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Abstract 26 

As the level of vehicle automation increases, drivers are more likely to engage in non-driving 27 

related tasks which take their hands, eyes, and/or mind away from the driving task. 28 

Consequently, there has been increased interest in creating Driver Monitoring Systems (DMS) 29 

that are valid and reliable for detecting elements of driver state. Workload is one element of 30 

driver state that has remained elusive within the literature. Whilst there has been promising 31 

work in estimating mental workload using gaze-based metrics, the literature has placed too 32 

much emphasis on point estimate differences. Whilst these are useful for establishing whether 33 

effects exist, they ignore the inherent variability within individuals and between different 34 

drivers. The current work builds on this by using a Bayesian distributional modelling approach 35 

to quantify the within and between participants variability in Information Theoretical gaze 36 

metrics. Drivers (N = 41) undertook two experimental drives in hands-off Level 2 automation 37 

with their hands and feet away from operational controls. During both drives, their priority was 38 

to monitor the road before a critical takeover. During one drive participants had to complete a 39 

secondary cognitive task (2-back) during the hands-off Level 2 automation. Changes in 40 

Stationary Gaze Entropy and Gaze Transition Entropy were assessed for conditions with and 41 

without the 2-back to investigate whether consistent differences between workload conditions 42 

could be found across the sample. Stationary Gaze Entropy proved a reliable indicator of 43 

mental workload; 92% of the population were predicted to show a decrease when completing 44 

2-back during hands-off Level 2 automated driving. Conversely, Gaze Transition Entropy 45 

showed substantial heterogeneity; only 66% of the population were predicted to have similar 46 

decreases. Furthermore, age was a strong predictor of the heterogeneity of the average causal 47 

effect that high mental workload had on eye movements. These results indicate that, whilst 48 

certain elements of Information Theoretic metrics can be used to estimate mental workload by 49 

DMS, future research needs to focus on the heterogeneity of these processes. Understanding 50 



this heterogeneity has important implications toward the design of future DMS and thus the 51 

safety of drivers using automated vehicle functions. It must be ensured that metrics used to 52 

detect mental workload are valid (accurately detecting a particular driver state) as well as 53 

reliable (consistently detecting this driver state across a population).  54 

Keywords:  Distraction, workload, DMS, heterogeneity, automation, entropy 55 
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1 Introduction 69 

The influx of automated systems in road vehicles has generated increased interest in the 70 

development of Driver Monitoring Systems (DMS). DMS refers to a collection of sensors that 71 

aim to detect whether a driver is attentive, alert, or engaged. Not only are drivers more likely 72 

to engage in non-driving related tasks (NDRTs) as vehicles transform from manual to partial 73 

driving automation (Carsten et al, 2012), but in Level 3 automation drivers are allowed to 74 

actively engage in NDRTs (SAE, 2018). This may take their hands off the wheel and eyes and 75 

mind away from the main driving task. As such, a large body of research has aimed to measure 76 

the internal states of drivers whilst using partial or conditionally automated vehicles, and how 77 

these states might change in response to NDRTs. One elusive, yet extremely relevant, driver 78 

state for informing driver readiness is workload. Workload is a general term that can be defined 79 

as the demand or difficulty that is placed upon a driver (De Waard, 1996; da Silva, 2014; Fuller, 80 

2005; De Winter et al, 2014). Mental workload is more specific and has been defined as the 81 

proportion of information processing for a given task relative to an individual’s processing 82 

capacity (Brookhuis & De Waard, 1993; 2000; da Silva, 2014). It should also be noted that the 83 

terms cognitive distraction and cognitive load are often used interchangeably when researchers 84 

manipulate the cognitive demand of drivers. However, there is a distinct conceptual difference; 85 

the former referring to the general removal of attention away from the driving task toward a 86 

secondary task, and the latter referring to the quantity of the cognitive resource demanded by 87 

the secondary task (Engström et al, 2017). A key aspect of mental workload is that drivers have 88 

a limited pool of cognitive resources (Wickens, 2002). Underload from the monotony of 89 

monitoring autonomous systems can result in decreased vigilance (Young & Stanton, 2002) 90 

whereas overload may occur if a driver is engaging in an NDRT and can result in sub-optimal 91 

takeover performance (Gold et al, 2015; Zeeb et al, 2016). To ensure that a driver is ready to 92 

resume control, they should ideally have moderate workload levels to reduce the likelihood of 93 



safety-critical situations (Bruggen, 2015). Hence one goal of DMS development has been to 94 

identify valid and reliable indicators of mental workload to monitor the driver during automated 95 

driving. Therefore, a specific aim of this manuscript was to investigate a family of gaze-based 96 

metrics that have shown potential in estimating mental workload in human drivers.  97 

The dispersion of gaze has been a useful metric for measuring mental workload during manual 98 

and automated driving. Gaze dispersion is often measured as the standard deviation of raw gaze 99 

coordinates in the horizontal and vertical dimensions (Sodhi et al, 2002). During manual 100 

driving, the standard deviation of horizontal gaze reduces when the workload of the driver is 101 

increased with a secondary cognitively loading task; this phenomenon is known as visual 102 

tunneling (Reimer, 2009; Reimer et al, 2010; Wang et al, 2014). Similar effects have been 103 

observed when performing a cognitive loading secondary task during automated driving 104 

(Radlmayr et al, 2019; Wilkie et al, 2019). The sensitivity of raw gaze dispersion for detecting 105 

mental workload has proven to be a robust measure for driver monitoring systems. However, 106 

one limitation of this approach is that it does not account for the predictive nature of eye 107 

movements. Established accounts of gaze control focus on the where (spatial distribution) and 108 

the when (temporal sequence) of gaze, relative to task demands (Shiferaw et al, 2019). This is 109 

can be interpreted as being driven by bottom-up (stimulus saliency) or top-down (behavioral 110 

requirements) processes (Henderson, 2003; Shiferaw et al, 2019). However, a growing body of 111 

literature has proposed that gaze control is a system of spatial prediction (Henderson, 2017; 112 

Talter et al, 2017). Hence fixation locations are not merely instructed by top-down and bottom-113 

up influences, but their relative contributions towards prediction and error correction when 114 

constructing an internal representation of a visual scene (Parr & Friston 2017; Spratling et al, 115 

2017; Shiferaw et al, 2019). The brain is a prediction machine and aims to minimize error 116 

between sensory information and the internal state (Clark et al, 2013). Hence via a combination 117 

of bottom-up and top-down processes, gaze control aims to optimize visual sampling in order 118 



to make better predictions regarding the location of subsequent fixations (Parr & Friston, 2017; 119 

Spratling et al, 2017). Considering the mechanisms involved in gaze control, it can be argued 120 

that measuring differences in visual scanning behaviour during varying stages of driving may 121 

provide information on changes in the underlying processes that are influenced by increased 122 

workload (Shiferaw et al, 2019). Information Theoretic concepts such as entropy are one such 123 

method, which focus on using gaze transitions to estimate internal states. 124 

Gaze entropy is an eye tracking metric that has shown promise for estimating mental workload 125 

and refers to the application of Information Theory to gaze data (Shiferaw et al, 2019). Within 126 

the field of Information Theory, entropy refers to the average amount of information or 127 

uncertainty for a given choice (Shannon, 1948). For a system with discrete processes, the two 128 

primary components are the source and output; the source being the total number of states that 129 

a given output can take. When applied to gaze data, there is an assumption that saccadic 130 

movements that produce fixations are outputs from a gaze control system that predicts the 131 

spatial locations of proceeding fixations (Shiferaw et al, 2019). The visual field represents all 132 

possible state spaces where a fixation could be located. To calculate the entropy of gaze 133 

fixations, fixation coordinates are divided into discrete spatial bins to generate probability 134 

distributions of a given fixation being within a given location (Shiferaw et al, 2019). The 135 

entropy value thus represents the predictability of a fixation location; a higher uncertainty (or 136 

entropy) represents a higher dispersion of gaze for a particular viewing period (Holmqvist et 137 

al, 2011). This is known as Stationary Gaze Entropy (𝐻𝑠). Another assumption is that 138 

subsequent fixations are better predicted by current fixations via conditional probability rather 139 

than only total probability (Weiss et al, 1989; Shiferaw et al, 2019). Therefore, this provides a 140 

measure of predictability of visual scanning patterns by considering the order of fixations; this 141 

is known as Gaze Transition Entropy (𝐻𝑡). Higher 𝐻𝑡 is indicative of less structured, more 142 

random scanning patterns (Shiferaw et al, 2019). Because eye movements aim to optimize 143 



inference through motor action sequences (Parr & Friston, 2017), it has been proposed that 144 

there is an optimal range of  𝐻𝑡 to efficiently sample information within the visual scene. 145 

Optimal 𝐻𝑡 is an ideal level of complexity that balances modulation from underlying bottom-146 

up influences with top-down prediction (Shiferaw et al, 2019). If there is an optimal range of 147 

𝐻𝑡 then increased 𝐻𝑡 may reflect top-down interference whereby there is modulation of gaze 148 

beyond the requirements of a given task. This can manifest as highly erratic, random visual 149 

scanning. Conversely, lower than optimal 𝐻𝑡 can result in insufficient top-down modulation 150 

thus producing insufficient visual scanning and exploration. Whilst 𝐻𝑡 may change as a 151 

function of more visually demanding tasks or visual scenes, given an environment where these 152 

factors are experimentally controlled, 𝐻𝑡 may change as a function of top-down engagement 153 

(Shiferaw et al, 2019).  154 

𝐻𝑠 and 𝐻𝑡 provide a quantitative assessment of visual scanning in naturalistic environments 155 

and thus have been proposed as measures that can estimate mental workload in drivers. Testing 156 

the reliability and validity of gaze entropic metrics has largely been conducted within the 157 

domain of manual driving. Schieber & Gilland (2008) found reductions in 𝐻𝑡 as a function of 158 

secondary task load difficulty; this was further exacerbated for older drivers. The combination 159 

of older drivers having reduced visual-spatial processing resources alongside the increased 160 

demands of the secondary task resulted in this interaction effect. Schieber & Gilland (2008) 161 

proposed that metrics based on Information Theory held significant potential for monitoring 162 

driver behaviour as 𝐻𝑡 systematically changed as a function of increased mental workload. 163 

Pillai et al (2022) implemented a similar design to investigate whether gaze entropy 164 

differentiated varying levels of cognitive load during manual driving. By calculating the signal-165 

to-noise ratio (SNR), Pillai et al (2022) found that 𝐻𝑠 reliably differentiated between a control 166 

task (normal driving and a detection response task) and 2-back, control and 0-back, and 0-back 167 

and 2-back conditions. Conversely, 𝐻𝑡 could not reliably distinguish between any of these 168 



cognitive load comparisons. This suggests that it was the predictability of the dispersion of 169 

gaze, rather than gaze transitions, that was useful for estimating mental workload. One of the 170 

only experiments to study cognitive load estimation using gaze entropy during automated 171 

driving was conducted by Chen et al (2022). They investigated whether 𝐻𝑠 changed as a 172 

function of automation level (SAE L0, L1, and L2). 3-dimensional 𝐻𝑠 (applying the Shannon 173 

(1948) equation to coordinates in a 3-dimensional plane) negatively correlated with subjective 174 

workload during visual, auditory, or multi-modality cognitive tasks. This is indicative of gaze 175 

dispersion decreasing as a function of increased subjective workload, and thus supports similar 176 

findings of visual tunneling when cognitively loaded (Radlmayr et al, 2019; Reimer, 2009; 177 

Reimer et al, 2010; Wang et al, 2014; Wilkie et al, 2019). Chen et al (2022) concluded that 𝐻𝑠 178 

could be a valid indicator for visual and auditory task distractions within driver monitoring 179 

systems during partial automation.  180 

Despite evidence that gaze entropy measures can be useful for estimating mental workload, 181 

there are some limitations to this work. Chen et al (2022) utilized a desktop computer simulator 182 

where the keyboard was used for steering and pedal operations. There was also no simulated 183 

traffic or road; just a highly artificial virtual environment. Not only is this a poor replication of 184 

real driving, but the lack of stimuli within the visual scene may have produced insufficient 185 

bottom-up saliency. There was also no control condition without a secondary task, thus not 186 

allowing for any comparison of gaze entropy under normal workload situations. A wider 187 

limitation of the literature is the lack of investigation into the variation both within and between 188 

individuals. A metric that estimates mental workload must be valid (i.e., the metric 189 

systematically varies with mental workload) but it must also be reliable (i.e., the metric 190 

systematically changes in similar ways for a given population) if it is to be used in DMS within 191 

a wider population. Therefore, understanding how 𝐻𝑠 and 𝐻𝑡 vary is vitally important. Whilst 192 

mean differences are theoretically useful for establishing the existence of effects, they only 193 



existence in an abstract sense (Mole et al, 2020). To make applied predictions that relate to the 194 

wider population, it is vital to model and understand how a sample varies. Schieber & Gilland 195 

(2008) reported no indices of variance in 𝐻𝑡, thus providing no indication as to how variable 196 

𝐻𝑡 was when drivers were under high mental workload. Chen et al (2022) reported large 197 

individual differences in the difficulty of the spatial N-back task which may have influenced 198 

subjective ratings of mental workload alongside eye tracking metrics. However, they did not 199 

formally model these differences, or investigate whether specific individual characteristics 200 

predicted this variation. Finally, Pillai et al (2022) investigated the effects of gaze entropy by 201 

calculating SNR; a lower SNR indicates that two means are more similar. Not only is this 202 

metric focused on mean differences but averages of gaze entropy in different conditions are 203 

weighted by variance across several participants. Whilst this accounts for variation in entropy, 204 

it treats all individual differences as noise. Whilst some individual variance is undoubtedly 205 

attributed to noise in eye tracking measurement (Bottos & Balasingam, 2020; Velichkovsky et 206 

al, 1997), it is possible that individual differences could vary as function of theoretically useful 207 

variables (e.g., age, driving experience).    208 

The aim of the current study was to investigate the feasibility of using gaze entropic metrics to 209 

estimate mental workload whilst monitoring a Level 2 automated vehicle with their hands and 210 

feet away from operational controls. Previous research has shown that eye movements change 211 

as a function of increased mental workload (Radlmayr et al, 2019; Reimer et al, 2009; Reimer 212 

et al, 2010; Wilkie et al, 2019). However, using Information Theory to study gaze metrics can 213 

go beyond understanding the spatial distribution of gaze and focus on how efficiently drivers 214 

are scanning the visual scene. Thus far, there is evidence that 𝐻𝑠 and 𝐻𝑡 can be used to detect 215 

driver workload (Chen et al, 2022; Pillai et al, 2022; Schieber & Gilland, 2008). However, the 216 

methodology used to make these conclusions has seemingly ignored how these variables vary 217 

within a given population. Such variance is vital, if we are to understand whether these 218 



Information Theoretic metrics can be used by DMS to improve the safety outcomes for a wide 219 

range of users.  220 

2 Material and methods 221 

2.1 Participants 222 

41 participants were recruited from a university participant pool and took part in the experiment 223 

however three had to be removed before data analysis as they either did not follow experimental 224 

instructions, or eye tracking data was not correctly captured. The remaining 38 participants (16 225 

females, 22 males, mean age = 38.81, range = 22-65) all had normal or corrected to normal 226 

vision. All participants had a valid UK driving license (mean number of years = 17.8, range = 227 

4-43) and were regular drivers (mean annual miles = 9355.25, range 5000-20000).   228 

2.2 Apparatus and materials 229 

The experiment was conducted at the University of Leeds Driving Simulator (see Figure 1). 230 

This is a motion-based driving simulator consisting of a Jaguar S-type cab encased within a 4 231 

m spherical projection dome. The dome has a 300° field of view projection to render the driving 232 

environment. Driver controls are fully operational; pedals and steering provide haptic feedback 233 

for participants to replicate real-world driving. Longitudinal and lateral movement is also 234 

provided via a hexapod motion base and a 5 m x 5 m X-Y table. Gaze data were collected using 235 

a Seeing Machines Driver Monitoring System eye tracker sampling at 60 Hz. Subjective ratings 236 

of workload were measured via the NASA-Task Load Index (NASA-TLX). The NASA-TLX 237 

consists of 6 subscales that measure subjective ratings of mental, physical, and temporal 238 

demands as well as frustration, effort, and performance of the task (Hart, 2006). 239 
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Figure 1: University of Leeds Driving Simulator 247 

2.3 Design  248 

A 2 x 2 Repeated Measures design was used in this study. The two within-participant factors 249 

were event criticality and mental workload. Event criticality was manipulated by changing the 250 

time to collision at the onset of a lead vehicle braking (TTC) after a period of hands-off Level 251 

2 automated driving. The aim of manipulating this variable was to create two levels of 252 

criticality: a “less severe” level (TTC = 5 s) that allowed participants to successfully take over 253 

without crashing, and a “severe” level that could lead to a crash if the participant was not 254 

monitoring the road correctly (TTC = 3 s). These values were chosen based on previous studies 255 

that have demonstrated that a 3 s TTC produces highly critical events, whilst a 5 s TTC provides 256 

sufficient time for takeovers (Gold et al, 2013; Mok et al, 2015; Louw & Merat, 2017). The 257 

second within-participants factor that was manipulated was mental workload. This was 258 

manipulated over two levels; a no-load condition and a high mental workload condition where 259 

participants had to complete a secondary task during the automated driving sections. To induce 260 

cognitive load, participants completed a verbal response delayed digit recall task (N-back) 261 

(Mehler et al, 2011) during the automated driving sections. The specific N-back used in the 262 



current investigation was a 2-back condition. This task was chosen because it is highly 263 

controlled, non-visual, and has been consistently shown to increase the workload of drivers 264 

during manual (Reimer, 2009; Reimer et al, 2010; Wang et al, 2014) and automated driving 265 

(Radlmayr et al, 2019; Wilkie et al, 2019).  266 

The experiment consisted of two drives for each participant. During one drive participants 267 

completed an N-back throughout the automated period; during the other drive there was no 268 

secondary task. The order of N-back was counter-balanced across participants. Each drive 269 

lasted approximately 35 minutes and all participants drove on the same 3-lane UK motorway. 270 

Each drive consisted of 10 discrete events, each consisting of 30 s of manual driving followed 271 

by approximately 2 minutes of automated driving. After 2 minutes of automated driving, a 272 

takeover request (TOR) was delivered. Four of these events were critical: two with a TTC of 3 273 

s, two with a TTC of 5 s. For 3 s TTCs, the lead vehicle braked suddenly and decelerated at a 274 

rate of 5.55 m/s2, whereas for the 5 s event, the lead vehicle decelerated at 2 m/s2. Decelerations 275 

began as soon as the takeover request (TOR) was triggered. The remaining six events were 276 

non-critical; two involved no lead vehicle, and the remaining four involved a lead vehicle that 277 

did not decelerate once the TOR was triggered. Lead vehicles appeared in front of the ego 278 

vehicle shortly before the automation was engaged. They entered the middle lane from the left-279 

hand lane and participants were instructed to allow the lead vehicle to pull in front. Once in the 280 

middle lane, lead vehicles matched the ego-vehicle’s speed at a distance of 25 m during 281 

automation. Participants drove in the middle lane, with ambient traffic flow in the left and right 282 

lanes. Once the lead vehicle was present, the automated system engaged.  283 



Figure 2: Schematic representation of an event. (A) represents the ego vehicle and (B) 284 

represents the lead vehicle. Lead vehicles entered from the left lane and matched the ego 285 

vehicles speed at a distance of 25 m. Following 2 minutes of automated driving, for critical 286 

trials the lead vehicle decelerated at 5.55 m/s2 (TTC = 3 s) or 2 m/s2  (TTC = 5 s). For non-287 

critical trials, a TOR was delivered but the lead vehicle did not decelerate. 288 

2.4 Procedure 289 

Informed consent was obtained, and standardized procedural instructions were delivered. All 290 

procedures were approved by the University of Leeds Research Ethics Committee (Reference 291 

code: 2022-0353-206). 292 

Upon arrival participants completed a number of pre-drive questionnaires (data from these 293 

questionnaires are not analysed or reported in this manuscript). Participants conducted a 294 

practice session to become familiar with all aspects of the experiment and the driving simulator 295 

dynamics. Participants were talked through the design of the   Human-Machine Interface (HMI) 296 

(see Figure 3), how to disengage the automation, and completed a static N-back task. During 297 



the driving portion of the practice the 3-lane motorway contained ambient traffic. Takeovers 298 

during the practice were non-critical. 299 

Figure 3: Icons used to indicate system status. Green steering wheels indicated the Level 2 300 

autonomous system was activated. Red steering wheels indicated that the driver needed to take 301 

over. During manual driving, the steering wheel was greyed out. In the experiment, the red 302 

steering wheel flashed until the vehicle was back into manual driving mode.  303 

For experimental drives, participants were instructed to enter the motorway and position 304 

themselves in the centre of the middle lane and maintain a speed of 70 MPH. After 305 

approximately 30 s of manual driving the automated system engaged automatically. This was 306 

indicated by a short auditory tone and the shifting of the steering wheel icon from grey (manual 307 

mode) to green (automation engaged) (see Figure 3). Once in automated driving mode, 308 

participants were instructed to take their hands off the wheel and feet away from the pedals and 309 

to monitor the road environment for any potential hazards. After approximately 2 minutes of 310 

automated driving, a TOR was delivered. The TOR was characterised by an auditory tone and 311 

the steering icon flashing red within the instrument cluster. Participants were instructed to take 312 

over once the TOR had been issued; this could be done by any steering input over 2°, pressing 313 

any of the pedals, or pressing a micro-switch button strapped to the steering wheel. If the driver 314 

of the ego-vehicle did not respond within 10 seconds, the automation would disengage by itself. 315 



Following the takeover, the participant engaged in 30 s of manual driving before the automated 316 

system engaged once more. If the driver exited the middle lane during takeovers, they were 317 

instructed to return as soon as possible. There were 10 discrete events per drive and each drive 318 

lasted approximately 35 minutes. During one drive participants completed an auditory-verbal 319 

N-back task when automation was engaged, which continued until a TOR was given. 320 

Participants were instructed that a safe drive was their primary goal. After each drive, 321 

participants filled out a NASA-TLX to collect data on subjective ratings of workload. After the 322 

second experimental drive, participants completed post-drive questionnaires (data from these 323 

questionnaires is not analysed or reported in this manuscript). 324 

2.5 Statistical modelling 325 

The main aim of this manuscript was to investigate changes in gaze entropic eye metrics during 326 

the 2-minute automation period with and without N-back, and with and without a lead vehicle. 327 

This includes critical and non-critical trials that included a lead vehicle. Thus, data relating to 328 

the takeover and manual driving portions are not analysed within this manuscript. Data and 329 

analysis code can be found in the following link 330 

(https://github.com/courtneygoodridge/gaze_entropy_heterogenous).  331 

2.5.1 Gaze entropy 332 

To calculate stationary gaze entropy (𝐻𝑠), the Shannon (1948) entropy equation was applied to 333 

the fixation data: 334 

 

𝐻𝑠(𝑥) =  − ∑ 𝑝(𝑖)𝑙𝑜𝑔2𝑝(𝑖)

𝑁

𝑖=1

 

(1) 

Where 𝐻𝑠 is entropy for a given set 𝑥 (time period during automation for a given condition), 𝑖 335 

is the number of state spaces or locations (in a 2-dimensional coordinate plane) of each fixation 336 

in 𝑥, 𝑁 is the total number of fixations in 𝑥, and 𝑝(𝑖) is the proportion of fixations landing in a 337 

https://github.com/courtneygoodridge/gaze_entropy_heterogenous


given state space. Gaze transition entropy (𝐻𝑡) was calculated by applying the conditional 338 

entropy equation to 1st order Markov fixations transitions: 339 

 340 

 

𝐻𝑡(𝑥) =  − ∑ 𝑝(𝑖)

𝑁

𝑖=1

[∑ 𝑝(𝑖 | 𝑗)

𝑁

𝑖=1

𝑙𝑜𝑔2𝑝(𝑖 |𝑗)] , 𝑖 ≠  𝑗 

(2) 

 341 

When 𝑝(𝑖) is the stationary distribution of fixations, 𝑝(𝑖 | 𝑗) is the probability of transitioning 342 

to state 𝑗 given being currently in state 𝑖, and 𝑖 ≠  𝑗 excludes transitions that occur within the 343 

same state space (Ellis & Stark, 1986). Fixations were split into spatial bins to apply the 344 

equations. This is the primary method of discretisation in the literature (Di Stasi et al, 2017; 345 

Krejtz et al, 2014; 2015, Raptis et al, 2017) and has been proposed as the superior method for 346 

dynamic stimuli (Shiferaw et al, 2019). For interpretability, both 𝐻𝑠 and 𝐻𝑡 were normalized 347 

by dividing by the maximum entropy, 𝐻𝑚𝑎𝑥. Maximum entropy is the logarithm (base 2) of all 348 

state spaces and thus represents when distributional information is at a maximum. For example, 349 

each fixation is equally spaced out within the visual scene, and each transition is completely 350 

random (Shiferaw et al, 2019). As such,  𝐻𝑠 and 𝐻𝑡 range from 0-1 and represent the percentage 351 

of maximum possible entropy.  352 

2.5.2 Analytic approach 353 

To develop human-centred driver monitoring systems that can reliably detect the mental 354 

workload of drivers, it is important to consider the distribution of driver responses rather than 355 

focusing merely on the mean. Whilst mean differences are useful for establishing the presence 356 

of effects across conditions, using mean values is limited, since it only exists in an abstract 357 

sense - no single driver can be considered “the average” (Mole et al, 2020). Furthermore, means 358 

do not contain within or between individual variability which are vital components for making 359 



real world predictions about human behaviour. Standard regression-based analyses aim to 360 

model the population mean (𝜇) whilst assuming that the within-participants variance (𝜎) is 361 

consistent. Not only is the assumption of homogeneity of variance often violated (Schielzeth 362 

et al, 2020) but there is also theoretical justification that 𝜎 might vary as a function of the 363 

manipulated variables in the experiment.  364 

As highlighted in the Introduction, the motor coordination of eye movements aims to optimise 365 

inference (Parr & Friston, et al 2017). This implies that there is an optimal level of 𝐻𝑡 for 366 

effective sampling of the visual scene whereby top-down processes modulate default bottom-367 

up activation (Shiferaw et al, 2019). Whilst increases or decreases in the 𝜇 of 𝐻𝑡 can be 368 

indicative of top-down interference or top-down modulation respectively (Shiferaw et al, 369 

2019), the trial-by-trial variance within individuals can also be a crucial index for measuring 370 

the efficiency of visual scanning. Under the assumption that the visual scene maintains an 371 

ambient level of complexity, optimal 𝐻𝑡 should be consistent within an individual. However, 372 

if increased mental workload results in decreases in 𝐻𝑡 via top-down modulation, it may also 373 

affect how efficiently individuals are able to maintain optimal 𝐻𝑡 from one trial to the next. 374 

The idea that a change in variance can indicate a change in a driver’s internal state is not new 375 

within the driver monitoring and distraction literature. Horrey & Wickens (2007) proposed that 376 

standard statistical methods that focus on mean differences (or other measures of central 377 

tendency) are insufficient for measuring driver distraction, and that modelling large deviations 378 

in attention can reveal infrequent lapses in visual sampling control; something that can be 379 

missed when only focusing on averages. Kujala & Saarilouma (2011) found reductions in the 380 

standard deviation of fixation durations for simpler in-vehicle information systems menu 381 

deigns, thus suggesting that the variance in fixations durations could be used to assess the 382 

efficiency of visual search performance. It is thus proposed in this manuscript that a similar 383 

effect might be present for 𝐻𝑡 , when increasing mental workload. To assess whether there are 384 



systematic changes in 𝜎 as a function of the predictor variables, the current analysis will apply 385 

distributional models. Distributional models relax the assumption of consistent 𝜎, and allow it 386 

to be predicted by parameters as can be done when predicting 𝜇 (Bürkner, 2017). 387 

It is also vital to quantify between-participants variance, as the overall aim of any analysis is 388 

to make predictions towards the population. This is particularly true for DMS, if these systems 389 

are to be reliable for establishing the state of a large and varying driver population. To model 390 

the between-participants variance, we used a multilevel modelling approach. The multilevel 391 

aspect of the model refers to the inclusion of fixed and random effects. Whilst fixed effects 392 

refer to the contribution of a predictor variable towards the average change, random effects 393 

model the variation between different participants on average, alongside how they vary in 394 

response to predictor variables (Lo & Andrews, 2015). 395 

2.5.2.1 Model development  396 

The population mean, 𝜇,  of all the gaze-based metrics were modelled as the linear combination 397 

of an intercept (𝛽0), N-back (𝑁, 𝛽𝑁), presence of a lead vehicle (𝐿, 𝛽𝐿), and an interaction term 398 

between these variables (𝑁𝐿, 𝛽𝑁𝐿). The N-back task was parameterised as 𝑁 ∈ {0, 1} where 399 

𝑁 = 1 corresponds to the presence of the N-back during hands-off Level 2 automation. 400 

Similarly, lead vehicle was parameterised as 𝐿 ∈ {0, 1} where 𝐿 = 1 corresponds to the 401 

presence of a lead vehicle during automation. The standard deviation, 𝜎, was independently 402 

modelled as a linear combination of an intercept (𝛼0), N-back (𝛼𝑁), presence of a lead vehicle 403 

(𝛼𝐿), and an interaction (𝛼𝑁𝐿). Because 𝜎 cannot be negative, the 𝑙𝑜𝑔(𝜎) was modelled. The 404 

distributional model structure was specified as follows: 405 

 406 

 407 



 𝑌𝑖𝑗  ~ 𝑁(𝜇𝑖𝑗, 𝜎𝑖𝑗) 

𝜇𝑖𝑗 = (𝛽0 + 𝛽0𝑗
) + (𝛽𝑁𝑁𝑖 + 𝛽𝑁𝑗

𝑁𝑖) + (𝛽𝐿𝐿𝑖) + (𝛽𝑁𝐿𝑁𝐿𝑖)   

𝑙𝑜𝑔 (𝜎𝑖𝑗) = (𝛼0 + 𝛼0𝑗
) + (𝛼𝑁𝑁𝑖 + 𝛼𝑁𝑗

𝑁𝑖) + (𝛼𝐿𝐿𝑖)   

[
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𝜎𝛼0𝑗

𝜌𝜎𝛼0𝑗
𝜎𝛼𝑁𝑗

𝜎𝛼𝑁𝑗

2 ) 

 

(3) 

Where 𝑌 denotes the response variable, 𝑖 specifies the condition of each variable, 𝑗 specifies 408 

the participant, and 𝑆𝛽 and 𝑆𝛼 are matrices corresponding to the variance or covariance 409 

parameters.  410 

A model was also built to investigate how N-back influenced subjective mental workload. The 411 

population mean, 𝜇,  was modelled as linear combination of an intercept (𝛽0) and N-back 412 

(denoted 𝑁, 𝛽𝑁): 413 

 𝑌𝑖𝑗  ~ 𝑁(𝜇𝑖𝑗, 𝜎𝑖𝑗) 

𝜇𝑖𝑗 = (𝛽0 + 𝛽0𝑗
) + (𝛽𝑁𝑁𝑖 + 𝛽𝑁𝑗

𝑁𝑖) 

[
𝛽0𝑗

𝛽𝑁𝑗

] ~ 𝑀𝑉𝑁 ([
𝛽0

𝛽𝑁
] , 𝑆𝛽) 

𝑆𝛽 =  (
𝜎𝛽0𝑗

2 𝜌𝜎𝛽N𝑗
𝜎𝛽0𝑗

𝜌𝜎𝛽0𝑗
𝜎𝛽𝑁𝑗

𝜎𝛽𝑁𝑗

2 ) 

(4) 



Where 𝑌 denotes the response variable, 𝑖 specifies the condition of each variable, 𝑗 specifies 414 

the participant, and 𝑆𝛽 is a matrix corresponding to the variance or covariance parameters.  415 

2.5.2.2 Model fitting  416 

A Bayesian approach was used in this manuscript to analyse the data. Posterior distributions 417 

were estimated using the No-U-Turn Sampler (NUTS) in the brms package in the R 418 

programming language (Bürkner, 2017). For parameters estimating mean (𝜇) differences 419 

between the predictor variables, informative priors were used. For distributional parameters, 420 

brms defaults were used to reflect that 𝜎 is a standard deviation and thus can only take positive 421 

values. The final models were reached by incrementally increasing model complexity. Model 422 

comparisons were made using leave-one-out cross validation and additional terms were only 423 

kept if they decreased prediction errors (Vehtari et al, 2017). 424 

Using a Bayesian approach, each parameter has an associated probability distribution which 425 

quantifies the level of uncertainty, conditioned on the data. In this manuscript, posterior 426 

distributions of parameters are described by their mean and a 95% Credible Interval (CI) 427 

whereby there is a 95% probability that the true parameter value will fall; values inside this 428 

density have higher credibility than those outside it (Kruschke, 2014). The reader is 429 

discouraged in making dichotomous decisions when understanding whether there is an effect. 430 

Rather, they should use the mean and 95% CIs to assess size, direction, and uncertainty of an 431 

effect. Where appropriate, the probability of direction (𝑝𝑑) is also reported to illustrate what 432 

percentage of the posterior distribution is above or below 0 (Makowski et al, 2019).  433 

3 Results 434 

3.1 Subjective measures 435 

To develop a ground truth regarding the cognitive loading effects of the N-back task, the mental 436 

demand facet of the NASA-TLX was compared between N-back conditions. The 𝛽𝑁 parameter 437 



predicts that the presence of N-back during hands-off Level 2 automated driving doubled 438 

subjective scores of mental demand on average from 38.994 to 78.705. The model predicts 439 

with high certainty that N-back produced large increases in subjective mental workload.  440 

Table 1: Posterior means and 95% CIs for fixed effect parameters predicting 𝜇𝑖𝑗 of NASA TLX 441 

mental demand 442 

Fixed effects 

 Dependent variable: 

 Mental demand 

𝛽0 38.994 (32.656, 45.257) 

𝛽𝑁 39.711 (32.057, 47.369) 

Participants 38 

Observations 76 

 443 

3.2 N-back performance 444 

Performance data for the N-back task was only available for 37 out of 38 participants due to 445 

data loss. The average performance was reasonably high and homogenous across the sample 446 

(M = 70.77, SD = 15.13) however the high and low scores were quite different (range = 37.38 447 

– 90.97). Previous research in manual driving had found that younger drivers had significantly 448 

better 2-back performance in comparison to older drivers (Öztürk et al, 2023). To investigate 449 

this, a univariate Bayesian correlation model was fitted on the standardised values of age and 450 

performance. The results indicate a negative correlation of -.349 (95% CI: -.666, -.037) 451 

suggesting that older drivers tended to have worse N-back performance. This medium effect 452 

size is slightly lower than what was been found in manual driving (Öztürk et al, 2023) although 453 

the average correlation did highlight a lot of variability; the correlation could be up to -.666, or 454 

as low as -.03 (effectively zero).  455 

 456 



 457 

 458 

 459 

 460 

 461 

 462 

 463 

Figure 4: Correlation between age and percentage of correct 2-back responses. Values are 464 

standardized to maintain model stability. Black line represents the posterior mean surrounded 465 

by bands representing predictive intervals. 466 

3.3 Gaze behaviours 467 

Now that is has been established that N-back increased subjective mental workload between 468 

the different driving conditions, an investigation into differences in eye movements can be 469 

conducted to see if there were reliable differences in gaze entropic metrics as a function of N-470 

back.   471 

3.3.1 Stationary Gaze Entropy (𝐻𝑠) 472 

3.3.1.1 Distributional parameters for 𝐻𝑠 473 

The 𝛽𝑁 parameter predicted an average decrease in 𝐻𝑠 of -.141 (95% CI: -.178, -.101) when 474 

drivers completed the N-back task; equivalent to a 14 percentage point reduction in normalized 475 

𝐻𝑠. The 𝛽𝐿 parameter predicted an average decrease in 𝐻𝑠 of -.041 (95% CI: -.058, -.022) when 476 

a lead vehicle was present during automation; equivalent to a 4 percentage point reduction. The 477 

𝛽𝑁𝐿 parameter was estimated to be .017 suggesting that N-back reduced the difference in 𝐻𝑠 478 

between lead and no lead conditions by around 1.7 percentage points. However, as highlighted 479 



in Figure 5 there is some uncertainty for this effect; only 92% of the most probable parameters 480 

values are above 0.  481 

Table 2: Posterior means and 95% CIs for fixed effect parameters predicting 𝜇𝑖𝑗 of 𝐻𝑠 482 

Fixed effects 

 Dependent variable: 

 𝐻𝑠 

𝛽0 .474 (.428, .520) 

𝛽𝑁 -.141 (-.178, -.101) 

𝛽𝐿 -.041 (-.058, -.022) 

𝛽𝑁𝑙 .017 (-.006, .040) 

Participants 38 

Observations 744 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

Figure 5: Posterior distributions for model parameters predicting the effect of N-back, lead 493 

vehicle, and their interaction on the 𝜇𝑖𝑗 of 𝐻𝑠. N-back and lead vehicle have strong negative 494 

effects on 𝐻𝑡. The interaction effect is positive, but uncertain with regard to its direction. 495 

Dashed lines are presented to illustrate a null effect.    496 

The direction of the effects for 𝜎𝑖𝑗 of 𝐻𝑠 are uncertain. N-back is predicted to decrease 𝜎𝑖𝑗 by 497 

15%, however the probability that the effect is negative is only 90%. As shown in Figure 6, a 498 

similar pattern of results is found for the presence of the lead vehicle and the interaction effect. 499 



Table 3: Posterior means and 95% CIs for fixed effect parameters predicting 𝜎𝑖𝑗 of 𝐻𝑠 500 

Fixed effects 

 Dependent variable: 

 𝐻𝑠 

𝛼0 -2.676 (-2.867, -2.475) 

𝛼𝑁 -.167 (-.420, .095) 

𝛼𝐿 .098 (-.103, .294) 

𝛼𝑁𝑙 .019 (-.265, .290) 

Participants 38 

Observations 744 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

Figure 6: Posterior distribution for model parameters predicting the effect of N-back, lead 511 

vehicle, and their interaction, on 𝜎𝑖𝑗 of 𝐻𝑠. The effect of N-back 𝜎𝑖𝑗 is estimated to be negative, 512 

however there is only a 90% probability of this. The effects of lead vehicle and the interaction 513 

are estimated to be close to 0, thus highlighting high uncertainty with regard to the size and 514 

direction of their effect on the within-participants variance of 𝐻𝑡. Dashed lines are presented 515 

to illustrate a null effect.    516 

Overall, the model predicts that N-back reduces the spatial distribution of gaze. This is 517 

evidence of reduced top-down engagement when monitoring the road environment during 518 

hands-off Level 2 automated driving. This supports previous research which has shown that 519 



increased mental workload during automated driving reduces gaze dispersion (Wilkie et al, 520 

2019) and suggests that 𝐻𝑠 could be a good metric for estimating mental workload in drivers. 521 

Modelling the trial-by trial variance in 𝐻𝑠 did not show strong effects of N-back or lead vehicle. 522 

This is highlighted in Figure 7, whereby the predictive intervals overlayed on raw data have 523 

similar ranges around their predicted means for all conditions. This suggests that variance in 524 

gaze dispersion from trial to trial was consistent across trials and thus changes in 𝜎𝑖𝑗 of 𝐻𝑠 may 525 

not be useful for detecting increased driver workload. 526 

Figure 7: Posterior predictive bands and posterior distribution of means plotted against raw 527 

data for conditions with and without a lead vehicle. The point-interval plot highlights the 528 

predicted mean differences between N-back/no N-back and lead/no lead vehicle alongside 50% 529 

and 95% credible interval bars. For both lead vehicle and N-back comparisons, the posterior 530 

predictive intervals are roughly of similar size highlighting the lack of evidence for N-back and 531 

lead vehicle affecting 𝜎𝑖𝑗 of 𝐻𝑠.  532 



3.3.1.2 Heterogeneity parameters for 𝐻𝑠 533 

Although the typical driver had reduced 𝐻𝑠 by 14 percentage points during the N-back 534 

condition, people differed in the size of this effect. Some participants had reductions as large 535 

as 29 percentage points, some as a low as 3 percentage points, whereas some demonstrated 536 

increases in 𝐻𝑠 by up to 8 percentage points (see Figure 8, left panel). Despite these outlying 537 

participants, the model estimates that 92% of the population are expected to have reductions in 538 

𝐻𝑠 as a result of completing N-back during automation; the remaining 8% of the population 539 

are expected to see moderate increases in 𝐻𝑠 whilst cognitively loaded (see Figure 9, right 540 

panel).  541 

Figure 8: Left panel: strip plot displaying the range of causal effect of N-back on 𝐻𝑠. The black 542 

lines denote the average decrease in 𝐻𝑠 (fixed effect), the blue dashed lines denote the 543 

heterogeneity of the average casual effect of N-back (95% Credible Intervals) and the red solid 544 

lines denote the population heterogeneity of the effect of N-back. Right panel: population 545 

heterogeneity distribution implied by the model estimates of the mean and standard deviation. 546 

92% of the population are predicted to demonstrate decreases in 𝐻𝑠 when completing N-back 547 

tasks. 548 



These results suggest that 𝐻𝑠 is a strong contender for estimating mental workload during 549 

hands-off Level 2 automated driving. Reductions in 𝐻𝑠 during N-back are consistent across a 550 

population, with the model predicting that 92% of the population would have similar decreases 551 

under similar situations. Although the direction of this effect is consistent, the magnitude can 552 

vary drastically; up to 2.5 times larger than the average predicted from this sample.   553 

3.3.2 Gaze Transition Entropy (𝐻𝑡) 554 

3.3.2.1 Distributional parameters for 𝐻𝑡 555 

The 𝛽𝑁 parameter predicted that the average decrease in 𝐻𝑡 was -.021 (95% CI: -.037, -.004) 556 

when drivers were completing the N-back task during automated driving. This is equivalent to 557 

a reduction of 2 percentage points in 𝐻𝑡. It should be noted that the average effect could be as 558 

low as a reduction of .004 percentage points which would be effectively 0, or as high as a 3.7 559 

percentage point reduction. The model parameters for the effect of lead vehicle and the 560 

interaction between N-back and lead vehicle were estimated as close to 0 with high certainty, 561 

thus suggesting no meaningful effect on average 𝐻𝑡 (see Table 4). 562 

Table 4: Posterior means and 95% CIs for parameters predicting the 𝜇𝑖𝑗 of 𝐻𝑡 563 

Fixed effects 

 Dependent variable: 

 𝐻𝑡 

𝛽0 .215 (.208, .222) 

𝛽𝑁 -.021 (-.037, -.004) 

𝛽𝐿 .001 (-.003, .006) 

𝛽𝑁𝑙 -.005 (-.012, .001) 

Participants 38 

Observations 744 

 564 
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 577 

Figure 9: Posterior distribution for model parameters predicting the effect of N-back, lead 578 

vehicle, and their interaction on 𝜇𝑖𝑗 of 𝐻𝑡. N-back has a small negative effect on 𝐻𝑡. The effects 579 

of lead vehicle and the interaction are estimated to be close to 0 with reasonably high certainty. 580 

Dashed lines are presented to illustrate a null effect.    581 

The model also predicted differences in the 𝜎𝑖𝑗 of 𝐻𝑡 as a function of N-back and lead vehicle 582 

(see Table 5). The 𝑒𝛼𝑁 parameter highlights an increase of 44% in within-participants variance 583 

in 𝐻𝑡 when completing the N-back during automation. The 𝑒𝛼𝐿  parameter indicates that 𝐻𝑡 584 

increased by 35% when a lead vehicle was present. The 𝑒𝛼𝑁𝐿  parameter suggests that the 585 

difference in within-participants variance between conditions with and without a lead vehicle 586 

were 23% smaller when drivers were not completing the N-back. However, there is some 587 

uncertainty with this effect; the probability of the effect being above 0 is 95% (see Figure 10). 588 

 589 

 590 

 591 

 592 



Table 5: Posterior means and 95% CIs for parameters predicting the 𝜎𝑖𝑗 of 𝐻𝑡 593 

Fixed effects 

 Dependent variable: 

 𝐻𝑡 

𝛼0 -4.145 (-4.369, -3.920) 

𝛼𝑁 .369 (.042, .696) 

𝛼𝐿 .304 (.089, .524) 

𝛼𝑁𝑙 -.262 (-.568, .040) 

Participants 38 

Observations 744 

 594 
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 604 

Figure 10: Posterior distribution for model parameters predicting the effect of N-back, lead 605 

vehicle, and their interaction, on 𝜎𝑖𝑗 of 𝐻𝑡. N-back and lead vehicle have strong negative effects 606 

on 𝐻𝑡. The interaction effect is negative but slightly uncertain with regard to its direction; only 607 

95% of the posterior distribution is above 0. Dashed lines are presented to illustrate a null 608 

effect.    609 

Model parameters highlight that completing N-back during automated driving produces 610 

fixation transitions that are less erratic and more constrained within the visual scene. This 611 

average decrease suggests that N-back produced top-down modulation of visual scanning 612 



resulting in less complex, more constrained scanning behaviours.  The concurrent reduction in 613 

mean 𝐻𝑠 and 𝐻𝑡 as a function of N-back suggests that drivers did not perform sufficient 614 

exploration of the visual scene while under high workload, and thus had reduced top-down 615 

engagement whilst monitoring the automated system. This can be taken as evidence that, on 616 

average, drivers during Level 2 automation who were under high workload had reduced 617 

complexity of eye movements. The model also predicted increases in the  𝜎𝑖𝑗 of 𝐻𝑡 as a function 618 

of N-back. The increase in 𝜎𝑖𝑗 of 𝐻𝑡 is highlighted in Figure 11; raw data are dispersed across 619 

a broader range during N-back conditions. The systematic change in 𝜎𝑖𝑗 as a function of N-620 

back tells us something about the relationship between visual scanning complexity and mental 621 

workload. Not only did drivers have reductions in scanning complexity, but they also failed to 622 

maintain a consistent complexity on a trial-by-trial basis. Instead, drivers demonstrated 623 

frequent fluctuations. 624 

The presence of a lead vehicle had no meaningful effect on mean 𝐻𝑡. However, 𝜎𝑖𝑗 did 625 

increased by 35% in the presence of a lead vehicle.  This suggests that when following a lead 626 

vehicle, drivers struggled to maintain their scanning complexity within an optimal range; 627 

instead, their trial-by-trial variance in 𝐻𝑡 was high.   628 

 629 

 630 

 631 

 632 

 633 

 634 



Figure 11: Posterior predictive bands and posterior distribution of means plotted against raw 635 

data for 𝐻𝑡. The point-interval plot highlights the predicted mean differences between N-636 

back/no N-back and lead/no lead vehicle alongside 50% and 95% credible interval bars. It is 637 

evident that there are small differences in predicted means between N-back and no N-back, 638 

however lead vehicle seems to have no effect on mean 𝐻𝑡. It is also evident that 𝜎𝑖𝑗 increases 639 

as a function of N-back and lead vehicle, which is highlighted by the wider predictive intervals 640 

and larger spread of the data. 641 

3.3.2.2 Heterogeneity parameters for 𝐻𝑡 642 

The heterogeneity parameters of the model highlight considerable variance; the random slope 643 

parameter (𝛽𝑁𝑗
) is almost two and a half times bigger than the average causal effect (𝛽𝑁). 644 

Whilst the average reduction in 𝐻𝑡 during N-back was 2 percentage points, some people have 645 

decreases in 𝐻𝑡 of -.125 during N-back (12.5 percentage points) whereas some have increases 646 

of up to .043 (4 percentage points) (see Figure 12, left panel). Furthermore, over 40% of the 647 

sample show small-to-moderate increases in 𝐻𝑡 during the N-back; a reversal of the average 648 



trend. This suggests that a considerable proportion of the sample demonstrate more erratic and 649 

random sampling patterns when cognitively distracted. The model predicts that only 66% of 650 

the population will show an average decrease in 𝐻𝑡 when completing the N-back during Level 651 

2 automated driving (see Figure 12, right panel). The remaining 34% of the population are 652 

expected to show increases in 𝐻𝑡, resulting in more erratic fixations transitions when 653 

cognitively loaded.  654 

Figure 12 The left panel shows a strip plot of the model predictions of the causal effect of 2-655 

back on 𝐻𝑡. The black lines denote the average mean decrease in 𝐻𝑡 (fixed effect), the blue 656 

dashed lines denote the heterogeneity of the average casual effect of N-back (95% Credible 657 

Intervals) and the red solid lines denote the population heterogeneity of the effect of N-back. 658 

The right panel shows the population heterogeneity distribution implied by the model’s 659 

estimates of the mean and standard deviation for effect of N-back on 𝐻𝑡. Only 66% of the 660 

population are predicted to demonstrate mean decreases in 𝐻𝑡 when completing the N-back 661 

task. 662 

Compare this to changes in 𝜎𝑖𝑗 of 𝐻𝑡 as a function of N-back. The random slope parameter 663 

predicting 𝜎𝑖𝑗 (𝛼𝑁𝑗
) is only 1.5 times bigger than the average causal effect of N-back on 𝜎𝑖𝑗 664 



(𝛼𝑁). This is further supported by looking at individual changes in 𝜎𝑖𝑗 of 𝐻𝑡 as a function of 665 

the N-back (see Figure 13, left panel). Whilst there is variation in the size of the effect, the 666 

direction of the effect is more consistent across the sample. This is reflected in the model 667 

predictions for the population; it predicts that 76% of the population show average increases in 668 

trial-by-trial variance when completing the N-back task during Level 2 automated driving.  669 

Figure 13: The left panel shows a strip plot of the model predictions of the causal effect of N-670 

back on 𝜎𝑖𝑗 of 𝐻𝑡. The black lines denote the average decrease in 𝜎𝑖𝑗 (fixed effect), the blue 671 

dashed lines denote the heterogeneity of the average casual effect of N-back (95% Credible 672 

Intervals) and the red solid lines denote the population heterogeneity of the effect of N-back. 673 

The right panel shows the distribution of the individual effects of N-back on 𝜎𝑖𝑗 of 𝐻𝑡 in the 674 

population predicted by the model. 76% of the population are predicted to demonstrate 675 

increases in 𝜎𝑖𝑗 of 𝐻𝑡 when completing the N-back task. 676 

These findings provide further credence to the assessment of 𝐻𝑡 made in the previous section. 677 

Both 𝜇𝑖𝑗 and 𝜎𝑖𝑗 of 𝐻𝑡 change as a function of N-back. However, changes in 𝜎𝑖𝑗 are predicted 678 

to be more consistent across the population.  679 



3.4 Understanding heterogeneity in average causal effect 680 

Thus far is has been demonstrated that the mean of 𝐻𝑠 and 𝐻𝑡 change as a function of N-back. 681 

However, they both also demonstrate substantial variation across the sample, albeit in differing 682 

manners. 𝐻𝑠 decreases for a majority of the sample but at varying magnitudes. Conversely, 𝐻𝑡 683 

decreases for only two thirds of the sample with the remaining participants showing null effects 684 

or small reversals. Whilst this is theoretically useful, it is also important to understand why 685 

these effects are so variable. One possible explanation for entropic gaze metrics is age. Schieber 686 

& Gilland (2008) found that 𝐻𝑡 consistently decreased as secondary task load increased, and 687 

these effects were exacerbated for older (67–86 years old) versus younger (19-35 years old) 688 

drivers. Schieber & Gilland (2008) proposed that this could be explained by shortfalls in visual-689 

spatial resources of older drivers. A combination of loading these resources with a secondary 690 

task, and the demands of visual scanning during driving, could result in diminished scanning 691 

complexity under the interpretation of Wickens’ (2020) Multiple Resource Theory model. 692 

More recent research supports this notion, suggesting that age-related impairments of top-down 693 

attentional control can exacerbate the effects that secondary cognitive tasks have on 𝐻𝑡 694 

(Gazzaley et al, 2005; Shiferaw et al, 2019).  695 

To investigate whether age-related impairments of top-down attentional control influence the 696 

effect of N-back, an additional model parameter 𝛽𝐴 specifying the effect of age and its 697 

interaction with N-back was included for models of 𝐻𝑠 and 𝐻𝑡. For 𝐻𝑠, the model predicted 698 

that age accounts for 9.9% of the between-participants heterogeneity in the causal effect of N-699 

back (see Figure 14). A closer look at Figure 15 highlights that younger than average drivers 700 

still had decreases in gaze dispersion during N-back, although they were slightly smaller versus 701 

older than average drivers. 702 
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 714 

Figure 14: Individual effects of N-back on 𝐻𝑠 plotted against mean centred age. X axis vertical 715 

line denotes mean age, y axis horizontal line denotes the average effect of N-back. All people 716 

in the sample show decreases in gaze dispersion due to N-back. However, this effect is more 717 

prominent for older than average people.  718 

As for 𝐻𝑡, the model predicts that driver age accounts for 19% of between-participants 719 

heterogeneity in the causal effect of N-back. This suggests that age had a larger impact on how 720 

N-back effected 𝐻𝑡 in comparison to how it impacted 𝐻𝑠. Furthermore, how the between-721 

participants variance manifested was different. Younger than average drivers tended to show 722 

null effects or even small reversals of the average causal effect, whereas older drivers observed 723 

large reductions in 𝐻𝑡 attributed to the effect of the N-back task (see Figure 15).  724 
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Figure 15: Individual effects of N-back 𝐻𝑡 on plotted again mean centred age. X axis vertical 743 

line denotes mean age, y axis horizontal line denotes the average effect of N-back. Young than 744 

average people appear to have almost no effect of N-back on 𝐻𝑡, with even some slight 745 

reversals. Conversely, older than average people tend to have stronger than average effects of 746 

N-back on 𝐻𝑡. 747 

4 Discussion 748 

The aim of this study was to investigate whether gaze metrics based on Information Theory 749 

could be used to estimate mental workload during hands-off Level 2 automated driving. Drivers 750 

had to monitor a road environment before taking over during critical and non-critical situations. 751 

The data presented in this manuscript focused on whether changes in eye movements during 752 

automated driving were associated with changes in mental workload. The observed data 753 

revealed that 𝐻𝑠 was a reliable indicator of mental workload; the model predicted that 92% of 754 

the population would have decreases in 𝐻𝑠 when completing the N-back task. Despite this, 755 

there was substantial variability in the size of the effect, with some people predicted to exhibit 756 

effects more than double the size of the average causal effect. Conversely, in contrast to 757 

previous work (Schieber & Gilland, 2008) 𝐻𝑡 was found to be much less reliable for detecting 758 



mental workload. Although the model predicted average reductions in gaze transition 759 

complexity for high workload conditions, only 66% of the population would exhibit similar 760 

decreases in 𝐻𝑡 during N-back. Participant age appeared to be a strong predictor for how N-761 

back influenced gaze entropic measures, accounting for 9.5% and 19% of the between-762 

participants heterogeneity in the causal effect of N-back on 𝐻𝑠 and 𝐻𝑡, respectively.  763 

The current manuscript supports previous work that gaze dispersion reduces when mental 764 

workload increases (Reimer et al, 2009; 2010; Louw & Merat, 2017; Wilkie et al, 2019). The 765 

analysis also aligns with previous work that gaze complexity decreases under high mental 766 

workload (Schieber & Gilland, 2008). However, the analytic approach employed in this paper 767 

improves upon previous work by explicitly modelling and quantifying a key assumption of 768 

human behaviour; that people are inherently heterogenous. To build theories of psychological 769 

processes that inform eye movements during partial and conditional automated driving, it is 770 

advisable to take into account the heterogeneity of the sample (Bogler et al, 2019). This is 771 

especially vital when heterogeneity is sufficient such that null effects or reversals are observed 772 

in the data (Bogler et al, 2019). In the current manuscript, this was observed for 𝐻𝑡 as a function 773 

of N-back. Under the assumption that this variance is not due to poor experimental control, 774 

such theories will need to include subpopulations that differ in causal processes. One previous 775 

attempt at this approach was by Reimer et al (2009) who considered the pattern of visual 776 

tunneling under high mental workload in the population by computing change scores from pre-777 

task periods of gaze dispersion for each individual. Although this identifies whether individuals 778 

in the sample follow average trends, it does not generate a population distribution of the effects 779 

of mental workload on eye movements. Instead, the current manuscript constructed a 780 

population heterogeneity distribution implied by the models estimate of the population mean 781 

(𝜇) and standard deviation (𝜎) for each gaze entropic metric. 782 



The effect of N-back on 𝐻𝑠 and 𝐻𝑡 differed as function of age, albeit in slightly different ways. 783 

For 𝐻𝑠, a majority of the sample showed reductions in the spatial distribution of gaze as a 784 

function of N-back; this reduction was weaker for younger than average participants. 785 

Conversely, for 𝐻𝑡 there was no effect of N-back for the younger than average sample. There 786 

were even small increases in gaze complexity when completing the N-back. The older than 787 

average drivers showed a strong decrease in gaze transition complexity. It is important to note 788 

that age had minimal effects on 𝐻𝑠 and 𝐻𝑡 directly; rather, age influenced how much N-back 789 

affected gaze. In this sense, the current findings support previous work that report the lack of 790 

a direct effect of age on gaze centralization (Reimer et al, 2010; 2012). One explanation for the 791 

indirect effect of age on gaze entropy could be due to a healthy age-related cognitive decline. 792 

Top-down modulation underlies selective attention by suppressing the neural activity 793 

associated with the interference of task irrelevant representations (Gazzaley et al, 2005; Ploner 794 

et al, 2001). In the context of gaze control, top-down modulation also allows for efficient 795 

sampling of the environment by overriding bottom-up input, thus allowing drivers to efficiently 796 

monitor dynamic scenes (Shiferaw et al, 2019). However, research has found that older 797 

populations struggle to suppress task irrelevant information (Gazzaley et al, 2005). 798 

Consequently, this combination leads to a reduction in scanning complexity due to the 799 

interference of the N-back task, in combination with already weakened top-down selective 800 

attention processes of older than average participants.  801 

In terms of their implications, these results can provide DMS designers with some important 802 

principles for using the correct metrics for detecting mental workload. A key aspect to be 803 

considered is that driver demographics should be taken into account when using DMS to 804 

establish driver state in vehicles. This manuscript clearly demonstrates that age influenced the 805 

extent to which N-back changed gaze-based metrics. As such, if DMS were to use 𝐻𝑠 as an 806 

indicator of mental workload, differing thresholds might be necessary for drivers of different 807 



ages. For example, it might be necessary for a smaller threshold in the reduction of spatial 808 

dispersion for younger drivers as their gaze might be less effected by N-back, even though they 809 

might be experiencing high levels of mental workload, which could, in turn, impair their 810 

takeover performance. Another element to for DMS engineers to consider is which parameter 811 

of the gaze metric distribution should be used to establish a change in driver state. The current 812 

state of the art assumes that changes in central tendency should be used (e.g. a change in mean 813 

𝐻𝑡 establishes that N-back induces high mental workload). However, the current findings 814 

suggest that changes in variance may be more reliable. Increases in the trial-by-trial variance 815 

of 𝐻𝑡 were predicted to be found in 76% of the population during high mental workload; only 816 

66% of the population were predicted to follow average trends regarding a change in mean 𝐻𝑡. 817 

This suggests that changes in the variance of gaze complexity were more reliable than changes 818 

in the mean. High trial-by-trial variance during N-back suggests that drivers had frequent 819 

fluctuations in the complexity of their gaze from one trial to the next.  Rather than finding an 820 

optimal level of gaze transitions that were suitable for all trials, the randomness of the 821 

transitions changed frequently. It has been proposed that the motor controls involved in eye 822 

movements aim to optimize inference (Parr & Friston, 2017) which implies that there are 823 

optimal levels of 𝐻𝑡 to sample the environment efficiently (Shiferaw et al, 2019). Hence the 824 

results in the current manuscript suggest that high mental workload disrupts this eye movement 825 

optimization, resulting in variable, inefficient monitoring of the driving environment. The 826 

utilization of variance as an indicator for mental workload supports results from research within 827 

the visual distraction domain. These show, for example, that presentation of information by 828 

certain in-vehicle information systems reduces variations in fixation durations, supporting 829 

more efficient information processing (Horrey & Wickens, 2007; Kujala & Saarilouma, 2011). 830 

A similar suggestion is made here; without N-back trial-by-trial variance is small suggesting 831 

drivers establish and optimal 𝐻𝑡 that allows them to efficiently sample the road. As mental 832 



workload increases, so does the variance in 𝐻𝑡, which is proposed as an indicator for visual 833 

scanning inefficiency. These findings suggest more research is needed to understand whether 834 

different parameters of response distributions can be used as indicators of mental workload.  835 

Another interesting result from this study was the effect of lead vehicle presence. There was a 836 

small but consistent decrease in the spatial distribution of gaze for trials with lead vehicles. 837 

This supports previous research that drivers reduce the spread of their gaze and reallocate 838 

attention towards lead vehicles (Crundall et al, 2004). A key difference is that Crundall et al 839 

(2004) observed reductions in gaze dispersion only when instructing drivers to follow a lead 840 

vehicle during manual driving. Conversely, participants in the current study were instructed to 841 

monitor the entire road environment for hazards. Despite this request, the lead vehicle was 842 

clearly a salient object within the road environment and thus likely attracted drivers’ attention. 843 

This may pose a problem for DMS in the real world, given that gaze dispersion has been shown 844 

to decrease in the presence of a lead vehicle, irrespective of increasing mental workload. 845 

Therefore, DMS will need to ensure that it can distinguish between drivers attending towards 846 

vehicles on the road ahead, and those under increased mental workload. It should be noted that 847 

the average reduction in gaze dispersion was much smaller for lead vehicles versus N-back 848 

conditions, however this still will not disentangle drivers who had smaller reductions in gaze 849 

dispersion during N-back conditions.  850 

One limitation of the current work is that these model predictions need to be validated on a 851 

wider range of datasets. A statistical model is only as good as the data used to fit it. Whilst age 852 

ranges and gender balance were representative in the current sample, they mostly represented 853 

white, British drivers in the north of England. As such, whether their behaviours translate well 854 

to drivers from different cultures remains to be seen. Another limitation with the current work 855 

is the use of a Gaussian distribution as the likelihood for the modelling. Whilst the data were 856 

approximated by a Gaussian distribution, and the posterior predictive checks appear to fit the 857 



data well, normalized 𝐻𝑠 and 𝐻𝑡 are technically continuous variables bounded between 0 and 858 

1. Conversely, any value is possible for a Gaussian distribution. The Beta distribution is a 859 

candidate that might be better suited for modelling these types of variables (Paolino, 2001; 860 

Ferrari & Cribari-Neto, 2004). Whilst a comparison of Gaussian and Beta likelihoods on 861 

clinical data highlighted that the estimates were very similar (Kurz, 2023) the Beta distribution 862 

is a better conceptual fit and produced slightly more precise estimates. Future research may 863 

compare these methods to investigate any differences in the context of gaze metrics.    864 

In conclusion, Information Theoretic eye-based metrics have shown some promise in 865 

identifying increased mental workload in drivers engaging in an N-back task during hands-off 866 

Level 2 automated driving. Both 𝐻𝑠  (Pillai et al, 2022) and 𝐻𝑡 (Schieber & Gilland, 2008) 867 

were found to decrease as a function of increasing task load. However, the current research 868 

suggests that this assessment is incomplete. Whilst the average trends are consistent with 869 

previous research, there is substantial variance in how eye movements change as a function of 870 

task load across a population. For future DMS systems that apply to a multitude of drivers, this 871 

variance needs to be properly measured and quantified. One potential source of this 872 

heterogeneity is age, and thus DMS designers should consider how their input metrics are 873 

influenced by differing demographic variables. 874 
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