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ABSTRACT

Many Linked Open Data applications require fresh copies of RDF
data at their local repositories. Since RDF documents constantly
change and those changes are not automatically propagated to the
LOD applications, it is important to regularly visit the RDF doc-
uments to refresh the local copies and keep them up-to-date. For
this purpose, crawling strategies determine which RDF documents
should be preferentially fetched. Traditional crawling strategies
rely only on how an RDF document has been modified in the past.
In contrast, we predict on the triple level whether a change will
occur in the future. We use the weekly snapshots of the DyLDO
dataset as well as the monthly snapshots of the Wikidata dataset.
First, we conduct an in-depth analysis of the life span of triples in
RDF documents. Through the analysis, we identify which triples
are stable and which are ephemeral. We introduce different fea-
tures based on the triples and apply a simple but effective linear
regression model. Second, we propose a novel crawling strategy
based on the linear regression model. We conduct two experimental
setups where we vary the amount of available bandwidth as well
as iteratively observe the quality of the local copies over time. The
results demonstrate that the novel crawling strategy outperforms
the state of the art in both setups.
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1 INTRODUCTION

Since its advent in 2007, the Linked Open Data (LOD) cloud has
been continuously evolving [14]. The LOD cloud is composed of
entities (e.g., persons, organizations) and relations between them.
The relations are represented as RDF triples consisting of a subject,
predicate, and object. RDF triples are defined in an RDF document.
Thus, an RDF document can be seen as a set of RDF triples. The
data on the LOD cloud is covering a wide range of domains and is
consumed by various applications [1, 15]. Therefore, understand-
ing the temporal dynamics of the LOD cloud is not trivial while
at the same time it is highly relevant in applications such as data
caching [18] and caching of SPARQL queries [10, 21]. So far, only
a few works have investigated the temporal dynamics of the LOD
cloud, particularly on the triple-level. Kafer et al. [8] quantified
changes with respect to a set of triples, set of links, and schema sig-
nature. They identified that most dynamic predicates are about triv-
ial time stamps. Dividino et al. [2] measured changes with respect
to the aggregation of RDF documents stemming from a common
pay-level domain (PLD). A PLD is the part of an URI that is typically
registered and payed for by organizations or individual persons.
The authors developed a metric to quantify temporal dynamics
of LOD sources and applied the metric to efficiently crawl LOD
sources. Furthermore, we determined temporal patterns in terms of
the changes of the entities (i .e., resources, instances) on the LOD
cloud [11]. In summary, to the best of our knowledge only few
works have conducted an analysis of temporal dynamics focusing
on individual triples such as Kafer et al. [8].

In this paper, we propose a novel crawling strategy for RDF
documents based on the predicted life span of triples in the RDF
documents. We assume that predicting the temporal dynamics on
the level of the atomic units (i .e., triples) provides more fine-grained
insights and enables to better predict the dynamics of, e. g., RDF
documents. As datasets, we use the Dynamic Linked Data Obser-
vatory (DyLDO) [9] as well as Wikidata [6]. The DyLDO dataset
is a collection of weekly snapshots of various LOD sources over
three years. Wikidata is one of the largest cross-domain knowledge
graphs. The dataset contains almost monthly snapshots of Wiki-
data RDF exports. In both datasets, we observe that triples can be
divided into ephemeral and stable. Ephemeral triples are alive for a
short period. On the contrary, stable triples live for a long period
and appear in many or even all snapshots. We first conduct an anal-
ysis which attempts to understand which feature of triples has a
large influence on the life span of triples. To this end, we introduce
different features such as PLD of subject URI, predicate, as well as
object form (i .e., URI or literal) and object PLD. Along with these
features, we convert triples into feature vectors. Over the feature
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vectors, we compute a linear regression model in order to identify
features that have a large influence on the life span of the triples.
We also experimented with other regression models such as logistic
regression and the gradient boosted regression trees. Among them,
the linear regression model has competitive predictive power and
requires less computation costs.

Finally, we introduce a novel crawling strategy to effectively
update local copies of RDF documents. A crawling strategy assigns
a preference score, which determines the order of RDF documents
for crawling. Dividino et al. [2] conducted an extensive evaluation
of different crawling strategies for LOD sources using features such
as their age and size. While Dividino et al. [2] conducted an experi-
ment aggregating the RDF documents from PLDs, we use single RDF
documents as it is more common to update the local copies with
respect to individual RDF documents. An RDF document comes
from a URI, which corresponds to what is commonly also called a
“context” (URI). Dividino et al. concluded that the strategy based on
data dynamics is the best one. In contrast to the existing methods,
our novel strategy gives a preference score based on the life span
of individual triples included in an RDF document. Following Di-
vidino et al. [2], we evaluate our novel strategy in two setups: In
the first setup, we vary the percentage of available bandwidth and
thus control the amount of triples that can be updated by a crawler.
Second, we apply the crawling strategy from Dividino et al. [2] as
baseline and compare it with our own approach in a setup where
we iteratively update the local copies of RDF documents over 20
consecutive weeks. The results show that our novel strategy out-
performs the state of the art of Dividino et al. [2] in terms of both
precision and recall in both setups.

The remainder of the paper is organized as follows: The subse-
quent section reviews related work. We introduce formalizations
and the datasets in Sections 3 and 4. Section 5 introduces our linear
regression model for predicting the temporal dynamics (i .e., life
span) of triples. Based on the regression model, we formulate a novel
crawling strategy for RDF documents and empirically evaluate it
in Section 6, before we conclude the paper.

2 RELATED WORK

We first introduce works investigating the temporal dynamics of
RDF data on the LOD cloud. Subsequently, we review crawling
strategies for web pages and RDF documents.

Dividino et al. [4] measured the degree of how often the last-
modified field in HTTP header of RDF documents is available and
how often it is correctly used. The analysis revealed that on aver-
age only 7% of the documents provide accurate information for the
last-modified field. Therefore, the last-modified field cannot
be used for the temporal analysis and crawling strategies. Further-
more, Dividino et al. [2] evaluated crawling strategies for LOD
sources with limited bandwidth. Crawling strategies define which
LOD source should be preferentially visited at a given point in time.
In their previous work [3], they proposed a monotone and positive
function to represent the dynamics as single numerical value and
applied it to the crawling strategies. The experiment revealed that
strategies based on dynamics of LOD sources [3] performed best,
compared to strategies based on the data source’s age, PageRank,
or size. Kéfer et al. [8] provided a comprehensive analysis of the
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temporal dynamics of the LOD cloud based on monitoring 86, 696
RDF documents for 29 weeks. They found out that 5.0% of doc-
uments had gone offline and 62.2% of documents had no change.
In addition, they conducted the analysis focusing on triples. They
observed that object literals are the most dynamic element of triples.
Predicates (i .e., properties) and RDF types defined by the predicate
rdf: type are static. Furthermore, the authors identified that the
most dynamic predicates were often about trivial time stamps.
Crawling strategies fetch and store documents as local copies. In
the past, many strategies for web pages have been developed and in-
vestigated. The works aim at increasing the coverage of documents
(i.e., finding new documents) and/or maintaining fresh copies of
data. In this paper, we assume that we have a list of the documents
that we want to crawl. Thus, we do not tackle the problem of finding
new RDF documents. Edwards et al. [5] argued that the crawling
frequency should be increased for frequently-modified web pages.
Tan et al. [16] developed a clustering-based incremental crawling
strategy. In contrast to the strategy by Edwards et al. [5], their
strategy exploits the content of web pages. In addition, the strategy
does not require gathering a long history of the web pages before it
can start crawling the pages. They first cluster web pages based on
features that correlate to their change frequencies. At each point in
time, they crawl a few web pages in each cluster. Only if the crawled
web pages of a cluster have many changes, they download and up-
date all the web pages in the cluster. In terms of features employed
for clustering, they use static features such as content features (e .g.,
words in texts, the number of images), URL features (e .g., name
of the top level domain), and linkage features (e .g., the number of
incoming links). In addition, they exploit dynamic features which
calculate how much each content feature and linkage feature have
changed in the latest two successive snapshots. Their experiment re-
vealed that the combined features (i .e., content features + dynamic
features) are best for the crawling strategies. Furthermore, Radin-
sky et al. [13] showed that content of web pages as well as their
related web pages significantly improve prediction performance
of web page modifications. In terms of the crawling strategies for
RDF documents, the strategy based on the LOD source dynamics
proposed by Dividino et al. [2] is the state of the art. Thus, we use
this strategy as a baseline in the experiment shown in Section 6.

3 BASIC FORMALIZATION

We introduce definitions and notations. Tables 1 and 2 show symbol
notations and a small example of LOD snapshots, respectively.
Data fetched from the LOD cloud is represented in the form of
N-Triples!. A triple is represented as (s, p, 0) where s, p, and o corre-
spond to a subject, predicate, and object, respectively. Furthermore,
we define the sets of all possible URIs U and literals L. The subject
s € U is a UR], the predicate p € U a URI, and the objecto € U U L
a URI or a literal. Furthermore, we define X; as a set of triples (i .e.,
snapshot) captured at a point in time ¢ and X = {X;, Xp,, ..., Xs, }
as collection of the snapshots at the different points in time. Using
the example in Table 2, X;, contains five triples and each of X;,
and Xy, has eight triples. In the experiment of crawling strategies
shown in Section 6, we take into account contexts c, indicating
from where a triple is fetched [7]. Contexts are also referred as RDF

Uhttps://www.w3.org/TR/n-triples/, last accessed on 03/04/2017
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Table 1: Symbol Notation

t a point in time
x =(s,p,0) | triple
s, p, 0 subject, predicate, object
c context indicating from where a triple is fetched
X snapshot i.e., set of triples captured at ¢
X/ set of triples in the local copy at ¢
Xt,c set of triples captured at ¢ from ¢
X set of all snapshots X;

documents. Extending X;, Xy, denotes a set of triples which are
contained in an RDF document ¢ at a point in time ¢. In addition,
X represents a set of triples in the local copy at a point in time ¢.

Table 2: An example of three snapshots of the LOD cloud.

X1, : a snapshot at time t;
db:Anne_Smith db:location db:Green_Village
db:Anne_Smith db:works db:Green_University
db:Green_Village db:population 224123

X1,: a snapshot at time t;
db:Anne_Smith db:Green_Village

db:location

db:Anne_Smith db:works db:Green_University
uni:John_Brown  db:location db:Green_Village
uni:John_Brown  db:works db:Green_Institute

db:Green_Village db:population 223768
X},: a snapshot at time #3
db:Anne_Smith db:Green_Village

db:location

db:Anne_Smith  db:works db:Green_University
uni:John_Brown  db:location db:Green_Village
uni:John_Brown  db:works db:Green_University

db:Green_Village db:population 223540

4 DATASETS

DyLDO. As first dataset, we use the Dynamic Linked Data Ob-
servatory (DyLDO) dataset? [8, 9]. It has been created to monitor
a fixed set of RDF documents on a weekly basis. The dataset is
composed of 173 weekly snapshots from 11/27/2012 to 03/27/2016
and covers various well known LOD sources as well as less com-
monly known ones [9]. From the original dataset, we first identify
RDF documents that were crawled at every snapshot by analyzing
the access logs. We extract all unique triples that are contained at
one of the identified RDF documents. Then, we filter out triples
that contain blank nodes, since blank nodes may have different
identifiers in different snapshots. In order to conduct an analysis
on the level of triples, we extract all unique triples from all the
snapshots X. In total, all the snapshots contain 3, 271, 944 unique
triples. For each unique triple, we count its frequency, i .e., in how
many snapshots the triple appears. We interpret the frequency of
triples as their availability. The maximum and minimum frequency
are 173 and 1, respectively. Figure 1(a) shows the distribution of
triple frequencies. We can see that there are triples along the full

Zhttp://swse.deri.org/dyldo/, last accessed on 03/04/2017

range from very ephemeral to very stable. On average, each triple
is alive in 99.29 snapshots (SD: 77.44) over the entire period from
2012 to 2016.

Wikidata. Second, we use Wikidata [20] as one of the largest
cross-domain knowledge graphs. We obtain the snapshots from
the Wikidata RDF eXpOI’tSS, where the data are converted into N-
triples [6]. In the experiment of the crawling strategies, we consider
triples that share a common subject URI as one RDF document.
We use 25 snapshots of Wikidata from 04/20/2014 to 08/01/2016,
which are captured almost monthly. In total, all the snapshots con-
tain 73, 583, 940 unique triples. For each unique triple, we count
its frequency, i.e., in how many snapshots the triple appears. The
maximum and minimum frequency are 25 and 1, respectively. Fig-
ure 1(b) shows the distribution of triple frequencies. On average,
each triple is alive in 16.51 snapshots (SD: 9.14).
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Figure 1: Distribution of frequencies regarding the availabil-
ity of unique triples in the two datasets.

5 PREDICTING THE LIFE SPAN OF TRIPLES
BY LINEAR REGRESSION

We investigate which features on the triples determine their life

span. Specifically, we train a linear regression model to provide

insights on which features have a large influence on the life span

on certain triples.

Swikidata-simple-statements.nt.gz from each directory on https://tools.wmflabs.
org/wikidata-exports/rdf/exports/
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Table 3: Descriptive statistics of the datasets. The table provides the number of snapshots, the number of RDF documents,
the number of unique triples in the entire dataset, the average frequency of triples, and the average number of triples per

snapshot. The standard deviation is given in parentheses.

# snapshots | # RDF documents | # unique triples

average frequency of triples | average # triples per snapshot

DyLDO 173 11,917 3,271,944

99.29 (77.44) 1,877,875.82 (76,203.44)

Wikidata 25 9,753,532 73,583,940

16.51 (9.14) 48,609,241.20 (7,500,579.23)

5.1 Features Computed on the Triples

We examine the following three features which are the subject PLD,
predicate, and object form and PLD of the triples. The features are
motivated by the works [13, 16] that predict future changes of web
pages by looking into their content. Therefore, we assume that it is
possible to predict changes (i .e., life span) of triples by analyzing
their subjects, predicates, and objects.

Subject PLD Subjects are defined by a URIL From this subject
URI, we use the pay level domain (PLD) as feature. For in-
stance, if a subject URI is http://dbpedia.org/resource/
Facebook, the subject PLD is http: //dbpedia.org. We mo-
tivate this feature from Umbrich et al. [19] which showed
that entities coming from the same PLD show similar tem-
poral dynamics. The PLD of a URI is extracted using Guava®.
If Guava identifies no PLD, the placeholder “other subject
PLDs" is assigned.

Predicate Triples that have a common predicate may have sim-
ilar temporal behavior. For instance, a triple whose predicate
is dbo: arealand is assumed static, because an area of places
such as countries do not change frequently. In contrast, as
the statistics of the population is updated, a triple whose
predicate is dbo:populationTotal disappears and a new
triple whose predicate is dbo:populationTotal appears.
Thus, a triple with the predicate dbo: populationTotal can
be assumed to be more ephemeral.

Object form and PLD Objects are either a literal or a URL If
an object is a literal, the feature takes the value “literal".
Otherwise, it is assigned the PLD of the object URI as we do
for the subject PLD.

Please note that we have also investigated topological features
such as degrees of subject URI and object URI, which were used
to predict ontology changes [12]. However, the prediction perfor-
mance using these features is similar to the baseline. Therefore, we
omit them.

In terms of the DyLDO dataset, we extract 1, 706 subject PLDs
and 3, 295 predicates from all unique triples. In 1,573,797 (48.10%)
triples, the object is defined by a literal. There are 3, 059 object PLDs
in triples whose object is defined by a URI. Regarding the Wikidata
dataset, there is only one unique subject PLD. Thus, the feature of
the subject PLD is ignored in the Wikidata dataset. We find 2, 204
predicates. In terms of the object, 19,291, 060 (26.22%) triples are
defined by a literal. There are 239, 405 object PLDs in triples whose
object is defined by a URL

https://github.com/google/guava/wiki/Release19, last accessed on 03/31/2017

5.2 Computing the Linear Regression Model

We train a linear regression model to predict the frequencies (i .e.,
life span) of triples from the triple features. The linear regression
model is defined as below:

7 = woap + wiay + waaz + -+ + wgay (1)

In Equation 1, w; denotes a weight of a feature. wy equals to the
intercept of the model. a is a feature value and d stands for the
number of features in the model. § is a predicted value. Please note,
we distinguish an actual value and a predicted value using y and g,
respectively. Since we aim to predict the frequencies of triples, y
is a value between 1 and 173 for DyLDO and 1 to 25 for Wikidata,
respectively. Although ay is originally not contained in the equation,
we introduce it as a constant ap = 1 to ease the notation. In short,
Equation 1 is represented as §f = wl a. w and a denote weights of
features and feature values, which are d + 1 dimensional vectors.
Subsequently, we introduce how to construct feature vectors a.
Since all the triple features are nominal data, we convert triples
into feature vectors by one-hot encoding. Using an example in
Table 2, there are two unique subject PLDs, three unique predi-
cates, and two object forms (i.e., one is literal and the other is
a PLD “db:"). It results in a seven dimensional vector, where the
first and second element show “db:" and “uni:" (subject PLDs) fol-
lowed by “db:location”, “db:works", “db:population” (predicates),
followed by “literal” and “db:" (object form and PLDs). A triple
(db:Anne_Smith, db:location, db:Green Village) is converted in (1,
0,1,0,0,0, 1). Since there are many subject PLDs, predicates, and
object form and PLDs that are used only by a few triples, we inte-
grate them into one feature, namely “other subject PLDs", “other
predicates”, and “other object PLDs" to reduce the dimension of
feature vectors. Specifically, we merge subject PLDs, predicates,
and object PLDs which are used by 10 or less triples into “other sub-
ject PLDs", “other predicates”, and “other object PLDs", respectively.
The triple features used by more than 10 triples cover over 99% of
unique triples, because the frequencies of subject PLDs, predicates,
and object form and PLDs follow the power-law distribution. This
power-law distribution is also shown by Tummarello et al. [17].

5.3 Training the Linear Regression Model

First, we describe the training of the linear regression model. Sub-
sequently, we evaluate how the resulted model can predict the
frequencies of triples.

5.3.1 Training Model. We train the linear regression model us-
ing the features introduced in Section 5.1. The number of dimen-
sions is d = 2,613 (i.e., the joint of 705 subject PLDs, 1, 335 predi-
cates, and 573 object form and PLDs) for the DyLDO dataset and
d = 2,720 (i.e., the joint of 1 subject PLDs, 1, 739 predicates, and
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Table 4: Performance of the prediction of triple frequencies.

Prediction model DyLDO Wikidata
RMSE | MAE | RMSE | MAE
Mean average (baseline) 77.36 | 73.54 8.95 7.77

Linear regression model: subject PLD 44.87 | 27.55 NA NA
Linear regression model: predicate 42.72 | 26.39 5.72 | 3.82
Linear regression model: object form and PLD | 65.22 | 53.63 7.98 | 6.72

Linear regression model: all triple features

30.77 | 15.47 5.16 3.24

980 object form and PLDs) for the Wikidata dataset. Before running
the linear regression, we split the data into training data and test
data. We randomly pick 90% of triples as training data and the rest
of the data is used for test in each dataset.

To avoid overfitting, we use 12 regularization that penalizes mod-
els with extreme parameter values. Thus, the function being opti-
mized is:

n
min " (T a = yi)? + 2+ |l @
i=0

The first term shows the residual squared sum (RSS) which is em-
ployed as a loss function. The second term is the regularization term
which mitigates overfitting. We optimize the parameter A = 316.23
by 10-fold cross-validation on the training data. We use the imple-
mentation of the linear regression provided by GraphLab Create’.

5.3.2  Resulted Model. We start from the resulted model of the
DyLDO dataset. In terms of subject PLD features, ranselrazer.
nl, fotolog.net, and blip.fm have the largest weights. today.
com and nbcnews. com, which provides news information, have
the smallest weights. Regarding the predicate features, http://
edgarwrap.ontologycentral.com/vocab/edgar\#issued has the
largest weight. In contrast, the predicate http://www.w3.org/ns/
auth/rsa\#public\_exponent has the smallest weight. It is used
to note an exponent to encrypt a message. Since such exponents
are frequently updated, triples with this predicate are alive only for
a short period.

5.3.3 Prediction Power. Using the resulted linear regression
model, we predict the frequencies of triples with the test data.
As evaluation measures, we employ rooted mean squared error

RMSE = ,[% Zf\il (yi — §;)? and mean absolute error MAE =

ﬁ Z?il lyi — §il, where M denotes the number of data points in
the test data. In both measures, lower values indicate better per-
formance. RMSE indicates how well the predicted values fit to the
linear regression model. MAE shows the prediction power, i .e., how
close the predicted values are to the resulted values. In order to
demonstrate the effectiveness of the linear regression model, we
compare it with a baseline providing the mean average of frequen-
cies in the training data to all triples in the test data as a prediction.

In addition, we also train the linear regression model using only
subject PLD, predicates, and object form and PLD, respectively.
Thus, we show which triple feature is most powerful as well as how
well the linear regression model works when using all the three

Shttps://turi.com/products/create/docs/generated/graphlab.linear_regression.
LinearRegression.html, last accessed on 03/31/2017

triple features. As shown in Table 4, the linear regression model
significantly outperforms the baseline. MAE of the linear regression
model with all triple features is 15.47 in the DyLDO dataset and
3.24 in the Wikidata dataset. It indicates that the model predicts
the life span with about 5% error rate. Therefore, it is possible to
predict the life span of the triples by looking at the features of the
triples. In addition, the linear regression model with all features
outperforms the one that are solely computed on the features of
subject PLD, predicate, and object form and PLD. Thus, all triple
features have a positive influence on predicting the life span.

6 CRAWLING STRATEGIES FOR RDF
DOCUMENTS BASED ON PREDICTED LIFE
SPAN OF TRIPLES

This section shows how the prediction of the life span of triples
provides a better crawling strategy for RDF documents compared
to the state of the art. In many cases, LOD applications pre-fetch
data from the LOD cloud and store them as local copies, in order
to speed up access to the data. As the LOD cloud is continuously
changing, local copies are quickly outdated and no longer reflect
the current state. Thus, it is important for the LOD applications
to update the local copies. In an ideal setting, the local copies are
always up-to-date by continuously visiting all the RDF documents.
But, due to limited network bandwidth or frequent changes on
the RDF documents, this is difficult to be achieved. Therefore, it is
indispensable to choose an efficient crawling strategy to update the
local copies. Crawling strategies assign a preference score to each
RDF document and determine which one should be preferentially
updated. Dividino et al. [2] conducted an extensive evaluation to
find out the most effective crawling strategy. They found out that
the strategy based on the dynamics of the LOD sources outperforms
other strategies. Motivated by the analysis shown in Section 5, we
propose a crawling strategy which gives preference scores to RDF
documents as calculated by the linear regression model.

Below, we first describe the crawling strategies including the
state of the art as well as the proposed novel strategy based on
the trained linear regression model. Subsequently, we explain the
details of the experiment and report the results.

6.1 Crawling Strategies

We first formalize the problem of the crawling strategies, following
Dividino et al. [2]. A crawling strategy determines which RDF
documents ¢ € C should be visited in the time slice between t;
and t;41. Specifically, it assigns a preference score f(c, ¢;) to each
RDF document ¢ at a point in time t;. RDF documents that have
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larger preference scores are first visited. In addition, we define the
limitation of the bandwidth as a restriction to download at most
up to K triples at each point in time. Thus, if K triples are fetched
from RDF documents into the local copies, the updating process is
stopped until the subsequent point in time.

Below, we introduce two different crawling strategies which
output preference scores, namely our triple linear regression model
from Section 5 and the baseline LOD source dynamics [2].

Triple Linear Regression. Our novel strategy provides pref-
erence scores to each source, taking into account triple fea-
tures contained in the RDF document. The preference score
is computed as below:

fipele:t) = (= > LR 3

|XC’ 4 x€Xe

The function LR(x) returns a triple’s life span based on the
linear regression model as shown in Section 5. We compute
the mean average life span by averaging over LR(x) for all
triples x in a data source c. Finally, a preference score is
defined by the reciprocal of the mean average. We take the
reciprocal because of the following reason: According to
Dividino et al. [2], crawling strategies should visit RDF doc-
uments starting from those with larger scores. However, the
RDF documents with triples whose life span is short should
be preferentially visited, since they contain more dynamic
triples. Thus, we take the reciprocal as output, in order to
reverse the order of the sources.

LOD Source Dynamics. Dividino et al. [2] reported that the
LOD source dynamics strategy performed best. Thus, we
employ it as baseline. The strategy assigns preference scores
considering history about how many triples in a source have
been updated in the past. The preference score is computed
as below:

d(Xe, tru(e, lu(c, i)-1)° Xe, tru(e, i))

fropsredy(c. i) = Z ©)

i=0 tu(e,i) ~ tu(e,lu(c, i)-1)

lu(c, i) is a function that returns a point in time at which the
given RDF document ¢ was last updated at point in time i.
Thus, lu(c, i) < i. This function can be used recursively. For
example, the update prior to the last update is represented as
tu(e,lu(c,i)-1)- O is a function which returns the amount of
changes between two snapshots. Although Dividino et al. [2]
compared two variants of § based on Jaccard distance and
Dice coefficient, we only apply Jaccard distance as shown
in Equation 5. We choose the Jaccard distance, because the
results of the two variants are very similar and the variant
based on Jaccard distance slightly outperforms the other.

_ |XC,t1 n XC, l‘2|

0Xe, 1, Xe,1,) =1
e o |Xc,t1 UXc,t2|

©)

Please note that we refer to ¢ as URI of an RDF document, while
Dividino et al. [2] integrated the RDF documents with a common
PLD into one document. We use single RDF documents as sources,
because it is more common to update the local copies with respect
to individual RDF documents rather than entire PLDs.
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6.2 Experiment

This section describes our experimental procedure, datasets, as well
as applied evaluation metrics.

6.2.1 Experimental Procedure. In the experiment, we compare
the two crawling strategies in two setups, namely single-step and
iterative progression, following Dividino et al. [2].

Single-Step We evaluate the performance of the crawling strate-
gies for a single update of a local copy. We start from a perfect
copy at a point in time t; and compare the quality of the
local copy at a point in time ¢;41 achieved by the different
crawling strategies.

Iterative Progression We evaluate the evolution of the qual-
ity of the local copies when considering iterative updates
over a longer period of time. Starting from a perfect copy
at a point in time ¢;, we aim to measure how well different
crawling strategies perform in terms of maintaining an accu-
rate local copy at subsequent points in time ¢;11, tj4+2 - - - titn.
We evaluate local copies obtained at subsequent 20 points
in time (approximately five months) for the DyLDO dataset
and 4 points in time for the Wikidata dataset. Thus, n = 20
for the DyLDO dataset and n = 4 for the Wikidata dataset.

Furthermore, we simulate network constraints by limiting the rel-
ative bandwidth « in the two setups. Specifically, we stepwise in-
crease the bandwidth x from 0% to 5% in steps of 1%, from 5% to
20% in steps of 5%, and from 20% to 100% in steps of 20%. Therefore,
the number of triples that can be fetched at a point in time t is
calculated as K = k - |X¢].

6.2.2 Datasets. We use the DyLDO dataset as well as the Wiki-
data dataset as described in Section 4. We compute the LOD source
dynamics and the linear regression model based on available history
information. In both setups, the history is composed of the last 50
snapshots for the DyLDO dataset and 8 snapshots for the Wikidata
dataset, respectively. Thus, the length of the history is almost one
year in both datasets. To this end, we experiment starting from
t = 2013-11-24 for the DyLDO dataset and ¢ = 2015-05-11 for
the Wikidata dataset. In the single-step setup, we slide the starting
point ¢; by one point in time. For the iterative progression setup,
the starting point t; is every tenth snapshot for the DyLDO dataset
and every second snapshot for the Wikidata dataset.

Referring to the LOD source dynamics, we compute the prefer-
ence scores at point in time t;, looking into the last 50 snapshots for
DyLDO and 8 for Wikidata. Again, the initial history information
is the same in both setups. The preference scores of the RDF docu-
ments are continuously updated in the iterative progression setup,
as the RDF document is fetched from the original RDF documents
as shown in Equation 4. Thus, the size of the history information
increases along with the iterations in the iterative progression setup.
In terms of the linear regression model, we train the model over the
first 50 of the 173 snapshots for DyLDO and 8 snapshots of the 25
snapshots for Wikidata. We use the same linear regression models
to all points in time and do not update the linear regression model,
in order to demonstrate its generalizability over time. To construct
the linear regression model, we first extract all unique triples in
the first 50 snapshots and 8 snapshots of the respective datasets.
Then, we count the frequency of subject PLDs and predicates, and
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Figure 2: Single-step setup: Precision (left) and recall (right) of the local copies.

object PLDs as we did in Section 4. Thereafter, we only take the
features into account which are used by 10 or more unique triples
and integrate all the others as described in Section 5.

6.2.3  Evaluation Metrics. We evaluate the local copies resulting
from applying the crawling strategies by precision and recall, which

are defined as: precision(X},X;) = |X|z;,)|<t| and recall(X},X;) =
t
lxlt;t)ftl. Again, X denotes the resulted local copy of the RDF

documents at a point in time t. X; is the snapshot, i.e., a perfect
up-to-date local copy, at a point in time ¢, which is considered as
ground truth.

6.3 Results

We report the results of the experiment with respect to the two
setups.

6.3.1 Single-Step. Figure 2 shows the precision and recall of
the resulted local copies produced by the single-step setup when
varying the relative bandwidth. The novel triple linear regression
strategy overall outperforms the state of the art LOD source dy-
namics strategy in terms of both precision and recall. When the
relative bandwidth is small (x < 5%), the difference between the
two strategies is low. However the difference gets larger as the
relative bandwidth increases. Finally, the difference between the
strategies disappears with 100% bandwidth and both strategies
achieve a precision of 1.00.

6.3.2 lIterative Progression. Figure 3 shows the result for the
iterative progression setup when the relative bandwidth is k = 20%.
The novel strategy always outperforms the other in terms of both
precision and recall. Especially, the novel strategy is much better
in terms of precision.

6.4 Discussion

In both setups, we observe that the novel strategy outperforms
the state of the art. Especially, it is noteworthy that in the itera-
tive progression setup the novel triple linear regression strategy
performs better. While the LOD source dynamics updates the pref-
erence scores at every iteration, we do not update the regression
model after each iteration. In summary, our novel strategy has the
advantage that after the linear regression model is trained, it does
not require additional past snapshots to compute preference scores.
In contrast, the LOD source dynamics by Dividino et al. [2] requires
to update the model after each iteration.

Furthermore, since the novel strategy looks into which triples are
actually included in RDF documents, it captures the dynamics of the
RDF documents in a more fine-grained way compared to the PLDs
used by Dividino et al. [2]. In terms of the linear regression model,
we conclude that the model is generalized, because the performance
of the triple linear regression does not get worse while sliding over
further points in time.

Please note, we use a linear regression model due to the simplicity
of the model. We also tried logistic regression and others. But they
lead to almost the same results.
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Figure 3: Precision (left) and recall (right) of the resulted local copies in the iterative progression setup with a middle bandwidth

(k = 20%).

7 CONCLUSION

We have presented a novel crawling strategy for RDF documents
based on a linear regression model that exploits features of triples
instead of entire RDF documents. We have introduced different
features of triples, namely subject PLD, predicate, and object form
and object PLD. The linear regression model revealed which features
of triples have a large influence on the life span of triples. To this
end, we proposed a novel scheduling strategy based on the predicted
life span of triples. The experiment demonstrated the superiority
of the novel strategy over the state of the art.
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