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Abstract—With the evolution of 3D tools, there is now plenty of
3D data for digital applications. This includes 3D retrieval, which
seeks to manage such data across varied representations like
point clouds, meshes, and multi-view images. However, efficiently
utilizing these representations for retrieval poses a challenge.
This paper evaluates different representations of each modality in
uni-modal retrieval and explores optimal combinations for multi-
modal retrieval. Results indicate MuseHash’s superiority in MAP
metric, while CMCL excels in recall. This study expands existing
research by providing insights into optimal representations and
combinations for 3D retrieval.

Keywords—Information Retrieval, Multimedia Databases, Su-
pervised Learning

I. Introduction
Recent developments in 3D modeling tools [1], scan-

ning technology [2], and consumer devices embedding 3D
sensors [3] have greatly increased the accessibility of vast
quantities of 3D content. This evolution has had significant
impact across multiple sectors, including entertainment, gam-
ing, healthcare [4], archaeology [5], computer-aided design
(CAD) [6], and autonomous systems [7]. These advancements
not only simplify 3D content creation for individuals but also
revolutionize industries by streamlining design processes and
facilitating more informed decision-making [8]–[12].

The community has explored various representations for 3D
data, including point clouds, meshes, and multi-view images;
see Figure 1. In point clouds [13], [14], each point corresponds
to a position in space, encapsulating spatial information within
the mode, while meshes [15], [16] are constructed from
interconnected triangles to approximate the surface shape of
objects. Finally, multi-view images [17], [18] have emerged
as an effective representation, comprising a series of images
captured from different viewpoints of 3D shapes.

Efficient 3D model retrieval faces a key challenge in the
structured representation of data [19]. This challenge is to
develop methods that can efficiently utilise these diverse repre-
sentations to ensure accurate and fast retrieval. Point clouds of-
fer detail but demand computational resources, meshes provide
structure but require careful processing, and multi-view images
offer comprehensive visuals but may necessitate significant
storage and processing.

Fig. 1. Examples of 3D representations.

Recent studies highlight the significance of utilising diverse
3D representations, by considering them as distinct modalities
of the same 3D objects and integrating various modalities
to improve retrieval performance [20]–[22]. We have recently
introduced MuseHash [22], a supervised method adapted from
the multimodal image domain to 3D retrieval. The results
of [22] indicated that (a) MuseHash outperformed CMCL,
the state-of-the-art algorithm from the 3D domain, and (b) a
combination of mesh and multi-view image modalities gave
the best retrieval performance.

This paper is intended to address three shortcomings of
the original work. First, due to space limitations, we only
considered one representation of each modality. Second, again
due to space limitations, the performance of the point cloud
and multi-view images were not studies in a uni-modal sce-
nario; since multi-view images contributed to the best retrieval
performance, it is important to understand their uni-modal per-
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formance. Second, we were not aware of the CMIC algorithm,
a recent publicly available 3D retrieval method [21], which
also outperformed the CMCL algorithm. In this paper, we thus
perform a complete study of all three 3D modalities, both as
uni-modal representations and as multimodal representations,
comparing MuseHash to the two main competitors from the
3D domain, namely the CMCL and CMIC algorithms, aiming
to identify the most beneficial combinations for 3D retrieval.

This paper thus expands the existing research [22], making
the following main contributions:

• We compare MuseHash with the state-of-the-art methods
from the 3D retrieval domain, to evaluate its performance
against recent approaches. MuseHash outperforms all
methods based on the importance of MAP metric, while
CMCL works well with the recall metric.

• We compare two representations of all three modalities—
point clouds, meshes, and multi-view images—in a uni-
modal retrieval scenario, to determine the optimal rep-
resentation of each modality. We find that GoogleNet,
MeshNet and DGCNN are the best representations of the
image, mesh and point cloud modalities, respectively.

• We comprehensively explore all multimodal combina-
tions, to identify the optimal combinations for 3D re-
trieval. As before, we find that the combination of the
mesh and image modalities yields the best results.

The remainder of this paper is organised as follows: Sec-
tion II offers an overview of related literature, while Section III
delves into the detailed description of the proposed evaluation.
Subsequently, Section IV showcases the experimental findings,
leading to a summary in Section V to conclude the paper.

II. Related work

Although there are several representations of 3D data, the
bulk of the research work focused on images, meshes and point
clouds. Therefore we will limit our research only to these
methods. In the domain of 3D retrieval there is a plethora
of methods, distinguished into uni-modal and multimodal
methods based on the number of the modalities that they use.
Uni-modal methods use only one modality (e.g., mesh or point
cloud) while multimodal methods two or more modalities (e.g.,
mesh and point cloud).

For the mesh data, MeshNet [15] and MeshCNN [16]
represent two cutting-edge approaches that exclusively utilise
mesh data. MeshNet operates by converting mesh data into
sequences of faces, where each face is associated with spatial
and structural vectors, which are then combined using a multi-
layer perceptron. Conversely, MeshCNN performs convolution
and pooling operations directly on mesh edges and neighboring
triangle edges, thus maintaining the inherent structure of the
mesh throughout pooling.

For the point cloud data, PointNet [14], for instance, is
an architecture designed to effectively handle unordered point
clouds, offering a holistic end-to-end solution for tasks such
as classification and retrieval. DGCNN [13], on the other
hand, employs dynamic graph convolution for processing point

clouds, although challenges persist due to the sparsity and
irregularity inherent in point cloud data.

For the image data, VGG16 [23], AlexNet [24], ResNet50
[25] and GoogleNet [26] are popular deep learning architec-
tures used for image retrieval. Based on a recent survey [27],
ResNet50 and GoogleNet stand out as reliable options for
extracting visual features, because they are more stable than
the others across different 3D datasets.

Turning these approaches into 3D multimodal retrieval,
other approaches leverage diverse representations to conduct
combined queries, enhancing retrieval performance by exploit-
ing multiple sources of information. Cross-Modal Center Loss
(CMCL) [20] integrates point clouds, meshes, and multi-view
images into a unified framework. This approach collectively
trains representations from various 3D modalities to identify
optimal features. Various loss functions, such as cross-entropy
and mean-square-error, are utilised to refine and enhance the
framework’s performance. Additionally, Cross Modal Instance-
Category (CMIC) [21] is a technique for image based 3D
shape retrieval that utilises cross-modal contrastive learning
from instance and category levels. It introduces a color transfer
mechanism as a powerful data augmentation technique for
improving contrastive learning.

In addition to the mentioned methods, a recent work [22]
extends techniques from image retrieval to 3D retrieval. For
instance, Label-Attended Hashing (LAH) [28] initially gener-
ates embedding for images and label co-occurrence separately,
then integrates them using a graph convolutional network to
boost the model’s capabilities. Similarly, Supervised Bayesian
Hashing for Multimodal Image Representation (MuseHash)
[29] estimates semantic probabilities and statistical properties
during retrieval, showing promise in multimodal retrieval and
aligning well with the complexities of 3D data.

In this study we will evaluate all models in the uni-
modal scenario. Additionally, we will explore the utilisation
of various aforementioned techniques in the multimodal sce-
nario to assess which descriptors enhance the performance of
multimodal approaches.

III. Methodology
To formally address the problem, we establish the following

scenario: Let Q represent a query object and DB denote a
database containing a collection of 3D objects represented in
various views, including images and meshes. The primary goal
is to conduct efficient retrieval, aiming to identify objects in
DB that exhibit similarities with Q. This retrieval process en-
tails a detailed analysis of the unique features characterizing Q,
followed by a comparison of these features with corresponding
attributes of objects in DB to determine relevant matches.

The framework consists of three distinct phases: training,
offline, and querying. During the training phase, data is input
into a designated architecture, resulting in the generation of
feature vectors. In the offline phase, features are extracted from
a retrieval set and stored in a database for future reference. In
the online phase, the architecture is applied to queries, and
relevant results are retrieved from the database.



In 3D retrieval, ResNet50 and GoogleNet are uni-modal im-
age based techniques, while MeshNet and MeshCNN are uni-
modal mesh based methods. Similarly, PointNet and DGCNN
focus on point clouds within uni-modal approaches. In con-
trast, CMCL and CMIC are cross-modal 3D retrieval methods,
aiming to unify features derived from various sources.

Apart from these approaches, we will utilise LAH and
MuseHash, originally from the image retrieval domain but
adapted for 3D retrieval [22]. LAH learns hash codes using
a non-linear hash function applied to the features, while
MuseHash employs Bayesian ridge regression to learn hash
functions, enabling both uni-modal and multimodal queries
by leveraging the same models to extract features from all
modalities.

Therefore, our study covers image and point cloud modali-
ties in uni-modal scenarios and explores how various descrip-
tors impact retrieval performance in multimodal approaches.
We aim to determine the importance of descriptor selection
and find optimal combinations for improved retrieval results.

IV. Experiments
In this section, we first discuss experimental setup (Sec-

tion IV-A). Then, we present results for individual modalities
(Section IV-B). Next, we showcase multimodal results (Sec-
tion IV-C), using the best representation of each modality.
Finally, we offer some conclusive insights (Section IV-D).

A. Experimental Setup
We consider the following two datasets, commonly used in

the 3D literature:
BuildingNet_v0 The BuildingNet_𝑣0 [30] (BNv0 for short)

offers extensive annotations and encompasses diverse
building types such as churches, hotels, and more.

ModelNet40 The ModelNet40 [31] (MN40 for short) is a vast
collection of 3D CAD models, spanning various object
categories such as airplanes, offices, and more.

We investigate the influence of hash code length (16,
32, 64, 128) on several evaluation metrics, including mean
average precision (MAP), precision at k (precision@k), recall
at k (recall@k), and fscore at k (fscore@k), where k ranges
within {10, 25, 50}, within image retrieval techniques includ-
ing LAH1 [28] and MuseHash [29]. The number of epochs
(10, 50, 100, 150) for each volumetric method (MeshNet2
[15], MeshCNN 3 [16], DGCNN 4 [13], PointNet5 [14],
ResNet506 [25], GoogleNet7 [26], CMCL8 [20], CMIC9 [21])
during MAP computation is also varied. We adhere to rec-
ommended training and testing sizes specified by the authors

1https://github.com/IDSM-AI/LAH
2https://github.com/iMoonLab/MeshNet
3https://github.com/ranahanocka/MeshCNN
4https://github.com/antao97/dgcnn.pytorch
5https://github.com/yanx27/Pointnet_Pointnet2_pytorch
6https://github.com/JayPatwardhan/ResNet-PyTorch
7https://github.com/Lornatang/GoogLeNet-PyTorch
8https://github.com/LongLong-Jing/Cross-Modal-Center-Loss
9https://github.com/IGLICT/IBSR_jittor

[31], [30] for each dataset. Employing a 5-fold cross-validation
methodology ensures robustness across all experiments. In
subsequent tables, the ’*’ symbol indicates that MuseHash
exhibits statistical significance compared to other methods, as
confirmed by a t-test.

B. Experiment I: Analysis of Individual Modalities
In this section, we revisit experiments outlined in prior

research [22], where we utilised MeshNet and MeshCNN
for the mesh modality, and combined CMCL, LAH, and
MuseHash with MeshNet for mesh based queries. Moreover,
we extend upon this previous work by introducing additional
methods and employing alternative models for point cloud and
image modalities. Additionally, we present the results obtained
using individual modalities and MAP metric, focusing on
meshes, point clouds and images separately.

Table I contains the experiments based only on the mesh
modality. MeshNet outpaces MeshCNN in mesh based queries.
The methods incorporated with MeshNet consistently outper-
formed those with MeshCNN around by 2% in each dataset.
This is likely due to its superior ability to capture intricate
geometric features and spatial relationships within mesh data.
Moreover, MuseHash outperforms all methods in these exper-
iments.

In Table II, the experiments focusing solely on the point
cloud modality. When only utilising point cloud data, DGCNN
tends to enhance methods more than PointNet about 0.5%
for BNv0 and 1% for MN40. similar to MeshNet in mesh
analysis. MuseHash also outperforms all methods, especially
with DGCNN.

Moving to Table III, evaluations of all models using
the image modality are provided. Comparing ResNet50 and
GoogleNet against CMCL, CMCI, MuseHash and LAH for 3D
retrieval, GoogleNet consistently outperformed in all systems
by approximately 5% for BNv0 and 9% for MN40, with
MuseHash achieving the highest scores.

Overall, the experiments reaveal that utilising the image
modality yields superior results compared to both mesh and
point cloud modalities, with a 6% advantage over mesh and a
10% advantage over point cloud. This suggests the prominence
of images for retrieval. Furthermore, MuseHash consistently
excels across all modalities, showcasing its versatility. In the
subsequent experiments, we consider the better representa-
tions; MeshNet, DGCNN and GoogleNet, for mesh, point
cloud and image modalities, respectively.

C. Experiment II: Analysis of Combined Modalities
This section compares the performance of two modalities

(MAP metric) against three modalities from the 3D retrieval
domain (CMCL and CMCI), along with LAH and MuseHash
from the image domain. Results are shown in Table IV and
Table V. Table VI provides additional insights into precision,
recall, and fscore metrics for CMCL, CMCI, and MuseHash
using both two and three modalities. Overall, MuseHash
consistently outperforms, especially with mesh and image
modalities.



TABLE I
Experiment I-A: Impact of Mesh Modality on the MAP metric.

Dataset No. MeshCNN MeshNet CMCL [20] CMIC [21] Code LAH [28] MuseHash [29]

Epochs [16] [15] MeshCNN MeshNet MeshCNN MeshNet Length MeshCNN MeshNet MeshCNN MeshNet

BNv0 10 0.6007* 0.6201* 0.6421* 0.6511* 0.6578* 0.6601* 16 0.7534* 0.7629* 0.7631* 0.7723
50 0.6226* 0.6350* 0.6430* 0.6520* 0.6610* 0.6700* 32 0.7610* 0.7701* 0.7619* 0.7791
100 0.6449* 0.6552* 0.6581* 0.6670* 0.6782* 0.6845* 64 0.7645* 0.7754* 0.7712* 0.7834
150 0.6501* 0.6650* 0.6576* 0.6623* 0.6825* 0.6907* 128 0.7751* 0.7821* 0.7801* 0.7883

MN40 10 0.6726* 0.6801* 0.6902* 0.7097* 0.7202* 0.7351* 16 0.7790* 0.7811* 0.7891* 0.8010
50 0.6900* 0.6954* 0.6934* 0.7099* 0.7315* 0.7466* 32 0.7840* 0.7889* 0.7903* 0.8056
100 0.6711* 0.7091* 0.7048* 0.7103* 0.7435* 0.7506* 64 0.7945* 0.8001* 0.8032* 0.8101
150 0.6502* 0.6654* 0.6594* 0.6595* 0.7505* 0.7610* 128 0.7910* 0.8058* 0.7998* 0.8122

TABLE II
Experiment I-B: Impact of Point Cloud Modality on the MAP metric.

Dataset No. PointNet DGCNN CMCL [20] CMIC [21] Code LAH [28] MuseHash [29]

Epochs [14] [13] PointNet DGCNN PointNet DGCNN Length PointNet DGCNN PointNet DGCNN

BNv0 10 0.5423* 0.5501* 0.6011* 0.6124* 0.6103* 0.6201* 16 0.7001* 0.7089* 0.7245* 0.7313
50 0.5502* 0.5611* 0.6094* 0.6178* 0.6199* 0.6245* 32 0.7089* 0.7145* 0.7267* 0.7377
100 0.5578* 0.5681* 0.6159* 0.6208* 0.6273* 0.6309* 64 0.7122* 0.7202* 0.7301* 0.7399
150 0.5602* 0.5781* 0.6223* 0.6319* 0.6301* 0.6478* 128 0.7234* 0.7278* 0.7408* 0.7489

MN40 10 0.6345* 0.6401* 0.6511* 0.6590* 0.6634* 0.6710* 16 0.7025* 0.7110* 0.7314* 0.7409
50 0.6402* 0.6556* 0.6601* 0.6712* 0.6745* 0.6588* 32 0.7098* 0.7183* 0.7380* 0.7480
100 0.6551* 0.6590* 0.6645* 0.6701* 0.6789* 0.7001* 64 0.7134* 0.7209* 0.7401* 0.7500
150 0.6423* 0.6501* 0.6590* 0.6688* 0.6790* 0.7045* 128 0.7184* 0.7256* 0.7446* 0.7563

TABLE III
Experiment I-C: Impact of Image Modality on the MAP metric.

Dataset No. ResNet50 GoogleNet CMCL [20] CMIC [21] Code LAH [28] MuseHash [29]

Epochs [25] [26] ResNet50 GoogleNet ResNet50 GoogleNet Length ResNet50 GoogleNet ResNet50 GoogleNet

BNv0 10 0.7078* 0.7101* 0.7301* 0.7423* 0.7489* 0.7578* 16 0.7710* 0.7801* 0.7910* 0.8010
50 0.7123* 0.7289* 0.7420* 0.7589* 0.7545* 0.7645* 32 0.7801* 0.7909* 0.8001* 0.8140
100 0.7212* 0.7321* 0.7505* 0.7611* 0.7601* 0.7725* 64 0.7910* 0.8009* 0.8123* 0.8270
150 0.7301* 0.7401* 0.7680* 0.7666* 0.7798* 0.7800* 128 0.7959* 0.8123* 0.8240* 0.8315

MN40 10 0.7423* 0.7510* 0.7529* 0.7630* 0.7663* 0.7701* 16 0.7819* 0.7900* 0.8031* 0.8151
50 0.7515* 0.7623* 0.7645* 0.7745* 0.7754* 0.7851* 32 0.7958* 0.8028* 0.8150* 0.8245
100 0.7601* 0.7751* 0.7767* 0.7807* 0.7841* 0.7910* 64 0.8031* 0.8151* 0.8231* 0.8339
150 0.7720* 0.7810* 0.7801* 0.7911* 0.7910* 0.8001* 128 0.8121* 0.8245* 0.8344* 0.8461

TABLE IV
Experiment II-A: Impact of two modalities. Mesh (𝑀), Point Cloud (𝑃𝐶), and Image (𝐼) Representations on the MAP metric.

Dataset No. CMCL [20] CMIC [21] Code LAH [28] MuseHash [29]

Epochs 𝑀, 𝑃𝐶 𝑃𝐶, 𝐼 𝑀, 𝐼 𝑀, 𝑃𝐶 𝑃𝐶, 𝐼 𝑀, 𝐼 Length 𝑀, 𝑃𝐶 𝑃𝐶, 𝐼 𝑀, 𝐼 𝑀, 𝑃𝐶 𝑃𝐶, 𝐼 𝑀, 𝐼

BNv0 10 0.6761* 0.6801* 0.7021* 0.6978* 0.7002* 0.7204* 16 0.7120* 0.7265* 0.7501* 0.7610* 0.7701* 0.7910
50 0.6810* 0.6881* 0.7110* 0.7023* 0.7089* 0.7345* 32 0.7112* 0.7242* 0.7467* 0.7691* 0.7734* 0.8012
100 0.6902* 0.6910* 0.7222* 0.7089* 0.7199* 0.7401* 64 0.7151* 0.7266* 0.7491* 0.7701* 0.7791* 0.8110
150 0.6971* 0.7001* 0.7315* 0.7162* 0.7056* 0.7545* 128 0.7203* 0.7298* 0.7508* 0.7688* 0.7801* 0.8291

MN40 10 0.6910* 0.6710* 0.7011* 0.6834* 0.6885* 0.7123* 16 0.7311* 0.7381* 0.7395* 0.7882* 0.7712* 0.8284
50 0.7039* 0.6912* 0.7110* 0.6904* 0.6941* 0.7223* 32 0.7362* 0.7398* 0.7405* 0.7910* 0.7821* 0.8301
100 0.7128* 0.7010* 0.7222* 0.7011* 0.7071* 0.7389* 64 0.7384* 0.7401* 0.7421* 0.7900* 0.7791* 0.8434
150 0.7231* 0.7122* 0.7515* 0.7045* 0.7101* 0.7448* 128 0.7392* 0.7412* 0.7433* 0.7854* 0.7840* 0.8512

Following the methodology used in the uni-modal case,
we conducted experiments with CMCL, CMIC, and Muse-
Hash. We then expanded to include two models each
from GoogleNet, MeshNet, and DGCNN for combined two-
modalities queries (Table IV). Combining both mesh and
image modalities yielded the most promising results, fol-

lowed by using point cloud and image modalities (Table IV).
However, relying solely on mesh or point cloud modalities
resulted in lower outcomes, likely due to the absence of finer
details in point clouds compared to meshes, which limits their
representation of complex object structures. Moreover, using
only one modality led to a decrease of approximately 6%



TABLE V
Experiment II-B: Impact of three modalities. Mesh (𝑀), Point Cloud

(𝑃𝐶), and Image (𝐼) Representations on the MAP metric.

Dataset No. CMCL [20] CMIC [21] Code MuseHash [29]
Epochs 𝑀, 𝑃𝐶, 𝐼 𝑀, 𝑃𝐶, 𝐼 Length 𝑀, 𝑃𝐶, 𝐼

BNv0 10 0.6611* 0.7111* 16 0.7870
50 0.6720* 0.7220* 32 0.7920
100 0.6870* 0.7364* 64 0.8001
150 0.6923* 0.7400* 128 0.8032

MN40 10 0.7197* 0.7069* 16 0.8101
50 0.7289* 0.7131* 32 0.8236
100 0.7343* 0.7264* 64 0.8323
150 0.7499* 0.7345* 128 0.8401

compared to exclusively using two modalities. This under-
scores the importance of leveraging complementary modalities
to enhance the efficacy of 3D retrieval.

Next, we explore the utilisation of all networks for combined
three-modalities queries (Table V). When incorporating all
modalities, we observe a slight decrease of approximately 2%
compared to using only two modalities across all methods and
datasets (Table IV). This indicates that while the inclusion
of additional modalities provides more information, it also
introduces some complexity that may slightly impact overall
performance. However, despite this slight decrease, leveraging
all available modalities remains valuable as it allows for a
more comprehensive representation of the data and potentially
improves retrieval results in certain scenarios.

Regarding the experimental analysis presented in Table VI,
we gain valuable insights into the performance of retrieval
methods, particularly in ranking and retrieving relevant items.
This examination covers multimodal approaches from the 3D
domain, such as CMCL and CMIC, evaluated across various
numbers of epochs. Additionally, MuseHash from the image
domain undergoes thorough evaluation across different hash
code lengths. Furthermore, the study investigates the use of
both two modalities and three modalities for each method. In
uni-modal scenarios, where individual modalities are consid-
ered, MeshNet and DGCNN emerge as the optimal models for
the mesh and point cloud modalities, respectively.

While CMCL may perform well at times, MuseHash is
generally more efficient , with around a 10% higher Fscore.
MuseHash’s ability to combine multiple modalities into a
single hash code improves retrieval accuracy and is particularly
useful for large datasets and resource-limited environments
where quick and accurate searches are essential.

In summary, MuseHash excels in multimodal retrieval,
particularly with mesh and image modalities. While combining
mesh and image modalities yields good results, relying solely
on mesh or point cloud leads to lower outcomes. Despite some
complexity and a slight performance decrease, using all modal-
ities remains valuable for comprehensive data representation.

D. Conclusive Insights

In conclusion, this study offers significant insights into
the fusion of different types of information for 3D retrieval

Fig. 2. Overview of MuseHash’s performance across the modalities.

tasks. Figure 2 showcases the optimal outcomes achieved
by MuseHash on BuildingNet_v0 (highlighted in green) and
ModelNet40 (highlighted in blue), with performance metrics
the integer part of MAP multiplied by 100%. A Venn diagram
is employed to depict the varying MAP values resulting from
different combinations of modalities. Through experimentation
with various descriptor combinations, it becomes apparent that
the use of mesh and image data is advantageous (∼ 82% in
BuildingNet_v0 and ∼ 85% in ModelNet40). In particular,
the utilisation of MeshNet from mesh based models and
GoogleNet from image based models significantly enhances
results, benefiting not only MuseHash but also all other
methods. Moreover, the superior performance of MuseHash,
evidenced by consistently higher Fscores and MAP values
compared to other methods, underscores its effectiveness.
These findings hold promise for researchers and practitioners
seeking to refine the search process for 3D objects, enhancing
efficiency and accuracy in various applications.

V. Conclusion
Recent research emphasizes the significance of managing

diverse 3D representations, and our study addresses this by
conducting point cloud and image experiments in the uni-
modal scenario. Through experimenting with various descrip-
tor combinations, we find that utilising both mesh and image
data is advantageous. Specifically, leveraging MeshNet from
mesh based models and GoogleNet from image based models
notably improves results, benefiting not only MuseHash but all
other methods as well. Furthermore, the consistently higher
fscores and MAP values of MuseHash compared to other
methods underscore its effectiveness. These findings offer
promise for researchers and practitioners seeking to optimize
the search process for 3D objects, enhancing efficiency and
accuracy across various applications.
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TABLE VI
Experiment II-C: Comparing methods for precision at k, recall at k and f-score at k (k = 10, 25, 50) with varying epochs or code lengths on MN40

dataset. Mesh (𝑀), Point Cloud (𝑃𝐶), and Image (𝐼) Representations

Method Modality Variable Precision@k Recall@k Fscore@k
Epochs 10 25 50 10 25 50 10 25 50

CMCL [20] 𝑀 10 0.7623 0.7631 0.7670 0.9101 0.9121 0.9132 0.8297 0.8310 0.8337
𝑃𝐶 50 0.7630 0.7638 0.7671 0.9120 0.9124 0.9140 0.8309 0.8315 0.8341

100 0.7522 0.7520 0.7412 0.9134 0.9155 0.9169 0.8250 0.8257 0.8197
150 0.7501 0.7482 0.7389 0.9201 0.9231 0.9251 0.8264 0.8265 0.8216

𝑃𝐶 10 0.7810 0.7823 0.7830 0.9010 0.9041 0.9045 0.8367 0.8388 0.8394
𝐼 50 0.7831 0.7828 0.7835 0.9017 0.9049 0.9050 0.8382 0.8394 0.8399

100 0.7840 0.7832 0.7840 0.9020 0.9050 0.9055 0.8389 0.8397 0.8404
150 0.7851 0.7848 0.7850 0.9021 0.9025 0.9030 0.8395 0.8395 0.8399

𝑀 10 0.7910 0.7954 0.7970 0.9011 0.9045 0.9051 0.8425 0.8464 0.8476
𝐼 50 0.7921 0.7961 0.7982 0.9051 0.9062 0.9076 0.8448 0.8476 0.8494

100 0.7933 0.7972 0.7990 0.9060 0.9079 0.9081 0.8459 0.8490 0.8501
150 0.7941 0.7980 0.7921 0.9071 0.9077 0.9091 0.8468 0.8493 0.8466

𝑀 10 0.8290 0.7679 0.7142 0.9985 0.9943 0.9968 0.9011 0.8666 0.8321
𝑃𝐶 50 0.8291 0.7687 0.7147 0.9883 0.9943 0.9968 0.9018 0.8671 0.8325
𝐼 100 0.8298 0.7687 0.7149 0.9884 0.9944 0.9968 0.9019 0.8671 0.8326

150 0.8283 0.7677 0.7142 0.9865 0.9944 0.9968 0.9013 0.8665 0.8322

CMIC [21] 𝑀 10 0.5712 0.5721 0.5745 0.9678 0.9699 0.9712 0.7184 0.7197 0.7219
𝑃𝐶 50 0.5720 0.5739 0.5791 0.9699 0.9738 0.9756 0.7196 0.7222 0.7268

100 0.5731 0.5744 0.5799 0.9701 0.9712 0.9788 0.7205 0.7219 0.7283
150 0.5748 0.5771 0.5801 0.9723 0.9740 0.9792 0.7225 0.7248 0.7286

𝑃𝐶 10 0.5882 0.5888 0.5890 0.9710 0.9732 0.9756 0.7326 0.7337 0.7345
𝐼 50 0.5890 0.5912 0.5954 0.9723 0.9744 0.9789 0.7336 0.7359 0.7404

100 0.5901 0.5929 0.5998 0.9731 0.9751 0.9791 0.7354 0.7374 0.7439
150 0.5923 0.5939 0.6012 0.9744 0.9770 0.9810 0.7368 0.7387 0.7455

𝑀 10 0.6021 0.6034 0.6042 0.9601 0.9682 0.9699 0.7401 0.7435 0.7446
𝐼 50 0.6034 0.6041 0.6052 0.9610 0.9690 0.9700 0.7413 0.7442 0.7454

100 0.6045 0.6078 0.6101 0.9651 0.9660 0.9711 0.7437 0.7461 0.7494
150 0.6052 0.6091 0.6132 0.9689 0.9691 0.9719 0.7450 0.7480 0.7520

𝑀 10 0.5910 0.5920 0.5931 0.9601 0.9623 0.9630 0.7316 0.7330 0.7341
𝑃𝐶 50 0.5931 0.5942 0.5960 0.9620 0.9632 0.9643 0.7338 0.7350 0.7367
𝐼 100 0.5940 0.5949 0.5971 0.9637 0.9642 0.9652 0.7350 0.7358 0.7378

150 0.5952 0.5958 0.5980 0.9642 0.9651 0.9660 0.7360 0.7368 0.7387

Code
Length 10 25 50 10 25 50 10 25 50

MuseHash [29] 𝑀 16 0.6321 0.6389 0.6401 0.9456 0.9489 0.9490 0.7577 0.7636 0.7645
𝑃𝐶 32 0.6345 0.6391 0.6435 0.9591 0.9501 0.9537 0.7637 0.7642 0.7685

64 0.6401 0.6420 0.6456 0.9599 0.9771 0.9601 0.7680 0.7749 0.7721
128 0.6411 0.6429 0.6481 0.9600 0.9611 0.9651 0.7688 0.7704 0.7755

𝑃𝐶 16 0.6421 0.6589 0.6701 0.9521 0.9567 0.9600 0.7670 0.7804 0.7893
𝐼 32 0.6490 0.6601 0.6788 0.9589 0.9551 0.9663 0.7741 0.7807 0.7974

64 0.6510 0.6678 0.6791 0.9601 0.9634 0.9691 0.7759 0.7888 0.7986
128 0.6601 0.6702 0.6821 0.9678 0.9681 0.9700 0.7849 0.7921 0.8010

𝑀 16 0.6571 0.6810 0.7020 0.9612 0.9723 0.9865 0.7806 0.8010 0.8203
𝐼 32 0.6910 0.7001 0.7112 0.9546 0.9612 0.9667 0.8017 0.8101 0.8195

64 0.7662 0.7405 0.7156 0.9712 0.9781 0.9801 0.8566 0.8429 0.8272
128 0.8010 0.8588 0.8423 0.9865 0.9902 0.9923 0.8841 0.9198 0.9112

𝑀 16 0.6480 0.6501 0.6589 0.9523 0.9678 0.9621 0.7712 0.7778 0.7821
𝑃𝐶 32 0.6510 0.6678 0.6781 0.9678 0.9698 0.9512 0.7784 0.7910 0.7918
𝐼 64 0.6782 0.6789 0.6834 0.9701 0.9700 0.9634 0.7983 0.7988 0.7996

128 0.7012 0.6910 0.6901 0.9701 0.9623 0.9603 0.8140 0.8044 0.8038
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