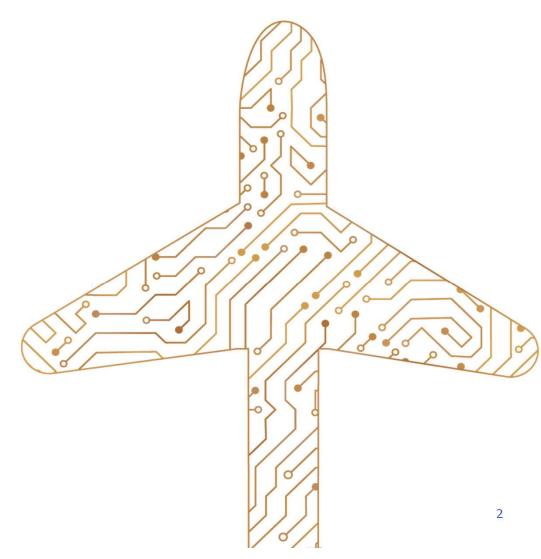

Design and performance of a turboelectric, distributed propulsion aircraft: Intermediate results from the European Project IMOTHEP

Eric Nguyen Van, Sebastien Defoort / ONERA, France

Christophe Viguier / SAFRAN TECH, France

Smail Mezani, Noureddine Takorabet / Université de Lorraine, France

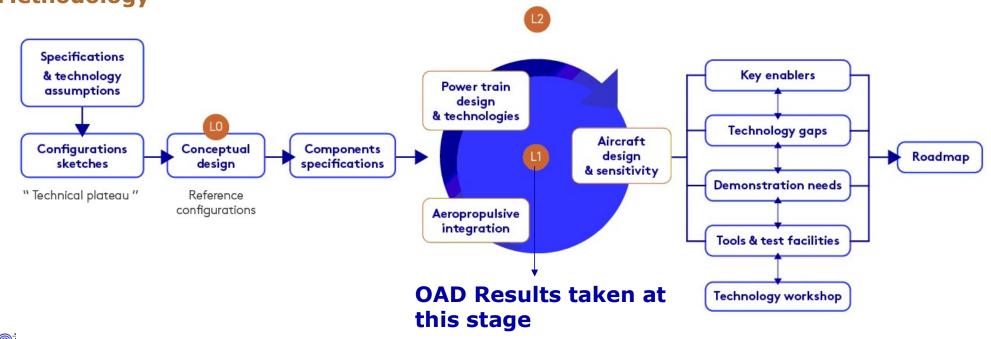
Jesúz Sainz / ITP Aero, Spain 11/01/2024



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875006

Summary

- Introduction: the IMOTHEP project
- SMR-CON: Concept and design tool
- Turboelectric propulsion
- Aircraft performance and design exploration
- Conclusion


INTRODUCTION: THE IMOTHEP PROJECT

Imothep objectives and methodologies

Top level ambition

To significantly improve the estimation of Hybrid-Electric Propulsion potential to reduce transport aircraft carbon footprint.

Methodology

GETTING - HYBRID - ELECTRIC

Imothep configurations

Four aircraft configurations divided in two segments

	CONservative	RADical	Mission
Regional	* *	× 288880 998888	40 pax @ 106kg/pax 600NM Mach 0,4
	Credit: Bauhaus-Luftfahrt	Credit: Safran	
SMR	Credit: ONERA	Credit: ONERA	150 pax @ 106kg/pax 2750NM Mach 0,78

SMR-CON : CONCEPT AND DESIGN TOOL

SMR-CON : Turboelectric, distributed propulsion

Motivations for distributed electric propulsion

- Incremental improvement of SMR aircraft includes:
 - Increase of propulsive efficiency
 - Larger engine for By-Pass Ratio increase from 5.5 to 11
- Next propulsive improvement limited by aircraft geometry.
- Distributed electric propulsion:
 - Distributed Electric Fans at the pressure side of the wing
 - Large increase in propulsive efficiency with By-Pass Ratio up to 40.

P. Schmollgruber *et al.*, 'Multidisciplinary Exploration of DRAGON: an ONERA Hybrid Electric Distributed Propulsion Concept', in *AIAA Scitech 2019 Forum*, San Diego, California, doi: 10.2514/6.2019-1585

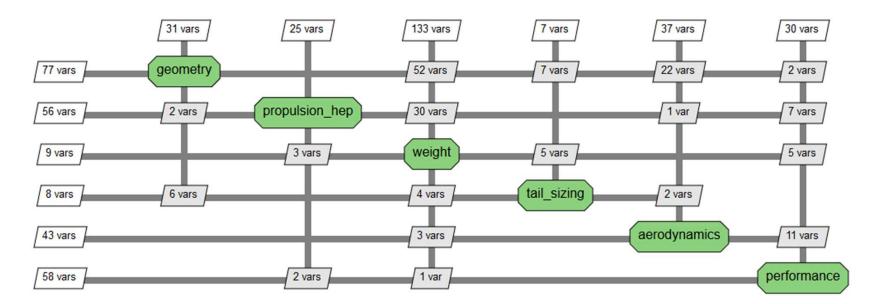
SMR-CON : Turboelectric, distributed propulsion, the disadvantages.

Disadvantages of DEP:

- Losses in electrical power transmission,
- Added weight,
- Aerodynamic interactions at transonic speed and added wet area.

DEP impacts on all disciplines of aircraft design

SMR-CON configuration analysed with an Overall Aircraft Design software: FAST-OAD¹

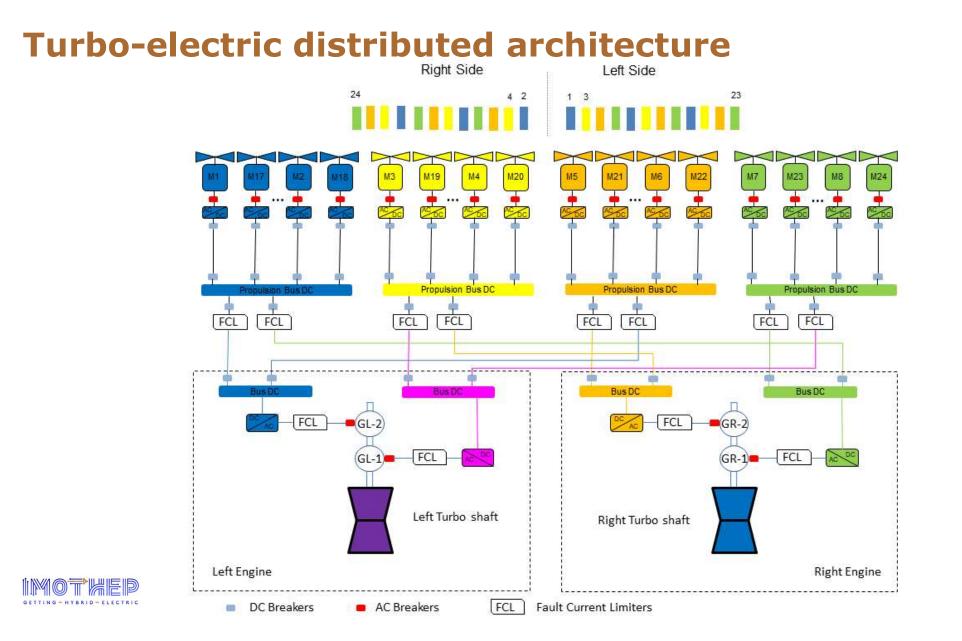

(1) C. David, S. Delbecq, S. Defoort, P. Schmollgruber, E. Benard, and V. Pommier-Budinger, 'From FAST to FAST-OAD: An open source framework for rapid Overall Aircraft Design', *IOP Conf.*, vol. 1024, p. 012062, Jan. 2021, doi: 10.1088/1757-899X/1024/1/012062.

Overall Aircraft Design tool: FAST-OAD

Open source multidisciplinary design A/O software

- Analytical and semi-empirical models for tube and wing aircraft
- Open source release validated against the CSR1 Ceras¹ aircraft

(1) Risse, Kristof & Schäfer, Katharina & Schueltke, Florian & Stumpf, Eike. (2015). Central Reference Aircraft data System (CeRAS) for research community. CEAS Aeronautical Journal. 7. 10.1007/s13272-015-0177-9.
(2) https://github.com/fast-aircraft-design



27/05/2024 9

Aircraft Design tool

SMR-CON : PROPULSION COMPONENT DESIGN

Component design

8 Electric Power Unit

- Integrated, direct drive design to fit in fan hub.
- Reference efficiency, specific power and power density for liquid and aircooled options.

Cables

Aluminium cable design for 3000V operation and minimal weight.

Ourbomachine

Performance table (output power and specific consumption), weight and dimensions were provided.

Electric Power Unit								
Continuous output power	<1MW each							
Specific power (liquid cooled)	9,2kW/kg							
Efficiency	96,7%							
Power density	6kW/L							
Turbomachine								
Design power (@35kft)	7.95MW							
Max OPR	48							
Max T41	1900°K							
Weight	1136kg							

Configuration status: SMR-CON

Generator

 Reference efficiency, specific power and power density.

Thermal management system

- Skin conduction for electric fans.
- Compact heat exchanger for turbogenerator with puller fan.

Generator								
Continuous output power	11MW each							
Specific power	9,65kW/kg							
Efficiency	99%							
Power density	25kW/L							

SMR-CON: PERFORMANCE AND DESIGN EXPLORATION

OAD design and performance

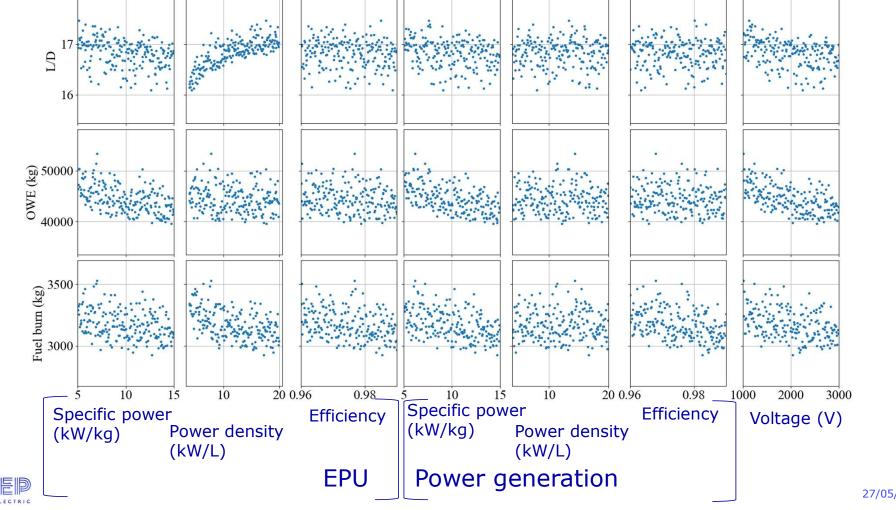
Technology assumptions

Entry Into Service 2035

Design mission

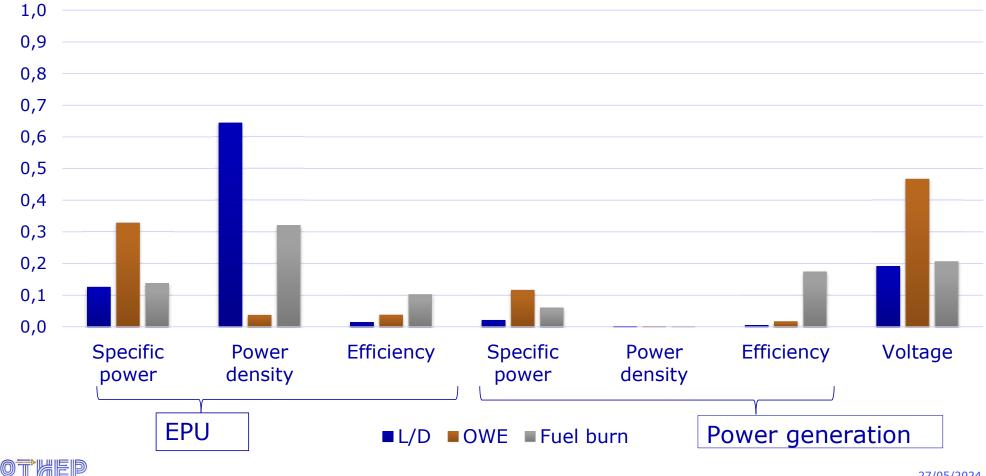
150pax @106kg/pax 2750NM, M=0,78

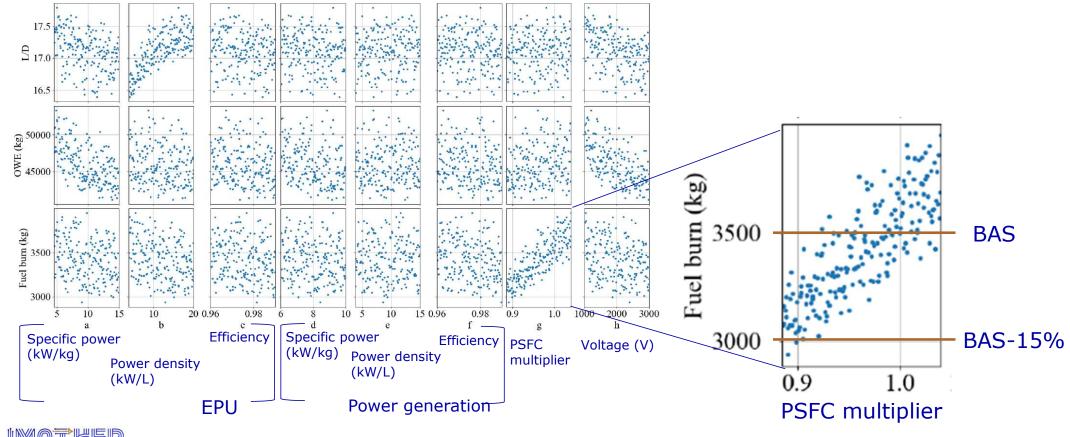
Typical mission


150pax @106kg/pax 800NM, M=0,78

Parameters	BASELINE	SMR-CON	SMR-CON wrt BAS (%)
MTOW (kg)	69 802	76 789	10.0
OWE (kg)	40 053	45 472	13.5
Propulsion weight (kg)	8 370	12 897	54.1
L/D max	18.0	17.1	-5.1
Fuel burn (kg)	3828	3908	2.1
TSFC (g/kNs)	14.5	13.4	-7.5
Wing area (m^2)	108	115.9	6.9

Design exploration


Sensitivity to propulsive component performance


Setting research directions

G . HYBRID . ELECTRIC

First order Sobol indices

Expected improvements

Conclusion

SMR-CON Turbo-electric propulsion chain

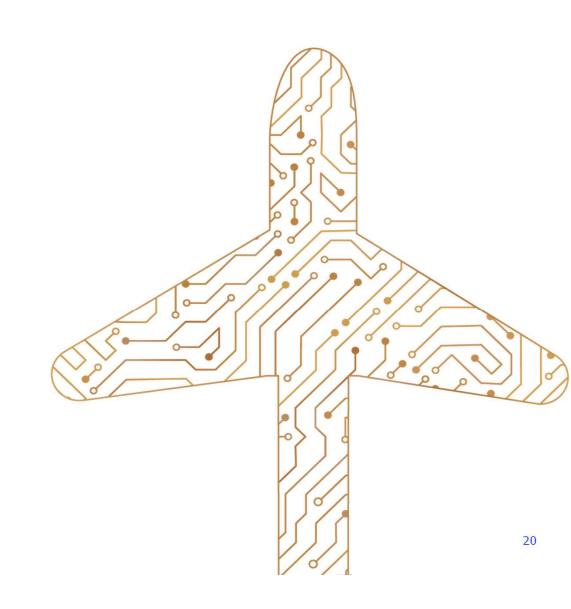
- Turbo-electric propulsion showed better overall efficiency
- Overall aircraft performance limited by added weight and aerodynamics penalty.
- Research directions were identified for design loop 2:
 - 1. Thermal efficiency of turbomachine
 - 2. Power density of EPU (power electronics)
 - 3. Voltage
 - 4. Efficiency and specific power of electric components (which comes first?)
- Only qualitative recommendations, no quantified objective

Turboelectric propulsion should seek both propulsive efficiency and core efficiency increase

THANK YOU !

Contact points for any question:

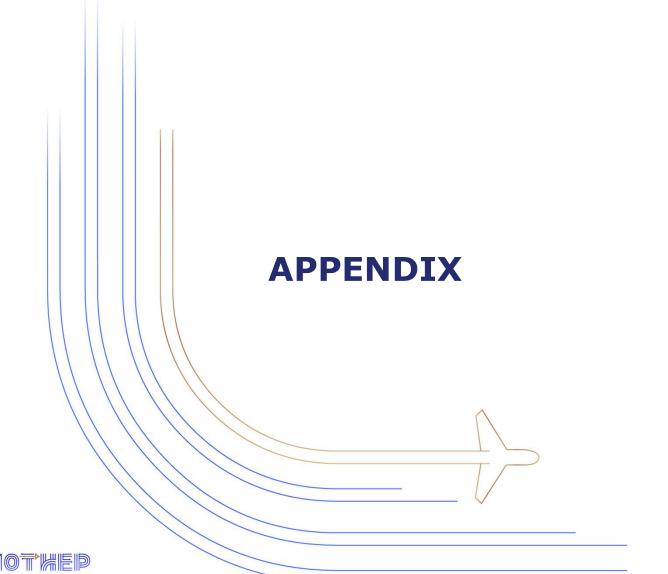
Project Coordinator


- Philippe NOVELLI (ONERA)
- Email: philippe.novelli@onera.fr
- Office: +33 1 80 38 69 14

S PMO

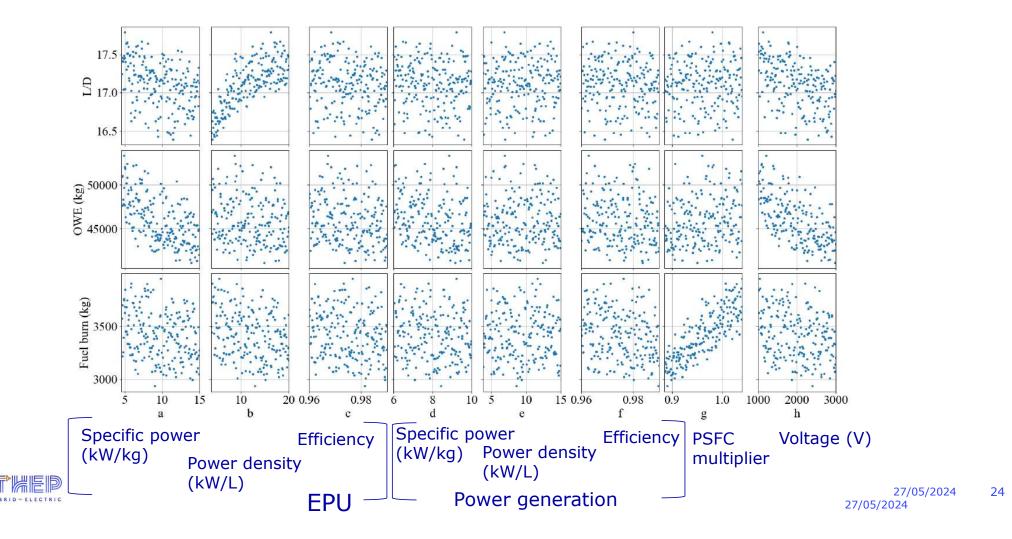
- Peggy FAVIER (L-UP)
- Email : <u>peggy.favier@l-up.com</u>
- Office: +33 4 78 41 44 47
- Mobile: +33 6 75 64 10 78

www.imothep-project.eu



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875006

27/05/2024 22


SMR-CON: Reduced design mission

Design exploration: Mission specifications

GETTING . HYBRID . ELECTRIC

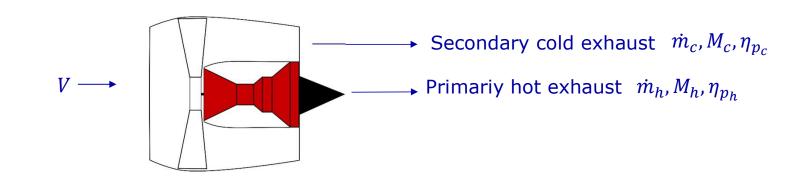
	Parameters	REF (2750NM)	BAS (1200NM)	SMR-CON (1200NM)	BAS wrt REF (%)	SMR-CON wrt BAS (%)
	MTOW (kg)	77031	61738	63428	-19.9	2.7
	OWE (kg)	43228	38732	39672	-10.4	2.4
	Propulsion weight(kg)	8712	8364	9978	-4.0	19.3
	L/D max	16.1	17.9	16.9	10.9	-5.8
	Fuel burn (kg)	4760	3769	3712	-20.8	-1.5
	Reserve (kg)	2758	2193	2609	-20.5	18.9*
	TSFC (g/kNs)	15.4	14.5	13.7	-5.8	-5.5
	AR	9.45	10.9	10.9	15.3	0.0
	Span (m)	34.1	33.6	34.0	1.1	-0.2
	Wing area (m^2)	120	106	106	-11.4	-0.4
T	THEP					27/05/2024

Overall aircraft sensitivity to the performance of propulsive components

Turbofan vs turboelectric efficiency breakdown

	η_{core}	η_{PT}	η_e	η_{fan}	η_{tr}	η_{th}	η_p	η
Turbo- electric	0,57	0,91	0,93	0,88	0,74	0,42	0,93	0,39
Turbofan	0,6	0,91	1,0	0,875	0,85	0,51	0,74	0,377

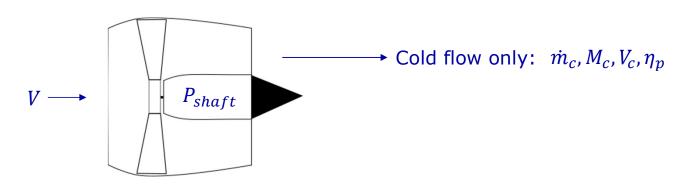
 $\eta = \eta_{th} \eta_p$


 $\eta_{th} = \eta_{tr} \eta_{core} = \frac{\text{Rate of change kinetic energy}}{\text{Fuel power}}$

 $\eta_{tr} = \eta_{PT} \eta_e \eta_{fan} = \frac{\text{Rate of change kinetic energy}}{\text{Power in flow at core exit}}$

Turbofan analysis

- UHBR type
- Thrust 23700N @ 35kft, M=0,78
- BPR 16



	<i>ṁ</i> (kg/s)	М	<i>T</i> (N)	$\eta_p = rac{TV}{0,5\ \dot{m}(V_{ex}^2 - V_0^2)}$	Combined η_p	$\eta_{th} = rac{V}{TSFC \eta_p LHV}$
Cold exhaust	235,8	1,03	17825	0,87	0,75	0,50~0,51
Hot exhaust	14,7	2,13	5875	0,54		

DEP analysis

- Thrust 23700N @ 35kft, M=0.78,
- No thrust from turboshaft,
- 12 efans,

	<i>ṁ</i> (kg/s)	М	<i>T</i> (N)	$\eta_p = rac{TV}{0,5 \ \dot{m}(V_c^2 \ -V_0^2)}$	$\dot{m}_f = rac{P_{shaft}}{\eta_{elec}} PSFC$	$\eta_{th} = \frac{0,5 \ \dot{m}(V_c^2 - V_0^2)}{\dot{m}_f LHV}$
Cold exhaust	52,8	0,91	1975	0,93	101,4 kg/h	0,41

Exemplary configuration

Exemplary configuration ensuring 15% FB savings wrt to BAS:

- 10% comes from turboshaft PSFC improvement
- 5% comes from electric propulsive chain

ts	Fuel burn	wrt BAS	Actual	-15%	Difference (%)
Results	L/D		17.1	16.8	
~	OWE (T)		45.5	41	-9.9
	EPU				
		Specific power (kW/kg)	9.2	10.5	14.1
ers		Power density (kW/L)	6	15.5	
met		Efficiency	0.967	0.979	1.2
ara	Power gene	ration			
Input parameters		Specific power (kW/kg)	6.55	11	67.9
H		Power density (kW/L)	11	20	81.8
		Efficiency	0.97	0.985	1.5
	Voltage (V)		3000	2650	-11.7
				5/	27/2024 28

