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Abstract—This paper focuses on the critical challenge of
sub-band allocation for dense 6G In-factory subnetworks. We
introduce a deep learning (DL) framework explicitly designed
to effectively address the inherent optimization problem in sub-
band assignment to subnetworks. To enhance the model’s training
process, a novel strategy is implemented to handle integer
optimization variables. The proposed approach aims at utilizing
resources more efficiently by maximizing the number of rate-
conforming subnetworks, serving as the key component of the
loss function. Simulation results demonstrate that, across various
classes of subnetworks, the proposed method achieves superior
performance compared to State-of-the-Art (SoA) benchmarks
with minimal computation time.

Index Terms—deep learning, resource allocation, 6G, in-factory
subnetworks

I. INTRODUCTION

In the emerging era of 6G wireless communication, In-X
subnetworks play a pivotal role by providing localized con-
nectivity for diverse applications, ranging from in-robot and
in-production module communication to in-vehicle, in-room,
and even human-body communication [1]. These subnetworks
are anticipated to support diverse services, possibly extreme
requirements in terms of ultra-short control cycle time, reli-
ability, and service availability, surpassing the capabilities of
5G and its evolution [2].

When In-X subnetworks coexist within the coverage area of
a larger 6G network, such as an enterprise network in a factory,
central radio resource management (RRM) becomes feasible.
Various heuristic methods have been proposed in the literature,
which have demonstrated satisfactory performance. One well-
known approach involves representing the wireless network as
a conflict graph, where cells are nodes, and edges represent
interference relationships among these nodes; known methods
utilize a graph coloring algorithm for sub-band assignment,
e.g. coloring of the graph using a greedy algorithm [3].
An advanced frequency resource allocation scheme, known
as sequential iterative subband allocation (SISA), has been
designed recently to minimize the sum of interference-to-
signal ratios across all subnetwork links [4]. While traditional
optimization methods and heuristics have proven effective
in certain contexts, the dynamic and complex nature of In-
X subnetworks demands a more adaptive and data-driven
approach, necessitating the adoption of advanced artificial
intelligence (AI) solutions. The use of graph neural networks
has gained considerable attention in addressing large-scale
interference management challenges [5]. This category of

machine learning (ML) approaches has been applied for power
control for In-factory subnetworks (InF-S) [6]. Reinforcement
learning approaches have been applied to various challenges,
including sub-band allocation [7], power control [8], joint sub-
band and transmit power selection [9], [10], and interference
control [11]. For centralized resource allocation in multi-cell
networks, supervised learning solutions based on Deep Neural
Networks (DNN) have been presented in [12]. Furthermore,
DNN methods have found application in various tasks such
as user association, sub-band allocation, and power allocation
within non-orthogonal multiple access systems, as outlined in
[13]. Deep learning based sub-band allocation scheme aimed at
minimizing overall co-channel interference is proposed in [14].
The effectiveness of treating signal processing problems as an
unknown nonlinear mapping from input to output and employ-
ing deep neural networks to approximate it has been demon-
strated in [15]. This approach was applied to approximate an
interference management algorithm, showcasing its successful
application in the realm of signal processing. Additionally,
Deep power control to maximize either spectral efficiency
(SE) or energy efficiency (EE), based on convolutional neural
network (CNN), is proposed in [16]. Subnetworks may lead
by nature to highly dense deployments (e.g., vehicles in a
congested road, humans attending crowded events) and they
can be mobile. A factor x10 densification with respect to 5G is
indeed expected in 6G [17]. These characteristics may result in
wide and rapidly fluctuating interference patterns, which make
the problem of radio resource allocation more challenging
than in traditional wireless setups, characterized by static
base stations/access points and lower cell densities. InF-S is
required to support different services, including Ultra-Reliable
and Low Latency Communications (URLLC) and enhanced
Mobile Broadband (eMBB), each with distinct requirements.
While eMBB prioritizes high data rates, URLLC services
demand low latency and high reliability. In this paper, we
address the sub-band allocation problem for a dense InF-S
by formulating and solving it with a focus on the efficient
utilization of resources to meet the required data rates of
various subnetworks. The contributions of our research can
be summarized as follows.

• We consider heterogeneous subnetworks with varying
required rates, defining the rate-conforming subnetworks
(RCS) (i.e., count of subnetworks reaching the required
rates) as the loss function and integrate a DNN to ad-



dress the sub-band allocation optimization problem. Our
approach diverges from simply maximizing the aggregate
data rates of subnetworks, whether with or without Qual-
ity of Service (QoS) constraints.

• In order to solve the formulated problem which involves
discrete optimization variables, we design an unsuper-
vised learning based training methodology and incorpo-
rate a novel training strategy, which enables DNN to be
trained without needing any labeled training data.

• The efficacy of the proposed scheme is assessed through
computer simulations. Our findings validate that the pro-
posed scheme outperforms SoAs in the same deployment
scenario, achieving a higher number of RCS while re-
quiring less computation time.

This paper is organized as follows: Section II introduces the
problem statement. Section III presents the proposed DL-
based sub-band allocation, including the DNN structure and
training methodology. The performance evaluation is discussed
in Section IV. Finally, the conclusion is presented at the end
of the paper.

II. PROBLEM STATEMENT

In this section, we outline the problem statement, where we
formulate the sub-band allocation problem under considera-
tion.

We consider a manufacturing facility comprised of an entity
equipped with RRM functionality. This entity harnesses its
capabilities to effectively govern radio resources, serving the
role of a centralized controller (CC). The factory incorporates
numerous short-range cells deployed across robotic systems,
production modules, conveyors, and other industrial machin-
ery. Each of these cells, referred to as InF-S, encompasses
a central communication node designated as an access point
(AP), which functions as the edge processing resource for
one or multiple devices within the respective subnetwork.
Fig. 1 shows a simplified representation of a 2D layout
of an InF-S deployment which contains different group of
subnetworks with different required rates or equivalently SE.
The representation shows a single uplink between a sensor
and an AP in each subnetwork, and a signalling link from
each subnetwork’s AP to a CC. All the devices within a
subnetwork are allocated orthogonal resources, therefore inter-
cell interference is the main limitation to the subnetwork’s SE.
For simplicity, for the rest of the paper, we assume that each
subnetwork serves a single device whose transmissions occupy
the available bandwidth. We focus on the uplink transmission
of N subnetworks which are indexed by n ∈ {1, · · · , N}.
In the considered system, there are K sub-bands, where
k ∈ {1, · · · ,K} denotes the set of sub-bands which devices
use to transmit data to the AP. It is assumed that each
subnetwork has the capability to operate exclusively over a
single sub-band.

In this paper, the objective of resource allocation is to
maximize the number of subnetworks which can achieve their
required rates while ensuring the reliability of critical services.

To achieve this goal, the selection of the sub-band, represented
by an, must be optimized based on current channel conditions.
Instead of trying to find the solution of the mentioned variable
optimization problem directly through numerical approaches,
we transform it into a functional optimization problem. The
aim is to find a function that maps the environment i.e.,
channel gains to optimal solutions, i.e., sub-band allocation.
To address this functional optimization problem, unsupervised
learning techniques are employed. Leveraging the universal
approximation theorem [15], DNNs can approximate a wide
range of functions. Therefore, they can be utilized to represent
functions that approximate the optimal sub-band allocation
strategy for various radio channel conditions. The achievable
SE (bits/s/Hz) at subnetwork n in the k-th sub-band is approx-
imated using the Shannon capacity equation as shown below

SEk
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(
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hn,nf
k
n(H)Pm
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)
,

(1)
where hm,n represents the channel state of the link from the
interfering device in subnetwork m, and fkn(.) denotes the
approximation function for optimal sub-band selection, such
that akn = fkn(H). The transmit power, denoted as Pm, is
uniform across all subnetworks. The term γ2m,n is the receiver
noise power calculated as γ2m,n = 10(−174+NF+10log10(Wk))

where Wk denotes the bandwidth of each sub-band and NF
is the receiver noise figure. The proposed sub-band allocation
scheme aims to find the optimal fkn(.) to maximize the
expected number of subnetworks conforming to the required
SEs or, equivalently minimize the number of subnetworks that
can not reach their target SEs or rates. Let SEreq

n represent the
required SE. The optimal sub-band allocation strategy can be
found by solving the following optimization problem:

minimize
fk
n∈{0,1}

N∑
n=1

1(SEn(f
k
n(H)))

s.t.
K∑

k=1

fkn(H) = 1, ∀n ∈ N,

(2)

where 1(SEn) is a binary indicator function with a value of 1
if SEn ≤ SEreq

n and 0, otherwise. The optimization problem in
(2) involves maximizing the number of RCS (

∑N
n=1 1(SEn ≥

SEreq
n )) subject to a constraint that ensures only one sub-band

is used by each subnetwork.

III. DEEP LEARNING FRAMEWORK FOR SUB-BAND
ALLOCATION

In this section, we present the structure of the adopted DNN
model and describe the learning strategy employed for training
the DNN model.

A. Structure of the DNN model

Fig. 2 illustrates the configuration of our proposed DNN,
which is based on the fully connected neural network (FNN).
The DNN takes the channel gain matrix H as input, estimates



Fig. 1: In-factory subnetworks with different rate requirement

the function fkn , and generates the sub-band allocation vector
an as the output. In the preprocessing stage, the channel gains
undergoes reshaping into a one-dimensional vector, a crucial
step for integration within the FNN [16]. Subsequently, the
values are transformed to the dB scale to restrict the range of
possible channel gains. Following this, normalization ensures
a zero mean and unit variance. The model then processes the
normalized channel gain through the FNN. The FNN structure
consists of ML layers, each including a fully connected unit,
batch normalization, and a rectified linear unit (ReLU). After
the last ReLU, dropout is applied for regularization [14]. The
number of hidden nodes for a fully connected unit is set
to MH , with ReLU acting as the activation function. Batch
normalization and dropout are employed to mitigate overfitting
of the DNN. The output of the final layer connects to the
last fully connected unit, resulting in NK outputs. These
outputs are then reshaped into N×K and fed into N softmax
modules. Each softmax module corresponds to the sub-band
assignment for a specific subnetwork, executing the softmax
operation. This yields K outputs indicating the probability
that a sub-band is utilized by the respective subnetwork.
The constraint on the sub-band allocation problem (2) is
consistently satisfied, as the softmax outputs sum to one. As
illustrated in Fig. 2, the sub-band allocation process differs
between training and inference. Specifically, during training,
the output of the softmax module, akn, directly represents the
selected sub-band. However, during inference, akn is set to
1 for k′ = argmaxk a

k
n, and akn is set to 0 for all other

k to adhere to the binary constraint in the implementation.
This binarization introduces a difference between the resource
allocation strategy used in training and that employed during
inference, leading to performance degradation. To address the
binary constraint, as outlined in the optimization problem in
(2), a soft binarization technique is implemented. This tech-
nique progressively guides continuous output values towards
binary representations during the training steps. Parameterized
softmax modules are leveraged for this purpose, where the n-
th softmax layer block’s k-th output (ϕδ(zkn)) is defined as:

ϕδ(z
k
n) =

ez
k
n/δ∑K

k=1 e
zk
n/δ

. (3)

Here, zkn represents the input to the n-th softmax layer
block, and δ ∈ (0, 1] is a parameter controlling the sharpness
of the probability distribution generated by the softmax. A
higher δ value results in a softer, more uniform distribution,
while a lower δ value leads to a sharper distribution. For a
moderate regime of δ, the parameterized softmax function
maintains a non-zero gradient, facilitating efficient training
via the stochastic gradient descent algorithm. To mitigate the
vanishing gradient problem associated with a small value of
δ, an adaptive scaling approach is employed. The scaling
factor is decreased at predefined intervals by a reduction factor,
ensuring effective training convergence without encountering
the vanishing gradient issue.

B. Loss function and training of the DNN model

The decision to adopt unsupervised learning is driven by the
significant time investment required to obtain labeled data for
supervised training, especially when dealing with a substantial
number of subnetworks. Unlike supervised learning, where
input data H is labeled by the output data (optimal sub-
band allocation an), our approach leverages unsupervised
learning. This allows our DNN to be effectively trained using
a carefully designed loss function, eliminating the need for
labeled data. Directly using the objective of (2) as the loss
function can impact the efficiency of back-propagation-based
training. This is due to the non-differentiability of a step
function, as in the objective of (2), at specific points. To
address this challenge, we employ a modified version of the
objective function in (2) to ensure differentiability throughout
the optimization process. By replacing the binary indicator
function with sigmoid function as a differntiable alternative,
We construct the loss function as

L =
σ(SEreq

n − SEn)

SEreq
n

, (4)

where σ(·) denotes the sigmoid function defined as σ(z) =
1

1+e−z . The denominator is used to weight different required
SEs, reflecting practical scenarios where low-rate subnetworks
(LRS), such as those involved in robot control applications,
are usually critical and should be more reliable. In contrast,
high-rate subnetworks (HRS), like those in visual inspection



Fig. 2: Structure of the proposed DNN model

applications, despite high data rate requirement allow for
acceptable degradation in instantaneous performance. In the
proposed DNN-aided sub-band allocation, the trained model
approximates the sub-band allocation for any channel real-
ization, allowing the scheme to adapt to various channel
conditions without requiring retraining. While the DNN’s
structure is influenced by the deployment configuration, in-
cluding the number of subnetworks and sub-bands, the training
phase may require significant computation time. However, this
training process is conducted offline, prior to operations. This
offline training approach significantly reduces time complexity
compared to iterative algorithms. In the upcoming section, we
evaluate both the performance and complexity of the proposed
model.

IV. PERFORMANCE EVALUATION

In this section, we present the performance of the proposed
DNN sub-band allocation scheme and compare it with SoA
algorithms serving as benchmarks. We consider N InF-S
deployed in an L × L

(
m2
)

factory area. At each InF-S, AP
positioned at the center of a circular coverage area with radius
R, and a device located at a distance d from the AP, ensuring
a minimum proximity of dmin. We consider two groups of
subnetworks: LRS and HRS, aligning with robot control and
visual inspection use cases. The selected values for SEreq

L and
SEreq

H , taking into account the bandwidth of 10 MHz per sub-
band, yield rate requirements of 4 Mbps and 80 Mbps for LRS
and HRS, respectively [1].

The wireless communication channel model that we con-
sider for the connection of the devices and AP is based on
the model that the 3rd Generation Partnership Project (3GPP)
released for InF scenarios [18]. The channel gain in the link
between the sensor at subnetwork m and the AP in subnetwork
n is expressed as

hm,n = |gm,n|2 · Γm,n · ψm,n, (5)

where gm,n, Γn,m and ψm,n are complex small-scale fading,
path loss and correlated shadowing respectively. The small
scale fading, g, is assumed to be Rayleigh distributed and

TABLE I: Simulation parameters
Parameter Value

Deployment and System Parameters

Factory area, L× L 20 m×20 m

Number of subnetworks, N 20

Number of sub-bands, K 4

Subnetwork radius, R 1 m

Number of devices per subnetwork, J 1

Minimum distance between APs 2 m

device to APs minimum distance, dmin 0.8

Shadowing standard deviation, λ 7.2 dB

DL clutter density, r, clutter size, ds 0.6, 2

De-correlation distance, dc 5 m

Transmit power, Pm 0 dBm

Bandwidth, B 40 MHz

Center frequency, fc 10 GHz

Noise figure, NF 5 dB

LRS required SE, SEreq
L 0.4

HRS required SE, SEreq
H 8

DNN Parameters

Number of hidden nodes, MH 1000

Number of hidden layers, ML 4

Learning rate, α 1e−5

Dropout rate 0.1

Batch size, MB 1024

Training epochs 200

Training samples 1e5

Validation samples 1e4

for the path loss model we consider dense clutter and low
base station height InF (DL) scenario. The specific details
regarding the calculation of losses can be found in [18].
Subnetwork links are assumed to have correlated shadowing
[19], meaning a source of shadowing will affect several links
simultaneously. First part of the Table I shows the simulation
parameters for system model. Regarding the DNN structure,
we set the hyperparameters according to the second part of
the Table I. The performance evaluations were conducted in a
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Fig. 3: Training metrics of DNN

cloud computing environment using resources equipped with
an AMD EPYC-Rome Processor(40 cores, 40 threads at 2.9
GHz) and an NVIDIA A40 GPU, with 64GB of RAM. The
proposed scheme is compared with three baseline schemes:

• Centralized Graph coloring (CGC): Utilizes a graph col-
oring algorithm for color assignment, ensuring that near-
est K−1 neighbors generating the strongest interference
do not share a common sub-band [3].

• Sequential Iterative Sub-band Allocation (SISA): A cen-
tralized iterative algorithm that minimizes the sum of
weighted interference [4].

• Random Allocation (RA): A distributed scheme where
one sub-band is randomly selected from the available K
options for each subnetwork.

To validate the efficacy of the loss function in handling the
binary constraint, the evolution of the loss functions and the
binarization error is assessed. The binarization error is defined
as E|an − round(an)|. Fig. 3 illustrates the values of the
loss functions for both training and validation data, along with
the binarization error. Considering that optimization variables
an fall within the range of 0 to 1, the maximum value of
the binarization error is 0.5. Post-convergence, the binarization
error becomes exceedingly small, confirming that our DNN
model proficiently generates binary values.

Fig. 4 presents the empirical cumulative distribution curve
(ECDF), which serves as a statistical tool to illustrate the
proportion of subnetworks achieving a given level of SE or
better, across all evaluated scenarios. In Fig. 4(a), it is evident
that RA and CGC cannot guarantee the required rates for
all LRS. For approximately 10 percent of the subnetworks,
these methods fail to reach the specified rate. In contrast,
both SISA and DNN perform exceptionally well for LRS.
The majority of the time, employing either of these algorithms
enables LRS to meet their required rates. Fig. 4(b) illustrates
RCS for HRS, showcasing the superiority of the proposed
DNN-based sub-band allocation over other benchmarks. On
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Fig. 4: Rate-conforming InF-Ss

average, three subnetworks of HRS can achieve the required
rates, while this number is two for SISA. It is important to
emphasize that the data traffic of subnetworks may vary at
each time interval, necessitating effective data transmission
management through a scheduler within the InF-S. In high-
load scenarios, where resources are limited and not all sub-
networks can attain their target rates, those falling short of the
target may need to adjust their functionality to a lower rate.
This adaptation is particularly relevant in use-cases such as
vision inspection, where sensors can still operate effectively
with lower resolution. Despite the evident advantages of our
proposed scheme, it is essential to acknowledge that, in the
current landscape of hyper-dense deployment and constrained
resources like bandwidth, relying solely on sub-band allocation
may not guarantee meeting the expected rate requirements
for all subnetworks simultaneously. Therefore, it becomes
crucial to consider implementing power control mechanisms or
exploring alternative approaches to further enhance the number
of subnetworks meeting their rate requirements.



10 20 30 40 50 60

Number of subnetworks

10
-3

10
-2

10
-1

10
0

10
1

10
2

A
v
e
ra

g
e
 e

x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
)

SISA

CGC

DNN

Fig. 5: Computational runtime for different algorithms

The trained DNN network consists of simple linear and
nonlinear transform units in the forward path, enabling the
potential for parallel computation. This design choice facili-
tates efficient execution and results in low computation time.
In contrast, benchmarks like CGC and SISA rely on iterative
algorithms, introducing challenges in parallel implementation
and limiting their computational efficiency. The computational
runtime for different algorithms is shown in Fig. 5. The
significantly lower time required by DNN compared to the
benchmarks highlights the efficiency of the DNN-based ap-
proach in the context of sub-band allocation, particularly in
scenarios involving large-scale computations.

V. CONCLUSION

This paper has introduced an unsupervised DNN-based
sub-band allocation algorithm specifically tailored for 6G In-
F subnetworks, considering heterogeneous data rate require-
ments. Our primary objective was to maximize the number
of subnetworks achieving their target data rates, utilizing a
formulation that incorporates discrete optimization variables.
Through computer simulations, we demonstrated the supe-
riority of our proposed scheme over heuristic benchmarks,
showcasing enhanced performance accompanied by reduced
computation time. While the DNN-based sub-band allocation
exhibits comparable performance to SISA for low rate sub-
networks, it has enhanced the likelihood of achieving specific
RCS targets by approximately 20% for high rate subnetworks.
Future research endeavors will delve into extending the DNN
approach to address other radio resource management chal-
lenges, such as power control, with the aim of ensuring that
all subnetworks simultaneously reach their target rates, even
in extremely dense and dynamic factory environments.
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