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Abstract 25 

Time-resolved ‘dynamic’ over whole-period ‘static’ analysis of low frequency (LF) blood-oxygen 26 

level dependent (BOLD) fluctuations provides many additional insights into the macroscale 27 

organization and dynamics of neural activity. Although there has been considerable 28 

advancement in the development of mouse resting state fMRI (rsfMRI), very little remains 29 

known about its dynamic repertoire. Here, we report for the first time the detection of a set of 30 

recurring spatiotemporal Quasi-Periodic Patterns (QPPs) in mice, which show spatial similarity 31 

with known resting state networks. Furthermore, we establish a close relationship between 32 

several of these patterns and the global signal. We acquired high temporal rsfMRI scans under 33 

conditions of low (LA) and high (HA) medetomidine-isoflurane anesthesia. We then employed 34 

the algorithm developed by Majeed et al. (2011), previously applied in rats and humans, which 35 

detects and averages recurring spatiotemporal patterns in the LF BOLD signal. One type of 36 

observed patterns in mice was highly similar to those originally observed in rats, displaying 37 

propagation from lateral to medial cortical regions, which suggestively pertain to a mouse Task-38 

Positive like network (TPN) and Default Mode like network (DMN). Other QPPs showed more 39 

widespread or striatal involvement and were no longer detected after global signal regression 40 

(GSR). This was further supported by diminished detection of subcortical dynamics after GSR, 41 

with cortical dynamics predominating. Observed QPPs were both qualitatively and 42 

quantitatively determined to be consistent across both anesthesia conditions, with GSR 43 

producing the same outcome. Under LA, QPPs were consistently detected at both group and 44 

single subject level. Under HA, consistency and pattern occurrence rate decreased, whilst 45 

cortical contribution to the patterns diminished. These findings confirm the robustness of QPPs 46 

across species and demonstrate a new approach to study mouse LF BOLD spatiotemporal 47 

dynamics and mechanisms underlying functional connectivity. The observed impact of GSR on 48 

QPPs might help better comprehend its controversial role in conventional resting state studies. 49 

Finally, consistent detection of QPPs at single subject level under LA promises a step forward 50 

towards more reliable mouse rsfMRI and further confirms the importance of selecting an 51 

optimal anesthesia regime.  52 

 53 

 54 
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1. Introduction 84 

Resting state functional magnetic resonance imaging (rsfMRI) can be used to investigate 85 

functional connectivity (FC) between different brain regions by calculating temporal coherence 86 

between their spontaneous low frequency (LF) blood-oxygen level dependent (BOLD) 87 

fluctuations (Biswal et al. 1995; van den Heuvel & Hulshoff 2010; Damoiseaux et al. 2006). In 88 

humans, this allows identification of several resting state networks (RSNs) (Biswal et al., 1995; 89 

Cordes et al., 2000; Fox et al., 2006; Zhang et al., 2008), including two wide-scale anti-correlated 90 

RSNs, termed the ‘default mode network’ (DMN), containing regions active during rest, and the 91 

‘task-positive network’ (TPN), containing regions that become activated during task 92 

performance (Fox et al., 2005; Greicius et al., 2003). By investigating FC changes in these RSNs, 93 

rsfMRI enables the clinical investigation of multiple neurological disorders (Greicius, 2008; Lee 94 

et al., 2013; Zhang and Raichle, 2010). 95 

Recently, rsfMRI has been performed in mice, allowing reliable detection of RSNs similar to 96 

those found in humans and primates (Liska et al. 2015; Gozzi & Schwarz 2015; Grandjean et al. 97 

2014; Zerbi et al. 2015; Sforazzini et al. 2014; Jonckers et al. 2011; Nasrallah et al. 2014). Initial 98 

applications in disease models demonstrate its usefulness to track down and disentangle 99 

underlying disease mechanisms (Shah et al. 2013; Shah et al. 2016; Liska & Gozzi 2016; 100 

Sforazzini et al. 2016; Stafford et al. 2014). With strict control over genetic and environmental 101 

conditions available in mice, mouse rsfMRI shows great promise as a pre-clinical tool to study FC 102 

changes in neurological disorders and enable fundamental research into mechanisms underlying 103 

LF BOLD (Keilholz et al., 2016). 104 

RsfMRI studies are generally performed with an experimental and methodological paradigm 105 

that either assumes or imposes static FC, meaning that statistical interdependence of LF BOLD 106 

signals between different brain regions stays the same over the length of the entire scan (Biswal 107 

et al., 1995). During the last decade, studies in several species have demonstrated that this is not 108 

the case and that dynamic analysis of rsfMRI FC provides many additional insights into the 109 

macroscale organization and dynamics of neural activity (Calhoun et al., 2014; Deco et al., 2011; 110 

Hansen et al., 2015; Hutchison et al., 2013; Keilholz, 2014). Only just recently, Grandjean et al. 111 

(2017) showed for the first time that dynamic FC could be investigated in mice and allowed 112 

identification of several highly reproducible dynamic functional states. These states display 113 

complex inter- and intra-modular organization and shed new light on information processing in 114 

the mouse brain. Dynamic rsfMRI (drsfMRI) can also be applied to investigate pathology, better 115 

explaining observed FC differences in RSNs and improving distinction between disease and 116 

control groups (Sakoglu et al. 2010; Jones et al. 2012; Damaraju et al. 2014; Rashid et al. 2014; 117 

Grandjean et al. 2017). 118 
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Most commonly, drsfMRI is based on the sliding-window analysis (SWA) approach, where a FC 119 

metric of interest is investigated within short time windows that are incrementally shifted along 120 

the image series of the scan (Chang and Glover, 2010; Hutchison et al., 2013; Keilholz et al., 121 

2013). For all windows, region-to-region FC matrices are obtained, which can be clustered to 122 

identify stable neural ‘states’ (Allen et al., 2014; Damaraju et al., 2014; Gonzalez-Castillo et al., 123 

2015, 2014). SWA has shown great potential, even just recently in mice (Grandjean et al. 2017), 124 

yet there is a lot of controversy regarding its use. The approach further suffers from the 125 

dependence on user-defined window lengths and limitations of signal-to-noise ratio that can 126 

spuriously induce FC changes (Hindriks et al., 2015; Hutchison et al., 2013; Preti et al., 2016; 127 

Shakil et al., 2016). Given these limitations and the fact that FC is inherently an indirect readout 128 

of spontaneous LF BOLD coherences, recent approaches attempted to track down instantaneous 129 

single volume BOLD configurations that underlie the observed FC (Liu and Duyn, 2013; Preti et 130 

al., 2016; Tagliazucchi et al., 2012; Wu et al., 2013). This spurred the discovery of co-activation 131 

patterns (CAPs), which resemble known RSNs and help to better comprehend dynamic changes 132 

in SWA FC (Karahanoğlu and Van De Ville, 2015).  133 

An interesting alternative to the CAP approach is the detection of recurring consecutive 134 

sequences of ‘instantaneous’ BOLD volumes, or so-called spatiotemporal patterns, which can 135 

better capture the temporal evolution of RSNs. Such patterns were first observed in the 136 

anesthetized rat by Majeed et al. (2009), using a high temporal resting state scan, and consist of 137 

bilateral intensity waves propagating from lateral somatosensory to medial cortical areas. 138 

Majeed et al. further developed an automated algorithm to track down these spatiotemporal 139 

patterns, reproducing their results in rats and discovering similar patterns in humans, where 140 

they alternatingly involve brain regions which are part of the DMN and TPN (Majeed et al., 141 

2011). Due to their repeated occurrence and cyclical behavior, they were termed Quasi-Periodic 142 

Patterns (QPPs) (Garth John Thompson et al., 2014). A prominent finding is that QPPs can be 143 

observed across species and are consistently detected at the single subject level with high 144 

occurrences, making them promising candidates to contribute to both static and dynamic FC. 145 

Preliminary data in humans with major depressive disorder supports this hypothesis (Wang et 146 

al., 2016). In rats, QPPs were also detected using cerebral blood volume (CBV)-weighted resting 147 

state scans (Magnuson et al., 2010), confirming their contribution to LF BOLD haemodynamics. 148 

Furthermore, they seem to have a neural precedent through correlation with infraslow local 149 

field potentials (Thompson et al. 2014; Thompson et al. 2015; Pan et al. 2013; Thompson et al. 150 

2014). Altogether, QPPs open up a new perspective on studying FC and dynamics of LF BOLD. 151 

In the current study, we thus investigated whether QPPs can be detected in mouse rsfMRI. If 152 

similar patterns could be observed, this would further validate the relevance of QPPs as a 153 
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mechanism contributing to spontaneous BOLD coherences, and at the same time it would help to 154 

validate mouse rsfMRI as a pre-clinical tool by confirming interspecies preservation of resting 155 

state dynamics. Single subject detection of QPPs would constitute a step forward in more 156 

reliable mouse rsfMRI analysis, provide new perspectives on studying mechanisms underlying 157 

FC, and mark the development of a potential new biomarker for neurological disorders. Given 158 

the controversy on the impact of anesthesia on FC readouts in mice, we compare a low 159 

anesthesia regime of medetomidine and isoflurane, illustrated to allow optimal FC preservation 160 

(Grandjean et al., 2014), with an analogous higher anesthesia regime. Finally, due to the 161 

hypothesized large-scale nature of QPPs, we investigate how their behavior and detection is 162 

affected by global signal regression. 163 

 164 
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2. Materials and Methods 182 

2.1 Animals, preparation and anesthesia  183 

All procedures were performed in strict accordance with the European Directive 2010/63/EU 184 

on the protection of animals used for scientific purposes. The protocols were approved by the 185 

Committee on Animal Care and Use at the University of Antwerp, Belgium (permit number 2014-186 

04), and all efforts were made to minimize animal suffering. 187 

Eleven male C57BL/6J mice (Charles River) between 22 and 24 weeks old were studied. Animals 188 

were initially anesthetized with 3.5% isoflurane and maintained at 2% during handling. The 189 

animals’ heads were positioned with incisors secured over a bite bar and fixed with ear bars. 190 

Ophthalmic ointment was applied to the eyes and a rectal temperature probe was used to 191 

monitor animal temperature, which was kept stable at 37°C via a hot air supply (MR-compatible 192 

Small Animal Heating System, SA Instruments, Inc.). Physiological parameters were measured 193 

via a pressure sensitive pad, to assess breathing rate, and a fiber-optic pulse oximeter placed 194 

over the tail, to assess heart rate and O2 saturation (MR-compatible Small Animal Monitoring 195 

and Gating system, SA Instruments, Inc.). The respective signals were sampled at 15.895Hz for 196 

the low anesthesia animal group (Signal breakout module, SA Instruments, Inc.). Using Short-197 

Time Fourier Transform (window size 19.994s; intersperse 0.503s), followed by DC-component 198 

filtering, respiration and cardiac rate were determined as the frequencies corresponding to max 199 

power intensities for each time point. 200 

Following preparation, animals received a bolus injection of medetomidine (Domitor, Pfizer, 201 

Karlsruhe, Germany), after which isoflurane was gradually lowered to 0.4% over the course of 202 

15min and maintained at this level for the remainder of the imaging procedures. A subcutaneous 203 

catheter was inserted to allow continuous infusion of medetomidine starting at 15min post-204 

bolus. Animals were scanned under a high anesthesia regime (HA; bolus 0.3mg/kg & infusion 205 

0.6mg/kg/h; n=11) and two weeks later under a low anesthesia regime (LA; bolus 0.05mg/kg & 206 

infusion 0.1mg/kg/h; n=11), to assess the impact of anesthesia on spatiotemporal dynamics in 207 

LF BOLD. Two animals from the HA group were excluded from the presented analysis, due to 208 

acquisition with offset imaging parameters (flip angle 90° instead of 55°). High temporal 209 

resolution functional resting state scans under HA and LA were acquired respectively 30min 210 

post-bolus, lasting 20min, and 40min post-bolus, lasting 10min. Conventional lower temporal 211 

resolution functional resting state scans were acquired in the LA group 30min post-bolus, lasting 212 

5min. These scans were acquired to compare conventional ‘static’ rsfMRI analysis across both 213 

scan types in the same session, so that QPPs could be related to whole-brain dynamics (cfr. 2.2-214 

2.4). Both conventional and spatiotemporal analysis did not show any significant differences in 215 

the first or last 10min of the HA group (data not shown). Great care was taken to keep 216 
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procedures and conditions identical across animals, with preparatory handling never exceeding 217 

10min. 218 

2.2 RsfMRI acquisition 219 

MRI procedures were performed using a Bruker Biospec 9.4T system (Bruker Biospin MRI, 220 

Ettlingen, Germany), with a four-element receive-only phase array coil (RAPID MR international, 221 

Ohio, USA) and a volume resonator for transmission. Anatomical images were acquired in the 222 

sagittal, coronal and axial plane to allow exact and reproducible positioning of axial slices 223 

(0.4mm thickness, 0.1mm inter-slice). Slices were positioned to allow optimal targeting of 224 

cingulate and somatosensory areas, centered 0.1mm caudally of bregma according to a 225 

stereotaxic mouse brain atlas (Paxinos and Franklin, 2007). The anatomical reference scan was 226 

acquired with a spin echo Turbo-RARE sequence: field of view (FOV) (20x20)mm2, matrix 227 

dimensions (MD) [256x256], repetition time (TR) 3000ms, effective echo time (TE) 33ms, and 228 

RARE factor 8. B0 field maps were acquired to allow shimming in the target area of interest. 229 

High temporal resolution rsfMRI scans were positioned according to the anatomical reference 230 

scans and were acquired using a gradient-echo echo-planar imaging (EPI) sequence: FOV 231 

(20x20)mm2, MD [128x64], slices 3, flip angle 55°, bandwidth 400kHz, TR 500ms, and TE 232 

16ms. The shorter TR enables an imaging sampling frequency of 2Hz, necessary to investigate 233 

spatiotemporal dynamics at short time scales. Conventional temporal resolution rsfMRI scans 234 

with matching slice positions were also acquired for the LA group, using a gradient-echo EPI 235 

sequence: FOV (20x20)mm2, MD [128x64],  slices 16, flip angle 90°, bandwidth 400kHz, TR 236 

2000ms, and TE 16ms. 237 

2.3 Preprocessing 238 

All analyses were performed using MATLAB2015a (Mathworks, Natick, MA). Motion parameters 239 

for rsfMRI images were computed using 3 rigid body parameters for the high temporal 240 

resolution low slice count datasets, which retains all 3 slices for single subject analysis, and 6 241 

rigid body parameters for the conventional high slice count dataset. RsfMRI images were then 242 

realigned, normalized to a user-defined reference subject, smoothed (σ = 2 pixels), and motion 243 

vectors were regressed out of the image series. These preprocessing steps were performed 244 

using Statistical Parametric Mapping (SPM12) software (Wellcome Department of Cognitive 245 

Neurology, London, UK). Afterwards, image series were band-pass filtered with a FIR filter 246 

between 0.01-0.2Hz, quadratic detrended and normalized to unit variance. Before and after 247 

filtering, transient time points at the start and end of the image series were removed. 248 

Consecutive group-level analysis of the high temporal resolution low slice count datasets was 249 

performed solely on the center slice, given that the first and last slices were lost during the 250 

normalization process. For detection of spatiotemporal patterns, images were investigated with 251 
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and without global signal regression, and a brain mask was employed that excludes the 252 

ventricles to avoid their contribution to spatiotemporal pattern detection.  253 

2.4 Conventional resting state fMRI analysis  254 

Group independent component analysis (ICA) was performed using the GIFT toolbox (v4.0a) 255 

(Calhoun et al., 2004) on data that was not motion regressed. For the high temporal resolution 256 

data, where only the single center slice was investigated, we tested several different numbers of 257 

independent components (IC). When more than six ICs were used, this caused the observation of 258 

unilateral components, while when six ICs were used, this preserved the integrity of bilateral 259 

BOLD signals matching known neuroanatomical regions. Using these criteria, 6 ICs were 260 

empirically determined appropriate for single-slice analysis. For the conventional 16-slice lower 261 

temporal resolution dataset, we employed 15 ICs, based on preceding literature (Shah et al. 262 

2015; Shah et al. 2016; Sforazzini et al. 2014). All ICA analysis was run on variance-normalized 263 

data, filtered between 0.01-0.2Hz, and using the Infomax algorithm with no auto-filling of data 264 

reduction values. A brain mask was used to remove signals exterior to the brain. Stability 265 

analysis was performed using the ICASSO algorithm, rerunning the ICA 50 times with a minimal 266 

cluster size of 30 and maximal of 50. All other default parameters of GIFT were left unaltered.  267 

For conventional ‘static’ functional connectivity (FC) analysis, regions of interest (ROI), 268 

measuring 6 voxels, were selected matching both a stereotaxic mouse brain atlas (Paxinos and 269 

Franklin, 2007) and overlapping with maximal intensities in ICs determined with ICA. ROIs were 270 

subsequently used to construct ROI-based FC matrices and seed-based FC maps. FC values were 271 

Fisher Z-transformed. For within group statistical analysis of ICs and seed-based FC maps, one 272 

sample T-tests (two-tailed, p < 0.05) were performed with false discovered rate (FDR) 273 

correction. For between group statistical analysis of the ROI-based FC matric, a paired T-test 274 

(two-tailed, p < 0.05, FDR-correction) was used. All statistical analyses were performed using 275 

SPM12 software. 276 

2.5 Spatiotemporal pattern-finding algorithm and k-means clustering 277 

To track down putative recurring spatiotemporal patterns, we employed the algorithm from the 278 

group of Shella Keilholz that was previously used to identify Quasi-Periodic Patterns (QPP) in 279 

humans and rats (Majeed et al., 2011) (The respective MATLAB code is available upon request 280 

via contact with the corresponding author). The algorithm uses a data-driven correlation 281 

approach that identifies spatiotemporally similar subsections in the functional (BOLD) image 282 

series. It essentially increases the signal-to-noise ratio of repetitive spatiotemporal blocks, 283 

allowing averaging and preservation of temporal information. In brief, the algorithm works by 284 

first isolating a random seed section, consisting of a series of consecutive images at a random 285 

starting time point. The length of the spatiotemporal template (i.e. the window size or number of 286 
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images) is defined by the user. The template is then incrementally shifted (a single TR) along the 287 

image series and a Pearson correlation value is calculated at every time point (movie 1). A 288 

Sliding Template Correlation (STC) time series is derived which identifies when the template is 289 

similar to the image series. Peak correlation values, exceeding an arbitrary threshold, are used to 290 

select and average the associated image series at related time points into a new updated 291 

template, which can then be used to extract correlations in the same way. This process is 292 

iteratively repeated until the template no longer changes, i.e. the cross-correlation (cc) of 293 

templates of two consecutive iteration steps > 0.9999. At this point, the QPP is established and 294 

correlation peaks in the STC exceeding the threshold reflect moments of pattern occurrences. A 295 

more detailed description can be found in the original article (Majeed et al. 2011). In the current 296 

study, we employed the same correlation thresholds. 297 

Because the starting time point of the initial random seed template can affect the final outcome, 298 

the entire process described above is repeated several times to derive a set of QPPs for a 299 

respective window size under investigation. To identify a single representative QPP from this 300 

set, each of the obtained QPPs is transformed into a its vector form, which measures the total 301 

amount of voxels comprised in the image mask multiplied by the amount of image frames within 302 

the QPP (i.e. vectors from each masked image frame are concatenated). These vectors are then 303 

clustered via k-means clustering, using correlation as a distance metric. The optimal QPP is 304 

determined by tracking down the QPP, which presents the maximal silhouette value within the 305 

cluster with the highest average silhouette values. A silhouette value indicates how similar an 306 

object is to its own cluster and how much it differs from other clusters. K-means clustering has 307 

been employed previously in rsfMRI literature to cluster functional images (Anderson et al., 308 

2010; Liu and Duyn, 2013). The way k-means is employed in this study, without prior phasing of 309 

QPPs, essentially tracks down the QPP that was most robustly detected while being at a specific 310 

phase.  311 

The procedures described above were performed for all investigated template window sizes. 312 

Data presented in this work was either analyzed at group level, through concatenation of 313 

normalized image series, which allowed pattern identification in a single center slice, or at 314 

individual subject level, which allowed pattern identification in all three slices. We employed 315 

respectively 500 (group) and 200 (subject) random starting time points. 316 

2.6 Spatial and temporal cross-correlation  317 

QPPs were compared with each other via two basic ways. The STCs of individual QPPs describe 318 

their similarity and timing with respect to the image series. By performing cc between STCs, one 319 

can establish a measure of QPP similarity, and identify their temporal offsets from one another. 320 

The latter information is used to display QPPs at their appropriate timing (e.g. Fig.3A) and to 321 
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phase-align them (e.g. Fig.2). Another option to identify QPP similarity is via circular cc of their 322 

spatiotemporal images. Each single QPP is transformed into its vector form, which measures the 323 

total amount of voxels comprised in the image mask multiplied by the amount of image frames 324 

within the QPP. The resultant vector can be circularly shifted (using the MATLAB ‘circshift’ 325 

function), with increments measuring the length of indices in the image mask (i.e. a single 326 

frame), to calculate the cc.  327 

2.7 Data-driven identification of pattern optimal window size  328 

The ideal window size of putative mouse rsfMRI QPPs is unknown. Previous strategies used 329 

visual inspection and pattern speed as a reference (Majeed et al. 2011; Majeed et al. 2009; 330 

Thompson et al. 2014). Here, we developed an automated processing tool to determine optimal 331 

window sizes in a data-driven fashion, termed fractional average correlation (FA).  332 

In a set of QPPs of the same pattern type, where each QPP is determined at a different window 333 

size and at the same phase, each individual pattern is subdivided into all possible consecutive 334 

fractions of a fixed length specified by the smallest window size investigated. To illustrate, in the 335 

presented analysis the smallest window size is set at 6TRs (3s), meaning that a pattern of e.g. 336 

24TRs long will be divided into 19 fractions of 6 consecutive images, each shifted by 1 TR 337 

(Fig.S1A). Each individual fraction from a QPP at a specific window size is then treated as a 338 

reference, and the maximal cc value is calculated with respect to the complete ‘target’ QPP at 339 

another window size (Fig.S1A-B). The average of the resultant cc values represents a measure of 340 

how many fractions the reference and target QPP have in common, i.e. the FA. The FA value is 341 

calculated for all possible combinations of window sizes, constructing an n x n correlation 342 

matrix, where n represents the number of different window-sized QPPs and each column 343 

represents the FA values for a specific reference QPP with each respective QPP in the set 344 

(Fig.S1C). By averaging the FA matrix across its columns, the set-wise FA value for each QPP is 345 

determined.  346 

The power of this approach lies in the notion that target QPPs at smaller window sizes than the 347 

reference QPP under investigation have less fractions in common, given that they only represent 348 

a subpart. Comparing larger reference QPPs with non-matching subparts in short target QPPs 349 

decreases the FA value. Long target QPPs, however, are likely to contain the full pattern and will 350 

therefore show a high FA. The tipping point of increasing FA, before a plateau is reached, reflects 351 

the optimal window size.  352 

2.8 Data-driven pattern classification using hierarchical clustering 353 

Within a set of patterns, determined at a given window size for the group wide analysis, multiple 354 

types of spatiotemporal patterns could be visually distinguished. To validate visual classification, 355 
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set-wise n x n cc matrices are constructed via either spatial or STC cc (cfr. 2.6), where n is the 356 

number of QPPs compared (n = 500). The columns of these symmetrical matrices are used to 357 

perform hierarchical clustering, using correlation as a distance metric. Cc scopes QPP similarity 358 

with one another and consecutive clustering of set-wise cc values for each QPP further 359 

accentuates their overall relationship. Opposed to the employed strategy for k-means clustering 360 

(cfr. 2.5), cc inherently aligns QPP phase during the clustering process. Hierarchical clustering is 361 

an unsupervised approach, thus removing potential bias from cluster number pre-selection. 362 

Visual observation of sorted block designs and inspection of their content then serves to validate 363 

pattern subtype separation. 364 

2.9 Phase sorting of spatiotemporal patterns 365 

After global signal regression (GSR), opposite phase detections of QPPs dominated hierarchical 366 

clustering off cc matrices. To illustrate that only a single QPP was detected at opposite phases, 367 

QPPs can first be sorted based on their phase, prior to performing clustering. The Cingulate (Cg) 368 

component was present in both LA and HA groups, as determined with ICA and observed in all 369 

established QPPs. Masks were therefore constructed from the Cg independent component 370 

thresholded T-maps (cfr. 2.4), which were subsequently used to calculate the average Cg 371 

intensity across each image frame of the QPPs. This establishes a time series of the Cg region 372 

that can be used to phase sort QPPs based on either displaying first high or low Cg activity.  373 

2.10 Global co-activation patterns 374 

To more closely investigate the shape of the global signal, an analysis methodology is employed 375 

that was inspired by the CAP approach (Liu and Duyn, 2013). Briefly, in the latter, supra-376 

threshold crossings of signal in chosen neuroanatomical seed locations are used to extract fMRI 377 

frames to be averaged or further processed by clustering. This allows the detection of 378 

instantaneous fMRI volumes that contribute to FC and known RSNs. The same strategy is 379 

adapted for the current study, but using the global signal as a seed region, and increasing the 380 

extent of averaged fMRI frames to a window centered on peak intensity time points. Essentially, 381 

all peaks in the global signal of the concatenated group image series are identified and out of 382 

these, the subset highest peaks are chosen. The latter is determined by matching the amount of 383 

chosen peaks to the average occurrences of QPPs (at their ideal window length) that we 384 

hypothesize to be related to the global signal (pattern 2 & 3 for LA; pattern 2 & 4 for HA; cfr. 385 

Results). Given the resultant set of peak time points T =  {T1, T2, …, TP}, with P being the number 386 

of peaks, a 3D matrix Y = [XTi-WL/2, XTi-WL/2+1, …, XTi+WL/2] is constructed, with XTi being the image 387 

frame at time Ti and WL the chosen window length for frames to be averaged. The matrix Y is 388 

averaged across the third dimension to produce the global CAP. 389 

 390 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 13

3. Results 391 

We acquired high temporal resolution rsfMRI scans in a set of 11 C57BL/6J mice. Subjects were 392 

scanned under a high anesthesia regime (HA, 0.3mg/kg bolus & 0.6mg/kg/h infusion of 393 

medetomidine) and were rescanned two weeks later under a low anesthesia regime (LA, 394 

0.05mg/kg bolus & 0.1mg/kg/h medetomidine). Two subjects of the HA group were not 395 

included in the presented analysis due to acquisition with offset parameters. We focus on the 396 

outcome of the LA group, while results under HA are more briefly addressed at the end of each 397 

section and related figures are presented in the supplementary data. A direct comparison is 398 

made in sections 3.1 and 3.7. 399 

3.1. Spectral information and resting state network functional connectivity 400 

Conventional rsfMRI analysis in rodents typically employs a TR between 1-2s and investigates 401 

LF BOLD fluctuations filtered in ranges between 0.01-0.1Hz or 0.01-0.3Hz (Gozzi and Schwarz, 402 

2015; Grandjean et al., 2014; Jonckers et al., 2015; Liska et al., 2015). To enable detection of 403 

propagating spatiotemporal patterns, we acquired scans with a TR of 500ms, providing a 404 

spectrum with a wider range (up to 1Hz) and higher temporal resolution. Visual inspection of 405 

group-average power spectra revealed that under LA the highest spectral information content 406 

was confined to the range below 0.2Hz, while power in the HA group was in general lower 407 

(Fig.1A). The spectra of both groups displayed a high peak below ~0.015Hz, consistent with 408 

literature suggesting band-pass filtering above 0.01Hz to remove baseline drift (Bianciardi et al., 409 

2009; Yan et al., 2009). 410 

Group-level analysis was restricted to a single slice, due to image normalization (cfr. 2.3). After 411 

0.01-0.2Hz band-pass filtering, group ICA of the LA data revealed the presence of six meaningful 412 

bilateral RSNs, overlapping with neuroanatomical locations (Fig.1B): Ventral Pallidum (VP), 413 

ventro-lateral Caudate Putamen (Cpu vl), dorsal Caudate Putamen (Cpu d), Somatosensory area 414 

1 (S1) forelimb and hindlimb (HL/FL), Somatosensory area 2 (S2), and Cingulate cortex (Cg). 415 

These six RSNs appeared to match known mouse RSNs (Zerbi et al. 2015; Grandjean et al. 2017; 416 

Liska et al. 2015; Sforazzini et al. 2014). To validate if single-slice RSNs in short TR (0.5s) data 417 

match with those in conventional whole-brain lower TR (2s) data, 16-slice rsfMRI scans were 418 

acquired during the same LA sessions. ICA of this data indeed revealed the same RSNs (Fig.1E). 419 

However, in this data we observed only a single Cpu component and two somatosensory 420 

components, of which the S1 HL/FL component partially overlapped with S1 barrel field (BF).  421 

When LA RSNs of the short and long TR data were compared, it became apparent that S2 and Cg 422 

components, determined in the short TR data, overlap respectively with the large-scale lateral 423 

cortical network and the Default Mode like network (DMN) in the long TR data. The lateral 424 

cortical network has been suggested to represent a potential mouse Task-Positive like network 425 
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(TPN) (Gozzi and Schwarz, 2015; Liska et al., 2015). These findings suggested that short TR 426 

single-slice RSNs pertain to whole-brain networks. This supported the conceptual paradigm that 427 

a well-positioned single-slice investigation allows a view into whole-brain dynamics. Under HA, 428 

ICA of the short TR data revealed similar single-slice RSNs as under LA, but with a less 429 

pronounced bilateral extent (Fig.1B), suggesting compromised FC.  430 

Finally, we also directly investigated FC. Left and right ROIs, matching with both the RSN peak 431 

intensities and a mouse stereotaxic brain atlas (Paxinos and Franklin, 2007), were used to 432 

construct a FC matrix in which HA and LA groups were compared (Fig.1C). S2, Cg, and Cpu d 433 

showed significantly decreased bilateral FC in the HA group (two-smaple T-test, two-tailed, 434 

p<0.05 FDR-corrected). Cpu d – Cg, VP – Cg, S1FL – S2, and Cpu vl – S2 also showed significantly 435 

lowered FC under HA. Seed-based FC analysis of the short TR LA data resulted in FC maps that 436 

were highly similar to the respective RSNs (Fig.1B&D). For the HA short TR data, no FC was 437 

apparent after significance thresholding. Seed-based FC analysis of the long TR data similarly 438 

reproduced whole brain RSNs and additionally allowed the detection of both Cpu d and Cpu vl 439 

components (Fig.1F). 440 

Lastly, it should be noted that, while all observed RSNs matched generally with known mouse 441 

RSNs, some inconsistencies in homotopic representation and functional coupling were apparent 442 

(cfr. 4.6). Therefore, to provide full transparency into our findings, we additionally present the 443 

remaining ICA-derived RSNs that were observed in the LA whole-brain 2s-TR data (Fig.2). These 444 

RSNs displayed bilateral coupling similar to what has been observed in other mouse rsfMRI 445 

studies (Grandjean et al., 2014; Liska et al., 2015).  446 

3.2. Exploring group wide spatiotemporal dynamics  447 

Without a clear a priori knowledge of the time span of putative QPPs, we investigated a series of 448 

different window sizes. This was achieved by running the spatiotemporal pattern finding 449 

algorithm on the center slice image series of all subjects (cfr. 2.5).  450 

We observed consistent and well-defined bilateral spatiotemporal patterns for all investigated 451 

window sizes ranging from 3 to 18s (Fig. 3C). To interpret the findings across different window 452 

sizes, three major factors need to be considered: (1) the algorithm is to some extent insensitive 453 

to phase, meaning that patterns can be detected at different start times; (2) small window sizes 454 

inherently only scope part of a larger pattern; (3) different window sizes can skew detection 455 

towards different patterns. In a first approach, we addressed this by making use of each 456 

observed pattern’s correlation time series, determined via sliding window correlation with the 457 

image series (cfr. 2.5 & 2.6), which we refer to as the Sliding Template Correlation (STC) (movie 458 

1 & Fig.3A). By calculating the cc of different patterns’ STCs at different window sizes, we can 459 
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establish their temporal overlap and adjust their phase so that the patterns align (Fig.3B). Using 460 

visual inspection, this initial exploration of the data revealed a non-redundant full-size QPP at 461 

12s. Phasing to the STC of this QPP allowed a meaningful alignment of all observed QPPs 462 

(Fig.3C), facilitating comparison and interpretation. 463 

Starting from a window size of 12s and upward, we observed high and consistent STC cc and 464 

QPP spatial cc, with average values of respectively (0.96±0.03) and (0.94±0.01). STC cc from 465 

shorter window sizes with the STC at 12s were however considerably lower and less consistent 466 

(0.66±0.10), while QPP cc was less diminished (0.81±0.04). This discrepancy in STC cc at shorter 467 

and longer window sizes suggested the detection of different spatiotemporal patterns, which 468 

was also hinted by visual inspection of Fig.2C (cfr. 3.3).  469 

The same analysis was performed for the HA group (Fig.S2), where an optimal window size was 470 

visually determined at 7.5s. STC cc (0.84±0.09) and QPP cc (0.89±0.05) were high across all 471 

window sizes. This initially suggested the observation of only one single spatiotemporal pattern.  472 

3.3. Multiple Quasi-Periodic Patterns  473 

The group wide QPPs displayed in Fig.2C were derived from iteratively running the algorithm 474 

500 times per window size and selecting the optimal one via k-means clustering and silhouette 475 

classification (cfr. 2.5). We repeated this analysis at each window size with 100 iterations, but 476 

now visually inspected all individual QPPs to determine the full repertoire. We consistently 477 

observed a set of 3 different QPPs (Fig.4A-B & movie 2), which could be detected at almost all 478 

window sizes (Fig. 4D). Pattern identification was supported by their high spatial similarity with 479 

known RSNs in mice (Fig.1B&D, cfr. 4.2). For the purpose of consistent classification, we 480 

employed a set of selection criteria that describes their behavior (Fig.4B). Pattern 1 (PAT1) first 481 

displays high intensity in lateral cortices centered on S2, and subsequently also involves S1 482 

areas, Cpu vl, and to some extent the enthorhinal (En) and insular (I) cortices. The pattern 483 

further spreads with lower intensity along Cpu d, towards medial cortical areas centered on Cg. 484 

Regional contrasting high and low intensities are marked by a complementing positive and 485 

negative cycle, followed by a prolonged more global negative intensity. PAT2 displays 486 

simultaneous high intensity in the Cpu d and Cg. PAT3 starts similar to PAT1 with lateral high 487 

intensity, which now becomes more widespread involving a larger area of Cpu, S1, En and Cg. 488 

Both PAT2 and PAT3 display a negative wave to complete the cycle. 489 

Classification of QPPs allowed us to estimate the detection rate across window sizes (Fig.4D). 490 

PAT2 and PAT3 displayed a bell-shaped curve, with detection rates exceeding that of PAT1 at 491 

window sizes between 7.5-10.5s. PAT1 displayed a U-shaped curve, with higher detection rates 492 

at the smallest and largest window sizes. Especially interesting is the take-over at 12s and 493 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 16

upward, exceeding PAT2 and PAT3 detection rates. The observed distributions of detection rates 494 

were strongly in line with QPPs determined in the general analysis using k-means clustering and 495 

silhouette detection (Fig.3C). To validate if QPPs in the latter were representative, the k-means 496 

algorithm was iterated 10 times and the outcomes were visually inspected. Below 9s, pattern 497 

detection was highly consistent, always finding the same QPPs, at 9s a mixture of PAT2 and 498 

PAT3 was found, at 10.5s a mixture of PAT1 and PAT3, and above 12s a mixture of PAT1 and 499 

PAT3 with PAT1 dominating (74%). These findings were in line with presented results and 500 

illustrate how k-means clustering becomes less reliable towards longer window sizes. 501 

To further investigate this skewed detection, we isolated QPPs and their associated STCs for 502 

each type of pattern at every window size. STC cc was high and consistent at window sizes of 503 

10.5-18s for PAT1 (0.93±0.02) and 6-13.5s for PAT2 (0.94±0.03), while PAT3 seemed less 504 

confined to a specific range (6-16.5s; 0.88±0.06) (Fig.4C). QPP cc was high across all window 505 

sizes: PAT1 (0.94±0.04), PAT2 (0.87±0.10) & PAT3 (0.92±0.06). PAT2 QPP cc was higher at 506 

window sizes of 6-13.5s (0.94±0.02). Further, PAT2 and PAT3 displayed higher occurrence rates 507 

(i.e. the amount of correlation peak threshold crossings in the STC) at window sizes below 10.5s 508 

(Fig.4F), but became equal with PAT1 afterwards. 509 

After establishing the presence and behavior of 3 individual patterns, we used visual inspection, 510 

QPP detection rate (Fig.4D), and FA (cfr. 2.7) (Fig.4E) to determine optimal window sizes for 511 

each: PAT1 12s, PAT2 9s and PAT3 9s. These optimal sizes seem in line with the skewed 512 

detection rates across window sizes. All three patterns were observed throughout the different 513 

subjects, with PAT1 and PAT3 displaying higher variability (Table1, upper panel). An overlay of 514 

each pattern’s STC, determined for its respective ideal length, illustrated their overall coincident 515 

behavior (Fig.4G). Although there was variation in timings and temporal correlation strength, 516 

patterns appeared to often be co-active, but could nonetheless be separated by the 517 

spatiotemporal pattern-finding algorithm. Specifically, PAT2 & PAT3 appeared to lag behind 518 

PAT1, causing their high intensity phase to fall in between PAT1’s S2 – Cg switch (Fig.4A). 519 

Half cycle times, defined as the time to change from maximal to minimal intensity of a brain 520 

region within the QPP, were similar across all three patterns and different window sizes, 521 

averaging to approximately 4.6s (Table2, upper panel). Propagation time, defined as the time 522 

delay of maximal intensity occurring in one brain region within the QPP after maximal intensity 523 

detection in another region, from lateral (S2 or Cpu) to medial regions were different between 524 

the patterns, being shorter for PAT2 and PAT3.  525 

Classification analysis was also performed on the HA group, which originally displayed only one 526 

type of pattern (Fig.S2A) that appeared highly similar to PAT2. Further inspection revealed 527 
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detections of patterns similar to PAT1 and a fourth type (Fig.S3A & movie 3). The latter 528 

appeared similar to PAT2, but with more widespread and ventral involvement of Cpu, and less 529 

contribution of the medial cortex. QPPs further tended to display more unilateral behavior or 530 

bilateral delays.  531 

Under HA, PAT2 detection rate seemed to be dominant across all window sizes (Fig.S3C), in line 532 

with the QPPs observed in the general analysis. Repeating the k-means algorithm for the HA 533 

group similarly revealed that mostly PAT2 was detected. STC cc revealed that PAT1 (0.73±0.09) 534 

could now only be consistently detected up to a window size of 7.5s, while PAT2 (0.84±0.09) and 535 

PAT4 (0.73±0.10) were similar across all window sizes (Fig.S3B). Overall cc values were lower 536 

for HA than for LA, illustrating increased difficulty of consistent observations. Occurrence rate 537 

was similar across all three patterns, averaging ±0.8 occurrences/min (approx. half that of under 538 

LA: ±1.5 occurrences/min), and they were detected in all subjects (TableS1, upper panel). Ideal 539 

window sizes for all types of HA patterns were observed at 7.5s (Fig.S3D), while half cycle times 540 

averaged to ±3.7s. Consistent with the respective spatiotemporal shape, and as was observed in 541 

the LA group, propagation time from lateral to medial was shorter in PAT2 and PAT4 than in 542 

PAT1 (TableS2). 543 

3.4 Data-driven validation confirms multiple Quasi-Periodic Patterns  544 

Visual classification might suffer from user bias, leading to a potentially wrongful identification 545 

of three separate patterns under LA. To validate our findings, we employed a novel approach to 546 

cluster spatiotemporal patterns, utilizing hierarchical sorting of pattern cc matrices (cfr. 2.8). 547 

Individual patterns at respective window sizes (7.5-13.5s) were clustered using either their 548 

spatial structure (Fig.5A) or their STC (Fig.5B). In both cases clustering was most successful at 549 

shorter window sizes, clearly indicating the presence of three separate clusters. Visual 550 

inspection of their content revealed that clusters predominantly contained a single type of 551 

pattern, confirming the existence of three patterns types. Similarly, the sorted average cc of all 552 

individual patterns with every other pattern revealed step-wise transitions, confirming clear 553 

pattern distinction.  554 

With increasing window size clustering became more difficult and pattern separation less clear. 555 

This was similar to the observations made for k-means clustering and was to be expected given 556 

the increasing dimensionality of data to be clustered. Towards longer window sizes PAT1 557 

detection rate increased, which matched preceding results (Fig.4). PAT2 and PAT3 ideal window 558 

sizes had been determined at 9s, thus increasing the window size under investigation forces the 559 

detection algorithm to find longer patterns that contain more noise or overlap with other 560 

patterns, potentially contributing to less efficient clustering at higher window sizes. The 561 
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proposed clustering method at this point seemed not to be sufficiently reliable to replace visual 562 

classification, but did serve valuable to illustrate the existence of three different patterns.  563 

Under HA, hierarchical clustering similarly allowed separation of PAT1, PAT2 and PAT4 at short 564 

window sizes (Fig.S4). However PAT2 and PAT4 were less clearly separable, suggesting some 565 

potential overlap. At longer window sizes pattern cc was very low and only minor clustering 566 

could be observed. 567 

3.5. Global signal regression accentuates pattern 1 while removing spatiotemporal 568 

dynamics closely related to the global signal.  569 

After GSR, using the k-means algorithm and silhouette scoring, only a single QPP could be 570 

observed across all window sizes (Fig.S5A). Repeating k-means clustering 10 times consistently 571 

reproduced this finding. GSR QPPs were highly consistent across window sizes (STC cc 572 

0.96±0.02 & QPP cc 0.96±0.04) (Fig.S5B), with their ideal length judged at 9s by taking into 573 

account FA. GSR QPPs were highly similar to PAT1 (QPP cc 0.88), displaying the same lateral to 574 

medial cortical propagation (Fig.6A & movie 4). The spatiotemporal profile after GSR was 575 

marked by a sharper contrast between positive and negative intensities and a loss of the 576 

prolonged negative intensity observed in PAT1.  577 

Visual inspection off all GSR QPPs indicated that PAT2 and PAT3 detection was abolished. 578 

Hierarchical clustering appeared to produce separate clusters, which would suggest the 579 

detection of different patterns (Fig.6B). However, inspection of these clusters revealed they 580 

were composed of a single type of QPP, with some patterns displaying either high (GSR P1) or 581 

low (GSR P2) intensity in the medial Cg component (and vice versa the lateral S2 component) 582 

(Fig.6A). This indicated that the phase at which a pattern was detected, became a dominant 583 

factor in the clustering after GSR. Phase sorting of QPPs prior to hierarchical clustering, based on 584 

their intensity time series in the Cg (cfr. 2.9), confirmed the detection of a single GSR QPP 585 

(Fig.6B). An overlay of STCs of the QPPs after GSR further confirmed their detection at opposite 586 

phases (Fig.6C). 587 

An STC overlay of PAT1-3 and the GSR PAT clearly illustrated matching of PAT1 with the GSR 588 

PAT (Fig.6C). This was further confirmed by STC cc at each window size, which showed strongly 589 

decreased cc of the GSR PAT with PAT2-3 and high cc with PAT1 (Fig.6D, left panel). Direct cc of 590 

PAT1-3 with the global signal further demonstrated its close relationship with PAT2-3, but less 591 

so with PAT1 (Fig.6D, right panel). Using the CAP approach (cfr. 2.10), we identified the 592 

spatiotemporal shape associated with global signal and displayed it with its respective timing to 593 

the GSR PAT (Fig.6A, lower panel). This illustrated that the global signal falls on the Cg-S2 594 
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intensity switch. PAT2-3 displayed a similar timing and spatiotemporal shape (Fig.4A), 595 

suggesting at least partial overlap with the global signal. 596 

Under HA, GSR had very similar effects (Fig.S6). PAT2 and PAT4 were no longer observable, 597 

while the GSR pattern displayed similarity with PAT1 (STC cc 0.83 and QPP cc 0.71) (Fig.S3A & 598 

movie 3). STC cc across window sizes was however (0.70±0.13) slightly diminished, not 599 

displaying the high consistency as observed under LA (Fig.S3B). PAT2 and PAT4 displayed a 600 

close relationship with the global signal (Fig.S6D, right panel). The global CAP displayed a 601 

similar timing as described under LA and its spatiotemporal shape shows consistency with PAT2 602 

and PAT4 (Fig.S6A). 603 

3.6. Cortex and Caudate Putamen differentially contribute to Quasi-Periodic patterns. 604 

Global signal regression diminishes subcortical dynamics.  605 

Under LA, PAT2 and PAT3 showed a higher detection rate at window sizes of 6-10.5s. Both 606 

displayed a spatiotemporal pattern that more strongly involves Cpu, while PAT1 was marked 607 

most by lateral to medial cortical propagation and window sizes above 10.5s. To further 608 

investigate this ‘skewed’ detection of patterns involving different brain regions, we performed 609 

the same general analysis as presented in Fig.2, now with masks comprising either only cortical 610 

or Cpu regions. This allowed, for the cortical mask, observation of a pattern highly similar to 611 

PAT1 (QPP cc 0.92), and for the Cpu mask, observation of a pattern similar to PAT2 (QPP cc 612 

0.70), consisting of bilateral alternating high and low intensities in the full Cpu and Cg (Fig.7A & 613 

movie 4). Interestingly, when the Cpu mask was employed, the algorithm didn’t use information 614 

of the cortex to select whole brain images to be averaged, yet a pattern including the Cg was still 615 

determined, indicating partially preserved coupling with the cortex. A similar outcome was also 616 

observed in rats (Majeed et al., 2011). Timing of the Cpu pattern indicated it as falling in 617 

between the PAT1 S2 - Cg switch, similar to PAT2-3 (Fig.4). 618 

STC cc with whole brain QPPs obtained via k-means clustering (Fig.3) confirmed a high overlap 619 

with Cpu spatiotemporal dynamics at shorter window sizes (0.76±0.02), while at high window 620 

sizes QPPs were highly consistent with cortical only dynamics (0.94±0.03) (Fig.7C). Visual 621 

inspection of the STCs displayed how the Cpu QPP both synchronizes and falls out of phase with 622 

the cortical QPP and whole brain PAT1 (Fig.7B). This illustrated a potential common 623 

relationship between the two, which visually disappeared due to differential averaging (e.g. with 624 

a cortical mask in- and out-of phase Cpu occurrences could average to zero, or vice versa).  625 

Ideal window sizes for Cpu and cortical QPPs were determined at 9s (visual inspection + FA, 626 

Fig.7D). The cortical-mask QPP still displayed the prolonged negative intensity, but less clearly. 627 

Therefore the ideal window size was determined by taking into account FA. Half cycle times for 628 
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Cpu QPPs appeared shorter in the Cpu (±0.6s) compared to PAT2, while propagation time in 629 

cortical QPPs appeared faster than in PAT1 (±0.7s) (Table2). These differences served to 630 

illustrate different temporal dynamics across brain regions, which likely contributed to the 631 

observation of different patterns. Both Cpu and cortical QPPs were observed across all subjects 632 

and occurrence rates were higher across all window sizes versus whole brain QPPs (Fig.7E & 633 

Table1, lower panel). 634 

We showed earlier that GSR abolished PAT2-3 detection, leaving only a pattern highly similar to 635 

PAT1 (cfr.3.5). Cortical QPP spatiotemporal dynamics were found to be highly similar to GSR 636 

QPPs (QPP cc 0.88) (Fig.7A). They further produced a similar STC cc profile as described for the 637 

cortical QPPs, displaying respectively diminished and preserved cc with whole brain QPPs at 638 

lower and higher window sizes (Fig.7C). These results indicated that GSR diminished the 639 

detection of subcortical dynamics and the related PAT2/PAT3. 640 

Under HA, similar outcomes were observed. The Cpu mask led to the detection of a pattern 641 

highly similar to PAT4 (QPP cc 0.89), while with the cortical mask a pattern similar to PAT1 was 642 

found, which displayed diminished intensities in the lateral cortical S2 component (Fig.S7). The 643 

Cpu QPP displayed a similar timing with respect to PAT1 and PAT GSR, as described for LA. 644 

Detection rates are shown in Table S1. 645 

3.7. Quantitative comparison of Quasi-Periodic patterns between high and low 646 

anesthesia, before and after global signal regression.  647 

After patterns were determined at their ideal window length, based off the image series of a 648 

specific group (LA – no GSR, LA – GSR, HA – no GSR, HA GSR), they could be compared to those of 649 

other groups via sliding template correlation. This allowed patterns that were hypothesized to 650 

be the same across groups to be compared in terms of how similar they correlate with the 651 

respective time series: e.g. PAT1 determined under LA was used to derive the STC with the HA 652 

image series (STC PAT1 LA->HA), to then be compared with the original STC of PAT1 653 

determined under HA. STC LA->HA cc was determined to be 0.87 for PAT1, 0.89 for PAT2, and 654 

0.89 for PAT GSR. These high cc values suggested that visually classified common patterns 655 

displayed a highly similar interaction with the respective image series and thus pertained to the 656 

same spatiotemporal dynamics across anesthesia groups.   657 

In a similar way as described above, reference->target STCs were used to compare detection 658 

rates of patterns before and after GSR in the respective anesthesia groups (Fig.8). This showed a 659 

clear suppression of PAT2-4 and Cpu QPP detections after GSR in both groups, with only the Cpu 660 

QPP showing some preservation in the LA group. On the other hand, PAT1, PAT GSR and the 661 

cortical QPP showed consistent detection rates before and after GSR, whilst cortical QPP 662 
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detections under HA increased after GSR. PAT3 and PAT4 were not clearly visually discerned in 663 

respectively the HA and LA group, but could be compared for their potential presence via this 664 

strategy. Both displayed the lowest occurrence rate in the alternate anesthesia group.  665 

3.8. Single subject Quasi-Periodic Pattern detection and consistency with group-level 666 

analysis 667 

Once we established the repertoire and behavior of QPPs at the group level, we further 668 

investigated whether patterns could be detected at the single subject level. The algorithm was 669 

run on each subject for window sizes of 3 to 15s, with and without GSR. We investigated cc 670 

between the STC of the subject individually and the STC of the same subject, derived from the 671 

group-level analysis. For single-subject data there was no need for image normalization, 672 

allowing all three slices to be included in the analysis. Pattern similarity was therefore visually 673 

confirmed. 674 

We present results from three example subjects, displaying QPPs with and without GSR (Fig.9). 675 

Subjects were chosen to illustrate, respectively, high PAT1 contribution in subject 11 (Fig.9A), 676 

high PAT1 and PAT2 contribution in subject 8 (Fig.9B), high PAT2 contribution in subject 4 677 

(Fig.9C). The two patterns could clearly be visually observed throughout all three slices, with a 678 

high similarity and timing. Below each illustration, a 200s excerpt is shown from the STCs at 679 

single subject and group level after phasing via cc. Subject 11 and 8 presented a very high degree 680 

of overlap for their respective patterns, while subject 4 showed partial overlap and sporadic 681 

aphasic behavior. These graphs illustrate the high consistency between group and single subject 682 

analysis.  683 

After GSR, subject 11’s QPP stayed highly similar, while in subject 8 the Cpu contribution seemed 684 

slightly reduced. In subject 4, where no lateral cortical contribution could be observed earlier, a 685 

lateral to medial cortical wave similar to PAT1 could afterwards be appreciated. STCs for group 686 

and subject data with GSR are shown below the figures on the right. In all three subjects a high 687 

overlap could be observed, indicating that GSR allowed reproducible QPP detection.  688 

In the lowest middle graph below each subject, an overlay is shown between single subject STC 689 

with GSR and without GSR. Subject 11 and 8 respectively showed high overlap, while subject 4 690 

showed very little overlap. When however for subject 4 the group level STC of PAT1 was 691 

additionally plotted, a high similarity could be observed. This supported the notion that GSR 692 

removed contribution of the Cpu and PAT2, which involved more pronounced subcortical 693 

dynamics. A similar illustration for PAT3 can be appreciated in subject 9 (movie 5&6). 694 

Speculatively, in subjects 11 and 8 the cortical contribution, consistent with PAT1, was already 695 

high to start with so the STCs after GSR stayed similar. 696 
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We observed similar trends over all subjects, with individual subjects displaying differences in 697 

which patterns seemed to be dominantly present (movie 5&6). To illustrate this, we present a 698 

visual overview of STC cc of each subject, per window size, with the group-level patterns before 699 

and after GSR (Fig.S8). Some subjects showed lower pattern detection (e.g. subject 7) and QPPs 700 

could not be detected for all window sizes. This was especially the case after GSR. 701 

Under HA, single subject detection of QPPs was much more challenging and visual assessment of 702 

pattern type was often not possible (Fig.S9 & movie 7). After GSR, this slightly improved, but 703 

patterns remained challenging to discern and tended to display lateralization (movie 8). STC 704 

overlap of group and single subject data further illustrated substantial difficulty to find reliable 705 

matching. 706 

4. Discussion 707 

4.1 Overview 708 

Often, the assumption is made that BOLD FC is stationary, but recent studies indicate that 709 

dynamic analysis of FC better captures the interaction between different brain regions and 710 

resting state networks (RSNs), providing additional insights into the macroscale organization 711 

and dynamics of neural activity (Calhoun et al., 2014; Deco et al., 2011; Hutchison et al., 2013; 712 

Keilholz, 2014). Only just recently, Grandjean et al. (2017) applied sliding window analysis 713 

(SWA) and dictionary learning to identify for the first time several highly reproducible dynamic 714 

functional states in mice. Other dynamic rsfMRI techniques focus directly on the LF BOLD 715 

fluctuations, tracking down instantaneous single volume BOLD configurations that underlie 716 

observed FC and RSNs, e.g. the CAP approach (Liu and Duyn, 2013; Preti et al., 2016), and in and 717 

alternative extension their recurring spatiotemporal evolution (Majeed et al., 2011). It has been 718 

speculated that SWA and spatiotemporal dynamics both scope different aspects of the neural 719 

basis underlying dynamic rsfMRI (Keilholz, 2014). Being able to apply and compare both 720 

techniques in mice would thus represent an important step forward. 721 

We investigated such spatiotemporal dynamics by acquiring high temporal rsfMRI scans in mice 722 

under an analogous HA and LA condition. Using the pattern detection algorithm developed by 723 

Majeed et al. (2011), we report the detection of a set of group-level QPPs, which appear to 724 

capture the spatiotemporal occurrence of BOLD configurations resembling known RSNs. We 725 

present an initial framework for the interpretation of observed QPPs, illustrating the influence of 726 

analysis window size on skewing detection towards either more cortical (PAT1) or widespread 727 

and subcortical (PAT2-4) spatiotemporal dynamics. PAT1-2 and the pattern after GSR were both 728 

visually and quantitatively determined to be the same across both anesthesia conditions, where 729 

they display different occurrence rates and lower lateral cortical intensities under HA. PAT3 and 730 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 23

PAT4 were identified separately under respectively LA and HA, and both displayed a similar 731 

spatiotemporal shape to the global CAP. We went on to illustrate the relationship between 732 

observed patterns and the global signal, showing how GSR removed detection of PAT2-4 and 733 

diminished the detection of subcortical spatiotemporal dynamics. This resulted in the dominant 734 

detection of PAT1. To aid interpretation, we developed a novel data-driven approach to guide 735 

identification of optimal window sizes, we proposed a clustering approach to confirm different 736 

pattern subtypes, we added an extension of the CAP approach to investigate the global signal 737 

spatiotemporal pattern, and provided a means of quantitatively comparing patterns across 738 

groups. Interestingly, our findings suggest that QPPs and their interaction with the global signal 739 

were consistent across anesthesia conditions, but that their detection rates were diminished 740 

under higher anesthesia levels. 741 

PAT1 is highly similar to the QPPs detected in preceding rat studies, displaying a propagating 742 

intensity from lateral S2 towards medial Cg cortical areas, with almost the same propagation 743 

time and half cycle length (Magnuson et al., 2010; Majeed et al., 2011, 2009) (movie 2). This 744 

interspecies consistency supports that QPPs are a robust phenomenon and further validates 745 

mouse rsfMRI as a pre-clinical tool. In the current study, QPPs could only be investigated in a 746 

single slice. By utilizing conventional resting state analysis on both low and high temporal 747 

resolution datasets, acquired in the same LA session, we illustrate how single slice investigations 748 

allow a view into brain-wide BOLD dynamics. We suggest that the S2 and Cg components of 749 

PAT1 pertain to anti-correlated interaction between the mouse DMN-like and lateral cortical 750 

networks. We further speculate that the lateral cortical network might represent a mouse TPN-751 

like network. These networks have been conjectured to be present in mice (Liska et al., 2015), 752 

and match a similar DMN-TPN anti-correlation (Fox et al., 2005) and quasi-periodicity in 753 

humans (Majeed et al., 2011; Yousefi et al., 2017). Although the exact subcortical patterns shown 754 

in the current study were not reported in rats, Majeed et al. (2011) did indicate the presence of a 755 

pattern including Cpu. The latter similarly locked in-and-out of phase with the rat whole-brain 756 

pattern and displayed shorter cycle lengths, consistent with our findings. 757 

Comparison of group-level QPPs with single subject multi-slice QPPs, by means of STC cc, 758 

allowed us to investigate detection reliability at the subject-level. The latter seemed consistent 759 

under conditions of LA and was improved by GSR. At group-level, subjects displayed occurrences 760 

of all patterns, but contributions were skewed towards one or multiple subtypes. Visual 761 

inspection and STC cc of single-subject with group-wide QPPs confirmed this observation. The 762 

variability in QPP contribution and occurrence across subjects might be related to the commonly 763 

observed inter-subject variability in rodent rsfMRI, which knows numerous origins (Keilholz et 764 

al., 2016). It is interesting to speculate that different contributions of QPPs might contribute to 765 
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inter-subject differences in FC readouts. In humans it was already indicated that QPPs contribute 766 

to FC (Wang et al., 2016). Single subject investigation of QPPs promises a step forward towards 767 

more reliable resting state fMRI. 768 

4.2 Anesthesia and resting state network resemblance  769 

Anesthesia type and dosage are known to alter neurovascular coupling, haemodynamics and 770 

BOLD FC patterns (Grandjean et al., 2014; Jonckers et al., 2014; Keilholz et al., 2016; Masamoto 771 

and Kanno, 2012; Schlegel et al., 2015; Schroeter et al., 2014; Williams et al., 2010). Several 772 

rodent rsfMRI studies point at a combination of low dosage medetomidine and isoflurane 773 

(MedIso) as a potential optimal anesthesia regime that preserves vascular reactivity, preserves 774 

FC within and between cortical and subcortical structures, and allows high retention of local 775 

activity measured via regional homogeneity (Bukhari et al., 2017; Fukuda et al., 2013; Grandjean 776 

et al., 2014; Wu et al., 2017). We therefore scanned animals with a similar regime (LA – low 777 

anesthesia) and also under a higher dosage (HA) for comparison. Our results confirm the 778 

importance of choosing optimal anesthesia and are in line with the outcomes of several studies. 779 

BOLD configurations of the observed QPPs match well with several RSNs described in 780 

(Grandjean et al., 2014) and those in a follow-up study of the same lab (Zerbi et al., 2015). The 781 

lateral cortical components of PAT1 and PAT3 match the bilateral sensory cortical map obtained 782 

with a seed-based analysis in (Grandjean et al., 2014), which displays involvement of 783 

somatosensory areas (S1 & S2), a ventral part of the Cpu, and partially extends to enthorinal and 784 

insular cortices. After GSR, this FC map displays anti-correlation between S1BF/S2 and Cg, 785 

similar to the contrast observed in PAT1. A seed in the dorsal Cpu further indicates a bilateral 786 

striatal network that we observe throughout all patterns. Zerbi et al. (2015) used ICA to identify 787 

bilateral RSNs, which also match with QPPs. The configuration with co-active dorsal Cpu and Cg 788 

was not shown, yet a high correlation was determined between their time series. Furthermore, 789 

in a recent study employing MedIso anesthesia, this configuration could be observed and it was 790 

even correlated to underlying monosynaptic structural connectivity (Grandjean et al. 2017). It 791 

was also observed as a part of the DMN module and with CBV-weighted rsfMRI, when halothane 792 

was used as an optimal anesthesia regime (Liska et al., 2015; Sforazzini et al., 2014). In these 793 

two studies, similar RSN topologies as described above were identified.  794 

Under HA, we observe diminished cortical contribution to the QPPs, while spatiotemporal 795 

dynamics displaying bilateral striatal co-activation predominate. This is in line with diminished 796 

cortico-cortical and preserved striatal connectivity observed at higher dosages of medetomidine 797 

(Grandjean et al. 2014; Nasrallah et al. 2014). Medetomidine is a potent vasoconstrictor (Ganjoo 798 

et al., 1998), exerting its effect via interaction with α2-adrenorecptors (Lakhlani et al., 1997; 799 
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Lukasik and Gillies, 2003), which have different expression densities throughout the brain 800 

(Nasrallah et al., 2012). Cortical expression is higher than in striatum, leading to local 801 

diminished vascular reactivity, which supports observations in our study and that of (Grandjean 802 

et al., 2014). 803 

4.3 Haemodynamics  804 

QPP half cycle times across different pattern subtypes under LA were consistent, averaging to 805 

4.6s across relevant window sizes. Interestingly, for QPPs derived with a cortical and subcortical 806 

mask, these values average respectively to 4.4s and 3.8s. Although the temporal resolution in the 807 

current experimental setup is limited to 0.5s, this difference was determined to be significant (T-808 

test, p < 0.01) across window sizes, supporting our hypothesis that subcortical and cortical 809 

spatiotemporal dynamics differ. The latter might skew detection of pattern subtypes, depending 810 

on the window size under investigation. As described above, differences in haemodynamics due 811 

to regional expression variation in anesthetic-binding receptors could contribute to this 812 

phenomenon. Regional differences in haemodynamics were indicated before in rats (Devonshire 813 

et al., 2012; Sloan et al., 2010), and more recently also in mice (Schlegel et al., 2015; Schroeter et 814 

al., 2014). Visual inspection of the mouse S1 haemodynamic response function (HRF), 815 

determined under medetomidine in (Schlegel et al., 2015), suggests a similar cycle time (9-10s) 816 

as we observe for mouse QPPs. On the other hand, for a subcortical structure (thalamus) the 817 

HRF was determined to be shorter, which is in line with our observed shorter subcortical 818 

dynamics. The authors suggested that this could be attributed to regional differences in vessel 819 

structure and blood supply.  820 

It thus becomes interesting to speculate that QPPs reflect spontaneous haemodynamic events. It 821 

has already been suggested that haemodynamics in the mouse somatosensory cortex, due to 822 

spontaneous neural activity, resemble stimulus-evoked haemodynamics (Bruyns-Haylett et al., 823 

2013). Further support comes from other multimodal imaging modalities. Particularly, two 824 

studies in mice employed wide-field optical imaging to visualize calcium and intrinsic optical 825 

signals, to investigate and relate respectively neuronal activity with haemodynamics (Ma et al., 826 

2016; Matsui et al., 2016). It was shown how in the resting state, spontaneous symmetrical 827 

events in cortical synchronized neural activity translate into similar patterns of haemodynamics, 828 

which may reflect the basis of RSNs as detected by rsfMRI. (Matsui et al., 2016) went on to show 829 

global waves of neural activity propagating across the cortex, with functionally connected 830 

cortical regions co-activating at different time points along the wave. These events could be 831 

translated into spatially similar haemodynamic co-activations. In both studies, haemodynamics 832 

under anesthesia were on the order of ~10s and illustrated the existence of transiently co-833 

activating large-scale patterns. Although speculative, there seems to be a consistency with the 834 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 26

currently detected QPPs, which were also on the order of ~10s. Future studies applying the 835 

pattern detection algorithm of (Majeed et al., 2011) on these types of data, or multimodal 836 

experiments combining rsfMRI with neuronal recordings in mice, might answer this hypothesis. 837 

4.4 Impact of physiology, motion, spectral range and processing 838 

A critique to the above statement is that QPPs might be confounded by contributions of 839 

physiological noise or could arise from imaging/processing artifacts. However, phase 840 

randomization of the respective BOLD data and analysis of data acquired in a dead rat does not 841 

allow detection of QPPs, addressing the latter concern (Majeed et al., 2011) (Fig.S10). In the 842 

original study in rats (Majeed et al., 2009), in which a highly similar QPP was detected to the one 843 

we observe in mice (PAT1 & GSR), rsfMRI was acquired with a TR of 100ms to prevent aliasing 844 

of cardiac and respiratory noise into the lower frequencies under investigation. With short TRs, 845 

the BOLD signal becomes more weighted to cerebral blood flow (CBF), which then might 846 

predominantly underlie QPPs, but a subsequent study with CBV-weighted BOLD imaging also 847 

allowed detection of similar QPPs (Magnuson et al., 2010). The consistent regional FC and 848 

observation of QPPs between ‘CBF-‘ and CBV-weighted rsfMRI in this study further confirms a 849 

relationship with neurovascular coupling and suggests that both readouts are primarily 850 

reflective of vascular fluctuations. 851 

Spurious repeating patterns, captured by the spatiotemporal pattern detection algorithm, might 852 

reflect sporadic or respiratory/cardiac-induced motion. To ensure that motion was not 853 

causative to QPP events, we calculated frame-wise displacement (FD), based on the backwards 854 

looking temporal derivations of the motion time series (Power et al., 2012), and cross-correlated 855 

the resultant FD time series with the STCs of the 3 main patterns found under LA. This was done 856 

for both raw motion time series and motion time series pre-processed in the same way as the 857 

functional data (filtering, detrending and normalization to unit variance). In both cases cross-858 

correlation was minimal across all subjects, never exceeding 0.11 (Fig.S11), suggesting there is 859 

no influence of motion on detected QPPs. Mean FD across subjects was low (0.0066 ± 0.0005 860 

mm). Illustrative motion time series, FD time series and lack of overlap with STCs can be 861 

appreciated in Fig.S12A-C for individual subjects, matching those described in Fig.9. 862 

Several studies investigating QPPs in rats employed medetomidine as an anesthetic, which 863 

revealed power spectra peaking close towards 0.2Hz and containing most of the spectral 864 

information below this point (Magnuson et al. 2010; Majeed et al. 2011; Magnuson et al. 2014). 865 

Similar power spectra under medetomidine have been observed in mice (Grandjean et al., 2014), 866 

and also in the current study. In rats, QPPs were variably investigated in frequency ranges 867 

higher than those in conventional rsfMRI (0.05> f <0.3Hz; cfr. respective articles), while for the 868 
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currently presented mice data we chose 0.01-0.2Hz. Majeed et al. (2009, 2011) split these 869 

spectral confines into a lower and higher frequency range, concluding that the range of 0.08-870 

0.2Hz was most appropriate to investigate rat spatiotemporal dynamics. Although we also 871 

observed some differences between lower and higher frequencies, they were not sufficiently 872 

compelling for us to do the same. The spectral information content in Fig.1A clearly indicated the 873 

relevance of the investigated frequency range.  874 

Although these frequency ranges isolate the hypothesized relevant spectral information of the 875 

BOLD signal and were shown to cohere significantly with infraslow LFPs under medetomidine 876 

anesthesia (Pan et al., 2013), inclusion of temporal content above 0.1Hz risks contribution from 877 

slow frequency vascular phenomena such as vasomotion and Mayer waves (Baudrie et al., 2007; 878 

Bumstead et al., 2017; Drew et al., 2011; Julien, 2006; Tsai et al., 2015). Vasomotion is the 879 

intrinsic spontaneous oscillation of blood vessel tone leading to flow motion, while Mayer waves 880 

represent slow frequency changes in arterial blood pressure. 881 

Given potential confounds from physiological noise and the fact that Mayer waves relate to 882 

hearth rate variability (HRV) (Elghozi and Julien, 2007), we used multiple linear regression 883 

analysis to investigate in LA subjects the relationship between two parameters of the observed 884 

QPPs, namely occurrence rate and power (i.e. the average correlation value for above-threshold 885 

peak detections), with four physiological parameters, namely cardiac rate, cardiac rate STD (i.e. 886 

HRV), respiration rate, respiration rate STD (Table S3). No significant interactions could be 887 

observed, only after GSR there was a trend towards correlation between breathing rate and QPP 888 

occurrence rate, and between cardiac rate STD and QPP power. GSR is generally considered to 889 

remove contributions from physiological noise (Chang and Glover, 2009; Murphy et al., 2013), 890 

making these results seem somewhat surprising. It would however be expected that with 891 

stronger CBF-weighing at shorter TRs, systemic parameters that affect CBF would correlate 892 

more to the BOLD signal and derived readouts. The latter might be accentuated by GSR. 893 

As an additional control, we performed the QPP analysis at a lower frequency range (0.01-0.1Hz) 894 

that should theoretically exclude contributions from vasomotion and Mayer waves. The same 895 

QPPs could be detected, with or without GSR, although be it with altered detection rates and 896 

slower temporal dynamics, which is to be expected due to temporal filtering (Fig.S13). The 897 

current experimental setup does not allow to fully exclude contributions from physiological 898 

signals, which should be investigated more in depth in future experiments together with the role 899 

of spectral range. Nonetheless, there seems to be substantial support for a neuronal component 900 

in the QPPs and their high similarity with known RSNs implicates their contribution to BOLD LF 901 

FC, regardless of their origin. 902 
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4.5 Global signal regression impact on spatiotemporal dynamics 903 

GSR remains a controversial tool for rsfMRI processing, with the current consensus being that 904 

data should be compared with and without GSR (Murphy and Fox, 2016). In the investigation of 905 

the spatiotemporal dynamics in mouse BOLD, we observed that GSR removes PAT2-4 detection 906 

and decreases detection of subcortical patterns, leading to the sole detection of the lateral to 907 

medial cortical QPP (PAT1), which was also observed in rats (Majeed et al., 2011). The removal 908 

of PAT2-4 through GSR was further supported by their similar timing and spatiotemporal shape 909 

with the global signal CAP. In QPPs after GSR, subcortical dynamics are still present, indicating 910 

that their removal is targeted to the specific coincident timing with the global signal and 911 

potentially to periods between respective PAT1 occurrences. The removal of QPPs matches with 912 

a recently suggested mechanism for GSR, where it acts as a temporal down-weighting process, 913 

attenuating data from time points with a large global signal contribution and leaving data from 914 

low global signal time points largely unaffected (Nalci et al., 2017). With regard to the current 915 

study, PAT1 would represent the low global signal time points and PAT2-4 the high global signal 916 

time points, which appeared to fall between the first and second part of PAT1. 917 

The ‘anti-correlated’ structure of PAT1 and the QPPs after GSR have also been shown for 918 

measures of RSN FC in several rodent studies and in humans, between analogues DMN (medial 919 

Cg, i.e. mouse DMN-like network) and TPN (lateral S2, i.e. mouse lateral cortical network) (Fox et 920 

al., 2005; Gozzi and Schwarz, 2015; Grandjean et al., 2014). It is very relevant to note here that 921 

the anti-correlated nature of these two networks has been debated to be a potential artifact of 922 

GSR (Fox et al., 2009; Murphy and Fox, 2016), but in the current study PAT1 was both detected 923 

before and after GSR. Similarly, Nalci et al. (2017) suggested that censoring of high global signal 924 

time points in the time series, rather than GSR, still allowed detection of anti-correlated 925 

interactions between DMN and TPN.  926 

Although the suggested DMN-TPN interaction might thus be comparable with or without GSR 927 

(PAT1 is present in both cases), it does not address the question if GSR has a positive or negative 928 

role. We however show that without GSR, three separate QPPs could be observed, which 929 

resemble known RSNs and therefore suggest their neuronal relevance. A neural basis for QPPs 930 

was already directly indicated in rats, where a correlation is observed with infraslow LFPs 931 

(Thompson et al. 2014; Thompson et al. 2015; Pan et al. 2013). All QPPs observed in the current 932 

study displayed a high coincidence with each other and the global signal. It was shown that the 933 

global signal itself, as measured with rsfMRI, might also be related to a global neural signal 934 

(Schölvinck et al., 2010). In the latter study, global signal coupling with the neuronal signal was 935 

increased during the eyes-closed condition, which has been correlated to changes in vigilance 936 

and attention (Wong et al., 2016). Similarly the presence and magnitude of the global signal has 937 
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been related to the level of arousal (Liu et al., 2017; Wong et al., 2013, 2012) and global neuronal 938 

events were found to match with micro-arousal fluctuations (Liu et al., 2015). The relationship 939 

between arousal and the global signal provides a potential interpretation for the results of the 940 

current study, given that QPPs and spontaneous large-scale BOLD fluctuations have been linked 941 

with attention and behavior performance in humans (Abbas et al., 2016; Fox et al., 2007; Monto 942 

et al., 2008) & cfr. (Keilholz, 2014; Keilholz et al., 2016). 943 

Based on our results, we suggested that GSR might be removing relevant information from 944 

neuronal origins related to arousal. Investigating and isolating QPPs that are related to the 945 

global signal thus provides a potentially more physiologically relevant alternative to standard 946 

GSR. For this interpretation, it should be stressed that global signal in this study is calculated 947 

from either one or three slices, and might thus not fully match the global signal as described in 948 

other studies. On the other hand, the observed impact of GSR on proposed DMN-like and TPN-949 

like networks matches with preceding literature.  950 

4.6 Study limitations 951 

In section 4.2, we described the similarity of QPPs with RSNs in preceding literature. In the 952 

current study, QPPs also matched with RSNs determined in the presented data itself. However, 953 

while the overall configuration of RSNs appeared to match existing literature and monosynaptic 954 

connectivity between different brain areas (Grandjean et al., 2017), it is important to state that 955 

these RSNs also displayed some variability in their homotopic representation across the 956 

hemispheres. Furthermore, some RSNs displayed functional coupling that was not as strong and 957 

pronounced as in other studies. These observations were most noticeable for S1HL/FL/BF 958 

components. We also determined differences between short and long TR data, where in long TR 959 

data only a single Cpu component was observed when ICA was used to determine RSNs. These 960 

RSN topology differences and lower functional coupling, compared to preceding mouse rsfMRI 961 

literature, might be attributed to differences in sample size and pre-processing data cleanup 962 

strategies. When interpreting the presented results, these differences should be kept in mind. 963 

Another potential limitation of the current study is the timing of HA followed by LA, which might 964 

bias LA results through habituation and interference with neural activity. A prior study however, 965 

which performed rsfMRI scans in young C57BL/6J mice two weeks apart, showed no significant 966 

differences between both time points, addressing concerns about habituation. To address 967 

potential remaining concerns, we performed novel experiments in C57BL/6J mice (n=4) at the 968 

age of 3.5 months, which were prior not exposed to anesthesia. High temporal rsfMRI data was 969 

acquired under the same experimental conditions and same LA regime. Analysis of this data 970 

revealed reproducible QPPs, showing the same timing with respect to each other, similar 971 
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clustering and interaction with the global signal (Fig.S14). This high reproducibility supports 972 

the validity of the presented findings.  973 

A last limitation is reflected by this study’s restriction to single slice investigation, so that QPPs 974 

could only be investigated in a sub-sample of the brain. This was an active choice, to enable high 975 

spatial resolution EPI-acquisition with a short TR, so that earlier rat work could be reproduced. 976 

However, while normal low temporal rsfMRI could be used to relate QPPs to large-scale brain 977 

networks, QPP propagation across the rostro-caudal axis could not be investigated. In humans, 978 

QPPs propagate across the entire brain, involving mainly DMN and TPN areas (Majeed et al., 979 

2011; Yousefi et al., 2017). Similarly, different whole-brain CAPs appeared to display some form 980 

of temporal sequence, suggestive of QPP-like behavior (Chen et al., 2015; Liu and Duyn, 2013). 981 

Finally, within the current study, it should be stated that the detection of multiple pattern types, 982 

which highly coincide with each other, might be a consequence of limited slice count and QPP 983 

variability across subjects. It is therefore not un-plausible that all observed patterns relate to a 984 

single QPP that shows a close interaction with the global signal. Future studies with larger brain 985 

coverage will be needed to investigate rostro-caudal and whole-brain properties of mouse QPPs, 986 

and to further elucidate their relationship with the global signal. 987 

4.7 Conclusion & Perspectives 988 

Dynamic rsfMRI has been shown to reveal new insights into the macro-scale organization of 989 

functional networks, stepping closer to the underlying neural activity (Calhoun et al., 2014; 990 

Keilholz, 2014). In this study, we tease at the repertoire of dynamic processes, focusing in 991 

particular on the large-scale and repetitive background BOLD fluctuations that in recent years 992 

have become apparent as propagating spatiotemporal activity waves. We report the detection of 993 

a set of recurring QPPs in mice, which show similarity with known RSNs and represent 994 

promising contributors to BOLD FC. Their shape and properties confirm interspecies 995 

consistency and the importance of anesthesia in rodent rsfMRI research. High consistency of 996 

QPP detection, even at the single subject level, and a suggestive mechanistic role for GSR, marks 997 

advance towards more reliable and comprehensive rsfMRI research. These findings open up a 998 

new approach to study mouse LF BOLD spatiotemporal dynamics and mechanisms underlying 999 

FC, as was shown recently in humans (Wang et al., 2016).  1000 

It has been suggested that within the spectrum of neural activity, QPPs represent the infraslow 1001 

LFP contribution, playing a role in attention and task performance, while SWA captures BOLD 1002 

dynamics related with higher frequency LFPs, scoping state changes in cognitive processing 1003 

(Abbas et al., 2016; Keilholz, 2014; Keilholz et al., 2016, 2013; Thompson et al., 2015). Together 1004 

with the recent application of SWA in mice by Grandjean et al. (2017), the findings in this study 1005 
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suggest that we can now tackle this dual dynamic repertoire in mice rsfMRI. This promises a 1006 

considerable step forward in the field, encompassing a wide range of new research strategies 1007 

and potential applications for pre-clinical disease models. 1008 
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Figure captions 1320 

Figure 1. Spectral range and resting state networks  1321 

All ICA and FC maps display thresholded T-values (one-sample T-test, p<0.05 FDR-corrected). A-D) 1322 
Single-slice high temporal resolution data. A) Group average multitaper power spectral density of the 1323 
center brain slice for the low (LA, blue) and high (HA, red) anesthesia groups. Patches indicate standard 1324 
deviations. Note the higher power under LA. The frequency range displays the highest spectral content, 1325 
with the full range shown on top. Based on this observation, all data were filtered between 0.01-0.2Hz. B) 1326 
LA (top) and HA (bottom) RSNs determined with ICA. Top row text indicates similarity with resting state 1327 
networks, lower row indicates overlap with anatomical parcellations (Paxinos and Franklin, 2007). C) 1328 
ROI-based zFC matrix for LA (top right) and HA (bottom left). Significant differences are indicated with ‘S’ 1329 
(two-sample T-test, FDR p<0.05). ROIs are indicated on a representative EPI image. D) LA (top) and HA 1330 
(bottom) seed-based FC maps, using left ROIs (C). Note for HA, the loss of FC, and for LA, the similarity 1331 
with ICA-derived RSNs (B). E-F) Whole-brain low temporal resolution data. The matching slice, 1332 
investigated in the high temporal resolution data, is indicated in blue. E) LA whole brain RSNs matching 1333 
those shown in (B). Note the speculative mouse TPN and DMN, matching single slice lateral and cingulate 1334 
ctx networks. Only two whole-brain striatal networks were observed, and two S1 networks instead of one. 1335 
F) LA Seed-based FC maps illustrate similarity with RSNs (E). A third striatal network is now again 1336 
observed. Abbreviations. LA, low anesthesia; HA, high anesthesia; ctx, cortex; Cg, Cingulate; S1, 1337 
somatosensory area 1; FL, forelimb; HL, hindlimb; BF, barrel field; S2, somatosensory area 2; Cpu, caudate 1338 
putamen; d, dorsal; vl, ventro-lateral; VP, ventral pallidum; Pir, piriform ctx; I, insular ctx; En; enthorhinal 1339 
ctx; Tea, temporal association ctx; HC, hippocampus; TH, thalamus; DMN, default mode network; TPN, task 1340 
positive network; RSN, resting state network. 1341 
 1342 
Figure 2. Additional whole-brain resting state networks  1343 

This figure is complimentary to Fig.1E and displays the remaining ICA-derived RSNs, obtained from the 1344 
whole-brain low temporal resolution data. Note the observation of bilateral RSNs that display similarity 1345 
with preceding mouse rsfMRI literature. Maps display thresholded T-values (one-sample T-test, p<0.05 1346 
FDR-corrected). 1347 
 1348 
Figure 3. Spatiotemporal patterns detected at the group level 1349 

A) Illustration of the Sliding Template Correlation (STC) time series associated with QPPs observed at 1350 
different window sizes. Upper panel. Single STC excerpt at a window size of 12s. Red line indicates the 1351 
threshold for pattern detection, with QPP occurrences indicated by black triangles. Lower Panel. Close-up 1352 
of several STCs at different window sizes, illustrating phase offsets between detected patterns. Red 1353 
indicates anti-phasic detections, versus similar phase detections in blue. B) Cross-correlation (cc) matrix 1354 
of STCs at different window sizes. Lower triangle indicates max cc values, while upper triangle shows 1355 
phase offsets (seconds) between detected patterns. Note the high cc from window size 12s upwards. C) 1356 
Rows present QPPs determined for different window sizes of analysis (vertical axis), while their temporal 1357 
unfolding is shown across the columns (horizontal axis; images interspersed by 1.5s). Images display 1358 
normalized BOLD signals. QPPs are phased using the time delays of their STC cc (left panel). The resultant 1359 
alignment can be visually appreciated. Note that the figure suggests that several types of QPPs could be 1360 
observed (e.g. at 7.5s, 10.5s & 12s). At 12s we observed a full non-redundant pattern, displaying bilateral 1361 
S2 towards medial Cg intensity propagation, followed by a low intensity wave (green square). Red square 1362 
indicates redundancy or repeating parts of the cycle. 1363 
 1364 
Figure 4. Detection of multiple Quasi-Periodic Patterns based on window size and visual 1365 
inspection 1366 

A) Three different types of QPPs could be identified and are displayed at their respective ideal window 1367 
sizes, after phase-alignment (1s intersperse). PAT1 is marked by contributions in cortical regions with 1368 
opposing intensities. PAT2 and PAT3 display stronger involvement of Caudate Putamen, which are co-1369 
active with medial cortical regions. PAT2 does not display lateral cortical high intensities. Both PAT2 and 1370 
PAT3 high intensities coincide with PAT1’s S2–Cg intensity switch. B) Schematic illustration of the 1371 
spatiotemporal flow of the three patterns. Circles indicate key regions that were used to visually classify 1372 
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patterns, while activity propagation is indicated by arrows. Red indicates high and blue low intensities. All 1373 
involved brain regions are indicated in green on the middle illustration. C) STC cc matrices across all 1374 
window sizes, for each pattern. PAT1 was more reliably detected at longer window sizes, PAT2 more at 1375 
shorter ones. PAT3 appeared similarly correlated across most window sizes. D) Detection rate of each 1376 
pattern, as determined by visual classification of a 100 patterns per window size. Note the bell-shape 1377 
curve of PAT2 and PAT3 at shorter window sizes, and the U-curve for PAT1, which takes over after 12s 1378 
(red circle). These curves illustrate skewed pattern detection dependent on window size. E) Fractional 1379 
average correlation per window size (cfr. 2.7). Red circles indicate the start of a plateau, representing the 1380 
ideal window size. F) Occurrence rate across window sizes. Note the higher occurrence rates for PAT2 and 1381 
PAT3 at shorter window sizes. G) Illustration of the overlap between non-phase-corrected STCs, 1382 
determined for each pattern’s ideal window size. Although there is variation in peak timing and temporal 1383 
correlation, individual patterns display coincident behavior with one another. 1384 

Figure 5. Hierarchical clustering confirms three Quasi-Periodic Patterns  1385 

All 500 individual QPPs, determined at each displayed window size, were hierarchically clustered using a 1386 
maximal cross-correlation (cc) matrix based on: A) QPP spatial similarity. B) QPP temporal occurrence 1387 
similarity, i.e. STC cc (cfr. 2.8). Columns indicate the respective window size under investigation. Upper 1388 
row panels show clustered cc matrices of the QPPs. Clusters were visually inspected and their content 1389 
marked above the panels (MIX = mixture of all pattern subtypes). Note the clear presence of three clusters 1390 
at shorter window sizes, especially via STC cc, confirming the prior visual classification. Lower row panels 1391 
show the average sorted cc of each QPP with all other QPPs (black trace, STD indicated by grey patch). 1392 
This serves as an indicator of overall QPP (dis)similarity, supporting the notion of different subtypes. Blue 1393 
curves indicate the 10% fraction of QPPs that displayed the highest cc plateaus. Note the sharp transitions 1394 
at shorter window sizes, indicating clear distinction between different pattern subtypes.  1395 
 1396 
Figure 6. Global signal regression removes detection of PAT2 and PAT3, while preserving 1397 
only PAT1. PAT2 and PAT3 display high similarity with the global signal. 1398 

A) QPPs observed after GSR. The three displayed patterns are the same, but due to differences in phase 1399 
detection, the starts and ends display higher intensities. P1 and P2 respectively refer to high and low 1400 
intensities in the Cg. GSR P1 and P2 are shown phase-aligned to PAT GSR. A global CAP (cfr. 2.10) is shown 1401 
below to illustrate its timing as falling between the S2-Cg switch. B) To illustrate the detection of only one 1402 
pattern after GSR, hierarchical clustering was employed, but patterns were first sorted based on their 1403 
temporal intensities in the Cg. Respective average Cg time series are displayed in red and blue, while black 1404 
lines indicate unsorted patterns (center phase). A comparison is shown on the left under conditions of no 1405 
GSR. Clusters were visually inspected and their content marked in red or blue to indicate relationship to 1406 
Cg phase. C) Upper panel. Illustration of the overlap between non-phase-corrected STCs for PAT1-3 and 1407 
PAT GSR. Note the high STC overlap and similarity between PAT1 and PAT GSR. Lower panel. All three 1408 
apparent GSR patterns are displayed at the same timing as the above panel. Note their clear anti-phasic 1409 
behavior, indicating they are the same. D) Left panel. STC cc between PAT1-3 and PAT GSR. Note the clear 1410 
and low cc of PAT GSR with PAT2-3, suggesting that GSR removes their occurrences. Right panel. STC cc 1411 
with the global signal. Note higher cc values for PAT2-3. Abbreviations. GSR, global signal regression; CAP, 1412 
co-activation pattern. 1413 

Figure 7. Relationship with cortex, Caudate Putamen and global signal regression 1414 

A) QPPs observed without GSR, after GSR, with a cortical mask, and a Cpu mask. Patterns are shown 1415 
phase-aligned with each other. Note the high similarity between GSR and cortical QPPs, lacking a clear Cpu 1416 
contribution. With a Cpu-mask, a bilateral alternating high and low intensity could be observed in Cpu, 1417 
with preserved coupling to the Cg area. Note the timing of the Cpu pattern between the GSR pattern’s S2-1418 
Cg switch. B) STCs of the patterns described in (A). Note the overlap between all STCs, except for that of 1419 
the Cpu pattern, which synchronized and dephased through time. This illustrates how subcortical patterns 1420 
could behave independently of cortical patterns, but still couple at specific time points, potentially 1421 
contributing to the observation of patterns like PAT2 and PAT3. C) STC cc between patterns illustrated in 1422 
(A - 3 lower panels) and whole brain patterns observed in Fig.3C. Note the high cc with Cpu-masked QPPs 1423 
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at shorter window sizes and the high cc with cortical-masked QPPs at longer window sizes. GSR strongly 1424 
lowered the cc at shorter window sizes, suggesting it diminished Cpu spatiotemporal dynamics. D) FA-1425 
values indicated the ideal window size for each QPP. Grey patch indicates the range of interest for the 1426 
different patterns. E) Occurrence rates at all window sizes. 1427 
 1428 
Figure 8. Pattern occurrence rate before and after global signal regression  1429 

All described QPPs were determined from the image series of 4 groups: LA – no GSR, LA – GSR, HA – no 1430 
GSR, HA GSR. QPPs of one group were compared with the image series of others via sliding template 1431 
correlation, to quantify occurrence rates across conditions. Panels display the occurrence rates of patterns 1432 
before and after GSR, in their respective anesthesia groups. Both clearly indicate that PAT2-4 were no 1433 
longer detected after GSR. Cpu QPP detections were lowered in the LA group and no longer seen in the HA 1434 
group. PAT3 and PAT4, which were not visually identified in respectively the HA and LA group, were 1435 
compared with the other anesthesia group in which they displayed the overall lowest occurrence rates. 1436 
Abbreviations. LA, low anesthesia; HA, high anesthesia; GSR, global signal regression. 1437 
 1438 
Figure 9. Single subject detection of Quasi-Periodic Patterns and the relationship with 1439 
group analysis 1440 

Illustrations of QPPs detected for single subject three-slice images, with (left) and without (right) GSR: A) 1441 
subject 11, high PAT1 contribution B) subject 8, high PAT1 & PAT2 contribution C) subject 4, high PAT2 1442 
contribution. Below each panel an excerpt of the subject’s STC and its STC, derived from the group-level 1443 
analysis, are shown. The middle lowest panel shows the overlay of single subject STCs with and without 1444 
GSR. A-B) Note the consistent high overlap for subject 11 and 8 across all panels. These subjects displayed 1445 
strong cortical contributions in their QPPs. C) Subject 4’s QPP, without GSR, was dominated by Cpu 1446 
intensities and showed less STC overlap. After GSR, a cortical component could be observed in the QPP 1447 
and the STCs nicely overlapped. The subject’s STC after GSR overlapped with PAT1 at the group level, 1448 
indicating removal of PAT2 and the Cpu contribution. 1449 

 1450 

Table 1. Pattern occurrence rate per subject 1451 

Table 2. Pattern half cycle time and propagation time from lateral to medial, averaged 1452 
across relevant window sizes 1453 

 1454 

 1455 

Figure S1. Fractional average correlation 1456 

A) Illustration of the comparison between a reference (R) and target (T) QPP. The R QPP is split into all 1457 
possible fractions {Rf1, Rf2,… , RfL}, where L = RWL – FWL + 1, with RWL the window length of the R QPP and 1458 
FWL the chosen window length for fractions (e.g. 6TRs). B) A cross-correlation (cc) is calculated for each Rf 1459 
with regard to the T QPP. The average of these cc values provides the fractional average correlation (FA). 1460 
C) All QPPs in the set under investigation are compared. Each QPP, with increasing window size, is treated 1461 
as an R QPP to be compared with all others. The determined FA values of these comparisons are filled in 1462 
as a column vector in the displayed n x n matrix, where n is the number of QPPs in the current set. 1463 
Illustrative FA values are indicated in the matrix, to indicate that comparisons of longer R QPPs 1464 
comparisons with shorter T QPPs results in low FA values. By averaging across columns, the set-wise FA 1465 
value at each window size can be determined. 1466 

Figure S2. Spatiotemporal patterns under high anesthesia 1467 

A) QPPs observed for different window sizes of analysis. Images display a normalized BOLD signal. QPPs 1468 
are phased using the calculated time delays of their STC cc. Note that only a single type of QPP can be 1469 
observed. At 7.5s we observe a full non-redundant pattern, displaying bilateral high intensity propagation 1470 
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from Caudate Putamen to medial cingulate cortex, followed by a low intensity wave (green square). B) cc 1471 
matrix of STCs at different window sizes. Lower triangle indicates max cc values, while upper triangle 1472 
shows phase offsets (seconds) between detected patterns. Note the overall high cc indicating 1 pattern 1473 
type. 1474 

Figure S3. Multiple Quasi-Periodic Patterns under high anesthesia, determined with and 1475 
without global signal regression 1476 

A) Three different types of QPPs that could be observed, at their respective ideal window sizes. PAT1 and 1477 
PAT2 were similar under low anesthesia, but PAT1 is now less spatially defined. A fourth pattern is also 1478 
observed, displaying more wide-spread and ventral involvement of the Cpu and less contribution of the 1479 
Cg. After GSR, a pattern similar to PAT1 was observed. B) STC cc matrices across all window sizes, for each 1480 
type of pattern. PAT1 was now only reliably detected up to 7.5s, while PAT2 and PAT4 showed high cc 1481 
across window sizes. GSR allowed relatively high cc across window sizes, but appeared less reliable than 1482 
PAT2 and PAT4. C) Detection rate of each pattern, as determined by visual classification of a 100 patterns 1483 
per window size. Note the overall dominant detection of PAT2 across window sizes. Red rectangle 1484 
indicates the ideal window size for each pattern and the highly dominant detection of PAT2 and PAT4. 1485 
Detection rates are not indicated after window sizes of 12s, due to the high difficulty of visual 1486 
classification. D) FA per window size. Red square indicates the ideal window size for each type of QPP. E) 1487 
Occurrence rate of the patterns across window sizes. 1488 

Figure S4. Hierarchical clustering under high anesthesia  1489 

All 500 individual QPPs, determined at each displayed window size, were hierarchically clustered using a 1490 
cc matrix based on: A) QPP spatial similarity. B) QPP temporal occurrence similarity, i.e. STC cc. Columns 1491 
indicate the respective window size under investigation. Upper row panels show clustered cc matrices of 1492 
the individual QPPs. Clusters were visually inspected and their content marked above the panels. Note the 1493 
presence of three clusters at the shorter window size, using STC cc, and the partial clustering using spatial 1494 
cc. PAT2 and PAT4 appeared less clearly separable. At high window sizes, little cc intensity was left and 1495 
QPPs clustered very limitedly. Lower row panels show the average sorted cc of each QPP with all other 1496 
QPPs (black trace, STD grey patch). This serves as an indicator of overall QPP (dis)similarity, supporting 1497 
the notion of different subtypes. Blue curves indicate the 10% fraction of QPPs that displayed the highest 1498 
cc plateaus. Note the sharp transition at the shorter window size for STC cc, indicating distinction between 1499 
at least 2 pattern subtypes.  1500 
 1501 
Figure S5. Quasi-Periodic Patterns under low anesthesia, determined with k-means 1502 
clustering after global signal regression 1503 

A) QPPs observed for different window sizes of analysis after performing GSR and using k-means 1504 
clustering. Images display a normalized BOLD signal. QPPs are phased using the calculated time delays of 1505 
their STC cc. Note that only a single type of QPPs could be observed, which was highly consistent with 1506 
PAT1. B) cc matrix of STCs at different window sizes. Lower triangle indicates max cc values, while upper 1507 
triangle shows phase offsets (seconds) between detected patterns. Note the overall very high cc.  1508 

Figure S6. Global signal regression under high anesthesia removes detection of PAT2 and 1509 
PAT4, preserving only PAT1. PAT2 and PAT4 display similarity with the global signal. 1510 

A) QPPs observed after GSR. Displayed patterns are the same, but were detected at different phases, with 1511 
phase defined by the average intensity time series in the Cg component. The latter is indicated at the left 1512 
side of the panel with respective color code and sinusoid. Patterns are shown phased to each other. A 1513 
global CAP is shown below to illustrate its timing as falling between the S2 - Cg switch. B) To illustrate the 1514 
detection of only one pattern after GSR, hierarchical clustering was employed after phase sorting QPPs 1515 
based on their temporal intensities in the Cg. QPP sorted Cg time series are displayed in red and blue, 1516 
while black lines indicate unsorted QPPs (center phase). A comparison is shown on the left under 1517 
conditions of no GSR. Clusters were visually inspected and their content marked above the panels in colors 1518 
matching Cg phase. Little cc intensity remained after GSR, but 2 clusters appeared visually with STC cc. 1519 
These showed to be a single cluster after phase sorting. C) Upper panel. Illustration of the overlap 1520 
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between the non-phased STCs, of PAT1,2-4, and PAT GSR. Note the overlap and consistency of PAT1 and 1521 
PAT GSR. Lower panel. Both GSR patterns are displayed at the same timing as the above panel. Note their 1522 
anti-phasic behavior, indicating they are the same. D) Left panel. STC cc between the three different types 1523 
of patterns and the pattern after GSR. Note the very clear and low cc with PAT2&4, indicating that GSR is 1524 
removing their contribution and causing the sole detection of PAT1. Right panel. STC cc with the global 1525 
signal. Note higher cc values for PAT2&4.  1526 

Figure S7. Relationship with cortex, Caudate Putamen and global signal regression under 1527 
high anesthesia 1528 

A) Displayed are PAT2, the pattern achieved with a cortical mask, with a Cpu mask, and the pattern after 1529 
GSR. Patterns are shown phased with each other. With a Cpu-mask, a bilateral alternating high and low 1530 
intensity could be observed in Cpu, which preserved some coupling to the Cg. Note the timing of the Cpu 1531 
pattern as falling between the S2 - Cg switch. This was also partially the case for PAT2. The GSR and 1532 
cortical patterns show similarity, but the lateral cortical intensity was much less pronounced with the 1533 
cortical mask, opposed to what is found under LA (Fig.7A).  1534 

Figure S8. Visual overview of single subject STC cross-correlation under low anesthesia 1535 

Each panel shows the cc, per window size, of individual subject STCs with their STCs derived at the group 1536 
level for PAT1 (left upper panel), PAT2 (right upper panel) and PAT3 (left lower panel). In the lower right 1537 
panel, STC cc is shown after GSR on the single subject and group level. Note the overall higher cc after GSR. 1538 

Figure S9. Single subject Quasi-Periodic Pattern detection under high anesthesia 1539 

Illustrations of QPPs detected for single subject three-slice brain volumes, with (left) and without (right) 1540 
GSR. Below each panel an excerpt of the subject’s STC and its STC derived from the group-level analysis 1541 
are shown. The middle lowest panel shows the overlay of single subject STCs with and without GSR. All 1542 
subjects proved difficult to visually attribute a pattern type. Subject 11 shows nice overlap with group-1543 
level STCs, and displayed a bilateral cortical pattern after GSR (A). Subject 8 and 4 however showed very 1544 
poor overlap in STCs and GSR led to detection of lateralized patterns. This illustrates the overall increased 1545 
difficulty of consistently detecting single subject QPPs under HA. 1546 

Figure S10. Patterns and Sliding Template Correlation after phase-randomization 1547 

To investigate the likelihood that QPPs would occur by chance or emerge as an intrinsic property of the 1548 
preprocessed signal, the full group dataset under LA was subjected to the detection algorithm after 1549 
performing phase randomization, while retaining the magnitude spectra. For methodology please refer to 1550 
Majeed et al. (2011). A) Normal analysis. Example of a QPP detected at group level and the related Sliding 1551 
Template Correlation (STC), marking the QPP’s occurrence over time and across subjects (black triangles). 1552 
B) Same analysis after phase randomization. Note the loss of observable spatiotemporal dynamics and 1553 
peak detections. 1554 

Figure S11. Cross-correlation of frame-wise displacement with sliding Template 1555 
Correlation  1556 

Frame-wise displacement (FD), for all subject in the LA short TR data set, was calculated at each point by 1557 
taking the sum of absolute backwards looking temporal derivatives for all three motion time series 1558 
(Power et al., 2012). To compute rotational displacement and convert degrees to millimeters, an 1559 
assumption was made where the mouse brain is considered as a sphere with a diameter of 10mm. A) 1560 
Resultant FD time series were cross-correlated with the STCs of PAT1-3. B) FD time series were also 1561 
constructed after applying filtering, detrending and variance normalization (as was done for the 1562 
functional data) to the motion time series, and were then cross-correlated with the STCs of PAT1-3. Both 1563 
conditions showed minimal cross-correlation. 1564 

Figure S12. Subject-specific motion metrics and overlap with sliding Template Correlation 1565 

Single subject motion metrics, determined via 3 rigid body parameters, for the LA short TR data are 1566 
presented, together with FD, FD based on pre-processed motion time series, and PAT1-3 STCs. Results are 1567 
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shown for 3 illustrative subjects: A) Subject 11, B) Subject 8, and C) Subject 4. Upper 5 panels represent 1568 
non-pre-processed motion time series and lower 5 panels the pre-processed motion time series. 1569 

Figure S13. Quasi-Periodic Patterns after filtering between 0.01-0.1 Hz under low 1570 
anesthesia 1571 

Rows present QPPs observed for different window sizes of analysis (vertical axis). Images display a 1572 
normalized BOLD signal filtered between 0.01-0.1Hz. QPPs are phased using the calculated time delays of 1573 
their STC cc. Green boxes indicate ideal window sizes as determined via visual observation and fractional 1574 
average correlation. A) QPPs determined without GSR. Most prominently PAT3 was detected at most 1575 
window sizes, while PAT2 is observed at 6-7.5s. B) QPPs after GSR indicated consistent detection of the 1576 
same lateral-medial cortical pattern (PAT1) that was observed in the 0.01-0.2Hz frequency range. The 1577 
temporal dynamics of patterns detected at the lower frequency range were slower, which is expected due 1578 
to temporal smoothing. The ‘lower’ frequency range 0.01-0.1Hz is more often applied in conventional 1579 
rsfMRI and excludes the frequency range in which vasomotion and Mayer waves contribute to the signal. 1580 
Similar detection of patterns in the lower range thus supports the notion that QPPs reflect a neuronal 1581 
origin. 1582 

Figure S14. Quasi-Periodic Patterns reproducibility under LA conditions 1583 

Novel experiments were performed in 4 C57BL/6J mice at the age of 3.5 months, which were prior not 1584 
exposed to anesthesia. High temporal rsfMRI data was acquired with the same LA conditions and in the 1585 
same way as the primary LA group, starting at 40min post-bolus and lasting for 10min. An illustrative 1586 
analysis at a window size of 12s is shown, after running the detection algorithm 250 times. A) Examples of 1587 
PAT1-3, without GSR, and the global CAP. Patterns are phased to display them at their proper timing with 1588 
respect to each other. B) Examples of the same 3 apparent types of patterns after GSR (phased to each 1589 
other), as were shown in Fig.6A. C) Spatial cc clustering with or without GSR. Pattern clustering appeared 1590 
similar as for the main LA group. 1591 

Table S1. Pattern occurrence rate per subject under high anesthesia 1592 

Table S2. Pattern half cycle time and propagation time from lateral to medial, averaged 1593 
across relevant window sizes, under high anesthesia 1594 

Table S3. Physiological parameters under low anesthesia and interaction with patterns 1595 
determined via multiple linear regression analysis 1596 

Upper panel. Physiological parameters acquired during rsfMRI acquisitions in animals under LA. Note the 1597 
low STDs, indicating stable physiology during the experiments. No parameters could be stored for subject 1598 
2, but visual observation during the experiment confirmed stable respiration and cardiac rate. Lower 1599 
Panel. Multiple linear regression analysis of all four physiological parameters with each pattern’s 1600 
occurrence rate and power (i.e. the average correlation value with the image series at peak crossings). No 1601 
significant interactions could be determined. Only after GSR a trend could be observed (orange boxes) and 1602 
the model fit (R2) was improved. Related Pearson correlation values (ρ) are indicated below.  1603 

Movie 1.  1604 

Illustration of the Sliding Template Correlation (STC) approach to identify sets of images throughout the 1605 
image series, which are similar to the template. The upper panel shows the temporal evolution of a single 1606 
slice, with below the spatiotemporal template that is correlated at each incremental (1TR) overlap. An 1607 
arbitrary correlation threshold (red line) is employed to determine which images will be averaged into an 1608 
updated template during the iterative procedure, and to determine pattern occurrences once the final 1609 
template is derived. 1610 

Movie 2.  1611 

Visualisation of the three QPPs (PAT1-3), determined at the group level under LA. Images are shown for 1612 
the center slice, after phase alignment, and are displayed per TR (0.5s) for the duration of 12s. 1613 
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Movie 3.  1614 

Visualisation of the three QPPs (PAT1,2 & 4) and the pattern detected after GSR, determined at the group 1615 
level under HA. Images are shown for the center slice, after phase alignment, and are displayed per TR 1616 
(0.5s) for the duration of 7.5s. 1617 

Movie 4.  1618 

Visualisation of PAT1 and QPPs after GSR, with a cortical mask, and a subcortical Caudate Putamen (Cp) 1619 
mask, determined at the group level under LA. Images are shown for the center slice, after phase 1620 
alignment, and are displayed per TR (0.5s) for the duration of 12s. 1621 

Movie 5.  1622 

Visualisation of QPPs for each individual subject, determined under LA. Images are shown for the full 1623 
volume of three slices (left to right = posterior to anterior) and are displayed per TR (0.5s) for the 1624 
duration of 9s. 1625 

Movie 6.  1626 

Visualisation of QPPs for each individual subject, determined after GSR and under LA. Images are shown 1627 
for the full volume of three slices (left to right = posterior to anterior) and are displayed per TR (0.5s) for 1628 
the duration of 9s. 1629 

Movie 7.  1630 

Visualisation of QPPs for each individual subject, determined under HA. Images are shown for the full 1631 
volume of three slices (left to right = posterior to anterior) and are displayed per TR (0.5s) for the 1632 
duration of 7.5s. 1633 

Movie 8.  1634 

Visualisation of QPPs for each individual subject, determined after GSR and under HA. Images are shown 1635 
for the full volume of three slices (left to right = posterior to anterior) and are displayed per TR (0.5s) for 1636 
the duration of 7.5s. 1637 
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    Pattern occurrence rate (counts/min) l 
    Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10 Sub11 Mean  

PAT1 - 12s l 2.0 0.8 0.5 1.1 0.8 1.9 0.6 1.9 1.6 0.7 2.8 1.3 ± 0.7 

PAT2 - 9s   1.0 1.4 1.2 1.4 1.4 1.8 1.6 2.2 1.3 1.7 1.8 1.5 ± 0.3 

PAT3 - 9s   2.0 1.2 1.4 1.4 0.7 2.2 1.1 2.3 1.3 2.2 2.5 1.7 ± 0.6 

                              

                              

GSR - 9s   1.8 1.4 1.0 1.3 1.0 2.9 0.7 1.9 2.2 1.4 3.1 1.7 ± 0.8 

Cortex - 9s   4.0 3.0 2.4 2.9 2.2 4.0 2.0 3.7 3.7 3.4 4.0 3.2 ± 0.7 

Cp - 9s   2.5 2.3 3.7 1.8 1.2 2.8 1.8 3.2 2.5 1.7 2.8 2.4 ± 0.7 
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    Half cycle time (max to min)     Propagation speed l 

    Lateral left Lateral right Medial Cp left Cp right   

Lateral Left 

to Medial 

Lateral right 

to Medial   

Cp left to 

Medial 

Cp right to 

Medial 

PAT1 l 4.5 ± 0.4s 4.8 ± 0.5s 4.2 ± 0.4s 4.7 ± 0.9s 3.9 ± 0.4s   4.4 ± 0.6s 4.6 ± 0.7s   3.3 ± 1.4s 4.3 ± 0.8s 

PAT2   4.4 ± 0.6s 5.2 ± 1.0s 4.6 ± 0.3s 4.2 ± 0.3s 4.6 ± 0.6s   1.7 ± 0.4s 2.0 ± 0.7s   0.6 ± 0.2s 0.7 ± 0.3s 

PAT3   4.5 ± 0.4s 4.7 ± 0.5s 4.7 ± 0.6s 4.4 ± 0.5s 4.3 ± 0.4s   1.2 ± 0.7s 1.1 ± 0.6s   0.4 ± 0.3s 0.8 ± 0.4s 

                          

                          

GSR   4.5 ± 0.5s 4.3 ± 0.4s 4.5 ± 0.3s 8.4 ± 4.8s 4.7 ± 2.4s   4.8 ± 0.4s 4.7 ± 0.4s   5.5 ± 1.5s 1.8 ± 1.5s 

Cortex   4.4 ± 0.7s 4.3 ± 0.4s 4.2 ± 0.4s 5.6 ± 1.6s 4.5 ± 0.8s   3.8 ± 0.4s 3.8 ± 0.4s   3.5 ± 0.6s 2.2 ± 1.3s 

Cp   5.2 ± 1.5s 4.5 ± 1.0s 4.5 ± 0.6s 3.8 ± 0.5s 3.7 ± 0.3s   1.4 ± 0.5s 1.4 ± 0.3s   0.6 ± 0.4s 0.5 ± 0.4s 
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