(12 days)

and R is the Earth’s radius. We first advect a circular region of ice that has initial con-
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(a) (b)

Figure 7. Forcing fields of (a) wind velocity and (b) ocean velocity used in a square domain test case.

centration given by a cosine-bell within a distance R/3 of a central point on the equator,

and a = 0 elsewhere. The initial ice thickness is h = 1. For both the IR scheme and a

first-order upwind scheme, the model was run at several grid resolutions for 12 days, at

which time a perfect advection scheme would give a solution equal to the initial condition.

For a grid resolution of 120 km, Figure 11a shows equatorial cross sections of a for the

initial condition, the upwind solution and the IR solution. Figure 12a-c shows the spatial

distribution of ice concentration before and after the experiment for the same resolution.

As expected, the upwind solution is very diffuse, while the IR scheme does a good job of

preserving the initial shape.

Next, we advect a slotted cylinder with initial concentration a = 1, initial thickness

h = 1 and radius R/2, also centered on the equator. We set a = 0, h = 0 for r > R/2

and also in a slot of width R/6 and length 5R/6, with the long axis perpendicular to the

flow. The model was run for 12 days at several resolutions. Figure 11b shows the ini-

tial condition and the upwind and IR solutions along the equator at resolution 120 km,

while Figure 12d-f shows the spatial distribution of the ice concentration before and af-

ter the experiment for the same resolution. Again, the upwind scheme is very diffusive;

all traces of the slot vanish. The IR scheme does well at maintaining the initial plateaus

and a distinct slot, although diffusion into the slot raises the minimum concentration from

0 to ∼0.2. Early in the IR simulation there is truncation at the leading and trailing edges

of the cylinder, where the gradient is limited, but advection continues thereafter with lit-
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Figure 8. (a): u velocity component of CICE for the square domain test case using a quadrilateral mesh.

(b,c,d): Difference (∆u/umax) between the u component of MPAS-Seaice and CICE in the square domain test

case for the MPAS-Seaice Wachspress variational, PWL variational and weak schemes respectively and using

a quadrilateral mesh. (e-h): As (a-d) but for the u component of the divergence of internal ice stress.

tle change in shape. The maximum concentration is just above 1 because the discretized

velocity field is slightly convergent, and diffusion is small. On a plane (not shown) with

steady u = (u0, 0), the discretized velocity field is non-convergent, and a remains bounded

by [0,1]. Ice thickness, having been initialized to h = 1 everywhere, remains h = 1 ev-

erywhere (within roundoff), showing that both schemes preserve tracer monotonicity as

expected.

Figure 13 shows the L2 error norm of the 12-day solution for four grid resolutions

ranging from 60 km to 480 km (where resolution is taken as the mean distance between

neighboring cell centers). The L2 norm is here given by

L2 =

√∑
Ai(ai − âi)2√∑

Ai â2
i

, (66)

where ai is the 12-day solution for cell i, âi is the initial ice area, and Ai is the primary

grid cell area. Each doubling of resolution should reduce the L2 error norm by a factor

of 2 for first-order-accurate schemes and a factor of 4 for second-order-accurate schemes.

Figure 13 shows that the IR solution converges with close to second-order accuracy (indi-

cated by the dotted diagonal line) for the cosine-bell and converges slightly below first-

order accuracy for the slotted cylinder. This slow convergence for the slotted cylinder
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Figure 9. (a): u velocity component of MPAS-Seaice with the Wachspress variational scheme the for the

square domain test case using hexagonal elements. (b,c): Difference (∆u/umax) between the u component

of MPAS-Seaice using the Wachspress variational scheme and MPAS-Seaice using the PWL variational and

weak schemes respectively in the square domain test case using hexagonal cells. (d-f): As (a-c) but for the u

component of the divergence of internal ice stress.

is the result of the ice concentration discontinuity at the cylinder edge, which becomes

sharper as the distance between neighboring grid cells decreases as resolution increases.The

upwind scheme converges more slowly than the IR scheme, with larger errors at all resolu-

tions.

3.3 Column physics

To validate the column physics in MPAS-Seaice we make use of the fact that CICE

and MPAS-Seaice share identical code. CICE and MPAS-Seaice were run with identical

forcing and with dynamics disabled. Results from the two models were bit-for-bit identi-

cal.

3.4 Global simulations

To validate the full MPAS-Seaice model in a global setting we perform stand-alone

global simulations. We use a quasi-uniform mesh with average cell center to neighbor cell

center distances of 60 km. The unstructured MPAS mesh allows flexibility in defining
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Figure 10. Principal stress components for the square domain test case and (dotted) the EVP yield curve.

(a): CICE. (b-d): MPAS-Seaice on a quadrilateral mesh and using the Wachspress variational, PWL varia-

tional and weak schemes respectively. (e-g): MPAS-Seaice on a hexagonal mesh and using the Wachspress

variational, PWL variational and weak schemes respectively.

model domains, so for computational efficiency we remove cells in the equatorial region

away from high latitudes where sea ice is found. The mesh then consists of two separate

polar caps. Culling equatorial cells in this way resulted in a halving of computation time

with no loss of precision. We perform the simulation for 50 years from 1958 to 2007.

Settings for the column physics are the standard ones for CICE [Hunke et al., 2015].

For atmospheric and oceanic forcing we repeat the methods used by Hunke et al.

[2013]. Air temperature, air specific humidity and air velocity at 10 m height and six-

hourly frequency are taken from the Coordinated Ocean-ice Reference Experiments (CORE)

Corrected Inter-Annual Forcing Version 2.0 [Large and Yeager, 2009; Griffies et al., 2009].

Monthly climatologies of precipitation [Griffies et al., 2009] and cloudiness [Röske, 2001]

are also used. Downwelling shortwave radiation is calculated from the monthly clima-

tology of cloudiness using the AOMIP shortwave forcing formula [Hunke et al., 2015].

Downwelling longwave radiation is calculated according to Rosati and Miyakoda [1988].

Oceanic inputs, consisting of sea surface salinity, initial sea surface temperature, currents,

sea-surface slope and deep ocean heat flux, come from monthly mean output of 20 years

of a Community Climate System Model (CCSM) climate run (b30.009, Collins et al.,
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Figure 11. Comparison of incremental remapping to a first-order upwind scheme for advection around

the sphere. (a) shows a circular region of sea ice whose center lies on the equator, with radius R/3 (where

R is the Earth’s radius) and initial sea-ice concentration given by a cosine-bell. (b) shows a slotted cylinder

whose center lies on the equator, with radius R/2. The grid resolution is 120 km. The exact solution (which

corresponds to the initial condition) is shown by a solid line, IR by long dashes, and upwind by short dashes.

2006). All input forcing fields are interpolated linearly in time, although the MPAS forc-

ing functionality can be easily extended to allow interpolation in time with arbitrary order.

We compare the MPAS-Seaice results to both observational datasets and to the re-

sults of simulations conducted with the CICE model [Hunke et al., 2015, release version

5.1.2]. The CICE model uses a one-degree displaced-pole quadrilateral grid, and the de-

fault namelist options. The forcing used by CICE is the same as MPAS-Seaice but inter-

polated onto the one-degree mesh.

Total sea-ice extent is compared between the MPAS-Seaice and CICE models and

observational values in Figure 14 for the years 1988 to 2007 inclusive. The observational

sea-ice extent values for the Northern [Cavalieri and Parkinson, 2012; Parkinson et al.,

1999] and Southern Hemisphere [Parkinson and Cavalieri, 2012; Zwally et al., 2002] show

excellent agreement with both models, with the seasonal cycle of sea-ice extent well rep-

resented in both hemispheres. The largest discrepancy occurs in the Southern Hemisphere

where Austral summertime sea ice extent is too low in both models.

A similar agreement between models and observations is found in Figure 15 where

sea-ice concentration from SSMI observations using the NASATeam method [Cavalieri

et al., 1996, updated yearly] is compared spatially to model observations for summer and
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Figure 12. Initial (a,d) and final (b,c,e,f) ice concentration contours at120 km resolution for the cosine-bell

(a-c) and slotted cylinder (d-f) advection test cases. Results for the upwind advection scheme are shown in (b)

and (e), while results from the incremental remapping scheme are shown in (c) and (f). Contours are at levels

0.05, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.95 unless otherwise shown.

winter periods in both hemispheres. Minor differences are present in both models at the

Arctic ice edge during winter and in the pack interior in summer. In general the sea-ice

extent is well reproduced. In the Southern Hemisphere the sea-ice extent is reasonably re-

produced in summer by both models with more significant differences in the pack interior.

As expected from Figure 14, more significant differences are found between the model

results and observations in the Southern Hemisphere summer where ice concentration is

particularly underrepresented in the models in the Weddell Sea. In general, agreement is

much closer between the two models than between the models and observations. This is

expected given the similarity of the models and model forcing.

Total sea-ice volume for the Northern Hemisphere is compared between the mod-

els and the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) assimi-

lated data product [Schweiger et al., 2011] in Figure 16. Both models and PIOMAS have

the expected seasonal cycle with a similar variation between summer and winter and a

decrease in total volume over time. Small differences exist between the two models and

–28–



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

60 120 240 480

Grid resolution (km)

10−1

100

L
2
er
ro
r
n
o
rm

Ice concentration

CB IR

CB Upwind

SC IR

SC Upwind

Figure 13. Scaling of the L2 error norm with grid resolution for the cosine-bell (CB) and slotted cylinder

(SC) advection tests shown in Figure 11. IR scaling is shown by the solid lines, upwind by long-dashed lines.

Theoretical linear and quadratic scaling are shown by a short-dashed lines.

the PIOMAS product in terms of absolute ice volume level, with CICE experiencing the

greatest sea-ice volume and PIOMAS the least. The cause of these differences is explored

in Figure 17 where spatial patterns of sea-ice thickness are shown for the Northern Hemi-

sphere in summer, autumn and winter. To better understand these differences in sea-ice

volume we compare the models to observations of sea ice thickness from ICESat [see

Figure 17, Yi and Zwally, 2009]. ICESat data is available from set periods from 2003 to

2008 during these seasons, and the model climatological maps are generated for the same

periods. ICESat observations exclude sea ice with concentration less than 20%, so sea-

ice thicknesses were excluded from the model results in the comparison where model ice

concentration was less than 20%. Similar spatial patterns of sea ice are found in the re-

sults of both models and the ICESat observations, with thicker sea ice along the Canadian

archipelago coast and thinner sea ice everywhere at the end of the summer melt season.

Both MPAS-Seaice and CICE have excess sea ice thickness compared to ICESat observa-

tions in the Beaufort sea and western Arctic basin and a deficit of sea ice thickness in the

Eurasian basin.
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Figure 14. Sea ice extent (area with ice concentration greater than 15%) by year for the Northern (a-c) and

Southern (d-f) Hemispheres, for MPAS-Seaice (a,d), CICE (b,e) and SSMI satellite observations (c,f).

4 Conclusions

The new sea-ice model, MPAS-Seaice, has been described here. Idealized test cases,

both on planar and spherical meshes, have successfully validated the velocity solver and

transport schemes. These schemes are heavily based on those implemented in the CICE

sea-ice model, but adapted for the polygonal cells of MPAS meshes from the quadrilateral

ones used in CICE. When using the variational scheme with Wachpress basis functions

and a quadrilateral MPAS mesh, the velocity solver of MPAS-Seaice replicates the ve-

locity solver algorithm of CICE, allowing rapid testing and validation. MPAS-Seaice and

CICE share the sophisticated suite of column physics and biogeochemistry originally de-

veloped in CICE, again allowing its rapid development. Global simulations with realistic

forcing have validated MPAS-Seaice against similar simulations with CICE and against

observations for sea-ice concentration, extent and volume. MPAS-Seaice has been coupled

into the Energy Exascale Earth System Model (E3SM), and the validation experiments de-

scribed here give confidence in the sea-ice results from E3SM simulations. Future work

will assess the fidelity and performance of MPAS-Seaice on variable resolution meshes.
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Figure 15. Spatial climatological maps for 1988 to 2007 of sea ice concentration from (a-d) SSMI satellite

observations processed with the NASATeam algorithm, (e-h): MPAS-seaice, and (m-p): CICE. (i-l): Dif-

ferences between MPAS-Seaice ice concentration and SSMI observations. (q-t): Differences between CICE

ice concentration and SSMI observations. (a,e,i,m,q): Northern Hemisphere Winter: January, February, and

March. (b,f,j,n,r): Southern Hemisphere summer: December, January, and February. (c,g,k,o,s): Northern

Hemisphere summer: July, August, and September. (d,h,l,p,t): Southern Hemisphere winter: June, July, and

August.
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Figure 16. Northern Hemisphere total sea-ice volume by year. (a) MPAS-Seaice. (b) CICE. (c) PIOMAS.
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Figure 17. Spatial climatological maps of sea-ice thickness from ICESat (a-c), MPAS-Seaice (d-f), and

CICE (j-l). (g-i): Differences between MPAS-Seaice ice thickness and ICESat observations. (m-o): Dif-

ferences between CICE ice thickness and ICESat observations. (a,d,g,j,m): NH summer. (b,e,h,k,n): NH

Autumn. (c,f,i,l,o): NH Winter.
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