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Abstract: This paper presents a Multi-Objective Particle Swarm Optimization (MOPSO) methodology to 
solve the problem of energy resource management in buildings with a penetration of Distributed 
Generation (DG) and Electric Vehicles (EVs). The proposed methodology consists in a multi-objective 
function, in which it is intended to maximize the profit and minimize CO2 emissions. This methodology 
considers the uncertainties associated with the production of electricity by the photovoltaic and wind 
energy sources. This uncertainty is modeled with the use of a robust optimization. A case study is 
presented using a real building facility from Portugal, in order to verify the feasibility of the implemented 
robust MOPSO. 
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1. INTRODUCTION 

The buildings, in terms of energy consumption, represents 
about 20 to 40% of total energy consumption in a developed 
country (Juan, Gao, and Wang 2010). For example, in the 
European Union buildings are responsible for 40 % of total 
consumption (Zhao and Magoulès 2012) and 37 % in the 
United States (Juan, Gao, and Wang 2010). 

The buildings energy consumption is expected to grow up, 
especially in residential buildings due to requirements for the 
comfort levels and increasing number of household 
appliances. Another factor is that less developed countries are 
growing and becoming wealthier. The improvements in the 
quality of life of these countries lead to an increase in the 
energy consumption of its buildings.  

The increase of the power consumption in buildings is 
directly linked to the increase of CO2 emissions, creating 
environmental problems. A large number of policies to 
control the CO2 emissions levels are currently in force, 
creating a direct impact to reduce the emissions in the 
electrical sector (Zhao and Magoulès 2012). With the 
growing concern about global climate change, global 
warming and pollution of air, policies have been released 
with the aim to promote electricity production from 
Renewable Energy Sources (RES). The increase of the 
Distributed Generation (DG) based on renewable sources, 
such as Photovoltaic (PV) panels, wind turbines, small hydro, 
etc. is presented as a solution to reduce CO2 emissions 
significantly. 

In the scope of Smart Grids (SGs), the consumer can be a 
flexible entity, participating as an active actor on the energy 
network. This flexibility can be achieved with the successful 

use of energy resource management, including loads, 
generators units, Energy Storage Systems (ESSs) and Electric 
Vehicles (EVs). The SGs are directed associated with 
development of reability and power quality of the electric 
network, being able to control and manage energy production 
and consumption of all players. As described in 
(Venayagamoorthy 2011), SG aims to maximize the 
penetration of RES and, on the other hand, to include 
Demand Response programs (DR) on consumers. The DR is 
a change from the normal pattern of electricity use 
(consumption) by end customers in response to an electricity 
price change or due to incentive payments (North American 
Electric Reliability Corporation 2007). 

The increase of the use of renewable energy production 
facilities, such as wind and PV, contributes positively to the 
reduction of the carbon footprint. However, in contrast to 
conventional generation units, renewable sources are 
characterized by a high degree of uncertainty and variability. 
Given this degree of uncertainties it is necessary the use of 
advanced programming models, using robust control and 
predictive models, able to handle with this stochastic and 
uncertain behavior. The motivation to establish a stochastic 
modeling is associated with the challenge of facing the 
variability and uncertainty of renewable energy resources in 
microgrids, since these resources can be a major part of the 
total production.  

The energy resources management in SG environment, 
considering the stochastic component needs attention in the 
current literature. Robust optimization has proved to be a 
promising method to deal with the uncertainties in the 
optimization problems. Several studies have been reported in 
the recent literature. In the context of smart homes, the robust 
optimization is used in reference (Wang et al. 2015), in order 



 
 

     

 

to model the input uncertainties from the production of a PV 
system. The main objective of this methodology is perform 
the scheduling for the various types of electrical loads present 
in the residence. The work presented in (Chen, Wu, and Fu 
2012) evaluates the DR program based on the real time price 
in the management of residential loads, through two 
approaches, the stochastic optimization and robust 
optimization. The stochastic optimization adopts the scenario-
based approach via Monte Carlo (MC) simulation for 
minimizing the expected electricity payment for the entire 
day, while controlling the financial risks associated with real 
time electricity price uncertainties. Price uncertainty intervals 
are considered in the robust optimization for minimizing the 
worst-case electricity payment while flexibly adjusting the 
solution robustness. Both approaches are formulated through 
a mixed integer linear programming (MILP). Reference 
(Akbari et al. 2014) focused in energy management system of 
a building under the influence of multiple sources of 
uncertainty, such as, the energy demand level in relation to 
cost (as the cost of carbon emissions , the primary energy 
savings, etc.) and prices (as prices of fuel and electricity 
tariffs). The optimization depicts a multi-objective problem 
for a commercial building, where one objective is minimizing 
costs and the other is minimize the energy consumption. To 
overcome the environment of the uncertainties mentioned 
above, this model uses a robust optimization. It is important 
to refer that in the current literature, the subject of robust 
optimization applied to meta-heuristics is not very well 
exploited. The current robust models are usually converted to 
linear and deterministic optimization. However, in situations 
with a large number of variables and/or considering nonlinear 
models, the deterministic approach may be impractical. 

The main contribution of this paper focuses on the 
development of a methodology to solve the day-ahead energy 
resource management problem in buildings, considering the 
uncertainties associated with the energy production from PV 
and wind units. To model this uncertainty a robust 
optimization was incorporated in Multi-Objective Particle 
Swarm Optimization (MOPSO). The robust optimization 
applied to a meta-heuristic, taking into account the scarcity of 
studies addressing this subject, especially in the area of 
building management, is an important contribution of this 
work. This approach allows a more conservative solution, 
which is the best solution considering the worst-case 
scenarios. The proposed problem in this paper considers two 
conflicting objectives, maximizing profits and minimizing 
CO2 emissions. Other relevant contributions are the business 
models considered, namely the fact that the building can buy 
energy from different external suppliers in each period, the 
use of vehicle-to-building, in which the electric vehicle can 
supply energy to the building. In addition, an innovative DR 
model has been proposed, which considers a daily peak 
power pricing and an incentive to minimize it. A case study is 
presented using a real building facility from Portugal, with 
DG, EVs and ESS, in order to verify the feasibility of the 
robust algorithm implemented. Two scenarios are assessed 
and evaluated using the multi-objective approaches. The first 
scenario considers a robust optimization giving more 
importance to the criterion of profit and the second scenario 
considers a robust optimization giving more importance to 

the criterion of CO2 emissions. The robust model 
development in this paper is based in (by Robert Marijt and 
Hensen 2009). 
This paper is organized as follows: after this introduction, 
section 2 presents the mathematical formulation of the 
Energy Resources Management problem, section 3 presents 
the case study and finally section 4 the conclusions. 

2. META-HEURISTIC APPROACH 

2.1  Mathematical model 

The envisaged problem is a hard combinatorial Mixed-
Integer Non-Linear Programming (MINLP) problem due to 
the continuous, discrete and binary variables. The two 
conflicting objectives of the building management are to 
maximize profits and minimize CO2 emissions, as shown in 
(1).  

 (1) 

The building receives a revenue (R) from two sources, as 
illustrated in (2): the revenue from the EVs charging and the 
DR incentive to keep the energy demand (from the grid) 
relatively low. 

 (2) 

The parameters are described by: Nv is the number of EVs; 
 is the price for the charge process of EV v in period t 

(m.u.); is the incentive for achieving a maximum 
peak power value. 

The variables are: R is the building revenue (m.u.);  
is the active power charge of EV v in period t (kW);  

Function C (3) represents the cost of the resources managed 
by the building. It considers the cost with DG, external 
suppliers, discharge of EVs, and the cost of power peak 
value. 

 (3) 

The indices are represented by: d is an index of DG units; l is 
an index of loads; s is an index of external suppliers; t is an 
index of time periods; v is an index of EVs. 

The parameters are described by: Nd is the number of DG 
units; Nsp is the number of external electricity suppliers; 
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is the generation price of DG unit d in period t (m.u.); 

is the energy price of external supplier s in period t 

(m.u.); is the discharging cost of EV v in period t 
(m.u.); is the peak power cost. 

The variables are described by: C is the total cost (m.u.); 
is the active power generation of DG unit d in period t 

(kW);  is the active power generation of the external 

supplier s in period t (kW);  is the active power 
discharge of EV v in period t (kW); 

Equation (4) shows the objective function to minimize the 
CO2 emissions.  

 
(4) 

The sets are described by: is a set of DG units with CO2 

emissions;  is a set of external suppliers with CO2 
emissions.  

The parameters are described by: is the CO2 emissions of 

DG unit d in period t (kgCO2/kWh); is the CO2 emissions 
of external supplier S in period t (kgCO2/kWh). 

The variables are described by: E is the total emissions CO2 
(kg). 

Some constraints of this problem can be found in (Soares et 
al. 2016), such as, EV charging and discharging rates, battery 
capacity and balance considering predicted demand and 
location, technical limits of ESSs, balance and capacity in 
each period, dispatchable DG capacity and supplier’s limits. 
In additional, an innovative DR model has been proposed, 
which considers a daily peak power pricing ( ) and an 
incentive to minimize it ( ). The daily peak power 
pricing depends from the peak power value ( ), that 
represents the maximum energy supplied by the external 
supplier for the entire day. The can been calculated 
with the equation (5)  

 
(5) 

The parameters are described by: is the minimum 
power limit;  is the maximum power limit;  is the 
peak power price by level. 

The is paid if the  of the building does not 
exceed 200% of the average daily demand ( ), as you can 
seem in equation (6). 

 (6) 

2.2  Multi-Objective Particle Swarm Optimization (MOPSO) 

MOPSO is an advanced optimization algorithm to solve 
multi-objective problems (Coello, Pulido, and Lechuga 2004) 
used in this work to handle the envisaged energy problem. 
The traditional MOPSO relies on externally fixed particles’ 
velocity limits, inertia, memory and cooperation weights 
without changing these values along the swarm search. In the 
proposed method we employ mutation of the strategic 
parameters used in Evolutionary PSO (Miranda, Keko, and 
Jaramillo 2007) instead of the usual fixed parameters. This 
modification improved the cover rate and the overall front of 
the non-dominated solutions as higher exploratory properties 
were introduced in the search procedure. The first step of the 
MOPSO is the creation of 10 initial particles, each of which 
contains the decision variables and variables with 
uncertainty. Each initial particle is evaluated and the better 
particles are stored in a repository. The next step is to identify 
or update the repository leader (global best solution). Then it 
is performed the mutation rate of the strategic velocity 
coefficients. That said, it is performed the calculation of the 
new velocities and positions for each particle. After this, a 
mutation in the position of some particles (randomly 
selected) is made. For each particle, the variables with 
uncertainty (wind and PV), which in this case correspond to 
the production forecast values for the next day, are disturbed 
by a prediction error value, creating 10 different scenarios for 
the PV and wind production. These scenarios are generated 
by using the MC method, following a normal distribution and 
assuming a 15% prediction error (Su, Wang, and Roh 2014). 
Each perturbation solution is evaluated in the objective 
function and the solution that represent the worst case is 
chosen. For this case study 2 different scenarios were 
developed: the first scenario considers a robust optimization 
giving more importance to the criterion of profit, select the 
worst profit. The second scenario considers a robust 
optimization giving more importance to the criterion of CO2 
emissions, considers the worst value of CO2 emissions. After 
the selection of all robust particles, each robust solution is 
evaluated and the non-dominated solutions are stored in the 
repository in order to represent the Pareto front. This entire 
cycle will be repeated until a set number of iterations (see 
Fig. 1). 
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Fig. 1. Flowchart of the developed MOPSO 

The fitness function (7) in MOPSO considers the total profit 
and the emission of CO2. The total profit is achieved by the 
minimization of this function. 

 (7) 

3. CASE STUDY AND RESULTS 

The proposed methodology is tested using a case study of a 
real building, in Porto, Portugal, namely the GECAD 
building from ISEP/IPP (Institute of Engineering – 
Polytechnic of Porto). The building is able to manage 2 DG 
units (PV and wind), 4 external suppliers, 1 ESS and 3 EVs. 
Table 1 shows the energy resources data, regarding the 
information of price in monetary units per kWh (m.u./kWh) 
and availability in MW. 

Table 1.  Energy resource data 

Energy resources 
Availability 

(kW) 
Prices 

(m.u./kWh) Units 
min – max min – max 

PV 0 – 7.50 0.00 1 
Wind 0 – 1.00 0.00 1 
External Supplier 0 – 15.00 0.07 – 0.32 4 

Storage Charge 0 –10.00 0.00 1 Discharge 0 – 10.00 0.00 
Electric 
Vehicle 

Charge 0 – 9.00 0.13 3 Discharge 0 – 9.00 0.15 
Load 1.02 – 11.96 0.00 1 
 
To make the problem more innovative, four external 
suppliers were considered with different emission rates and 
energy prices. Table 2 represents the different types of 
external suppliers used in this case study based in four 
different European countries (Portugal, Spain, Germany and 
France) (Red Eléctrica de España 2016; ERSE 2016; E.ON 
2016; EDF 2016; European Commission 2014).  

Table 2.  External suppliers data 

Scenario CO2 emissions 
(kgCO2/kWh) 

Prices  
(m.u./kWh) 

Tariff type 

Portugal 0.23 0.0927 - 0.3177 Tri tariff 

Spain 0.25 0.0742 – 0.0993 Hourly tariff 

France 0.07 0.1150 – 0.1636 Bi tariff 

Germany 0.35 0.2013 Simple tariff 

 

Table 3 presents the parameters used for this case study in the 
meta-heuristic approach, namely MOPSO. These parameters 
were obtained by extensive experimental tests and by 
previous recommendations made in the literature (Coello, 
Pulido, and Lechuga 2004). The repository size was set to 
100, as suggested in the literature, in order to obtain a very 
high quality of the Pareto front. 

Table 3.  MOPSO parameters 

Parameter Description 

Number of particles 10 

Repository size 100 
Inertia Weight 

Gaussian mutation weights 
(initial weights randomly generated 

between 0 and 1) 

Acceleration Coefficient 
Best Position 
Cooperation Coefficient 
Perturbation Coefficient 
Mutation learning 
parameter ( ) 0.20 

Number of divisions 30 

Initial swarm population Randomly generated between the upper 
and lower bounds of variables 

Mutation rate of particles 0.50 
Mutation dimensions Random 10% dimensions 
Velocity clamping factor  
( ) 1 

Stopping Criteria Max. 2000 iterations (cycles) 
Max. Positions ( ) Equal to the upper bounds of the variables 
Min. Positions ( ) Equal to the lower bounds of the variables 

Max. Velocities ( )  

Min. Velocities ( )  

 

 

Fig. 2. Pareto fronts for the profit and CO2 emissions 
criterion 

[ ]fitness ( ) penaltiesC R E= - + +

d

factorC

maxx

minx

maxv max min

2 factor
x x

C
-

×

minv maxv-



 
 

     

 

The number of NDS obtained was 14 and 8, for the profit and 
CO2 criterion, respectively, and we selected the solutions 
from the Pareto front: lowest total emissions of CO2 (NDS-L) 
and higher profit (NDS-R), i.e. left and right solutions of 
Pareto front, respectively as presented in Fig. 2. The first, 
NDS-L, to obtain less CO2 emissions, is achieved a lower 
profit. In the second solution, NDS-R, unlike the NDS-L, to 
achieve higher profit, the CO2 emissions tend to be higher as 
well. 

In the robust approach with the emissions criterion, the 
Pareto front solutions present a higher value in both terms 
(profit and CO2 emissions) than the profit criterion (see Fig. 
2). The solutions with higher CO2 emissions generally present 
more profit. It may sound contradictory that the profit 
criterion obtains worse solutions (in terms of profit) than the 
emissions criterion. However, the robust approach looks for 
the best solution in the worse-case scenario during the search 
procedure. For example, this means that under the scenarios 
that lead to the worse profit, the robust approach can provide 
the best solutions (red line) for the worse profit situation. The 
combination of the both Pareto fronts constitute a set of 
solutions with a broader range. 

Table 4 show the selected NDS from the Pareto curve. The 
PV and wind production is insufficient to feed the total 
consumption, therefore the solution presents negative profits, 
i.e. energy costs instead of profits. 

Table 4.  Selected non-dominated solutions 

 
Fig. 3 and Fig. 4 depict the energy scheduling results for 
NDS-L, for the profit and emission criterion, respectively. 
The storage discharge is a resource used in both solutions, 
this is due by the fact that it is a resource that does not 
involve any cost to the building, since the storages are 
considered its property. The vehicles' discharge, where the 
building has to pay an incentive to the vehicle owner use this 
feature, is scheduling in periods when the external supplier 
has an energy price greater than the cost of this incentive. 
Resources such as the vehicles and battery discharge are used 
in order to decrease the energy supply by the external 
suppliers. The energy from external suppliers in the emission 
criterion solution is 14.94% lower than the solution in the 
profit criterion. This variation is mainly due by the fact than 
the DG is 5.64% higher in the solution that considers the 
emission criterion, since the higher is the energy value 
produced by the DG, less is the need to buy energy from 
external suppliers, to support the building consumption. On 
the other hand, the profit criterion solution has a higher need 
to buy energy from external suppliers, leading to a worse 
profit in this solution. The vehicles' discharge in the emission 
criterion solution is decreased by 53.69%, compared with the 
profit criterion, resulting in a profit increased, but the 

emissions levels are reduced simultaneously. The battery 
discharge had a decrease of 16.91% in the emission criteria 
solution, compared to the profit criterion. 

 

Fig. 3. Optimal resource scheduling of NDS-L for the profit 
criterion 

 

Fig. 4. Optimal resource scheduling of NDS-L for the CO2 
emissions criterion 

Fig. 5 and Fig. 6 depict the power consumption results for 
NDS-L, for the profit and CO2 emissions criterion, 
respectively. The EVs charge is made mainly in the afternoon 
periods (16h - 19h) so the owners have the minimum battery 
requirement to make the return trip to home. In addition, the 
charging of EVs is still performed during periods of high DG 
production (11h-13h). Regarding the storage charging, this is 
carried out in periods when the building can buy energy to 
the external suppliers with a cheaper price, corresponding 
essentially to night periods (23h-4h). The vehicles' charging 
has a large decrease (70.55%) in the emissions criterion 
solution, compared with the solution obtained in profit 
criterion, justified by the smaller use of vehicles' discharge 
verified in this solution. In terms of storage charging, there is 
a decrease of 17.42% in the emissions criterion solution, 
compared to the profit criterion solution. 

 

Fig. 5. Consumption scheduling of NDS-L for the profit 
criterion 

 Profit criterion Emissions criterion 

NDS L R L R 

Profit(m.u) -6.275 -5.487 -5.700 -4.633 

CO2 emissions 
(kg) 5.053 7.999 7.636 9.856 



 
 

     

 

 

Fig. 6. Consumption scheduling of NDS-L for the CO2 
emissions criterion 

The developed MOPSO algorithm took an average execution 
time of 30 minutes using six cores. This time could be 
reduced to about 5 minutes using GECAD’s computing 
cluster with 6 machines, 36 workers (cores) configured with 
MATLAB distributed computing environment. Each worker 
can execute code independently and simultaneously.  

4. CONCLUSIONS 

This paper presented a method for intelligent energy 
management of a building using Multi-Objective Particle 
Swarm Optimization (MOPSO) based in multi-objective 
optimization, aiming to maximize the profit and minimize the 
CO2 emissions. MOPSO is responsible for finding a set of 
possible solutions, in the two cases and with two different 
approaches. The first approach considers a robust 
optimization giving more importance to the criterion of profit 
and the other approach giving more importance to the 
criterion of CO2 emissions. 

The robust optimization can do not get the best solution, 
however, represents a method able to safeguard the building’s 
operator with an adverse to the risk solution. Certain input 
parameters in the proposed optimization model are not 
deterministic, e.g. the energy production from RES, and can 
change significantly after the optimization has been made. 
This is particularly true in day-ahead forecasts, with a larger 
time horizon can significantly change after performing the 
optimization. With the use of the robust approach presented 
in this paper this risk is reduced. Faced with an optimization 
performed for the next day, which not handle with the 
uncertainty, can result in a worse production than the 
expected, forcing to a rescheduling in real time, which would 
lead to penalties and excessive costs to accomplish certain 
restrictions. 

Taking into account its processing time, the robust 
optimization model developed in this work can be a useful 
method to obtain a quick solution for the next day, allowing 
that the building operator solve the problem with a more 
conservative approach to deal with uncertainties from the 
next day. 
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