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Abstract 

The objective of the EVITA project is to design, verify, and prototype an architecture for 
automotive on-board networks where security-relevant components are protected against 
tampering and sensitive data are protected against compromise. Thus, EVITA will provide a 
basis for the secure deployment of electronic safety aids based on vehicle-to-vehicle and 
vehicle-to-infrastructure communication. A key activity for the EVITA project is the capture 
of security requirements for the secure system architecture and associated software and hard-
ware components based on a set of use cases and an investigation of security threat scenarios 
(dark-side scenarios). This document outlines the processes used to identify and evaluate 
security requirements, and details the results of their application to automotive on-board net-
works. It provides input to the secure on-board architecture design. 
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1 Introduction 

1.1 Background 

Future visions of road transportation include the networked vehicles and intelligent transport 
systems (ITS) that will enhance the safety of drivers and other road users, minimize pollution 
and maximize the efficiency of travel. The nature and interests of the stakeholders involved in 
future road transport systems therefore include: 

• vehicle users – safe and efficient driving, valid financial transactions, personal privacy, 
protection of personal data; 

• other road users – safe and efficient transport; 

• vehicle/sub-system manufacturers – successful and affordable satisfaction of customer 
expectations, protection of IPR; 

• ITS system operators – safe and efficient operation of systems, valid financial trans-
actions, protection of user data; 

• civil authorities – safe and efficient transportation networks, reliable financial trans-
actions, data protection. 

For the networked vehicles and intelligent transport systems (ITS) envisaged for the future, 
unauthorized access to vehicle or personal data may become possible, while the corruption of 
data or software could result in anomalies in vehicle function or traffic behaviour. Potential 
threat agents and their objectives may include: 

• dishonest drivers – avoid financial obligations, gain traffic advantages; 

• hackers – gain/enhance reputation as a hacker; 

• criminals and terrorists – financial gain, harm or injury to individuals or groups; 

• dishonest organisations – driver profiling, industrial espionage, sabotage of competitor 
products; 

• “rogue states” – achieve economic harm to other societies. 

Security functional requirements for information systems are broadly categorized into three 
types [1]: 

• confidentiality – prevention of unwanted/unauthorized disclosure of data; 

• integrity – prevention of unwanted/unauthorized alteration or creation of data; 

• availability – prevention of unwanted/unauthorized loss of data or access to data. 

The EVITA project is concerned specifically with on-board networks within individual vehi-
cles, rather than the wider ITS systems. In future road transport scenarios, breaches in the 
security of vehicle information or functions could lead to possible issues for stakeholders in 
four main areas: 

• privacy – unwanted/unauthorized acquisition of data relating to vehicle/driver activity, 
vehicle/driver identity data, or vehicle/sub-system design and implementation; 
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• financial – unwanted/unauthorized commercial transactions, or access to vehicle; 

• operational – unwanted/unauthorized interference with on-board vehicle systems or 
Car2X communications that may impact on the operational performance of vehicles and/or 
ITS systems (without affecting physical safety); 

• safety – unwanted/unauthorized interference with on-board vehicle systems or Car2X 
communications that may impact on the safe operation of vehicles and/or ITS systems. 

An important implication of this is that a subset of security issues may also impact on func-
tional safety. Engineering processes that aim to ensure functional safety properties in pro-
grammable automotive systems are described in ISO/DIS 26262 [2] and the MISRA safety 
analysis guidelines [3]. These methods are based on the process industry standard IEC 61508 
[4], with adaptations to reflect the particular issues associated with automotive applications. 
Thus, there is a need to ensure that security issues with safety implications also meet the 
requirements of safety engineering processes. In addition, there is also a need to adapt the ap-
proaches defined in the IT security evaluation standard ISO/IEC 15408 [1] in order to address 
the particular issues of automotive applications, such as the possibility that a security threat 
may also have safety implications.  

In order to define security and safety requirements for a system it is necessary to have an 
understanding of the operating environment and intended behaviour of the system. This is 
achieved through the specification of use cases for automotive on-board networks [5]. These 
use cases may themselves suggest a number of security-related user requirements. However, 
the use cases also provide the basis for investigating a number of “dark scenarios” (threats), 
which are intended to establish ways in which the system could become a target for malicious 
attacks. The security issues identified from the dark scenarios are likely to include examples 
that also have safety implications.  

1.2 Purpose and scope 

The aim of the security requirements analysis is to derive, justify and prioritise IT security 
requirements and IT security related safety requirements for automotive on-board networks. 
Only run-time requirements are considered. How to gain assurance during the development 
process that these requirements are met at run time is out of scope of this report.  

The inputs to the security requirements analysis are example use cases [5], dark-side sce-
narios, and the state of the art in standards and research. These inputs are viewed as the 
rationale for the requirements. The use cases require certain security functions in order to 
protect identified assets within the use case scenarios. The use cases also provide constraints 
and assumptions, such as performance constraints for the security functions. Security risk 
analysis of the threats identified in the dark-side scenarios will be documented as the rationale 
for the security objectives and security requirements. Traceability between the threats, objec-
tives and requirements is accomplished by a structured approach.  

The security requirements then provide inputs to the secure on-board architecture design, 
to the model-based verification of on-board architecture and protocol specifications, to the 
security architecture implementation as well as to the analysis of legal aspects presented in 
forthcoming EVITA deliverables.  

This report defines a process for identifying vehicle security requirements, for assessing 
the relative risks of possible threats, and for addressing the subset of these security require-
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ments that may be safety related. This process is then piloted to formulate requirements for 
the countermeasures needed to reduce the vulnerability of the vehicle’s on-board architecture 
to threats that may lead to possible safety concerns and risks to assets. The results of its appli-
cation are documented in this report. In addition, this document also details the translation of 
these requirements into a semi-formal requirements specification, which will provide the 
starting point for the model-based verification. It should be noted, however, that the specifi-
cation of security requirements is an iterative process, rather than a completely self-contained 
activity. It is anticipated that the security requirements will evolve in the course of the design 
process, as is the case with other types of requirements (operational, functional safety etc.). 
The security requirements and priorities may also shift slightly when other use cases of auto-
motive on-board networks and new threats are taken into consideration.  

1.3 Organisation of the document 

The process developed for deriving the security requirements analysis is outlined in Section 2. 
That section provides a wider description of the security engineering process, including 
aspects such as use case definition and dark-side scenarios investigation. The security 
requirements derived from the use cases and risk analysis of the attack trees are detailed in 
Section 3. Section 4 details the conclusions drawn from this activity.  

A glossary detailing key terminology used in this document can be found in Appendix A – 
Glossary. Appendix B – Dark-side scenarios − summarizes relevant results (including attack 
trees) from the dark-side scenarios investigation, while Appendix C – Threat and risk analysis 
− provides details of the risk analysis approach and the results of its application to the attack 
trees. Appendix D – Identifying security requirements − contains a more detailed description 
of the approaches used to derive security requirements from the use cases, attack trees and 
risk analysis.  
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2 Security Engineering Process 

2.1 Security properties 

2.1.1 Informal description 

2.1.1.1 Introduction 

Before detailing the security engineering process, we introduce classes of security require-
ments that are relevant for automotive on-board networks. The (informal) explanations reflect 
the way these concepts are generally understood.  

2.1.1.2 Data origin authenticity 

A data origin authenticity property applies to a quantum of information and a claimed author. 
The property is satisfied when the quantum of information truly originates from the author. 
The property can be made more specific by providing an observation of the quantum of in-
formation (defined, e.g., by a time and a location in the system). The author can also be con-
strained by adding a time and/or a place of creation of the quantum of information. Note that 
in most security-oriented frameworks data origin authenticity implies integrity. 

2.1.1.3 Integrity 

An integrity property applies to a quantum of information between two observations (defined, 
e.g., by a time and a location in the system). The property is satisfied when the quantum of 
information has not been modified between the two observations. It guarantees for instance 
that the content of a storage facility has not been modified between two given read operations, 
or that a message sent on a communication channel has not been altered during its journey. 

2.1.1.4 Controlled access (authorization) 

A controlled access property or requirement applies to a set of actions and/or information and 
a set of authorized entities. The property is guaranteed if the specified entities are the only 
entities that can perform the actions or access the information. The property can be further 
detailed with time constraints on the period of authorization. 

Controlled access is needed to ensure that stakeholders only have access to information 
and functions that they are authorized to access as appropriate to their expected activities.  

2.1.1.5 Freshness 

A freshness property or requirement applies to a quantum of information, a receiving entity 
and a given time. The property is satisfied if the quantum of information received by the 
entity at the given time is not a copy of the same information received by the same or another 
entity in the past. Ensuring freshness can be used to prevent replay attacks. 
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2.1.1.6 Non-repudiation 

A non-repudiation property or requirement applies to an action and an entity performing the 
action. The non-repudiation of the action is guaranteed if it is impossible for the entity that 
performed the action to claim that it did not perform the action. This property can be further 
detailed with a set of entities for which the action needs to be undeniable, with a time limit, 
etc. 

There may be specific legal requirements for non-repudiation. However, non-repudiation 
may also be introduced for convenience, for example, as an aid in providing evidence or 
proving liability. 

2.1.1.7 Privacy/anonymity 

A privacy property or requirement applies to an entity and a set of information. Privacy is 
guaranteed if the relation between the entity and the set of information is confidential. Ano-
nymity, for instance, is the property that the relation between an entity and its identity is con-
fidential.  

Privacy is frequently a major concern when the entity involved is an individual or a vehicle 
owned by an individual. For example, an adversary constantly recording the location of a 
vehicle and knowing the identity of the driver may be considered as violating the driver’s pri-
vacy with respect to her movements. 

Privacy requirements are needed to ensure that the anonymity of stakeholders and confi-
dentiality of their sensitive information are assured. Sensitive information introduced by the 
application shall be identified. For users, sensitive information may include (but is not limited 
to) the following:  

• identity of a specific car and/or driver,  

• current location of a specific car and/or driver,  

• past locations of a specific car and/or driver,  

• properties of the vehicle that can be used for tracking a specific car and/or driver (e.g. car 
manufacturer, model, colour),  

• behaviour of a specific car and/or driver (e.g. number of critical situations, speeding),  

• records of telephone calls, internet activity, email messages, account information and driv-
ing characteristics, 

• identity of specific cars and/or drivers involved in particular C2X transactions.  

For vehicle manufacturers and system suppliers, sensitive information may include (but is not 
limited to) the following: 

• identity of a specific car,  

• car manufacturer and model,  

• design information (algorithms, control parameters),  

• performance data.  
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Privacy requirements must be made consistent with potentially conflicting requirements for 
identification, auditing, non-repudiation and jurisdictional access, which may require users to 
be identified and information about their interactions to be stored. 

2.1.1.8 Confidentiality 

A confidentiality property applies to a quantum of information and a set of authorized entities. 
The property is satisfied when the authorized entities are the only ones that can know the 
quantum of information. Privacy relies on confidentiality and can be considered as a special 
case of confidentiality. 

2.1.1.9 Availability 

An availability property or requirement applies to a service or a physical device providing a 
service. The property is satisfied when service is operational. Denial of service attacks aim at 
compromising the availability of their target. The property can be further detailed with the 
specification of a period during which the availability is required and of a set of client entities 
requesting the availability. 

2.1.2 Security modelling framework  

2.1.2.1 Overview  

In the following the Security Modelling Framework (SeMF) of Fraunhofer SIT is informally 
described. It allows describing more abstract security requirements than the concepts of Sec-
tion 2.1 and is useful when modelling systems at high levels of abstraction. This framework 
will be used in Section 3 to specify high-level security requirements that are relevant to auto-
motive on-board networks.  

The underlying formal model describes system behaviours as (sets of) sequences (traces) 
of actions. These actions in turn are mostly associated with agents in the systems (system 
entities or stakeholders). The actions describe what can happen in the system and have to be 
carefully chosen in order to be able to express all desired system properties. System specifica-
tion based on sequences of actions is very common, but for security properties additional 
information is required:  

• First, satisfaction of security properties depends on the agents’ view of the system. In 
SeMF, this view has to be specified for each system entity for which a security property 
shall hold.  

• Second, for each agent the knowledge about the global system has to be part of the system 
specification. For example, trust in underlying security mechanisms, such as cryptographic 
algorithms, is described as knowledge about the system. 

In the following sub-sections an informal description of SeMF is given with the objective to 
understand the properties that are being specified for the EVITA use cases. For the formal 
framework, we refer the reader to [6][7][8] and to forthcoming EVITA deliverables. 
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Throughout this section we will use a simple example to illustrate our explanations. Our 
simple example system has four different agents: users U and V, and service providers S and 
T. Service providers send offers to users by using actions sOffer(sp,user,price); these are 
received by the users with action rOffer(user,sp,price). Users can then order (action 
sOrder(user,sp,price)), and the service providers can receive the orders (action 
rOrder(sp,user,price)). For simplicity, price can have two different values: cheap and exp. 

Note that this example is just to illustrate our approach and does not restrict the framework 
to communication scenarios. Any type of actions with appropriate type and number of 
parameters can be used. Possible examples relevant to EVITA include Sense(sensor,Emer-
gencyBrakeMessage), Send(otherCar,message), brake(Brake-Controller(Car)), etc. If some 
agent performs an action we usually denote this agent using the first parameter of this action. 

A system and its security properties are specified by those sequences of actions that can 
happen in the system. In our example system, a possible sequence of actions could be 
sOffer(S,U,cheap) rOffer(U,S,cheap) sOrder(U,S,cheap) rOrder(S,U,cheap). Another possi-
ble sequence could be sOffer(S,U,cheap) sOffer(S,V,exp) rOffer(U,S,cheap). However, in our 
system we would probably not allow a message to be received without having been sent, thus 
sOffer(S,U,cheap) rOrder(T,V,exp) would not be a possible sequence for the system. 

2.1.2.2 Agents’ view and knowledge of global system behaviour 

2.1.2.2.1 General 

Security properties can only be satisfied relative to particular sets of underlying system 
assumptions. Examples include assumptions regarding cryptographic algorithms, secure stor-
age, and trust in the correct behaviour of agents or reliable data transfer. Relatively small 
changes in these assumptions can result in huge differences concerning satisfaction of security 
properties. Every model for secure systems must address these issues. 

In order to provide the required flexibility, we extend the system specification by two com-
ponents:  

• the agents’ initial knowledge about the global system behaviour and  

• the agents’ views.  

The knowledge about the system consists of all traces that an agent initially considers possi-
ble, i.e. all traces that do not violate any system assumptions. The local view of an agent 
specifies which parts of the system behaviour the agent can actually see. In the following sub-
sections, these two components and their relations are explained in more detail. 

2.1.2.2.2 Agents’ initial knowledge 

For any agent P, WP denotes its knowledge about the global system behaviour and contains 
those sequences of actions that P considers to be principally possible in the system. WP is con-
sidered to be part of the system specification. We may assume for example that a message that 
was received must have been sent before. Thus an agent’s WP will contain only those 
sequences of actions in which a message is first sent and then received. As another example, 
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all sequences of actions included in WP in which a digital signature is received and verified by 
using some agent Q’s public key will contain an action where Q generated this signature. 

Care must be taken when specifying the sets WP for all agents P in order to avoid specify-
ing properties that are desirable but not guaranteed by verified system assumptions. For 
example, in a scenario where we assume one-time passwords are used, if P trusts Q, WP con-
tains only those sequences of actions in which Q sends a certain password only once. How-
ever, if Q cannot be trusted, WP will also contain sequences of actions in which Q sends a 
password more than once. 

2.1.2.2.3 Agents’ local view 

The set WP describes what P knows initially. However, in a running system P can learn from 
actions that have occurred. Satisfaction of security properties obviously also depends on what 
agents are able to learn. After a sequence of actions w of the system has happened, every 
agent can use its local view of w to determine the sequences of actions it considers to be pos-
sible. For any system specification, the local view of the agents has to be specified appropri-
ately. One simple local view is that agents only see their own actions. In this case, user U’s 
local view of the sequence of actions  

w = sOffer(S,U,cheap) rOffer(U,S,cheap) sOrder(U,S,cheap) rOrder(S,U,cheap)  

is rOffer(U,S,cheap) sOrder(U,S,cheap). In some systems, however, it may be possible for an 
agent to also notice actions such as send and receive performed by other agents, but not to be 
able to actually recognize the messages that are being sent and received. In this case, U’s local 
view of w would be sOffer(S,U) rOffer(U,S,cheap) sOrder(U,SP,cheap) rOrder(S,U). 

Let us consider now a specific sequence of actions w. Since an agent P only sees parts of it, 
there are other sequences in the system that look the same for P, i.e. that result in the same 
local view for P. In the case where agents only see their own actions, for example, U’s view 
of w is rOffer(U,S,cheap) sOrder(U,S,cheap). But this is also U’s local view of the sequence  

w2 = sOffer(T,V,exp) sOffer(S,U,cheap) rOffer(V,T,exp) rOffer(U,S,cheap) sOrder(U,S,cheap) 
rOrder(S,U,cheap),  

and of many other possible sequences of actions in the system. 
Depending on its knowledge about the system, underlying security mechanisms and system 

assumptions, an agent does not consider all sequences that look the same as w to be possible. 
Thus it can use its knowledge to reduce this set: after w has happened, agent P considers only 
those sequences of actions that look like w with respect to its local view and that are at the 
same time included in its initial knowledge WP to be possible. Although the sequence  

w3 = rOffer(V,S,cheap) sOffer(S,U,cheap) rOffer(U,S,cheap) sOrder(U,S,cheap) 
rOrder(S,U,cheap)  

looks the same as  

sOffer(S,U,cheap) rOffer(U,S,cheap) sOrder(U,S,cheap) rOrder(S,U,cheap)  

for U, U does not consider w3 possible after w has happened because it knows that a message 
that has been received must have been sent before, and w3 violates this assumption. 
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The set of sequences of actions that a specific agent considers possible after a specific 
sequence of actions has happened is the basis for the security properties described in the next 
subsections. 

2.1.2.3 Authenticity 

2.1.2.3.1 Concept 

In the context of sequences of actions, authenticity is a property of a particular action. This 
property only makes sense from the viewpoint of a particular agent: while one agent wants a 
specific message authentically to originate from a specific sender, for example, another agent 
might not even know that the message exists. Thus we call a particular action a authentic for 
agent P if in all sequences that P considers possible after a sequence of actions w has hap-
pened, a must have happened some time in the past. In other words, all sequences of actions 
that look like w for P with respect to its local view and that are also contained in P’s initial 
knowledge WP, must contain an action a. 

By extending this definition to a set of actions being authentic for P if one of the actions in 
the set is authentic for P, we gain the flexibility that P does not necessarily need to know all 
parameters of the action in order to be authentic. For example, a message may consist of one 
part protected by a digital signature and another irrelevant part without protection. Then, the 
recipient can know that the signer has sent a message containing the signature, but the rest of 
the message is not authentic. Therefore, in this case, the set of actions to be authentic for P 
comprises all messages containing the relevant signature and arbitrary other message parts. 

A possible authenticity requirement for our example system could be that having received 
an order presumably made by user U, S wants the respective send action to have authentically 
been performed by U.  In Section 3, we will use particular instantiations of authenticity:  

authentic(action1, action2, agent)  

denotes the property that each time agent has performed action2, action1 is authentic for her. 
Concrete local views and initial knowledge of agents will be specified later in the project 
since they can only be specified when the mechanisms to provide the security properties are 
identified. 

The concept of authenticity is a generalization of data origin authenticity as explained in 
Section 2.1: A data origin authenticity property applies to a quantum of information and a 
claimed author. The property is satisfied when the quantum of information truly originates 
from the author. 

Once the actions are fixed in which the quantum of information is generated and genera-
tion by a particular author is claimed, respectively, data origin authenticity can be expressed 
by requiring that for each entity for which the property shall hold, each time they perform the 
action in which generation of the information by a particular author is claimed, the generation 
action must have been authentically performed by this author. 

2.1.2.3.2 Proof of authenticity – non-repudiation 

Some actions do not only require authenticity but also need to provide a proof of authenticity. 
If agent P owns a proof of authenticity for a set of actions, it can provide this proof to other 
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agents (e.g. by sending it) who can in turn take possession of the proof (e.g. by receiving it) 
and can then be convinced of the action’s authenticity. So for the definition of proof of 
authenticity of a specific set of actions the following aspects are relevant: 

1. Once an agent P has performed an action that brings it into possession of the proof, P itself 
must be convinced of the authenticity of the action the proof refers to. 

2. It must be possible for P to forward the proof to any other agent of the system (e.g. by 
sending it). 

3. Each other agent, when getting forwarded the proof by P, must be able to perform an 
action that results in owning it (e.g. receiving). The agent must then be convinced of the 
authenticity of the action the proof refers to. 

In the formal definition we use three sets of action: the set of actions that shall be authen-
tic, the set of actions to forward a proof, and the set of actions that result in owning the proof. 
The definition is the simplest one. Other definitions consider the fact that proofs of authentic-
ity can get lost or deleted by the agents, or that although a proof has been forwarded it is 
never actually received. 

The concept of proof of authenticity is in line with the concept of non-repudiation intro-
duced in Section 2.1. More specific proofs of authenticity can be defined, for example, to cap-
ture the case in which it is necessary to reduce the set of agents for which proofs shall exist, or 
to allow for loss of proofs, etc. Particular non-repudiation requirements as explained in the 
following examples are taken again from our example system: 

 For a service provider, non-repudiation of origin of the order is provided if the service pro-
vider, having performed the rOrder action, owns a proof of authenticity of the respective 
sOrder action having been performed by a specific user. 

 A user might require non-repudiation of the receipt of its order by the service provider. 
This can be accomplished by introducing one more actions that model the sending of a 
receipt performed by the service provider. Then non-repudiation of receipt is the require-
ment that when the user has received this acknowledgement message by a specific service 
provider, she owns a proof that this message is authentically sent by this service provider. 

 non-repudiation of submission and delivery require a third party, thus our example system 
would need to be extended to cover this. We will not consider these requirements any fur-
ther as they are not relevant in EVITA. 

In Section 3, we will use particular instantiations of proof of authenticity to express particular 
non-repudiation requirements: non-rep-origin (action1,action2,agent) denotes the property 
that each time agent has performed action2, action1 is authentic for her and she owns a proof 
of authenticity for action1. Again, concrete local views and initial knowledge of agents will 
be specified later in the project since they can only be specified when the mechanisms to pro-
vide security properties are identified. 

2.1.2.3.3 Authenticity with respect to a phase 

In many cases it is not only necessary to know who has performed a particular action, but also 
the specific time of the action. As our specification does not model any real-time properties, 
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time is modelled in terms of relations between actions in a sequence. However, discrete time 
can be included explicitly by introducing a clock. 

In order to capture time, we use the definition of a phase provided in [9]. A phase is a sub-
system of a system that is closed with respect to continuation of actions. Generally a phase 
can be a very complex part of the system. Phases often have well defined start and end 
actions. However for the purposes of EVITA it is sufficient to consider only those phases that 
have one start action and usually also only one end action (unless we want to model timeouts, 
for example). Closure with respect to continuation means that when the start action of a phase 
is performed, all actions that can continue this sequence of actions must be contained in the 
phase (i.e. cannot happen outside) until (one of) the last action(s) is reached.  

This concept together with the concept of authenticity matches perfectly, for example, the 
idea of authentication protocols. An agent sends out a challenge (a random number) that starts 
the phase. Everything that can happen after that is part of the phase until the agent finally 
receives the challenge along with e.g. some digital signature, which ends the phase. We say 
that a set of actions is authentic for an agent P after a sequence of actions w with respect to a 
phase V if the set of actions is authentic for P and has happened within phase V. That is, in all 
sequences of actions P considers possible after w has happened, some action of this set must 
have happened within the phase V.  

Integrity as explained in Section 2.1.1.3 can be expressed in terms of authenticity within a 
phase. In Section 2.1.1.3, we have defined integrity as a property that holds when a quantum 
of information has not been modified between two particular observations which can be deter-
mined for instance by a particular time and location in the system. This means that we have 
two actions that instantiate these observations, for example the consecutive reading of some 
data by some entity. We then require that each time the data be read, it must not have changed 
with respect to the last read action. In terms of authenticity within a phase, we define a phase 
to start with a read action by a particular entity and then require that for this entity, when she 
performs the next read action reading data, the first read action must have processed data and 
must have authentically occurred within the phase. 

2.1.2.4 Confidentiality 

2.1.2.4.1 Concept 

Confidentiality in SeMF essentially formalizes the concept that an agent P, having monitored 
a specific sequence of actions w, cannot tell from its local view of what it has monitored and 
from its initial knowledge WP about the system which was the specific parameter used in a 
specific action (or actions) of w, even if the set of possible parameters is known. Various 
aspects are included in our definition.  

1. First, we have to consider agent P’s local view of the sequence w it has monitored and the 
set of sequences that are identical for P with respect to its local view.  

2. Second, P can discard some of the sequences from this set, depending on its knowledge of 
the system and the system assumptions, all formalized in WP. For example, dependencies 
may exist between parameters in different actions known by P, such as a credit card num-
ber remaining the same for a long time, in which case P considers only those sequences of 
actions possible in which an agent always uses the same credit card number.  
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3. We need to identify the dependencies between actions that agents are generally allowed to 
know. We may want to allow them to know that credit card numbers for Master and Visa, 
respectively, remain the same, but we may not allow them to know that agents use a spe-
cific credit card (either Master or Visa) for ordering specific services.  

4. Finally, we need to identify what it is exactly that we want to be confidential. There are 
several possibilities. We may be interested in the confidentiality of one specific parameter 
in one specific action, regardless of whether or not P knows dependencies between actions 
concerning this parameter. We may on the other hand want to formalize that P is not 
allowed to know certain dependencies between some actions that use this parameter, 
regardless of whether or not P knows the actual parameter that is used in a specific action. 
We may further want to formalize a combination of these two requirements.  

Essentially, in our definition, parameter confidentiality is captured by requiring that for the 
action(s) having happened in w that shall be confidential for agent P with respect to some 
parameter p, all possible (combinations of) values for p occur in the set of sequences of 
actions P considers possible after w.  

2.1.2.4.2 Confidentiality example  

We again use our simple example introduced at the beginning. We want the system to meet 
the following requirement: V is not allowed to know which price S offered to U. This require-
ment already addresses point 4 in the above list as it specifies that we are only interested in 
the confidentiality of a specific parameter in one single action, namely in sOffer(S,U,p). 

Concerning point 1, let us assume that V can only see its own actions. Further, agents ini-
tially know that a message received must have been sent. V additionally knows that U only 
orders cheap and that U only orders after having received an offer. This addresses point 2 in 
the above list. As to the question of which are the allowed dependencies (point 3 above), we 
allow agents to know that a receive action must be preceded by a send. Let us assume the fol-
lowing sequence of actions has happened: 

w = sOffer(S,U,cheap) rOffer(U,S,cheap) sOffer(S,V,exp) rOffer(V,S,exp) sOrder(U,S,cheap).  

V’s local view of w is rOffer(V,S,exp) since V does not see the actions of the other agents. 
Sequences of actions that look identical for V with respect to its local view include all combi-
nations of sending and receiving offers and orders performed by U, S and T with its own 
action rOffer(V,S,exp) somewhere in between, and could include the following examples: 

sOffer(S,U,cheap) rOffer(U,S,cheap) sOffer(S,V,exp) rOffer(V,S,exp) 
sOffer(S,U,cheap) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp) 
sOffer(S,U,exp) rOffer(U,S,cheap) sOffer(S,V,cheap) rOffer(V,S,exp) 
sOffer(S,U,exp) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp) 
sOffer(S,U,cheap) rOffer(U,S,cheap) sOffer(S,V,exp) rOffer(V,S,exp) sOrder(U,S,cheap) sOffer(S,U,cheap) 
sOffer(S,U,cheap) rOffer(U,S,cheap) sOffer(S,V,exp) rOffer(V,S,exp) sOrder(U,S,cheap) sOffer(S,U,exp) 
sOffer(S,U,exp) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp) sOrder(U,S,exp) sOffer(S,U,cheap) 
sOffer(S,U,exp) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp) sOrder(U,S,exp) sOffer(S,U,exp) 
sOffer(S,U,exp) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp) sOffer(S,U,cheap) 
sOffer(S,U,exp) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp) sOffer(S,U,exp) 

Now V can use its initial knowledge to disregard those sequences that violate this knowledge. 
Hence sequences are disregarded that contain a receive action without the respective send 
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action before. Further, those sequences in which U orders exp are disregarded. The resulting 
set of sequences contains, for example: 

sOffer(S,U,cheap) rOffer(U,S,cheap) sOffer(S,V,exp) rOffer(V,S,exp) 
sOffer(S,U,exp) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp) 
sOffer(S,U,cheap) rOffer(U,S,cheap) sOffer(S,V,exp) rOffer(V,S,exp) sOrder(U,S,cheap) sOffer(S,U,cheap) 
sOffer(S,U,cheap) rOffer(U,S,cheap) sOffer(S,V,exp) rOffer(V,S,exp) sOrder(U,S,cheap) sOffer(S,U,exp) 
sOffer(S,U,exp) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp) sOffer(S,U,cheap) 
sOffer(S,U,exp) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp) sOffer(S,U,exp) 

We now formalize that we are only interested in the parameter actually offered by S to U, dis-
regarding the dependencies agents might know. This results in a set of sequences of actions 
containing only sOffer(S,U,cheap) and sOffer(S,U,exp) in arbitrary combinations. This 
reduces the above set (which is of course only a subset of all sequences deduced so far) to: 

sOffer(S,U,cheap)  
sOffer(S,U,exp)  
sOffer(S,U,cheap) sOffer(S,U,cheap) 
sOffer(S,U,cheap) sOffer(S,U,exp) 
sOffer(S,U,exp) sOffer(S,U,cheap) 
sOffer(S,U,exp) sOffer(S,U,exp) 

and so forth. This set determines what V knows with respect to its local view, its initial knowl-
edge, and with respect to the actions and parameters we want to be confidential for V. What 
we require for this set is that for each sequence of actions in this set containing 
sOffer(S,U,cheap) at a specific point there must be another sequence of actions that contains 
sOffer(S,U,exp) at this specific point. This is the case in the above set of sequences of actions, 
thus parameter confidentiality with respect to all above listed conditions (local view, initial 
knowledge, relevant actions, possible parameters, etc.) is provided. 

2.1.2.4.3 Confidentiality and privacy/anonymity 

Privacy and anonymity as introduced in Section 2.1 reflect the property that the relation 
between an entity and a set of information is confidential. This can easily be expressed using 
the above concept of confidentiality: the parameter(s) to be confidential will be the entities 
performing specific actions, and/or other parameters of these actions expressing location or 
time. By specifying particular local views and initial knowledge for agents, and specific 
dependencies between actions with respect to knowledge about certain parameters, very fine-
grained properties can be specified. 

In Section 3.2 we will use an instantiation of the general concept of parameter confidential-
ity in order to formalize anonymity and privacy requirements. Confidential(actions-to-learn-
from, data-to-be-confidential, possible-values, allowed-dependencies, who) denotes that no 
agents except those in the set who may learn the value of data-to-be-confidential from the 
actions in actions-to-learn-from although knowing the set possible-values that contains the 
possible values of the data to be confidential. In this first stage allowed-dependencies speci-
fies the case in which no dependencies between actions are allowed to be known. This is the 
strongest requirement that can be specified and will probably be weakened once we know 
more about the architecture of the system. As already said before, concrete local views and 
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initial knowledge of agents can only be specified when the mechanisms to provide the secu-
rity properties are identified.  

2.2 Approach 

The approach for deriving security requirements is based on a number of standards and best 
practice guidance documents [1][2][3][4]. The basic elements that are required of security and 
safety engineering processes are similar and include the following activities:  

• develop a high-level (functional) model of the system to be analysed; 

• identify safety hazards or security threats; 

• classify the safety hazards or security risks; 

• assess the associated risks; 

• derive requirements for specific functions and assurance levels to mitigate the risks; 

• evaluate the design and implementation for compliance with the requirements. 

Although there are differences between safety and security engineering issues, there are also 
many similarities [10]. One of the aims in EVITA is to avoid a separation between security 
requirements and security issues with safety related implications.  

The security engineering process for the EVITA project aims to infer security functional 
requirements based on the key methodology from ISO/IEC 15408 [1] and adopting the 
ISO/DIS 26262 [2] process together with systems engineering practices. The intentions of [1] 
are used to adapt the process for security issues and facilitate security evaluations. We 
emphasize, that we do not consider a complete security evaluation process according to [1] 
and highlight the differences to our process where necessary. 

The methodology for inferring security functional requirements involves the following 
steps, which are based on the security requirements process described in [11]: 

1. Description of system under investigation and its environment;  

2. Description of relevant use cases (cf. Deliverable 2.1 [5]);  

3. Identification of the assets to be protected within the described use cases (e.g. ECU, appli-
cation/process, sensor, data, communication between system entities, etc.);  

4. Identification of the threats posed to each asset in order to infer basic security functional 
requirements;  

5. Evaluation and assignment of respective risks (probability of threat, cost/loss, risk classi-
fication);  

6. Identification of respective security functional requirements for each threat according to 
risk analysis.  
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2.3 System under investigation and its environment 

The system under investigation is an automotive on-board network consisting of embedded 
electronic control units (ECUs), sensors, and actuators that are connected with each other via 
some bus systems. Figure 1 shows the assumed on-board network architecture.  

 

Figure 1 Generalised architecture of automotive on-board networks 

The on-board network is assumed to possess interfaces to the outside for communicating with 
mobile devices, service providers, roadside units, and other vehicles:  

• wireless interfaces such as GSM, UMTS, Bluetooth, W-LAN and DSRC and  

• a wire-bound diagnostic interface.  

For example, the on-board network may possess a Bluetooth interface in order to connect 
with mobile devices inside the car.  

The generalised architecture of Figure 1 is too abstract for describing use cases. Therefore, 
use cases are described in [5] in terms of the reference architecture shown in Figure 2, which 
is an instantiation of the generalised architecture in Figure 1, based on recommendations 
originating from the EASIS project. 
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Figure 2 EVITA use case reference architecture 

The system under investigation is assumed to operate in an uncontrolled environment. There-
fore, the system under investigation must protect its assets against a variety of threats.  

2.4 Summary of use cases 

In order to identify requirements for systems it is necessary to have a conceptual model of 
how they should function. Use cases are an approach for building scenarios that describe the 
functional properties that may be required from a system in order to satisfy the goals of users. 

The purpose of a use case is to describe the interaction between a system and the initiator 
of the interaction as a sequence of simple steps that are needed to achieve a specified goal. 
Use cases should focus on what the system must do, rather than how it is to be done, treating 
the system as a “black box”. The interactions with the system, including system responses, 
should be described as perceived from outside the system.  

For the purposes of the EVITA project, the use cases are intended to identify a range of 
specific future vehicle functions that could have possible security implications. The use cases 
are described in EVITA Deliverable D2.1 [5]. The development of these use cases involved 
the following steps: 

• selection of a series of use cases appropriate to the objectives of EVITA; 

• definition of the functionalities required to support the use cases; 

• identification of relevant communication entities (e.g. vehicles, driver, backend infra-
structure) and communication relations; 

• specification of required data (in-vehicle, backend) as well as exchanged information; 

• description of technical requirements (e.g. performance, bandwidth, distance, etc.) other 
than security. 
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The use cases are grouped into a number of categories for which e-security related intrusions 
were considered to be possible issues. The use cases that have been developed include the 
following: 

• Car2MyCar (communication from other car to own car) 

Use case 1: Safety reaction: Active brake 

Use case 2: Local Danger Warning from other Cars 

Use case 3: Traffic Information from other Entities 

• MyCar2Car (communication from own car to other car) 

Use case 4: Messages lead to safety reaction 

Use case 5: Local Danger Warning to other Cars 

Use case 6: Traffic Information to other Entities 

• Car2I and I2Car (communication from car to infrastructure and from infrastructure to car) 

Use case 7: eTolling 

Use case 8: eCall 

Use case 9: Remote Car Control 

Use case 10: Point of Interest 

• Nomadic Devices/USB Sticks/MP3 

Use case 11: Install applications 

Use case 12: Secure Integration 

Use case 13: Personalize the car 

• Aftermarket 

Use case 14: Replacement of Engine ECU 

Use case 15: Installation of a Car2x Unit 

• Workshop/Diagnosis 

Use case 16: Remote Diagnosis 

Use case 17: Remote Flashing 

Use case 18: Flashing per OBD 

The use cases may themselves immediately suggest some security and safety requirements. 
However, they are also required as inputs to the “dark-side scenario” analysis, in order to 
identify the potential for malicious attacks. For example, interference with safety critical in-
vehicular components and disruption of traffic flow by means of counterfeit messages are just 
two possibilities that need to be considered. 



 

 18

2.5 System assets 

The main components of an automotive on-board network (see Figure 1 and Figure 2) that 
may become targets of attacks are: 

• In-vehicle devices: ECUs, sensors and actuators, 

• Safety critical and non-safety critical applications running on in-vehicle devices,  

• Communication links internally within ECUs, between ECUs, between ECUs and sensors, 
between ECUs and actuators and between applications running on in-vehicle devices.  

2.6 Threat identification (dark-side scenarios) 

The purpose of developing the “dark-side” scenarios is to identify possible security threats 
and to allow aspects such as the desirability (to the attacker), opportunity, probability and 
severity of attacks to be assessed in order to support the security risk assessment activities.  

The approach adopted in developing the dark-side scenarios for the EVITA project is 
based on the following elements: 

• identification and classification of possible attack motivations; 

• evaluation of associated attacker capabilities (e.g. technical, financial); 

• attack modelling, comprising: 

– identification of specific attack goals that could satisfy the attack motivations; 

– construction of possible attack trees that could achieve attack goals, based on the func-
tionality identified in the use cases [5]. 

This approach has already been used in the Network-on-Wheels project [12]. The attack trees 
are interpreted in terms of an initiating “attack goal”, providing the attacker with an illegiti-
mate benefit, which can be satisfied by one or more “attack objectives” that have a negative 
impact on the stakeholders. Each “attack objective” could be achieved by one or more attack 
methods, which may consist of one or more combinations of attacks on specific system assets. 

Attacks that could have an impact on the safety of a car based on direct physical access in 
order to manipulate the hardware of that car (e.g. modification of ECUs or other electronic 
components) are excluded from this analysis as they are beyond the scope of the EVITA pro-
ject. These classes of attacks are already feasible and probably always will be. While some 
outcomes of EVITA will help in the detection of malevolent modifications to a vehicle, this is 
not a specific objective of the project. Consequently, direct physical attacks against the hard-
ware of the targets of attacks are out of scope. However, manipulations of devices that are 
under the control of the attacker are within the scope of EVITA (e.g. side channel attacks or 
extraction of keys); since attackers may modify their own vehicle in order to perform attacks 
against others. 

Detailed results of the dark-side scenario analysis that are relevant to the security require-
ments analysis can be found in Appendix B – Dark-side scenarios. 
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2.7 Overview of risk analysis  

In order to assess the “risk” associated with an attack it is necessary to assess the “severity” of 
the possible outcome for the stakeholders, and the “probability” that such an attack can be 
successfully mounted.  

At the highest level, the security objectives are:  

• operational – to maintain the intended operational performance of all vehicle and ITS 
functions;  

• safety – to ensure the functional safety of the vehicle occupants and other road users;  

• privacy – to protect the privacy of vehicle drivers, and the intellectual property of vehicle 
manufacturers and their suppliers;  

• financial – to prevent fraudulent commercial transactions and theft of vehicles.  

These security objectives counter generic security threats, as outlined in Table 1. 

Table 1 Generic security threats and security objectives 

Generic Security Threats 
Aims  Target Approach Motivation  

Security 
Objectives 

Harming 
individuals 

Driver or passenger Interference with safety func-
tions of a specific vehicle 

Criminal or terror-
ist activity  

Safety 
Privacy 

Harming 
groups 

City or state economy, 
through vehicles and/or 
transport system 

Interfere with safety functions 
of many vehicles or traffic 
management functions 

Criminal or terror-
ist activity  

Safety 
Operational 

Driver or passenger Theft of vehicle information 
or driver identity, vehicle 
theft, fraudulent commercial 
transactions 

Criminal or terror-
ist activity 

Privacy 
Financial 

Vehicle Interference with operation of 
vehicle functions 

Build hacker 
reputation 

Operational 
Privacy 

Gaining 
personal 
advantage 

Transport system, 
vehicle networks, 
tolling systems 

Interference with operation of 
traffic management functions 
or tolling systems 

Enhanced traffic 
privileges, toll 
avoidance,  

Operational 
Privacy 
Financial 

Driver or passenger Avoiding liability for acci-
dents, vehicle or driver 
tracking 

Fraud, criminal or 
terrorist activity, 
state surveillance 

Privacy 
Financial 

Gaining 
organiza-
tional 
advantage Vehicle Interference with operation of 

vehicle functions, acquiring 
vehicle design information 

Industrial espio-
nage or sabotage 

Privacy 
Operational 
Safety 

The severity of an attack is considered in terms of the four different aspects that may be asso-
ciated with harm to the stakeholders (operational, safety, privacy, and financial aspects), as a 
4-component vector with a range of qualitative levels that are based on the severity classifica-
tions used in vehicle safety engineering. The severity of an attack is assessed using the attack 
trees, by considering the potential implications of the attack objectives for the stakeholders.  

The probability of a successful attack is also derived from the attack trees, by identifying 
combinations of possible attacks on the system assets that could contribute to an attack 
method. Thus, the risk analysis is organized by attack tree, and decomposed down to asset 



 

 20

level. However, further decomposition may be helpful in estimating the probability of success 
(which is related to the “attack potential”) for attacks on specific assets. 

The probability and severity combinations are mapped to a series of risk levels ranging 
from 0 (lowest) to 6 (highest) in order to rank relative risks. In this scheme, high probability 
attacks with the severest outcomes have the highest risk levels, while low probability attacks 
with the least severe outcomes have the lowest risk levels. Between the extremes, the risk 
levels increase with rising probability and severity.  

As severity is expressed in the form of a 4-component vector, the risk measure associated 
with an attack is also a 4-component vector. Furthermore, as several different attack methods 
may achieve the same attack objective, the result of the risk assessment is a set of risk vectors. 
This provides a convenient basis for systematically identifying threats that need to be coun-
tered with priority: 

• Where a number of possible attack objectives may achieve the attack goal, the attack 
objective with the highest perceived risk level is the priority for countermeasures to reduce 
the risk level for the attack goal; 

• Where a number of possible attack methods may lead to the same attack objective, the 
attack method with the highest perceived combined attack probability is the priority for 
countermeasures to reduce the risk level for the attack objective; 

• Where a number of asset attacks may lead to the same attack method, the asset attack with 
the highest perceived attack probability (i.e. lowest attack potential) is the priority for 
countermeasures to reduce the risk level for the attack method. 

• The repeated occurrence of particular attack patterns in attack trees is a further indicator 
for prioritising countermeasures that are likely to provide favourable cost-benefit prop-
erties.  

A more detailed description of this process, including its application to the attack trees devel-
oped in Appendix B – Dark-side scenarios – can be found in Appendix C – Threat and risk 
analysis.  

2.8 Identification of security requirements  

2.8.1 Overview 

Identification of security requirements in the EVITA project is based on two different but 
complementary viewpoints: 

• abstract functional path – based on a purely functional representation of the use cases, 
providing security requirements by class (confidentiality, authenticity);  

• detailed functional path and mapping – based on mapping a functional representation of 
the use cases to an architecture, providing both functional and architectural (availability, 
timing) requirements by use case 

Merging the results of these two viewpoints should ensure that the security requirements are 
sufficiently comprehensive to support subsequent design activities. Brief overviews of these 
approaches are given below. More detailed descriptions can be found in Appendix D – 
Identifying security requirements.  
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2.8.2 Abstract functional path approach 

2.8.2.1 Overview 

The functional path model describes only the functional behaviour of the system under inves-
tigation and the information flows at its boundaries. Each information flow is associated with 
requirements for: 

• establishing the authenticity of the incoming data and their origins; 

• ensuring appropriate levels of confidentiality for the outgoing data. 

This approach provides a very compact description of vehicle-to-X communications and a 
systematic approach to the identification of their associated security requirements.  

2.8.3 Detailed functional path and mapping approach 

2.8.3.1 Overview 

The detailed functional path and mapping approach maps the functions to a generic architec-
ture, allowing functional and architectural requirements to be identified. Consequently, 
aspects such as availability and timing, and dependencies between requirements, can be con-
sidered. An iterative process is employed, consisting of the following steps: 

• Extract requirements from use cases 

– derive functional view 

– derive architectural mapping and correct functional view if necessary 

• Verify coverage 

– attack trees 

– use case consistency/completeness 

• Generate new requirements for unmatched threats / changed use cases 

– re-evaluate threat coverage 

Additional benefits of this approach include more precise definition of the use cases, verifica-
tion of existing attack trees, identification of new attacks, and more explicit mapping of secu-
rity requirements to functions and assets. 

A semi-formal description of security requirements based on SysML diagrams has several 
objectives: 

• Describe security requirements with an approach close to the language of use case design-
ers and with references to these use cases, based on both functional and mapping views. 
This specification distinctly aims at providing a system-oriented view, including timing 
and mapping issues, rather than an information-oriented view on requirements. We have 
been using the domains defined by use cases to classify the security requirements deter-
mined in addition to their security properties.  

• Describe relationships between security requirements and in particular their respective 
dependencies. 
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• Describe in what way security requirements relate to attack trees (i.e., trace security 
requirements aimed at threat mitigation or anti-goal prevention rather than security prop-
erty or goal achievement). 

• One objective of this approach is to prove whether security requirement are met.  

• Another objective is to determine which security mechanisms are to be defined in order to 
address or at least mitigate threats. 

To identify security requirements, we have used the following methodology: 

• For each use case, we derived one functional view of the system, using the UML compos-
ite structure diagrams defined in the DIPLODOCUS UML profile implemented in TTool 
[13]. TTool is an open-source toolkit supporting several UML2 profiles, including the DIP-
LODOCUS profile [20][21]. TTool has editing capabilities as well as simulation and for-
mal verification capabilities. Indeed, all profiles implemented by TTool have a formal 
semantics defined as a translation to a process algebra. More specifically, the DIPLODO-
CUS profile targets the design space exploration of System-on-Chip. DIPLODOCUS 
stands for DesIgn sPace expLoration based on fOrmal Description teChniques, UML and 
SystemC. DIPLODOCUS follows the Y methodology which includes three views: func-
tional view, architectural view, and then mapping view.  

• For each use case, we also derived one mapping view of the system, using the UML 
deployment diagrams defined in the DIPLODOCUS UML profile implemented in TTool. 
That mapping view defines the locations where functions are executed. Functions are 
mapped either on hardware devices (sensors / actuators plus controller coming with those 
sensors/actuators) or on CPUs. For functions mapped on CPUs, we assume their code is 
stored, before execution, within the flash memory located on the same bus as the CPU. We 
also assume that, at execution time, the function code and data are stored within RAMs 
located on the same bus. Note that performing the mapping view has sometimes led to 
modifying the functional view directly derived from use cases, since one function can be 
mapped onto only one hardware execution node (i.e. at most on one CPU or one hardware 
device): when one function was to be mapped onto more than one hardware execution 
node, it was split into several sub-functions. 

• Then, considering attack trees, use cases, functional and mapping views, we have settled 
on a list of security requirements. The latter have been modelled with the SysML diagrams 
implemented by TTool. The relations between requirements that have been considered are: 
Containment, dependency (<<deriveReqt>>), and reuse in different namespaces 
(<<copy>>). Those diagrams also contain observers, which may be seen as test cases 
meant to be used for the formal verification (or simulation) phase. Observers may addi-
tionally be seen as a means to document requirements. At last, a table of requirements is 
automatically derived from SysML diagrams. This set of requirements and observers alto-
gether provides a conceptual model of the security expectations of the system, abstracted 
from the literary description of use cases. 
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2.8.3.2 Security requirements modelling 

2.8.3.2.1 Overview 

The security requirements defined using a SysML formalism have “Requirement Contain-
ment Relationship” and “Derive Dependency” SysML relationships [1]. A general method-
ology has been applied according to an iterative process, on functional and mapping views, on 
security requirements, and also on attack trees. The coverage and completeness of attack trees 
and use cases has thus been verified whilst listing security requirements.  

Different semiformal definitions are used while defining security requirements, which will 
help us to prove future solutions. 

2.8.3.2.2 Definition: Command 

A command is an event or data (i.e. a message) sent from inside the on-board network to a 
function running on an actuator or on a sending device.  

2.8.3.2.3 Definition: Functional Path 

A use case always starts with a given message sent by one element outside of the on-board 
network to a function of the TOE. Let us call that message ‘startMessage’. We assume that 
‘startMessage’ is received by a function f0. A use case is meant to produce commands. Let us 
call Fc the set of functions producing commands in the considered use case. 

The functional path of a use case is a tuple consisting of a set C of events and data chan-
nels and of a set F of functions. C and F are defined as follows: 

• Fc is included into F 

• C contains all channels which destination is a function of F 

• F contains all functions that output messages in channels of C. 

Therefore, the functional path of a use case includes all data and events that are taken as an 
input by all functions involved in the direct or indirect production of commands defined in the 
use case. 

Property: The functional path of a use case is considered as valid if and only if, using the 
previous definition, f0 is an element of F. 
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3 EVITA Security Requirements 

3.1 Security objectives 

At the highest level, the security objectives (cf. Section 2.7) are:  

• to maintain the intended operational performance of all vehicle and ITS functions; 
• to ensure the functional safety of the vehicle occupants and other road users; 
• to protect the privacy of vehicle drivers, and the intellectual property of vehicle manu-

facturers and their suppliers; 
• to prevent fraudulent commercial transactions and theft of vehicles.  

3.2 Security requirements 

3.2.1 Overview  

This section documents the security requirements that are needed to satisfy the stakeholders’ 
security objectives considering the identified threats and assumed system architecture. Secu-
rity requirements are constraints arising from security concerns; these requirements do not 
specify how the constraints are satisfied, but only what the constraint is. It is out of scope to 
address security mechanisms. The security requirements shall not make any assumptions 
regarding possible realisations. This is subject of the forthcoming task of secure on-board 
architecture specification. 

The security requirements are based on the use cases [5] and attack trees (Appendix B – 
Dark-side scenarios) and derived in a systematic manner. The level of detail directly origi-
nates from the size of the use case model. The level of coverage is restricted to the amount of 
information that was input to the security analysis.  

The fulfilment of security requirements is not measurable beyond Boolean (i.e. true or 
false). The fulfilment of security requirements in on-board architecture and protocol specifi-
cations will be verified by formal methods.  

The following subsections list the security requirements determined using the two 
approaches outlined in the previous section, classified according to security properties. The 
requirements numbered under 100 correspond to requirements determined using the security-
modelling framework SeMF, whereas requirements numbered above 100 were obtained fol-
lowing the system-oriented SysML approach. The latter are also described in a finer grained 
fashion, organized according to topics/diagrams, in Appendix D – Identifying security 
requirements. 
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3.2.2 Authenticity 

Requirement reference: Authenticity_1 

Informal description: 
Whenever an active braking action is performed, the own Environment Information measured by the 
sensors that the action is based on shall be authentic in terms of origin, content and time. 

Semi-formal description: 
auth(Environment-Sensing(car,Environment-Information,t),braking(car),Driver(car)) 

Use case references: 1 
 

Requirement reference: Authenticity_2 

Informal description: 
Whenever an active braking action is performed, the own Vehicle Dynamics measured by the sen-
sors that the action is based on shall be authentic in terms of origin, content and time. 

Semi-formal description: 
auth(Chassis-Sensing(car,Vehicle-Dynamics,t),braking(car),Driver(car)) 

Use case references: 1 
 

Requirement reference: Authenticity_3 

Informal description: 
Whenever an active braking action is performed, the own Position-Information that the action is 
based on shall be authentic in terms of origin, content and time. 

Semi-formal description: 
auth(GPS-sensing(car,Position,t),braking(car),Driver(car)) 

Use case references: 1 
 

Requirement reference: Authenticity_4 

Informal description:  
Whenever an active braking action is performed, the Position-Information of the original warning 
car that the action is based on shall be authentic in terms of origin, content and time. 

Semi-formal description: 
auth(GPS-Sensing(otherCar,Position,t),braking(car),Driver(car)) 

Use case references: 1 
 

Requirement reference: Authenticity_5 

Informal description: 
Whenever an active braking action is performed, the sensor information of the original warning car 
that led to the warning and ultimately to the braking shall be authentic in terms of origin, content and 
time. 

Semi-formal description: 
auth(Chassis-Sensing(otherCar,Vehicle-Dynamics,t),braking(car),Driver(car)) 

Use case references: 1, 4 
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Requirement reference: Authenticity_6 

Informal description:  
Whenever an active braking action is performed, the position information for all vehicles that is 
being recorded in the neighbourhood tables shall be authentic for the braking action in terms of ori-
gin, content and time. 

Semi-formal description: 
auth(GPS-Sensing(allCars,Position,t),braking(car),Driver(car)) 

Use case references: 1 (textual description only) 

Notes:  
Analysis shows that this is an availability requirement, which appears here for the functional 
dependence of the braking 

 
Requirement reference: Authenticity_7 

Informal description:  
Whenever a Warning is shown on HMI, the own Position-Information that the action is based on 
shall be authentic in terms of origin, content and time.  

Semi-formal description: 
auth(GPS-Sensing(car,position,t),HMI-Display(car,Warning),Driver(car)) 

Use case references: 2 
 

Requirement reference: Authenticity_8 

Informal description:  
Whenever a Danger-Warning is shown on HMI, the Position-Information of the warning car or the 
Cooperative-Awareness-Message sent by the RSU, depending on which the action is based on, shall 
be authentic in terms of origin, content and time. 

Semi-formal description: 
auth({GPS-Sensing(otherCar,position,t), send(RSU, CAM)}, HMI-Display(car,Warning), 
Driver(car)) 

Use case references: 2, 5 (RSU from textual description) 
 

Requirement reference: Authenticity_9 

Informal description:  
Whenever a Danger-Warning is shown on HMI, the other vehicles sensor-information or the Co-
operative-Awareness-Message sent by the RSU, depending on which the action is based on, shall be 
authentic in terms of origin, content and time. 

Semi-formal description: 
auth({sensing(otherCar, data,t), send(RSU, CAM)}, HMI-display(car,Warning), Driver(car)) 

Use case references: 2, 5 (RSU from textual description) 
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Requirement reference: Authenticity_10 

Informal description:  
Whenever a Navigation-Warning is shown on HMI, the own Position-Information that the action is 
based on shall be authentic in terms of origin, content and time. 

Semi-formal description: 
auth(GPS-Sensing(car,Position,t),HMI/Navigation-Display(Warning),Driver(car)) 

Use case references: 3 
 

Requirement reference: Authenticity_11 

Informal description:  
Whenever a Navigation-Warning is shown on HMI, the Position-Information of the warning car or 
the Traffic-Information-Message sent by the RSU, depending on which the action is based on, shall 
be authentic in terms of origin, content and time. 

Semi-formal description: 
auth({GPS-Sensing(otherCar,position,t), send(RSU,TIM)}, HMI/Navigation-Display(Warning), 
Driver(car)) 

Use case references: 3, 6 
 

Requirement reference: Authenticity_12 

Informal description:  
Whenever a Traffic Information Message is shown on HMI, the other vehicles’ sensor-information 
or the Traffic Information Message sent by the RSU, depending on which the action is based on, 
shall be authentic in terms of origin, content and time.  

Semi-formal description: 
auth({sensing(otherCar, data,t), send(RSU, TIM)}, HMI/Navigation-Display(Warning),Driver( car)) 

Use case references: 3, 6 
 

Requirement reference: Authenticity_13 

Informal description:  
Whenever a Traffic Information Message is received by the RSU, the sensor-data that it is based on 
shall be authentic in terms of origin, content and time. 

Semi-formal description: 
auth({sensing(otherCar, data,t), send(RSU, TIM)}, Processing-Showinfo,Driver( car)) 

Use case references: 3, 6 
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Requirement reference: Authenticity_14 

Informal description: 
Whenever eTolling information is received by the Service Provider’s RSU, the accumulated position 
information at the car shall be authentic for the service provider. 

Semi-formal description: 
auth(GPS-Sensing(car,position,t),GSM-Receive(RSU(SP), car, Billing-Information),SP) 

Use case references: 7 
 

Requirement reference: Authenticity_15 

Informal description: 
Whenever an eCall request is received by the service provider, the position information that this was 
based on shall be authentic for the service provider in terms of origin, content and time. 

Semi-formal description: 
auth(GPS-Sensing(car,position,t),receive(SP,car,Crash-Info(Position)),SP) 

Use case references: 8 
 

Requirement reference: Authenticity_16 

Informal description: 
Whenever an eCall request is received by the service provider, the sensor information that this was 
based on shall be authentic for the service provider in terms of origin, content and time. 

Semi-formal description: 
auth(sensing(car,data,t),receive(SP,car,Crash-Info(Position)),SP) 

Use case references: 8 
 

Requirement reference: Authenticity_17 

Informal description: 
Whenever the car’s hood is opened remotely, it shall be authentic for the owner that the command 
leading to this was sent by the allowed mobile device. 

Semi-formal description: 
auth(BT-Send(MobileDevice,openhood,t), open(car,hood), Owner(car)) 

Use case references: 9 
 

Requirement reference: Authenticity_18 

Informal description:  
Whenever the PoI- (Point Of Interest) Information is displayed on the HMI, it shall be authentic for 
the driver that the information was sent by a PoI-Provider authorized by the driver. 

Semi-formal description: 
auth(send(PoI-Provider,PoI-Info),HMI-Show(car,PoI-Info),Driver(car)) 

Use case references: 10 
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Requirement reference: Authenticity_19 

Informal description: 
Whenever PoI (Point Of Interest) information is displayed on the HMI, it shall be authentic for the 
driver that this type of information is admitted by the PoI-Configuration (the driver’s pre-configura-
tion regarding the reception of PoI information). 

Semi-formal description: 
auth(HMI-Read(car,PoI-Configuration(PoI-Info-Type),t), HMI-Show(car,PoI-Info(PoI-Info-Type), 
Driver(car)) 

Use case references: 10 
 

Requirement reference: Authenticity_20 

Informal description: 
Whenever a new software interface is displayed on the HMI, the software shall originate from an 
allowed mobile device. 

Semi-formal description: 
auth(USB-Receive(car,MobileDevice, Software),HMI-Show(SW-Interface),Driver( car)) 

Use case references: 11 
 

Requirement reference: Authenticity_21 

Informal description: 
Whenever a new software interface is displayed on the HMI, the computed result shall be based on 
the user’s inputs. 

Semi-formal description: 
auth(HMI-Read(car,driver(car), Inputs),HMI-Show(SW-Interface), Driver(car)) 

Use case references: 11 
 

Requirement reference: Authenticity_22 

Informal description: 
Whenever a new external interface is displayed on the HMI, it shall originate from an allowed 
mobile device. 

Semi-formal description: 
auth(BT-Receive(car,MobileDevice,Display(Data)),HMI-Show(Data),Driver( car)) 

Use case references: 12 
 

Requirement reference: Authenticity_23 

Informal description: 
Whenever inputs for an application installed on a mobile device are sent from the car to the mobile 
device, these inputs shall originate from the car’s HMI. 

Semi-formal description: 
auth(HMI-Read(Inputs), BT-Send(car,MobileDevice,Inputs), Driver(car)) 

Use case references: 12 
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Requirement reference: Authenticity_24 

Informal description:  
Whenever the vehicle’s seats are adjusted, it shall be authentic for the owner that the command 
leading to this was sent by an authorized mobile device. 

Semi-formal description: 
auth(BR-Receive(car,AuthDevice,SeatPosition),adjust(car,SeatPosition),Driver(car)) 

Use case references: 13 
 

Requirement reference: Authenticity_25 

Informal description: 
Whenever an ECU is replaced in the car, it shall be authentically crafted by the manufacturer.  

Semi-formal description: 
auth(craft(Manufacturer,ECU),replace(car,ECU),Owner(car)) 
auth(craft(Manufacturer,ECU),replace(car,ECU),Manufacturer(car)) 

Use case references: 14 

Notes: 
This property is related to a different system model, outside the runtime component-model of the car.

 
Requirement reference: Authenticity_26 

Informal description: 
Whenever an ECU is added to the car, it shall be authentically crafted by the manufacturer. 

Semi-formal description: 
auth(craft(Manufacturer,ECU),install(car,ECU),Owner(car)) 
auth(craft(Manufacturer,ECU),install(car,ECU),Manufacturer(car)) 

Use case references: 15 

Notes:  
This property is related to a different system model, outside the runtime component-model of the car.

 
Requirement reference: Authenticity_27 

Informal description: 
Whenever diagnosis-data is sent to a maintenance-shop, it shall be authentic that it is a manu-
facturer-authorized maintenance-shop. 

Semi-formal description: 
auth(authorize(manufacturer,maintenance-shop),send(car,maintenance-shop,data),Owner(car)) 

Use case references: 16 
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Requirement reference: Authenticity_28 

Informal description: 
Whenever data is received by the maintenance-shop, it shall be authentic that it originates from the 
car.  

Semi-formal description: 
auth(store(car,data),receive(maintenance-shop,car,data),Owner(car)) 

Use case references: 16 

Notes:  
This is also an integrity requirement. 

 
Requirement reference: Authenticity_29 

Informal description: 
Whenever a firmware is installed to the car, it shall be authentically programmed by the manu-
facturer.  

Semi-formal description: 
auth(program(Manufacturer,Firmware),install(car,Firmware),Owner(car)) 
auth(program(Manufacturer,Firmware),install(car,Firmware),Manufacturer(car)) 

Use case references: 17, 18 

Notes: 
This property is related to a different system model, outside the runtime component-model of the car.

 
Requirement reference: Authenticity_101 

Informal description: 
Message source authentication along functional path: 
1. Whenever a command (see Section 2.8.3.2.2) is sent from one internal ECU to another internal 

ECU, authentication of information along functional path must be ensured.  
Use Case Reference: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 

2. Whenever a message is received from a Mobile Device, authentication of all those messages must 
be ensured.  
Use Case Reference: 9, 11, 12, 13 

3. Whenever a message is sent from vehicle to a Mobile Device, authentication of all those mes-
sages along functional path must be ensured.  
Use Case Reference: 9, 11, 12, 13 

Semi-formal description: 
FSR-1.1.1 (General requirements – Fake Command related Requirements SysML diagram) 
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Requirement reference: Authenticity_102 

Informal description: 
Code origin authentication: Whenever a command (see Section 2.8.3.2.2) is sent to ECU for flash-
ing, code origin authentication must be ensured.  

Use Case Reference: 14, 15, 17, 18 

Semi-formal description: 
FSR-1.3.1 (General requirements –Fake Command related Requirements SysML diagram) 

 
Requirement reference: Authenticity_103 

Informal description: 
Authenticating message sources notifying a change in the environment coming in/out from vehicle: 
1. Whenever an environment related information collected from gateways and sensors, data origin 

authentication of all those information must be ensured.  
Use case Reference: 1, 4, 5, 6. 

2. Whenever an immediate danger message from environment sensors is received at Communica-
tion Unit (CU), data origin authentication of all messages must be ensured.  
Use case Reference: 1, 2, 4 

3. Whenever a message (warning message) is received from other neighbourhood vehicles, data 
origin authentication of all messages along functional path must be ensured.  
Use case Reference:  1, 2, 3 

4. Whenever CSC receives more information for plausibility check (vehicle dynamics data), data 
origin authentication of all information along functional path must be ensured.  
Use case Reference: 1, 2, 4, 5, 6, 

5. Whenever a message (RSU, Traffic Light, Infrastructure based Server or other Vehicle) arrived 
at vehicle reception, data origin authentication of all those messages must be ensured.  
Use Case Reference: 1, 2, 3, 10, 16, 17, 18 

6. Whenever a message is sent to RSU, data origin authentication of all those messages along 
functional path must be ensured.  
Use Case Reference: 7, 8, 16, 17 

7. Whenever a message (warring message) is sent to other neighbourhood vehicles, data origin 
authentication of all those messages along functional path must be ensured.  
Use Case Reference:  4, 5, 6, 

8. Whenever a warning is shown on the HMI, warning generated due to unexpected behaviour or 
warning message arrived from other vehicle, data origin authentication of these entire messages 
along functional path must be ensured.  
Use Case Reference: 2, 3, 5, 6, 

9. Whenever an additional information messages (PoI) is received and showed, data origin authen-
tication of these entire messages along functional path must be ensured.  
Use Case Reference: 10 

Semi-formal description: 
GSR-1.3 (General requirements – Environment related Requirements SysML diagram) 
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3.2.3 Integrity  

Unauthorized modification of data and functionality shall be prevented or at least detected. 
There shall be provisions for verifying the integrity of transported and stored data. This shall 
apply to both external and internal communications.  

Requirement reference: Integrity_101 

Informal description: 
Integrity of messages notifying a change in the environment coming in /out from vehicle: 
1. Whenever an environment related information collected from gateways and sensors, Integrity of 

all those information must be ensured.  
Use case Reference: 1, 4, 5, 6. 

2. Whenever an immediate danger message from environment sensors is received at Communica-
tion Unit (CU), Integrity of all messages must be ensured.  
Use case Reference: 1, 2, 4 

3. Whenever a message (warning message) is received from other neighbourhood vehicles, Integ-
rity of all messages along functional path must be ensured.  
Use case Reference:  1, 2, 3 

4. Whenever CSC receives more information for plausibility check (vehicle dynamics data), Integ-
rity of all information along functional path must be ensured.  
Use case Reference: 1, 2, 4, 5, 6, 

5. Whenever a message (RSU, Traffic Light, Infrastructure based Server or other Vehicle) arrived 
at vehicle reception, Integrity of all those messages must be ensured.  
Use Case Reference: 1, 2, 3, 10, 16, 17, 18 

6. Whenever a message is sent to a RSU, Integrity of all those messages along functional path 
must be ensured.  
Use Case Reference: 7, 8, 16, 17 

7. Whenever a message (warning message) is sent to other neighbourhood vehicles, Integrity of all 
those messages along functional path must be ensured.  
Use Case Reference:  4, 5, 6, 

8. Whenever a warning is shown on the HMI, warning generated due to unexpected behaviour, 
integrity of these entire messages along functional path must be ensured.  
Use Case Reference: 2, 3, 5, 6, 

9. Whenever an additional information messages (PoI) is received and showed, integrity of these 
entire messages along functional path must be ensured.  
Use Case Reference: 10 

Semi-formal description: 
GSR-1.1 (General Security Requirements – Environment related requirements SysML diagram) 
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Requirement reference: Integrity_102 

Informal description: 
Flashing Command Integrity (the flashing went to its end): Whenever a flashing command (see 
Section 2.8.3.2.2) is sent to an ECU for flashing, integrity of flashing command must be ensured.  

Use Case Reference:14, 15, 17, 18 

Semi-formal description: 
FBSR-4.1 (Flashing per OBD use case specific requirements SysML diagram) 

 
Requirement reference: Integrity_103 

Informal description: 
It should be ensured that firmware data received as an update has not been modified since it left the 
manufacturer servers (code integrity): Whenever a flashing command (see Section 2.8.3.2.2) is sent 
to an ECU, the integrity of the firmware must be ensured.  

Use Case Reference:14, 15, 17, 18 

Semi-formal description: 
FSR-1.3.2 (General Security Requirements –Fake Command related requirements SysML diagram), 
FBSR-1.1.1 (Flashing per OBD use case specific requirements SysML diagram) 

 
Requirement reference: Integrity_104 

Informal description: 
Integrity of Message Attributes Along Functional Path. This particular requirement derives from the 
more general requirement of preventing Man-In-The-Middle attacks: 
1. Whenever a command (see Section 2.8.3.2.2) is sent from one internal ECU to another internal 

ECU, integrity of information along functional path must be ensured.  
Use Case Reference: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 

2. Whenever a message is received from a Mobile Device, Integrity of all those messages must be 
ensured.  
Use Case Reference: 9, 11, 12, 13 

3. Whenever a message is sent from vehicle to a Mobile Device, Integrity of all those messages 
along functional path must be ensured.  
Use Case Reference: 9, 11, 12, 13 

Semi-formal description: 
FSR-1.1.3 (General requirements – Fake Command related Requirements SysML diagram) 

 
Requirement reference:  Integrity _105 

Informal description: 
Ensure Correct Decision of Emergency Situation: Whenever an emergency situation happens and the 
driver or the vehicular system trigger to an emergency manoeuvre, the integrity of correcting deci-
sions must be ensured along the functional path.  
Use Case Reference: 1, 2, 4,5,8 

Semi-formal description: 
BDOS-1.2-2.1 (Braking use case DoS Requirements SysML diagram) 
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3.2.4 Controlled access  

Requirement reference: Access_101 

Informal description: 
Controlled Access To Flashing Function: Whenever a flashing command (see Section 2.8.3.2.2) is 
sent to ECU, controlled access to flashing function must be ensured.  
Use Case Reference: 14, 15, 17, 18 

Semi-formal description: 
FBSR-1.1 (SysML General Requirements – Flashing Requirements) 

 
Requirement reference: Access_102 

Informal description: 
Controlled Access To Read From Flash: Whenever a flashing command (see Section 2.8.3.2.2) is 
sent to ECU, controlled access to read from flash must be ensured.  
Use Case Reference: 14, 15, 17, 18 

Semi-formal description: 
FBSR-1.2 (SysML General Requirements – Flashing Requirements) 
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3.2.5 Freshness  

Requirement reference: Freshness_101 

Informal description: 
Freshness of messages carrying some environment related data and notifying a change in the 
environment coming in/out from vehicle should be ensured, in particular to prevent that replaying 
these data may trigger some undesirable behaviour from the TOE: 
1. Whenever an environment related information is collected from gateways and sensors, freshness 

of all those information must be ensured.  
Use case Reference: 1, 4, 5, 6. 

2. Whenever an immediate danger message from environment sensors is received at Communica-
tion Unit (CU), freshness of all messages must be ensured.  
Use case Reference: 1, 2, 4 

3. Whenever a message (warning message) is received from other neighbourhood vehicles, fresh-
ness of all messages along functional path must be ensured.  
Use case Reference:  1, 2, 3 

4. Whenever CSC receives more information for plausibility check (vehicle dynamics data), fresh-
ness of all information along functional path must be ensured.  
Use case Reference: 1, 2, 4, 5, 6, 

5. Whenever a message (RSU, Traffic Light, Infrastructure based Server or other Vehicle) arrived 
at vehicle reception, freshness of all those messages must be ensured.  
Use Case Reference: 1, 2, 3, 10, 16, 17, 18 

6. Whenever a message is sent to RSU, freshness of all those messages along functional path must 
be ensured.  
Use Case Reference: 7, 8, 16, 17 

7. Whenever a message (warring message) is sent to other neighbourhood vehicles, freshness of all 
those messages along functional path must be ensured.  
Use Case Reference: 4, 5, 6, 

8. Whenever a warning is shown on the HMI, warning generated due to unexpected behaviour or 
warning message arrived from other vehicle, freshness of these entire messages along functional 
path must be ensured.  
Use Case Reference: 2, 3, 5, 6, 

9. Whenever an additional information messages (PoI) is received and showed, freshness of these 
entire messages along functional path must be ensured.  
Use Case Reference: 10 

Semi-formal description: 
GSR-1.2 (General requirements – Environment related Requirements SysML diagram) 
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Requirement reference: Freshness_102 

Informal description: 
The freshness of the series of messages generated in sequence by all gateways or ECUs traversed 
along the functional path should be ensured in order to prevent the undesirable triggering of com-
mands: 
1. Whenever a message resulting in commands (see Section 2.8.3.2.2) is sent from one internal 

ECU to another internal ECU, freshness of information along functional path must be ensured.  
Use Case Reference: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12,13, 14, 15, 16, 17, 18 

2. Whenever a message is received from a Mobile Device, freshness of all those messages must be 
ensured.  
Use Case Reference: 9, 11, 12, 13 

3. Whenever a message is sent from vehicle to a Mobile Device, freshness of all those messages 
along functional path must be ensured.  
Use Case Reference: 9, 11, 12, 13 

Semi-formal description: 
FSR-1.1.2 (General requirements – Fake Command related Requirements SysML diagram) 

 
Requirement reference: Freshness_103 

Informal description: 
Flashing command freshness: Whenever a command (see Section 2.8.3.2.2) is sent to ECU for 
flashing, flashing command freshness must be ensured.  

Use Case Reference: 14, 15, 17, 18 

Semi-formal description: 
FSR-1.3.3 (General requirements – Fake Command related Requirements SysML diagram)  

3.2.6 Non-repudiation 

The enforcement of non-repudiation is not necessary for the satisfaction of functional safety. 
Non-repudiation requirements arise when evidence of actions shall be presented to another 
entity later. Usually, these are motivated by legal requirements from law, liability or billing. 
Additional requirements might therefore arise during the forthcoming legal framework and 
requirements analysis. 

Requirement reference: Proof-of-Authenticity_1 

Informal description: 
The eTolling-Service Provider shall be able to prove the authenticity of the Billing-Information 
being based on the aggregated sensor data.  

Semi-formal description: 
non-rep-origin(GPS-Sensing(car,position,t),receive(SP,car, Billing-Information),SP) 

Use case references: 6 

Notes: 
Compare with the requirement Authenticity_14. 
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3.2.7 Anonymity 

Anonymity requirements target broadcast data-packets and require the identity to be confi-
dential. In the semi-formal descriptions of these requirements Lzero describes the condition 
that no dependencies between actions are allowed to be known.  

Requirement reference: Confidentiality_1 

Informal description: 
The identity of the car shall be confidential. This includes especially those actions during which it is 
involved in wireless communication.  

Semi-formal description: 
confidential(actionsToLearnFrom1, car, allCars, Lzero, car) 
actionsToLearnFrom1={DSRC-Send(car, Neighbourhood-Token),  
DSRC-Send(car, C2X-Message(Emergency)), DSRC-Forward(car, C2X-Message(Emergency)), 
DSRC-Send(car, Cooperative-Awareness-Message), Send(car, Traffic-Information-Message), GSM-
Send(car,Billing-Information), GSM-Send(car,eCall-Request),  
BT-Send(car,MobileDevice, InputData), BT-Send(MobileDevice,car,OpenHood), 
Send(MobileDevice, car, Software), BT-Send(MobileDevice,car,DisplayData),  
BT-Send(MobileDevice, car, SeatPosition), DSRC-Send(RSU(Manufacturer), car, Firmware)} 

Use case references: 1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 17 

Notes: 
This may be weakened by adjusting Lzero during the engineering to the use of pseudonymity. 

 
Requirement reference: Confidentiality_2 

Informal description: 
During operations that involve remote accesses to the vehicle (e.g. open hood, adjust seat, software 
install, integration etc.), the anonymity of the mobile device shall be guaranteed. 

Semi-formal description: 
confidential({BT-Send(MobileDevice,car,OpenHood), BT-Send(MobileDevice, car, SeatPosition), 
Send(MobileDevice, car, Software), BT-Send(MobileDevice, car, DisplayData), BT-
Send(car,MobileDevice, Inputs)}, MobileDevice, allMobileDevices, Lzero, car) 

Use case references: 9, 11, 12, 13 
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3.2.8 Privacy 

These requirements target every relation between identity and privacy-relevant information 
that are not already covered by the anonymity requirements. 

Requirement reference: Confidentiality_3 

Informal description: 
The position of a car at a certain point in time must be confidential. 

Semi-formal description: 
confidential({GPS-Sensing(car,Position), GSM-Send(car, Billing-Information)}, Position, 
allPositions, Lzero, car) 
Use case references: 7 

 
Requirement reference: Confidentiality_4 

Informal description: 
The personal information stored within the car shall remain confidential even during exchange of 
ECUs. 

Semi-formal description: 
confidential({ExchangeECU(Maintanance,car,ECU(Data)},Data, allData, Lzero, car) 

Use case references: 14 
 

Requirement reference: Confidentiality_5 

Informal description: 
The PoI-Configuration (the driver’s preconfiguration regarding the reception of PoI- (Point of Inter-
est) information) stored within the vehicle for a driver shall remain confidential even during 
exchange of data with an RSU. 

Semi-formal description: 
confidential({Receive(car,PoI-Info)}, PoI-Configuration, allPoIConfs, Lzero, car) 

Use case references: 10 

Notes: 
The configuration of the vehicle can reveal personal information. In the case of PoIs, for example, 
personal preferences may be revealed. 
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Requirement reference: Confidentiality_6 

Informal description: 
The seat position information for a driver shall remain confidential, even during exchange of data 
with a mobile device. 

Semi-formal description: 
confidential({Send(MobileDevice,car,SeatPosition)}, SeatPosition, allSeatPositions, Lzero, car) 

Use case references: 13 

Notes: 
The configuration of the car can reveal personal information. In the case of SeatPosition, for exam-
ple, the height of the driver could be inferred. 

 
Requirement reference: Privacy_101 

Informal description: 
Controlled access to e-service message data: an e-service message is a message sent from a car to 
an entity external to the TOE and car maker, and providing a service, for example: 
• service center residing in the infrastructure (e.g. eCall center, eToll) 
• garage (e.g. remote flashing) 
Whenever a message is sent from a vehicle to an entity external to the TOE and car maker, and pro-
viding a service, controlled access to e-service message data must be ensured.  

Use Case Reference: 7, 8, 16, 17 

Semi-formal description: 
PSR-1.1 (SysML General Requirements – Privacy Requirements) 

 
Requirement reference: Privacy_102 

Informal description: 
User Driven Privacy Policy: Users shall be able to determine by themselves the disclosure of 
information acceptable for various applications regarding their private profile or their car profile, 
providing it is lawful (e.g. car plates may need to be sent in some critical messages as required by 
law). That policy should be enforced according to user specifications. 
1. Whenever a message is sent from a car to a RSU, PSAP and/or other fixed based server archi-

tecture, user driven privacy policy of all those messages must be ensured.  
Use Case Reference: 6, 7, 8 

2. Whenever a message is sent from a car to car, user driven privacy policy of all those 
messages must be ensured.  
Use Case Reference: 5, 6 

Semi-formal description: 
PSR1.2 (SysML General Requirements – Privacy Requirements) 
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Requirement reference: Privacy_103 

Informal description: 
Car2X message anonymity: The sending of a critical message should not make it possible to connect 
the driver to other messages previously sent, e.g. promiscuous listening of the network 
1. Whenever a message is sent from a car to a RSU, PSAP and/or other fixed based Server archi-

tecture, anonymity of all those messages must be ensured.  
Use Case Reference:  7, 8 

2. Whenever a message is sent from a car to car, anonymity of all those messages must be 
ensured.  
Use Case Reference: 5  

Semi-formal description: 
PSR-1.3.1 (SysML General Requirements – Privacy Requirements) 

 
Requirement reference: Privacy_104 

Informal description: 
Unlinkable driver identification between services: some applications will need to prevent two 
different services from linking their respective knowledge of the drivers 

Semi-formal description: 
PSR-1.3.2 (SysML General Requirements – Privacy Requirements) 

 
Requirement reference: Privacy_105 

Informal description: 
Unlinkable time ordering of messages: some applications will need to prevent or limit the possibility 
to order a set of predetermined critical messages in order to gain indirect information about the 
behaviour of a driver. 
1. Whenever a message is sent from a car to a RSU, PSAP and/or other fixed based Server archi-

tecture, unlinkable time ordering of all those messages must be ensured.  
Use Case Reference:  6, 7, 8 

2. Whenever a message is sent from a car to car, unlinkable time ordering of all those messages 
must be ensured.  
Use Case Reference: 5, 6 

Semi-formal description: 
PSR1.3.3 (SysML General Requirements – Privacy Requirements) 
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3.2.9 Confidentiality 

These requirements target classic confidentiality of transferred bilateral data. 

Requirement reference: Confidentiality_7 

Informal description: 
The Billing-Information shall remain confidential between the car and the RSU. 

Semi-formal description: 
confidential({GSM-Send(car,Billing-Information), Billing-Information, allBillingInfos, Lzero, {car, 
RSU(SP)}) 

Use case references: 7 

Notes: 
The confidentiality of the billing agent is already captured by Confidentiality_1. 

 
Requirement reference: Confidentiality_101 

Informal description: 
Firmware data should remain confidential when updates are distributed by the manufacturer: 
Whenever a flashing command (see Section 2.8.3.2.2) is sent to ECU, confidentiality of firmware 
data must be ensured.  
Use Case Reference: 14, 15, 17, 18 

Semi-formal description: 
FBSR-1.2.1 (SysML General requirements – Flashing Requirements) 

 
Requirement reference: Confidentiality_102 

Informal description: 
Confidentiality of firmware update should be ensured: attackers should not gain information out of 
the flashing process about the version of firmware being installed or the ECU being updated: 
Whenever a flashing command (see Section 2.8.3.2.2) is sent to ECU, confidentiality of firmware 
update must be ensured.  
Use Case Reference: 14, 15, 17, 18 

Semi-formal description: 
FBSR-1.2.1.1 (SysML General requirements – Flashing Requirements) 
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3.2.10 Availability  

Requirement reference: Availability_101 

Informal description: 
The availability of the bus should be ensured for some applications (especially safety critical ones): 
Whenever information is exchanged between different ECU’s, CU, HU, Sensors, and other units of 
vehicle availability of Bus must be ensured.  
Use Case Reference: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. (some of them could 
be considered with lower priority: 9, 10, 11, 12, 13, 14, 15) 

Semi-formal description: 
ASR-1.1 (SysML General Requirements – Availability Requirements) 

 
Requirement reference: Availability_102 

Informal description: 
The availability of ECU CPUs should be ensured for some applications (especially those that require 
some computation or message routing to take place): Whenever information is exchanged between 
different ECU’s, CU, HU, Sensors, and other units of vehicle availability of CPU must be ensured.  
Use Case Reference: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. (some of them could 
be considered with lower priority: 9, 10, 11, 12, 13, 14, 15) 

Semi-formal description: 
ASR-1.2 (SysML General Requirements – Availability & Overhead Requirements), ASR-1.2 
(SysML General Requirements – Availability Requirements) 

 
Requirement reference: Availability_103 

Informal description: 
The availability of RAM attached to an ECU should be ensured (to access some the ECU software or 
some data): Whenever information is exchanged between different ECU’s, CU, HU, Sensors, and 
other units of vehicle availability of RAM must be ensured.  
Use Case Reference: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. (some of them could 
be considered with lower priority: 9, 10, 11, 12, 13, 14, 15) 

Semi-formal description: 
ASR-1.3 (SysML General Requirements – Availability Requirements) 
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Requirement reference: Availability_104 

Informal description: 
The availability of external communication device should be ensured for applications that need to 
communicate with the environment of the TOE: 
1. Whenever information is sent from vehicle to neighbourhood vehicles, RSU, or others entities, 

availability of external communication device (communication unit) must be ensured.  
Use Case Reference:  1, 4, 5, 6, 7, 8, 11, 12, 15, 16, 17, 18 (some of them could be considered 
with lower priority: 11, 12, 15) 

2. Whenever information is received for a vehicle from neighbourhood vehicles, RSU, or other 
authorized entities, availability of external communication device (communication unit) must be 
ensured.  
Use Case Reference: 1, 2, 3, 7, 8, 10, 11, 12, 15, 16, 17, 18 (some of them could be considered 
with lower priority: 10, 11, 12, 15) 

Semi-formal description: 
ASR-1.4 (SysML General Requirements – Availability Requirements) 

 
Requirement reference: Availability_105 

Informal description: 
The availability of the radio medium should be ensured for applications that need to communicate 
with the environment of the TOE: 
1. Whenever information is sent from vehicle to neighbourhood vehicles, RSU or other entities, 

availability of radio medium (antennas) must be ensured.  
Use Case Reference: 1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17 (some of them could be 
considered with lower priority: 9, 11, 12, 13, 15) 

2. Whenever information is received for a vehicle from neighbourhood vehicles, RSU or other 
authorized entities, availability of radio medium (antennas) must be ensured.  
Use Case Reference: 1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17 (some of them could be 
considered with lower priority: 9, 10, 11, 12, 13, 15) 

Semi-formal description: 
ASR-2 (SysML General Requirements – Availability Requirements) 

 
Requirement reference: Availability_106 

Informal description: 
The highest availability should be ensured for highest priority functions (in particular those essential 
to safety-critical applications): 
1. Whenever information is sent from vehicle to neighbourhood vehicles, RSU or others entities 

highest availability of requested devices must be ensured for highest priority functions.  
Use Case Reference: 1, 4, 5, 6, 7, 8, 16, 17, 18  

2. Whenever information is received for a vehicle from neighbourhood vehicles, RSU or other 
entities, highest availability of requested devices must be ensured for highest priority functions. 
Use Case Reference: 1, 2, 3, 7, 8, 16, 17, 18 

Semi-formal description: 
ASR-3 (SysML General Requirements – Availability Requirements) 
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Requirement reference: Availability_107 

Informal description: 
Prevent Broadcast Brake DoS When Emergency Situation: Whenever an emergency brake message 
was broadcasted to a vehicle, availability of broadcasting system must be ensured.  
Use Case Reference: 5 

Semi-formal description: 
BDOS-2.2 (Braking use case DoS Requirements SysML diagram) 

 
Requirement reference: Availability_108 

Informal description: 
Brake Total Response Time: Whenever an emergency brake was triggered by the driver or 
automatically generated by the vehicular system availability of the braking total response time must 
be ensured.  

Use Case Reference: 1, 4, 5, 8 

Semi-formal description: 
BDOS-1.1 (Braking use case DoS Requirements SysML diagram) 

3.3 Priority of security requirements 

Analysis of the attack trees demonstrates that specific asset attacks may contribute to different 
attack objectives within the same attack tree, and may also contribute to attack objectives 
associated with other attack trees. For a particular asset attack, both the risk level (which 
reflects the severity of outcome for an attack, and the attack potential associated with the asset 
attacks that contribute to it) and the number of instances from the collection of attack trees are 
indicators of the importance of the asset attack and the likely benefits of countermeasures for 
reducing the probability of successful attacks of this nature. 

The severity measure is considered in terms of a four-component vector that reflects 
potential safety, operational, privacy and financial aspects that may be associated with a secu-
rity attack (see Section C.1.2). For safety-related security threats the “controllability” of the 
hazard by the driver (see [2][3]) constitutes an additional dimension for the probability con-
tribution to the relative risk level. The severity, controllability and attack potential estimates 
relating to the asset attacks identified from the attack trees are detailed in Appendix C. The 
proposed mapping of these parameters to relative risk level is summarised in Table 2, where 
non-safety risks and highly controllable safety-related risks are associated with controllability 
C=1, and only safety–related risks are associated with the higher controllability measures 
(i.e. Table 2 combines Table 9 and Table 11 of Appendix C). In principle the relative risk is 
also a four-component vector, inheriting this property from the severity, although in the 
EVITA analysis it is usually found to be of lower order. The class “R7+” that is used in Table 
2 denotes levels of risk that are unlikely to be considered acceptable, such as safety hazards 
with the highest severity classes and threat levels, coupled with very low levels of control-
lability. 
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Table 2 Combined risk graph for safety-related (C≥1) and non-safety (C=1) security 
threats 

Combined Attack Probability (A) Controllability 
(C) 

Severity (Si) 
A=1 A=2 A=3 A=4 A=5 

Si=1 R0 R0 R1 R2 R3 
Si=2 R0 R1 R2 R3 R4 
Si=3 R1 R2 R3 R4 R5 

C=1 

Si=4 R2 R3 R4 R5 R6 
SS=1 R0 R1 R2 R3 R4 
SS=2 R1 R2 R3 R4 R5 
SS=3 R2 R3 R4 R5 R6 C=2 

SS=4 R3 R4 R5 R6 R7 
SS=1 R1 R2 R3 R4 R5 
SS=2 R2 R3 R4 R5 R6 
SS=3 R3 R4 R5 R6 R7 

C=3 

SS=4 R4 R5 R6 R7 R7+ 
SS=1 R2 R3 R4 R5 R6 
SS=2 R3 R4 R5 R6 R7 
SS=3 R4 R5 R6 R7 R7+ C=4 

SS=4 R5 R6 R7 R7+ R7+ 

Analysis of the attack trees, which were based on the EVITA use cases [5] and an assumed 
architecture based on the EASIS project, has identified small numbers of possible attack 
methods on various system assets that could lead to the achievement of potential attacker 
objectives. These “asset attacks” represent the terminal nodes of the attack trees, and specific 
subsets of the security requirements that are considered to be necessary to protect against such 
attacks have been identified. The risk analysis identifies severity at the higher levels of the 
attack trees and works up associated probability measures from the asset attacks that termi-
nate the lower levels of the attack trees. Thus, the attack trees, risk analysis and security 
requirements are mapped to each other via the concept of asset attacks.  

The same asset attacks often appear in more than one of the attack trees, but may be asso-
ciated with different risk levels because the severity measures differ between trees. The 
results of the EVITA risk analysis activity (detailed in Appendix C – Threat and risk analysis) 
are therefore summarized in terms of the number of occurrences of particular risk levels asso-
ciated with specific asset attacks in Table 3, which also lists the security requirements to 
counter each such asset attack. Thus, Table 3 also provides an indication of the relative 
importance of the security requirements detailed in Section 3.2. 

The risk level reported in Table 3 is based on the worst case where more than one element 
of the risk vector is present in the risk analysis tables. Where alternative attack routes are 
available, the associated risk level is adjusted to reflect the attack probability for the asset 
attacks involved. Consequently, Table 3 indicates the worst case risk estimates for all of the 
attack alternatives listed in the risk analysis tables. Thus, if high risk asset attacks are miti-
gated by appropriate security countermeasures, the only change required to Table 3 is to 
remove or modify the entries corresponding to the risks that have been mitigated. The risk 
levels associated with lower risk attack alternatives remain unchanged.  
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Table 3 Summary findings of risk analysis 

Identified threats Risk analysis results 

Asset Attack Risk 
level  

Number of 
instances 

Security requirements 

Denial of 
service 

1 
2 

3 
1 

Authenticity_6, Availability_102, 
Availability_106 

Exploit 
implementa-
tion flaws 

4 
5 

1 
1 

Authenticity_1, Authenticity_2, Authenticity_3, 
Authenticity_4, Authenticity_5, Authenticity_101, 
Authenticity_102, Authenticity_103, 
Confidentiality_101, Confidentiality_102, 
Integrity_101, Integrity_102, Integrity_103, 
Integrity_104, Integrity_105, Freshness_101, 
Freshness_102, Freshness_103, Availability_101, 
Availability_102, Availability_103, 
Availability_106, Availability_107, 
Availability_108, Privacy_101, Privacy_102, 
Privacy_103, Privacy_104, Privacy_105 

Corrupt data 
or code 3 1 

Authenticity_1, Authenticity_2, Authenticity_5, 
Authenticity_6, Authenticity_101, 
Authenticity_102, Authenticity_103, 
Confidentiality_101, Confidentiality_102, 
Integrity_101, Integrity_102, Integrity_103, 
Integrity_104, Integrity_105, Freshness_101, 
Freshness_102, Freshness_103, Availability_101, 
Availability_102, Availability_103, 
Availability_106, Availability_107, 
Availability_108, Access_101, Access_102, 
Privacy_101, Privacy_102, Privacy_103, 
Privacy_104, Privacy_105 

Chassis 
Safety 
Controller 

Flash mali-
cious code 

4 
5 
6 

1 
1 
1 

Authenticity_1, Authenticity_2, Authenticity_3, 
Authenticity_4, Authenticity_5, Authenticity_101, 
Authenticity_102, Authenticity_103, 
Confidentiality_101, Confidentiality_102, 
Integrity_101, Integrity_102, Integrity_103, 
Integrity_104, Integrity_105, Freshness_101, 
Freshness_102, Freshness_103, Availability_101, 
Availability_102, Availability_103, 
Availability_106, Availability_107, 
Availability_108, Access_101, Access_102, 
Privacy_101, Privacy_102, Privacy_103, 
Privacy_104, Privacy_105 



 

 48

Identified threats Risk analysis results 

Asset Attack Risk 
level  

Number of 
instances 

Security requirements 

Corrupt or 
fake mes-
sages 

2 
3 
4 
5 
6 
7 

5 
5 
4 
1 
4 
3 

Authenticity_4, Authenticity_6, Authenticity_8, 
Authenticity_9, Authenticity_11, Authenticity_12, 
Authenticity_13, Authenticity_14, 
Authenticity_15, Authenticity_16, 
Authenticity_17, Authenticity_18, 
Authenticity_20,Authenticity_22, 
Authenticity_23, Authenticity_24, 
Authenticity_27, Authenticity_28, 
Confidentiality_1, Confidentiality_2, 
Authenticity_101, Authenticity_102, 
Authenticity_103, Integrity_101, Integrity_102, 
Integrity_103, Integrity_104, Integrity_105, 
Availability_102, Availability_106, 
Availability_107, Availability_108, Privacy_101, 
Privacy_103 

Jamming 4 
5 

3 
2 

Availability_103, Availability_104, 
Availability_105, Availability_107, 
Availability_108, Integrity_102 

Listen, inter-
cept, alter, 
inject, replay 

2 
3 
4 
5 
 

2 
11 
2 
1 
 

Authenticity_4, Authenticity_6, Authenticity_8, 
Authenticity_9, Authenticity_11, Authenticity_12, 
Authenticity_13, Authenticity_14, 
Authenticity_15, Authenticity_16, 
Authenticity_17, Authenticity_18, 
Authenticity_20, Authenticity_22, 
Authenticity_23, Authenticity_24, 
Authenticity_27, Authenticity_28, 
Confidentiality_1, Confidentiality_2, 
Confidentiality_3, Authenticity_101, 
Authenticity_102, Authenticity_103, 
Confidentiality_101, Confidentiality_102, 
Integrity_101, Integrity_102, Integrity_103, 
Integrity_104, Integrity_105, Freshness_101, 
Freshness_102, Freshness_103, Availability_102, 
Availability_105, Availability_107, 
Availability_108, Privacy_101, Privacy_103, 
Privacy_104, Privacy_105 

Wireless 
Communi-
cations 

Exploit vul-
nerability or 
implementa-
tion error 

2 
3 

2 
3 

Authenticity_4, Authenticity_6, Authenticity_8, 
Authenticity_9, Authenticity_11, Authenticity_12, 
Authenticity_13,Authenticity_14, 
Authenticity_15, Authenticity_16, 
Authenticity_17, Authenticity_18, 
Authenticity_20, Authenticity_22, 
Authenticity_23, Authenticity_24, 
Authenticity_27, Authenticity_28, 
Confidentiality_1, Confidentiality_2, 
Confidentiality_3, Authenticity_101, 
Authenticity_102, Authenticity_103, 
Confidentiality_101, Confidentiality_102, 
Integrity_101, Integrity_102, Integrity_103, 
Integrity_104, Integrity_105, Freshness_101, 
Freshness_102, Freshness_103, Availability_102, 
Availability_105, Availability_107, 
Availability_108, Privacy_101, Privacy_103, 
Privacy_105 
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Identified threats Risk analysis results 

Asset Attack Risk 
level  

Number of 
instances 

Security requirements 

Jamming 3 4 

Availability_101, Availability_103, 
Availability_104, Availability_105, 
Availability_107, Availability_108, 
Availability_106, Integrity_102 

Insert fake 
data 1 1 

Authenticity_1, Authenticity_2, Authenticity_3, 
Authenticity_4, Authenticity_5, Authenticity_6, 
Authenticity_7, Authenticity_8, Authenticity_9, 
Authenticity_10, Authenticity_11, 
Authenticity_12, Authenticity_13, 
Authenticity_14, Authenticity_15, 
Authenticity_16, Authenticity_17, 
Authenticity_18, Authenticity_24, 
Authenticity_27, Authenticity_28, 
Authenticity_101, Authenticity_103, 
Availability_102, Availability_106, Privacy_101, 
Privacy_103, Privacy_105, Integrity_105 

Disable or 
denial of 
service 

4 1 

Authenticity_1, Authenticity_2, Authenticity_3, 
Authenticity_4, Authenticity_5, Authenticity_6, 
Authenticity_7, Authenticity_8, Authenticity_9, 
Authenticity_10, Authenticity_11, 
Authenticity_12, Authenticity_13, 
Authenticity_14, Authenticity_15, 
Authenticity_16, Authenticity_17, 
Authenticity_18, Authenticity_24, 
Authenticity_27, Authenticity_28, 
Availability_101, Availability_103, 
Availability_104, Availability_105, 
Availability_107, Availability_108, 
Availability_106, Integrity_102 

Listen, inter-
cept, alter, 
inject, replay 

2 
3 
4 

6 
2 
3 

Authenticity_1, Authenticity_2, Authenticity_3, 
Authenticity_4, Authenticity_5, Authenticity_6, 
Authenticity_7, Authenticity_8, Authenticity_9, 
Authenticity_10, Authenticity_11, 
Authenticity_12, Authenticity_13, 
Authenticity_14, Authenticity_15, 
Authenticity_16, Authenticity_17, 
Authenticity_18, Authenticity_24, 
Authenticity_27, Authenticity_28, 
Confidentiality_3, Authenticity_101, 
Authenticity_102, Authenticity_103, 
Confidentiality_101, Confidentiality_102, 
Integrity_101, Integrity_102, Integrity_103, 
Integrity_104, Integrity_105, Freshness_101, 
Freshness_102, Freshness_103, Availability_101, 
Availability_102, Availability_103, 
Availability_104, Availability_107, 
Availability_108, Availability_106, Access_101, 
Access_102, Privacy_101, Privacy_102, 
Privacy_103, Privacy_105 

In-car com-
munications 

Configura-
tion change 

2 
3 

1 
1 

Integrity_101, Integrity_102, Integrity_103, 
Integrity_104 
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Identified threats Risk analysis results 

Asset Attack Risk 
level  

Number of 
instances 

Security requirements 

Exploit vul-
nerability or 
implementa-
tion error 

2 
3 

1 
1 

Authenticity_1, Authenticity_2, Authenticity_3, 
Authenticity_4, Authenticity_5, Authenticity_6, 
Authenticity_7, Authenticity_8, Authenticity_9, 
Authenticity_10, Authenticity_11, 
Authenticity_12, Authenticity_14, 
Authenticity_14, Authenticity_15, 
Authenticity_16, Authenticity_17, 
Authenticity_18, Authenticity_24, 
Authenticity_27, Authenticity_28, 
Confidentiality_3, Authenticity_101, 
Authenticity_102, Authenticity_103, 
Confidentiality_101, Confidentiality_102, 
Integrity_101, Integrity_102, Integrity_103, 
Integrity_104, Integrity_105, Freshness_101, 
Freshness_102, Freshness_103, Availability_101, 
Availability_102, Availability_103, 
Availability_104, Availability_105, 
Availability_106, Availability_107, 
Availability_108, Privacy_101, Privacy_101, 
Privacy_102, Privacy_103, Privacy_105 

Jamming 5 1 

Authenticity_3, Authenticity_4, Authenticity_7, 
Authenticity_8, Authenticity_10, Authenticity_11, 
Authenticity_14, Authenticity_15, 
Availability_106, Integrity_102 

GPS 

Spoofing 

3 
4 
5 
6 
7 

4 
3 
2 
1 
1 

Authenticity_3, Authenticity_4, Authenticity_7, 
Authenticity_8, Authenticity_10, Authenticity_11, 
Authenticity_14, Authenticity_15, 
Authenticity_103, Availability_106, Privacy_101, 
Privacy_103, Privacy_105 

Communica-
tions Unit 

Denial of 
service 

3 
4 

3 
2 

Authenticity_3, Authenticity_4, Authenticity_6, 
Authenticity_7, Authenticity_8, Authenticity_9, 
Authenticity_10, Authenticity_11, 
Authenticity_12, Authenticity_13, 
Authenticity_14, Authenticity_15, 
Authenticity_16, Authenticity_17, 
Authenticity_27, Authenticity_28, 
Availability_102, Availability_104, 
Availability_106, Availability_107, 
Availability_108, Integrity_102 
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Identified threats Risk analysis results 

Asset Attack Risk 
level  

Number of 
instances 

Security requirements 

Corrupt code 
or data 2 1 

Authenticity_3, Authenticity_4, Authenticity_6, 
Authenticity_7, Authenticity_8, Authenticity_9, 
Authenticity_10, Authenticity_11, 
Authenticity_12, Authenticity_13, 
Authenticity_14, Authenticity_15, 
Authenticity_16, Authenticity_17, 
Authenticity_27, Authenticity_28, 
Confidentiality_1, Confidentiality_3, 
Confidentiality_7, Authenticity_101, 
Authenticity_102, Authenticity_103, 
Confidentiality_102, Integrity_101, Integrity_102, 
Integrity_103, Integrity_104, Integrity_105, 
Freshness_101, Freshness_102, Freshness_103, 
Availability_101, Availability_102, 
Availability_103, Availability_104, 
Availability_105, Availability_106, 
Availability_107, Availability_108, Access_101, 
Access_102, Privacy_101, Privacy_102, 
Privacy_103, Privacy_104, Privacy_105 

Exploit vul-
nerability of 
external 
communica-
tion proto-
cols 

2 
3 

4 
2 

Authenticity_3, Authenticity_4, Authenticity_6, 
Authenticity_8, Authenticity_9, Authenticity_11, 
Authenticity_12, Authenticity_13, 
Authenticity_14, Authenticity_15, 
Authenticity_16, Authenticity_17, 
Authenticity_27, Authenticity_28, 
Confidentiality_1, Confidentiality_3, 
Confidentiality_7, Authenticity_101, 
Authenticity_102, Authenticity_103, 
Confidentiality_102, Integrity_101, Integrity_102, 
Integrity_103, Integrity_104, Integrity_105, 
Freshness_101, Freshness_102, Freshness_103, 
Availability_101, Availability_102, 
Availability_104, Availability_105, 
Availability_106, Availability_107, 
Availability_108, Privacy_101, Privacy_102, 
Privacy_103, Privacy_104, Privacy_105 

Malware 
flashed with 
OBD update 

1 
2 
3 
5 
6 

3 
2 
1 
1 
1 

Authenticity_3, Authenticity_4, Authenticity_6, 
Authenticity_8, Authenticity_10, Authenticity_11, 
Authenticity_12, Authenticity_13, 
Authenticity_14, Authenticity_15, 
Authenticity_16, Authenticity_17, 
Authenticity_27, Authenticity_28, 
Confidentiality_1, Confidentiality_3, 
Confidentiality_7, Authenticity_101, 
Authenticity_102, Authenticity_103, 
Confidentiality_102, Integrity_101, Integrity_102, 
Integrity_103, Integrity_104, Integrity_105, 
Freshness_101, Freshness_102, Freshness_103, 
Availability_101, Availability_102, 
Availability_103, Availability_104, 
Availability_105, Availability_106, 
Availability_107, Availability_108, Access_101, 
Access_102, Privacy_101, Privacy_102, 
Privacy_103, Privacy_104, Privacy_105 
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Identified threats Risk analysis results 

Asset Attack Risk 
level  

Number of 
instances 

Security requirements 

Malware 
delivered by 
mobile 
device 

1 
2 
3 

1 
2 
1 

Authenticity_3, Authenticity_4, Authenticity_6, 
Authenticity_8, Authenticity_9, Authenticity_10, 
Authenticity_11, Authenticity_12, 
Authenticity_13, Authenticity_14, 
Authenticity_15, Authenticity_16, 
Authenticity_27, Authenticity_28, 
Confidentiality_1, Confidentiality_3, 
Confidentiality_7, Authenticity_101, 
Authenticity_102, Authenticity_103, 
Confidentiality_102, Integrity_101, Integrity_102, 
Integrity_103, Integrity_104, Integrity_105, 
Freshness_101, Freshness_102, Freshness_103, 
Availability_101, Availability_102, 
Availability_103, Availability_104, 
Availability_105, Availability_106, 
Availability_107, Availability_108, Access_101, 
Access_102, Privacy_101, Privacy_102, 
Privacy_103, Privacy_104, Privacy_105 

Manipulate 4 
7 

4 
1 

Authenticity_1, Authenticity_2, 
Authenticity_5, Authenticity_9, Authenticity_12, 
Authenticity_13, Authenticity_16, 
Authenticity_103, Availability_106 

Malware 
flashed 

3 
4 

1 
1 

Authenticity_1, Authenticity_2, Authenticity_5, 
Authenticity_9, Authenticity_12, Authenticity_13, 
Authenticity_16, Authenticity_101, 
Authenticity_102, Authenticity_103, 
Confidentiality_101, Confidentiality_102, 
Integrity_101, Integrity_102, Integrity_103, 
Integrity_104, Integrity_105, Freshness_101, 
Freshness_102, Freshness_103, Availability_101, 
Availability_102, Availability_103, 
Availability_106, Availability_107, 
Availability_108, Access_101, Access_102, 
Privacy_101, Privacy_102, Privacy_103, 
Privacy_104, Privacy_105 

Disable or 
denial of 
service 

4 1 

Authenticity_1, Authenticity_2, Authenticity_5, 
Authenticity_9, Authenticity_12, Authenticity_13, 
Authenticity_16, Availability_102, 
Availability_106, Availability_107, 
Availability_108, Integrity_102 

In-car 
sensors 

Spoof 3 
4 

2 
1 

Authenticity_1, Authenticity_2, Authenticity_5, 
Authenticity_9, Authenticity_12, Authenticity_13, 
Authenticity_16, Authenticity_103, 
Availability_106, Access_101, Access_102, 
Privacy_101, Privacy_103, Privacy_104, 
Privacy_105 
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Identified threats Risk analysis results 

Asset Attack Risk 
level  

Number of 
instances 

Security requirements 

Gain root 
access to 
embedded 
OS 

1 
3 
4 

1 
2 
2 

Authenticity_7, Authenticity_8, Authenticity_9, 
Authenticity_10, Authenticity_11, 
Authenticity_12, Authenticity_17, 
Authenticity_18, Authenticity_19, 
Authenticity_20, Authenticity_21, 
Authenticity_22, Authenticity_23, 
Confidentiality_1, Confidentiality_2, 
Authenticity_101, Authenticity_102, 
Authenticity_103, Confidentiality_101, 
Confidentiality_102, Integrity_101, Integrity_102, 
Integrity_103, Integrity_104, Integrity_105, 
Freshness_101, Freshness_102, Freshness_103, 
Availability_101, Availability_102, 
Availability_103, Availability_105, 
Availability_106, Availability_107, 
Availability_108, Access_101, Access_102, 
Privacy_101, Privacy_102, Privacy_103, 
Privacy_104, Privacy_105 

Exploit vul-
nerability or 
implementa-
tion error 

2 
3 
4 
 

2 
2 
1 
 

Authenticity_7, Authenticity_8, Authenticity_9, 
Authenticity_10, Authenticity_11, 
Authenticity_12, Authenticity_17, 
Authenticity_18, Authenticity_19, 
Authenticity_20, Authenticity_21, 
Authenticity_22, Authenticity_23, 
Confidentiality_1, Confidentiality_2, 
Authenticity_101, Authenticity_102, 
Authenticity_103, Confidentiality_101, 
Confidentiality_102, Integrity_101, Integrity_102, 
Integrity_103, Integrity_104, Integrity_105, 
Freshness_101, Freshness_102, Freshness_103, 
Availability_101, Availability_102, 
Availability_103, Availability_105, 
Availability_106, Availability_107, 
Availability_108, Access_101, Access_102, 
Privacy_101, Privacy_102, Privacy_103, 
Privacy_104, Privacy_105 

Head unit 

Malware 
flashed 

1 
5 

1 
1 

Authenticity_7, Authenticity_8, Authenticity_9, 
Authenticity_10, Authenticity_11, 
Authenticity_12, Authenticity_17, 
Authenticity_18, Authenticity_19, 
Authenticity_20, Authenticity_21, 
Authenticity_22, Authenticity_23, 
Confidentiality_1, Confidentiality_2, 
Authenticity_101, Authenticity_102, 
Authenticity_103, Confidentiality_101, 
Confidentiality_102, Integrity_101, Integrity_102, 
Integrity_103, Integrity_104, Integrity_105, 
Freshness_101, Freshness_102, Freshness_103, 
Availability_101, Availability_102, 
Availability_103, Availability_105, 
Availability_106, Availability_107, 
Availability_108, Access_101, Access_102, 
Privacy_101, Privacy_102, Privacy_103, 
Privacy_104, Privacy_105 

In-car ECU 
Disable or 
denial of 
service 

2 1 
Authenticity_25, Authenticity_26, 
Availability_102, Availability_106, 
Availability_107, Availability_108, Integrity_102 
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Identified threats Risk analysis results 

Asset Attack Risk 
level  

Number of 
instances 

Security requirements 

Malware 
flashed with 
OBD update 

1 
2 

4 
3 

Authenticity_25, Authenticity_26, 
Confidentiality_4, Confidentiality_5, 
Confidentiality_6, Authenticity_101, 
Authenticity_102, Authenticity_103, 
Confidentiality_101, Confidentiality_102, 
Integrity_101, Integrity_102, Integrity_103, 
Integrity_104, Integrity_105, Freshness_101, 
Freshness_102, Freshness_103, Availability_101, 
Availability_102, Availability_103, 
Availability_106, Availability_107, 
Availability_108, Access_101, Access_102, 
Privacy_101, Privacy_102, Privacy_103, 
Privacy_104, Privacy_105 

Configura-
tion change 

2 
3 

1 
1 

Authenticity_25, Authenticity_26, 
Authenticity_29, Confidentiality_4, 
Confidentiality_5, Confidentiality_6, 
Integrity_101, Integrity_102, Integrity_103, 
Integrity_104, Integrity_105, Availability_106 

Exploit vul-
nerability or 
implementa-
tion error 

2 
3 

1 
1 

Authenticity_25, Authenticity_26, 
Confidentiality_4, Confidentiality_5, 
Confidentiality_6, Authenticity_101, 
Authenticity_102, Authenticity_103, 
Confidentiality_101, Confidentiality_102, 
Integrity_101, Integrity_102, Integrity_103, 
Integrity_104, Integrity_105, Freshness_101, 
Freshness_102, Freshness_103, Availability_101, 
Availability_102, Availability_103, 
Availability_106, Availability_107, 
Availability_108, Access_101, Access_102, 
Privacy_101, Privacy_102, Privacy_103, 
Privacy_104, Privacy_105 

Powertrain 
Controller 

Malware 
flashed with 
OBD update 

1 
5 
6 

2 
1 
1 

Authenticity_101, Authenticity_102, 
Authenticity_103, Confidentiality_101, 
Confidentiality_102, Integrity_101, Integrity_102, 
Integrity_103, Integrity_104, Integrity_105, 
Freshness_101, Freshness_102, Freshness_103, 
Availability_101, Availability_102, 
Availability_103, Availability_106, 
Availability_107, Availability_108, Access_101, 
Access_102, Privacy_101, Privacy_102, 
Privacy_103, Privacy_104, Privacy_105 

Powertrain 
Peripherals 

Corrupt code 
or data 1 2 

Authenticity_101, Authenticity_102, 
Authenticity_103, Confidentiality_101, 
Confidentiality_102, Integrity_101, Integrity_102, 
Integrity_103, Integrity_104, Integrity_105, 
Freshness_101, Freshness_102, Freshness_103, 
Availability_102, Availability_103, 
Availability_106, Availability_107, 
Availability_108, Access_101, Access_102, 
Privacy_101, Privacy_102, Privacy_103, 
Privacy_104, Privacy_105 
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Identified threats Risk analysis results 

Asset Attack Risk 
level  

Number of 
instances 

Security requirements 

Physical 
access 3 1 

Authenticity_101, Authenticity_102, 
Authenticity_103, Integrity_101, Integrity_102, 
Integrity_103, Integrity_104, Integrity_105, 
Freshness_101, Freshness_102, Freshness_103, 
Availability_101, Availability_102, 
Availability_103, Availability_104, 
Availability_106, Availability_107, 
Availability_108, Access_101, Access_102, 
Privacy_101, Privacy_103, Privacy_105 

In-car Inter-
faces 

Exploit vul-
nerabilities, 
introduce 
bogus data 

3 
4 
5 

1 
1 
1 

Authenticity_17, Authenticity_24, 
Confidentiality_5, Confidentiality_6, 
Confidentiality_1, 

Exploit con-
figuration 
errors 

2 
3 

2 
3 

Authenticity_8, Authenticity_9, Authenticity_11, 
Authenticity_12, Authenticity_13, 
Authenticity_14, Authenticity_18, 
Confidentiality_1, Confidentiality_7, 
Confidentiality_1, Authenticity_101, 
Authenticity_103, Integrity_101, Integrity_102, 
Integrity_103, Integrity_104, Integrity_105, 
Freshness_101, Freshness_102, Freshness_103, 
Availability_105, Availability_107, 
Availability_108, Access_101 

Gain root 
access 

2 
3 

1 
1 

Authenticity_8, Authenticity_9, Authenticity_11, 
Authenticity_12, Authenticity_13, 
Authenticity_14, Authenticity_18, 
Confidentiality_1, Confidentiality_7, 
Confidentiality_1, Authenticity_101, 
Authenticity_103, Integrity_101, Integrity_102, 
Integrity_103, Integrity_104, Integrity_105, 
Freshness_101, Freshness_102, Freshness_103, 
Availability_102, Availability_105, 
Availability_107, Availability_108, Access_101, 
Privacy_101, Privacy_103, Privacy_104, 
Privacy_105 

Roadside 
Unit 

Exploit pro-
tocol imple-
mentation 
flaws 

2 
3 
5 

3 
3 
 

Authenticity_8, Authenticity_9, Authenticity_11, 
Authenticity_12, Authenticity_13, 
Authenticity_14, Authenticity_18, 
Confidentiality_1, Confidentiality_7, 
Authenticity_101, Authenticity_103, 
Confidentiality_102, Integrity_101, Integrity_102, 
Integrity_103, Integrity_104, Integrity_105, 
Freshness_101, Freshness_102, Freshness_103, 
Availability_102, Availability_105, 
Availability_107, Availability_108, Access_101, 
Privacy_101, Privacy_103, Privacy_104, 
Privacy_105 
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Identified threats Risk analysis results 

Asset Attack Risk 
level  

Number of 
instances 

Security requirements 

Physical 
access  Not in 

scope 

Authenticity_8, Authenticity_9, Authenticity_11, 
Authenticity_12, Authenticity_13, 
Authenticity_14, Authenticity_18, 
Confidentiality_1, Confidentiality_7, 
Authenticity_101, Authenticity_103, 
Integrity_101, Integrity_102, Integrity_103, 
Integrity_104, Integrity_105, Freshness_101, 
Freshness_102, Freshness_103, Availability_102, 
Availability_105, Availability_107, 
Availability_108, Access_101, Privacy_101, 
Privacy_103, Privacy_104, Privacy_105 

Roadside 
Unit to 
Authority 
Communi-
cations 

Listen, inter-
cept, alter, 
inject, replay 

 Not in 
scope 

Authenticity_101, Authenticity_103, 
Integrity_101, Integrity_102, Integrity_103, 
Integrity_104, Integrity_105, Freshness_101, 
Freshness_102, Freshness_103, Availability_102, 
Access_101, Privacy_101, Privacy_103, 
Privacy_104, Privacy_105 

Denial of 
service 1 3 Availability_105, Availability_106 

E-call Ser-
vice Centre 
Interfaces Exploit inter-

faces 3 3 

Authenticity_15, Authenticity_16, 
Confidentiality_1, Authenticity_101, 
Authenticity_103, Availability_102, 
Availability_106 

E-call Ser-
vice Centre Overload 2 3 Availability_106 

Keys 

Illegal acqui-
sition, modi-
fication or 
breaking 

1 
2 

1 
3 

Authenticity_25, Authenticity_26, 
Authenticity_29, Confidentiality_4, 
Confidentiality_5, Confidentiality_6, 
Authenticity_101, Authenticity_102, 
Authenticity_103, Confidentiality_101, 
Confidentiality_102, Integrity_101, Integrity_102, 
Integrity_103, Integrity_104, Integrity_105, 
Freshness_101, Freshness_102, Freshness_103, 
Availability_103, Availability_106, 
Availability_107, Availability_108, Access_101, 
Access_102, Privacy_101, Privacy_102, 
Privacy_103, Privacy_104, Privacy_105 
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4 Conclusions 

Future automotive safety applications based on vehicle-to-vehicle and vehicle-to-infra-
structure communication entail new security requirements for automotive on-board networks. 
Security measures that are intended to counter potential threats will inevitably contribute to 
the cost and complexity of future systems. Consequently, there is a need to ensure that such 
measures are commensurate with the perceived risks. This report endeavours to put forward a 
process to determine which security measures are appropriate and cost effective onto an 
objective basis. The security engineering process is applied to an exemplary automotive on-
board network, considering exemplary use cases and typical threats. 

The security requirements that were derived from this process are based on analysis of a 
range of possible applications, rather than a specific and well-defined system, and assume an 
underlying architectural topology. These requirements will require further refinement in order 
to develop specifications for more concrete system development, where design decisions will 
affect the need for and implementation of measures to respond to these requirements. This 
process will be further investigated within the EVITA project in the secure on-board archi-
tecture design and verification. 
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Appendix A – Glossary 

This appendix provides a list of key terms and their definitions as well as the source of these 
definitions. Cross-references within this glossary are indicated by the use of bold italics in the 
definitions. 

Where possible, the definitions used are taken directly from relevant standards or other 
publications. In a number of cases, terms and phrases are used with a particular meaning in 
this document for which explicit definitions have not been identified in relevant standards or 
other publications. In these cases the source of these definitions is indicated as “EVITA”. In 
some cases the definitions are cross-referenced to sections within this document that contain 
more detailed descriptions. In some cases a definition from a relevant standard has been 
adapted for the purposes of this work, in which case both the EVITA version and the standard 
version (in brackets) are presented together in order to illustrate the differences.  

Term Definition Source 
anonymity the property that the relation between an 

entity and its identity is confidential to 
authorized entities 

Section 2.1.1.7 

assets information or resources that could be 
subject to attack (possibly, but not neces-
sarily, requiring protection) 
[entities that the owner of the TOE pre-
sumably places value upon] 
[information or resources to be protected 
by the countermeasures of a TOE] 

EVITA 
 
 
ISO/IEC 15408-1 
Rev. 3 (draft) 
ISO/IEC 15408-1 

asset attack a particular type of attack on a specific 
asset 

EVITA 

assurance grounds for confidence that an entity meets 
its security objectives. 

ISO/IEC 15408-1 

attack exploitation of vulnerabilities to obtain un-
authorized access to or control of assets 

EVITA 

attacker an individual or group aiming to mount an 
attack  

EVITA 

attack goal the ultimate objective of an attack, pro-
viding the attacker with a benefit of some 
kind through achieving a degree of harm to 
one or more stakeholders 

EVITA 

attack method one or more possible combinations of asset 
attacks that could achieve a specific attack 
objective 

EVITA 
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attack objective one or more system states or conditions 
affecting the stakeholders that could satisfy 
a particular attack goal 

EVITA 

attack potential measure of the effort to be expended in 
attacking a TOE, expressed in terms of an 
attacker’s expertise, resources and motiva-
tion 
[the perceived potential for success of an 
attack, should an attack be launched, 
expressed in terms of an attacker’s exper-
tise, resources and motivation] 

ISO/IEC 15408-1 
Rev. 3 (draft) 
 
 
ISO/IEC 15408-1 

attack probability qualitative measure of the likelihood of a 
successful attack using a numerical scale 
mapped to the five attack potential classes 
of the Common Criteria, ranging from 1 
(corresponding to “beyond high”) up to 5 
(corresponding to “basic”)  

EVITA 

attack tree graphical representation of possible 
sequences of events to implement an 
attack, derived from an initiating attack 
goal 

B. Schneier, 
“Secrets and Lies”, 
Chapter 21, Wiley, 
2000 [16] 

attacker type classification of attacker by budgetary 
resources, technical skills, and motivation 

EVITA 

automotive safety 
integrity level (ASIL) 

one of four classes to specify the item’s 
necessary safety requirements for achiev-
ing an acceptable residual risk with D rep-
resenting the highest and A the lowest 
class 

ISO/DIS 26262-1 

authenticity includes data origin authenticity as well as 
integrity (in terms of format and content) 
and freshness for specified information 

Section 2.1.2.3 

availability the property that the specified device or 
service is operational when required 

Section 2.1.1.9 

confidentiality the property that specified information can 
only be accessed by authorized entities  

Section 2.1.1.8  

controllability avoidance of a specified harm or damage 
through timely reactions of the persons 
involved 

ISO/DIS 26262-1 

controlled access the property that only authorized entities 
can access specified data or perform speci-
fied actions 

Section 2.1.1.4 

combined attack 
probability 

estimated attack probability for an attack 
method involving a particular combination 
of asset attacks 

EVITA 
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data origin authenticity the property that specified information 
truly originates from the claimed source 

Section 2.1.1.2 

evaluation assessment of a PP, an ST or a TOE, 
against defined criteria. 

ISO/IEC 15408-1 

evaluation assurance 
level (EAL) 

a package consisting of assurance compo-
nents from ISO/IEC 15408-3 that repre-
sents a point on ISO/IEC 15408 predefined 
assurance scale 

ISO/IEC 15408-1 

exposure state of being in an operational situation 
that may be hazardous if coincident with 
the attack method under consideration 
[state of being in an operational situation 
that may be hazardous if coincident with 
the failure mode under consideration] 

EVITA 
 
 
ISO/DIS 26262-1 

formal expressed in a restricted syntax language 
with defined semantics based on well-
established mathematical concepts 

ISO/IEC 15408-1 

formal verification mathematical proof of an algorithm or a 
specification against properties 

ISO/DIS 26262-1 

freshness the property that specified information is 
not a copy of the same information 
received by an entity at an earlier time 

Section 2.1.1.5 

harm a negative impact on stakeholders (in 
terms of physical safety, privacy, personal 
or organisational finances, or operational 
performance) either directly or indirectly 
as a result of attacks on vehicle systems or 
their operating environment 
[physical injury or damage to the health of 
people either directly or indirectly as a 
result of damage to property or the envi-
ronment] 

EVITA 
 
 
 
 
 
ISO/DIS 26262-1 

hazard potential source of harm ISO/DIS 26262-1 
hazardous event coincidence of hazard and exposure ISO/DIS 26262-1 
informal expressed in natural language ISO/IEC 15408-1 
informal notation description technique that does not have its 

syntax completely defined 
ISO/DIS 26262-1 

integrity the property that specified information 
remains unchanged between observations 

Section 2.1.1.3 

non-repudiation The property that an entity cannot deny 
that an action was performed by that entity 

Section 2.1.1.6 
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organisational security 
policies 

one or more security rules, procedures, 
practices, or guidelines imposed by an 
organisation upon its operations 

ISO/IEC 15408-1 

privacy the property that the relation between an 
entity and specified information is confi-
dential to authorized entities 

Section 2.1.1.7 

protection profile (PP) an implementation-independent set of 
security requirements for a category of 
TOEs that meet specific consumer needs. 

ISO/IEC 15408-1 

residual risk risk remaining after protective measures 
have been taken 

MISRA Safety 
Analysis, 2007 

risk combination of the probability of occur-
rence of harm and the severity of that harm 

ISO/DIS 26262-1 

risk graph mapping of combinations of qualitative 
severity and probability measures associ-
ated with possible harm to a qualitative 
risk level scale 

EVITA 

risk level qualitative ranking of the relative risk 
associated with possible harm based on a 
range of qualitative severity and probabil-
ity measures 

EVITA 

safety functions functions to be implemented by a safety-
related system, which are intended to 
maintain a safe state in respect of specified 
hazards 

MISRA Safety 
Analysis, 2007 

safety integrity the degree of confidence in a safety-related 
system satisfactorily performing the 
required safety functions under all the 
stated conditions within a stated period of 
time  

MISRA Safety 
Analysis, 2007 

safety integrity level 
(SIL) 

discrete level for specifying the safety 
integrity requirements of the safety func-
tions allocated to safety-related systems, 
where SIL 4 has the highest level of safety 
integrity and SIL 1 has the lowest 

MISRA Safety 
Analysis, 2007 

safety-related system a designated system that: 
• implements the required safety functions 

necessary to achieve or maintain a safe 
state for the total system; and 

• is intended to achieve, on its own or 
with other systems, the necessary safety 
integrity for the required safety func-
tions 

MISRA Safety 
Analysis, 2007 
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safety requirements the requirements of the safety functions 
that have to be fulfilled by the safety-
related systems 

MISRA Safety 
Analysis, 2007 

security function (SF) a part or parts of the TOE that have to be 
relied upon for enforcing a closely related 
subset of the rules from the TSP 

ISO/IEC 15408-1 

security target (ST) a set of security requirements and specifi-
cations to be used as the basis for evalua-
tion of an identified TOE  

ISO/IEC 15408-1 

semiformal expressed in a restricted syntax language 
with defined semantics 

ISO/IEC 15408-1 

severity measure of the expected degree of harm to 
stakeholders associated with a specific 
attack objective 
[measure of the expected degree of harm 
to an endangered individual in a specific 
situation] 

EVITA 
 
 
ISO/DIS 26262-1 

stakeholders individuals and/or organizations that may 
suffer harm as a result of a successful 
attack on one or more assets (may include 
vehicle users, other road users, ITS service 
operators, civil authorities, vehicle manu-
facturers and system suppliers) 

EVITA 

target of evaluation 
(TOE) 

an IT product or system and its associated 
guidance documentation that is the subject 
of an evaluation 

ISO/IEC 15408-1 

TOE security policy 
(TSP) 

a set of rules that regulate how assets are 
managed, protected and distributed within 
a TOE 

 

verification determination of completeness and cor-
rectness of specification or implementation 
of requirements from a previous phase 

ISO/DIS 26262-1 
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Appendix B – Dark-side scenarios 

B.1 Introduction 

The main objectives of the dark-side scenario analysis are, firstly, to identify security threats 
and, secondly, to provide a basis for assessing risk, which reflects the severity and probability 
of attacks. We use the approach of attack trees [16] for this purpose. Attack trees are related to 
fault trees, which are normally used for identifying safety hazards.  

In order to support risk analysis, we propose to structure the attack trees in the following 
manner. The root of an attack tree (Level 0) is an abstract “attack goal” that is associated with 
a benefit to the attacker of some kind. Its child nodes (Level 1) represent different “attack 
objectives” that could satisfy this attack goal. The attack objectives have a negative impact on 
the stakeholders (e.g. vehicle users, other road users, ITS service operators, civil authorities, 
vehicle manufacturers and system suppliers). Thus, the severity of the outcome can be esti-
mated at this level. The attack objectives may be further decomposed into a number of “attack 
methods” that could be employed to achieve the attack objective. Each attack method will in 
turn be based on a logical combination (AND/OR) of attacks against one or more “assets” 
populating the lowest levels of the attack tree. These are described here as “asset attacks”, and 
are the terminal nodes of the tree. The tree is truncated where the probability of success can 
be estimated for asset attacks. These individual probabilities can subsequently be combined 
using the tree logic to assess the overall probability for each of the attack methods. 

This generic tree structure is illustrated in Figure 3. The possible depth of the analysis is 
inevitably more limited in the early concept stage than when specific design and implementa-
tion decisions have been made.  

Figure 3 Generic attack tree structure 
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B.2 Attack motivations 

B.2.1 Overview 

Possible attack motivations can be broadly categorized as follows: 

• harming an individual 

– driver or passenger 

– for the purposes of criminal or terrorist activity 

• harming groups 

– e.g. drivers, city/state economy 

– for the purposes of criminal or terrorist activity 

• gaining personal advantage 

– e.g. identity or information theft, vehicle theft, fraudulent commercial transactions, 
enhanced traffic privileges 

– for the purposes criminal activity 

• gaining organisational advantage 

– e.g. avoiding liability for accidents, acquiring vehicle design information 

– for the purposes of fraud, industrial/state espionage or sabotage 

The attack motivations suggest particular types of attackers and attacker capabilities, as well 
as associated attack goals.  

B.2.2 Do psychological or physical harm to the driver 

The goal of the attacker is to harm the driver. While this global goal can somehow be related 
to others, like gaining financial or personal advantages, we consider only the situations where 
there is no other aim in the attack. Harming the driver (and / or the car occupants) can be 
refined in several subclasses:  

• Undermining the reputation of the driver (either her self-esteem or from a legal point of 
view). In order to compromise the reputation, the attacker will very likely impersonate her 
or her car in one way or another and perform actions with these stolen identities, 
e.g. violating some laws (speed limits) while pretending to be the victim.  

• By preventing her from using her vehicle (denial of use). The denial of use attack intends 
to cause some damage, like missing an important date. Remote control of the target vehicle 
is an interesting possibility because more direct actions involving physical access may be 
considered as more dangerous by the attacker.  

• By injuring her (or worse). While not necessarily the most important attack, it is probably 
the first one that comes in mind when dealing with automated cars because it is most 
spectacular. The attacker will probably try to cause an accident.  
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B.2.3 Gain information about the driver  

In general the growing number of sensor allows measuring many quantities. The data from 
these measurements are processed and partly stored. The attacker will either try to intercept 
the communication between the sensors and the rest of the ICT system or get access to the 
memory where this data is stored. Car data allows the construction of a profile for the car – 
the time of activity, location, braking, acceleration and steering. This information can be used 
for different purposes – lawful as well as un-lawful ones – that all have a negative impact on 
the car owner or driver’s privacy:  

• Law enforcement authorities will try to get access to mobility profiles in order to identify 
cars that have been involved in accident and criminal activities.  

• Insurance companies have a high interest in getting access to car data in order to calculate 
a premium based on the individual risk related to the way a car is driven.  

• Criminals could use the information from the mobility profile and actual data about the 
car’s location for planning to steal or hijack the car or to kidnap the driver.  

B.2.4 Gain reputation as a hacker  

The main (maybe the only) goal of the attacker is to gain reputation by breaking/hacking the 
system and publishing the results afterward. The publication of the results or merely the fact 
that the system has been broken/hacked is the main goal − otherwise no reputation is gained. 
Since the publication of the attack is the main goal no real harm is done through this attack. 
Real harm will be only caused if the attacker finds a design flaw that is very hard to fix or 
maybe even un-fixable or if they have secondary goals like: financial gain. 

Other goals could result in reputation as a hacker: Hacking/reverse engineering in order to 
create homebrew applications (e.g. for the Head-Unit). The attacker’s goal will not be reputa-
tion but rather the ability to run his own software on parts of the system installed in his car.  

B.2.5 Financial gain 

A financial gain is probably the motive behind most attacks. There are several possible com-
binations of attackers and motivations to break into the system of a car:  

• First, after an accident the car owner could try to manipulate the data stored in the vehicle 
to obscure culpable behaviour like exceeding the speed limit or driving with too little dis-
tance to the car in front. For this purpose it would also be possible to impersonate another 
vehicle. In certain cases the attacker could also manipulate the vehicle software and pre-
tend that it was not up to date in order to make the vendor liable fort he damage. 

• Second, a third party or criminals could tamper with the vehicle for new types of insurance 
fraud: by causing another vehicle to brake or steer they could provoke an accident in order 
to get a high compensation from the insurance company. Another possibility is, when the 
car system is used to authenticate the driver/car for the utilisation of a charged service 
(ranging from parking fees and tolls to charged entertainment content and software 
downloads) an attacker can try to steal the driver or car’s identity and impersonate as this 
car/driver. Another way would be to increase the regular usage costs of the vehicle by 
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increasing its fuel consumption, by damaging some expensive parts, by reducing the time 
interval between services, etc. 

• Finally, experience also shows that any new device that is integrated in the Internet will 
become subject of spamming. Attackers may easily find ways to send spam to mobile ICT 
devices that are used in the car but they will certainly aim to place their messages on dis-
plays that demand the driver’s attention. 

B.2.6 Gain personal advantages (non financial) 

Personal advantages can be gained in different ways and for different purposes. One example 
is to attack road regulations in order to go faster through the traffic or to stop other vehicles in 
the traffic. Possible methods could be to force a green wave, e.g. getting all traffic lights in 
front of the attacker to switch to green. Another one is to manipulate the traffic flow by 
directing other cars to alternative routes or clearing any traffic jam in front of the attacker. 
Finally a way of gaining a personal advantage would consist in manipulating the speed limits. 
In particular, it might be possible to tamper with the infrastructure so that other vehicles are 
notified of a lower speed limit than reality. 

Another purpose could be to gain access to special areas like secured parking lots, fair 
areas or similar, which is controlled by the vehicle identity. A possible method is to imper-
sonate the ID of authorized car or person, which was gained before. 

B.2.7 Gain information about vehicle manufacturer  

While most of the described attacks aimed at the drivers and their direct environment another 
motivation can be to attack the car manufacturer. There are several reasons possible. First 
attackers can try to steal intellectual property of the manufacturer by accessing to the vehicles 
software, e.g. another manufacturer aims to disclose technical specs and to imitate them. 
Methods that could be used to achieve this target could be reverse engineering methods un-
authorised diagnosis; mobility and status profiles; us probing to extract crypto material; get 
unencrypted firmware from flashes  

Another way of attack the vehicle manufacturer can be destroying his reputation. This 
could be done in several ways, for example by manipulating the safety of a car to harm ran-
dom owners of one car manufacturer’s cars. Another example could be the disclosure or com-
promise of privacy to destroy reputation. While these attacks aim at destroying the public 
reputation other attacks could aim at financial harm for the manufacturer. Possible targets in 
this could be to reduce the life expectancy of a car or damage a car by manipulating the 
engine control. Another possibility is to provoke unexpected behaviour or switch off of car 
functions. Finally manipulations of the power train actuator could lead to higher fuel con-
sumption or reduce of service intervals could damage the reputation and end in expensive 
lawsuits against a manufacturer. 



 

 67

B.2.8 Harm the economy  

This attack and underlying objectives should be envisaged at an organizational scale. It makes 
use of potential attacks on the car platform to disrupt the economical value of the car-related 
business by wreaking havoc to the road infrastructure. 

This attack consists in the large-scale manipulation of traffic in order to generate huge traf-
fic jams, therefore rendering driving virtually impossible. This attack might in particular make 
use of a variety of techniques used more directly for other attacks, simply in order to disrupt 
the normal service of roads. Two approaches in particular represent avenues for large scale 
attacks. First, protocols with the infrastructure might be subject to attacks with respect to car-
related information in order to tamper with signalling. In particular impersonation attacks 
simulating the presence of emergency vehicles are quite likely. Such attacks might in par-
ticular result in signal lights being turned off or passed to red permanently or abnormally, the 
traffic being disorganized as a result. Direct attacks to a large number of cars should also be 
envisaged, for instance simultaneously triggered by timed logical bombs, for instance forcing 
all vehicles to a halt at the same time. It is quite clear that a wave of such attacks would 
quickly result in a generalized loss of confidence towards the economical value of cars and 
might also indirectly harm the economy.  

B.2.9 Mass terrorism  

An augmentation of the attack motivation to harm the economic is mass terrorism. Most of 
the possible attacks to do this are already described before, but there are important differ-
ences:  

• First, the scale of the attack is different because mass terrorism will probably target a large 
number of victims at a time.  

• Another difference is that a terrorist organization will frequently accept to sacrifice some 
of its agents and even more frequently try to be identified while a classic attacker will do 
her very best to succeed without being caught and identified.  

• In the same way the relation of expected results and involved resources, which are crucial 
for criminal attackers aiming at positive financial gain, the amount of allocated resources 
(financial but also in terms of man power, time, etc.) in case of mass terrorism is of minor 
importance.  

• Finally, while an attack targeting single individuals is very unlikely, terrorists could try to 
cause huge traffic jams in order to harm a country’s economy with the difference to that 
the effective harm is less important than the caused insecurity.  

Due to all mentioned problems and differences and taking into account that the necessary 
spread of a system will need a long term, this attack should be examined in another study.  
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B.3 Possible attacks – Combining attack motivations and use cases 

B.3.1 Force Green Wave/Getting traffic lights green ahead of the attacker 

Based on the use cases about traffic information (from/to externals) one attack could consist 
in getting all traffic lights in front of the attacker to switch to green. Suppressing all halts will 
thereby increase the attacker’s speed. There are several ways to do that: The attacker might 
have his car impersonate an emergency vehicle. Alternatively it is possible to directly tamper 
with the infrastructure in order to gain access to traffic signalling functions: this could be pos-
sible by exploiting poorly designed protocols. A physical attack to the infrastructure might 
also result in a similar result. 

The attack tree based on this attack goal is shown in Figure 4 below. 
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Figure 4 Attack tree 1: Force green lights ahead of attacker 
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B.3.2 Manipulate Speed Limits 

The manipulation of speed limits is based on the use cases about traffic information or local 
danger warnings. In particular, it might be possible to tamper with the infrastructure so that 
other vehicles are notified of a lower speed limit. Speed limit may be changed arbitrarily to 
disorient drivers and to make them slow down, thereby slowing vehicles behind the attacker 
for instance. If speed limit enforcing equipment (e.g. radar) is accessible and may be tampered 
with, the attacker might set a higher speed limit. Also a physical attack to the infrastructure 
might be able to have a similar result.  

The attack tree based on this attack goal is shown in Figure 5 below. 

 

Figure 5 Attack tree 2: Manipulate speed limits 

B.3.3 Manipulate Traffic Flow 

To manipulate the traffic flow an attacker can also abuse traffic information or local danger 
warnings in different ways. One possibility is that the attacker might aim at re-direct other 
cars to alternative routes, thereby clearing any traffic jam in front of him (and likely creating 
more congestion elsewhere). This might again be made possible by impersonating an emer-
gency vehicle, notably to send fake information about accidents in order to direct vehicles to 
alternative routes. The attacker might more importantly impersonate the infrastructure or tam-
per with it in order to send bogus information about the traffic ahead. Finally, the attacker 
might impersonate a chain of “fake cars“ and transmit their supposed position to the infra-
structure and to nearby cars so that they all over-estimate the traffic at a given position on the 
road. 

The attack tree based on this attack goal is shown in Figure 6. 
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Figure 6 Attack tree 3: Manipulate traffic flow 
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B.3.4 Simulate Traffic Jam 

The last case of misusing traffic information and local danger warning is to generate traffic 
congestion at a given place. This might be achieved by generating fake warning messages to 
make cars brake and slow down, or by tampering with the infrastructure and switching traffic 
lights randomly to red. Another possible attack is to misuse guided tours with point of inter-
ests in way, that someone create bogus points of interest (PoIs), either sightseeing/tourism-
related, or traffic-related (like radars), to make cars slow down and to generate or increase 
congestion. This might be realised through impersonating the infrastructure or by attacking 
vehicular platforms directly. 

The attack tree based on this attack goal is shown in Figure 7. 

B.3.5 Tamper with Warning Message 

On the one hand an attack to tamper with warning messages can be a consequence of an 
attack on the head unit. By gaining control over the HU an attacker could fake a warning mes-
sage on the display and irritate or harm the driver by doing this. Another way to execute this 
attack is to delay or prevent warning messages that come from the local warning system (see 
for example “manipulate traffic flow”) or the brake info system (see “brake attacks“). A third 
way is an attack via the communication with the infrastructure or the infrastructure directly. 
One possibility is to spoof the GPS/Galileo signal send to the car. Another is to fake warning 
messages, which pretend to be sent by the infrastructure or to hack the infrastructure and use 
it for sending fake warnings. Finally one can attack the car physically and relay or fake mes-
sage in the backbone. 

The attack tree based on this attack goal is shown in Figure 8. 
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Figure 7 Attack tree 4: Simulate traffic jam 
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Figure 8 Attack tree 5: Tamper with warning messages 
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B.3.6 E-Call 

Attacking the e-Call, which is intended to generate and send automatically the last positions 
of the vehicle (position chain) based on GPS / Galileo signals to the PSAP, can pursue differ-
ent aims, either to trigger the e-Call without an accident, to degrade the quality of the service 
or to disable the service completely. Each of these attacks has different possible entry points. 
In the case of triggering an e-Call without accident the attacker can misuse the C2C brake info 
system to start an emergency braking and to start an e-Call. Another way to trigger the e-Call 
is to attack the function directly within the CU by sending corrupt data to initiate sending an 
e-Call. This can have a point of departure in all use cases involving the CU. To degrade the 
quality of the service an attacker can also misuse all use cases involving the CU. In this case 
the attack would aim to send imprecise or wrong information about the position. Another way 
to do this would be attacking the GPS module by jamming the signal outside of the car. If the 
attacker aims to interrupt the service completely all use cases that involve the CU can be 
abused. In this case the attacks would try to interrupt the communication to the service centre 
by jamming the signals or by a DoS attack on the CU. Another way would be to manipulate 
the CU in a way that it will try to contact a wrong number or non-existing service centre. A 
final way to interfere the service is an attack on the service centre, but this attack is not in the 
scope of EVITA.  

The attack tree based on this attack goal is shown in Figure 9.  

B.3.7 Engine DoS-Attack (Engine Refuse to Start) 

One possibility to harm the driver or damage the reputation of a manufacturer can aim at pre-
venting the car to start. To achieve this objective one could attack the Powertrain (PTC) and 
its devices. A possible attacker had to get access to these components of a car. The most 
likely use cases, which can involve this, are those on “remote diagnosis”, “remote flashing” or 
“flashing by OBD”. They allow corrupting the PTC or more directly the Engine controls (EC) 
by flashing firmware with corrupt code, changing important parameters or produce wrong 
communications. In all cases the PTC or EC would deny starting the car. Another way of 
attacking would be jamming the backbone. 

The attack tree based on this attack goal is shown in Figure 10. 
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Figure 9 Attack tree 6: Attacking E-Call 

B.3.8 Unauthorized Brake 

Unauthorized braking can be the result of several possible attacks. One of these is an attack 
on the environment sensors, which can trigger a brake, as well as to manipulate the Chassis 
Safety Controller (CSC). While a direct attack of the sensors is only possible by flashing the 
firmware with malicious code (use cases “flashing” or “remote flashing”), the CSC can also 
be manipulated by exploiting implementation flaws or corrupt data. The most likely attack 
would involve faking a brake event in the direct environment of the car to produce this cor-
rupt data. Therefore someone could misuse the C2C brake info to fake brake information 
from another car 

The attack tree based on this attack goal is shown in Figure 11. 
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Figure 10 Attack tree 7: Engine refuses to start 
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Figure 11 Attack tree 8: Unauthorized brake 
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B.3.9 Attacking Active Brake Function 

Besides of initiating an unauthorized braking an offender could also try to attack an author-
ized braking event. This attack can be executed in different ways. For one thing the attacker 
can try to inhibit active braking completely; for another thing the attacker can try to delay the 
braking or at least to degrade the quality of the active brake. As in other attacks several use 
cases can constitute the starting point depending on the current circumstances, e.g. if the 
attacker has direct access to the car or the target of attack (inhibit, delay, degrade). One exam-
ple, which is rather unlikely, is to corrupt or disable the environment sensors, sensors for ABS 
and ESP or the CSC (as described above). It seems easier (and more likely) to attack the CU 
or the CSC with a DoS attack to prevent or delay the computation/detection of events needed 
for the active braking system. This attack could abuse most of the use cases that involve the 
CU like the “integration of applications” or the “connection to external devices” such as 
mobile phones. Another possibility to reach this attack goal is jamming of the air interface, 
the CSC or Backbone bus. 

The attack tree based on this attack goal is shown in Figure 12. 

 

Figure 12 Attack tree 9: Attack active brake function 
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B.3.10 Attacking E-Toll 

By attacking the e-Toll system one can pursue different objectives. First the attacker can try to 
harm another driver by denying the passage or increasing the toll, but it is also possible to 
misuse this function to receive a victim’s personal data like bank account or credit card num-
ber. Another goal, maybe the most obvious, would be that attackers try to joy ride, i.e. to 
avoid toll payments for themselves. Attacking the CU and its components like the GPS sys-
tem can carry out most of these attacks. For example the offender could manipulate the CU 
with corrupt keys to prevent the victim from passing a toll station. This manipulation can be 
done in several ways, for example by misusing a mobile device, which will be connected to 
the CU (Use Case “Personalise car”) or by remote or hardwired flashing of the OBD. The 
same attack paths can be used to modify the GPS billing data with the aim to increase or 
decrease the toll payment. Another way to reduce payments is to jam or spoof the GPS signals 
send. Finally it might also be possible to misuse the OBD updates (use cases “Remote Flash-
ing” or “OBD flashing)” or manipulate the CU to gain access to personal data.  

Attacks on E-tolling are illustrated in Figure 13 to Figure 16. 

 

Figure 13 Attack tree 10: Prevent driver from passing toll gate 
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Figure 14 Attack tree 11: Increase driver’s toll bill 

 

Figure 15 Attack tree 12: Reduce driver’s toll bill 
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Figure 16 Attack tree 13: Compromise driver privacy 

B.4 Attack Trees Detailing Asset Attacks 

B.4.1 Flashing per OBD 

There are two possible ways to attack the flashing via OBD. Most seriously an attacker would 
abuse the flashing itself in a workshop to install infected or modified firmware. If this is not 
possible the attacker can still try to gain access to the CU to interrupt or disturb the flashing 
process while the car is in the workshop. Another possible attack would try to gain access to 
the CU, for example within use cases like “Internet access” or “personalizing the car with an 
external device”, to exploit vulnerabilities in the communication protocols of diagnostic inter-
face, CU and ECU to abort the next flashing per OBD.  

The corresponding attack tree is shown in Figure 17.  
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Figure 17 Attack tree 14: OBD flashing attack 
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B.4.2 Head Unit Attack 

Several use cases include the possibility to carry out an attack on the head unit of the vehicle. 
First all use cases, which are directly related to the head unit, could be exploited. There are 
four use cases, which are connected either by Bluetooth (remote car control, personalize the 
car) or by USB (secure integration, installation of application). In these cases vulnerabilities 
of Bluetooth, USB or direct access can be gained and used for an attack on the head unit. An-
other way of attacking the head unit could be to start an attack via the CU, which is also part 
of several communications related use cases (such as remote flashing, remote diagnosis, traf-
fic information and all use cases involving Internet connection). In all these cases access con-
trol is the key for the attack. It is defined as the ability to permit or deny the use of a particular 
resource. In general it is the basis for functionality that provides access to car internal and 
external resources or other entities by dint of units like registered mobile phones, trusted 
counterparts or the car itself. Examples for access control functionality within the use cases 
that use identification, authorization and access control based on managing of possession and 
location of registered mobile phones or trusted counterparts. Finally the head unit might be 
targeted by a physical attack. The corresponding attack tree is shown in Figure 18. 

 
Figure 18 Attack tree 15: Head unit attack 
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Appendix C – Threat and risk analysis 

C.1 Analysis methodology 

C.1.1 Introduction 

In order to identify the most relevant security requirement to be able to prevent or at least 
detect and contain a threat, we need to assess the level of “risk” posed by potential attacks. 
The risk of an attack is seen as a function of the possible severity (i.e. the cost and loss) of the 
attack for the stakeholders and the estimated probability of occurrence of a successful attack.  

C.1.2 Notion of severity  

In vehicle safety engineering processes the primary focus is on physical injuries that might be 
sustained by persons as the consequence of a safety hazard. Nonetheless, managing safety 
risks also has the secondary benefit of helping to protect the reputation (and hence the market 
share) of the vehicle manufacturer and their suppliers.  

In considering security threats in the context of networked vehicles and ITS systems, 
physical safety is only one of a number of aspects that may be subject to “harm”: other issues 
could include loss of privacy or unauthorized financial transactions threats. Furthermore, the 
impact of security threats may be more widespread than a single vehicle, and there is a wider 
range of stakeholders who may be influenced by the consequences of security hazards 
(i.e. other road users, ITS system operators, civil authorities, vehicle manufacturers and their 
suppliers). Therefore, a variety of factors need to be considered in the EVITA security and 
risk analysis. 

In order to accommodate this more complex situation the classification proposed here (see 
Table 4) separates and categorizes different aspects of the consequences of possible security 
breaches. The starting point for this classification scheme is the safety severity classification 
of ISO/DIS 26262, which is based on the Abbreviated Injury Scale [19]. For the purposes of 
EVITA, this has been adapted and augmented to consider both the greater numbers of vehi-
cles that may be involved and implications for aspects other than safety, including: 

• privacy – identification and tracking of vehicles or individuals; 

• financial – financial losses that may be experienced by individuals or ITS operators; 

• operational – interference with vehicle systems and functions that do not impact on func-
tional safety. 

For example, it is possible that an attack has little or no impact on safety, but presents signifi-
cant risks in terms of compromised driver privacy or loss of reputation for vehicle manu-
facturers. This approach results in a kind of “severity vector” with four components that may 
have different ratings. However, the components may translate to different relative risk levels, 
depending on the probability measures that are applied to assess the associated risk level.  
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Table 4 Proposed severity classification scheme for security threats 

Aspects of security threats Security 
threat sever-

ity class 
Safety (SS) Privacy (Sp) Financial (SF) Operational (So) 

0 
No injuries. No unauthorized 

access to data. 
No financial 
loss. 

No impact on 
operational per-
formance. 

1 
Light or moderate 
injuries. 

Anonymous data only 
(no specific driver of 
vehicle data). 

Low-level loss 
(~€10). 

Impact not discerni-
ble to driver. 

2 

Severe injuries 
(survival probable).  
 
Light/moderate injuries 
for multiple vehicles. 

Identification of vehi-
cle or driver. 
 
Anonymous data for 
multiple vehicles. 

Moderate loss 
(~€100). 
 
Low losses for 
multiple 
vehicles. 

Driver aware of 
performance degra-
dation. 
Indiscernible im-
pacts for multiple 
vehicles. 

3 

Life threatening 
(survival uncertain) or 
fatal injuries. 
Severe injuries for mul-
tiple vehicles. 

Driver or vehicle 
tracking. 
 
Identification of driver 
or vehicle, for multiple 
vehicles. 

Heavy loss 
(~1000). 
 
Moderate losses 
for multiple 
vehicles. 

Significant impact 
on performance. 
 
Noticeable impact 
for multiple 
vehicles. 

4 
Life threatening or fatal 
injuries for multiple 
vehicles. 

Driver or vehicle 
tracking for multiple 
vehicles. 

Heavy losses for 
multiple 
vehicles. 

Significant impact 
for multiple 
vehicles. 

C.1.3 Notion of probability of occurrence of successful attack (attack potential) 

In IT security engineering, to be on the safe side, we must assume that each attack scenario 
that is possible and promises whatsoever small benefit will definitely be carried out by some-
one. The probability that an attack, once launched, will be successful depends on  

• the “attack potential” of the attacker and  

• the attack potential that the system under investigation is able to withstand (which the 
attack potential of the attacker needs to exceed).  

If the attack potential of the attacker exceeds the attack potential that the system is able to 
withstand, then the system will definitely not withstand the attack and the attack will be suc-
cessful.  

The attack potential is well defined in [1][17]. The attack potential is a measure of the 
minimum effort to be expended in an attack to be successful. Essentially, the attack potential 
for an attack corresponds to the effort required creating and carrying out the attack. The 
higher the attackers’ motivation, the higher efforts they may be willing to exert. There are 
multiple methods of representing and quantifying the influencing factors. The following fac-
tors should be considered during analysis of the attack potential [17]:  

a) Elapsed Time: This is the total amount of time taken by an attacker to identify that a par-
ticular potential vulnerability may exist, to develop an attack method and to sustain effort 
required mounting the attack.  

b) Specialist Expertise: This refers to the required level of general knowledge of the underly-
ing principles, product types or attack methods.  
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c) Knowledge of the system under investigation: This refers to specific expertise in relation 
to the system under investigation. Though it is related to general expertise, it is distinct 
from that.  

d) Window of opportunity: This has a relationship to the Elapsed Time factor. Identifica-
tion and exploitation of a vulnerability may require considerable amounts of access to a 
system that may increase the likelihood of detection of the attack. Some attack methods 
may require considerable effort off-line, and only brief access to the target to exploit. 
Access may also need to be continuous or over a number of sessions.  

e) IT hardware/software or other equipment: This refers to the equipment required to 
identify and exploit vulnerability.  

In many cases these factors are not independent, but may be substituted for each other in 
varying degrees. For instance, expertise or equipment may be a substitute for time. Table 5 
identifies the factors discussed above and, based on [17][18], associates numeric values with 
each level. Intermediate values to those in the table can also be chosen.  

To determine for each path in an attack tree the attack potential required to identify and 
exploit it, sum up the appropriate values from Table 5 and apply Table 6 to classify the attack 
potential. Note that once an attack scenario has been identified and been exploited once, it 
may be exploited repeatedly with less effort than for the first time. Both phases, identification 
and exploitation, are considered in conjunction.  

In this context the term “attack potential” is really describing the difficulty of mounting a 
successful attack, while for risk analysis purposes a probability measure is required. A high 
probability of successful attack is assumed to correspond to the “basic” attack potential, since 
many possible attackers will have the necessary attack potential. Conversely, a “high” attack 
potential suggests a lower probability of successful attacks, since the number of attackers with 
the necessary attack potential is expected to be comparatively small. Consequently, Table 6 
also proposes an associated numerical scale that reflects the relative probability of success 
associated with the attack potential in a more intuitive manner. The “attack probability” 
measure (P) is higher for easier attacks that are associated with lower attack potentials, and 
lower for more difficult attacks associated with the higher attack potentials. 
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Table 5 Rating of aspects of attack potential  

Factor Level Comment Value
≤ 1 day  0 
≤ 1 week  1 
≤ 1 month  4 
≤ 3 months  10 
≤ 6 months  17 
> 6 months  19 

Elapsed 
Time 

not practical The attack path is not exploitable within a timescale that would be useful to an 
attacker.  ∞ 

Layman Unknowledgeable compared to experts or proficient persons, with no particu-
lar expertise  0 

Proficient Knowledgeable in being familiar with the security behaviour of the product or 
system type.  31 

Expert 

Familiar with the underlying algorithms, protocols, hardware, structures, 
security behaviour, principles and concepts of security employed, techniques 
and tools for the definition of new attacks, cryptography, classical attacks for 
the product type, attack methods, etc.  

6 

Exper-
tise 

Multiple 
experts 

Different fields of expertise are required at an Expert level for distinct steps of 
an attack.  8 

Public e.g. as gained from the Internet 0 

Restricted e.g. knowledge that is controlled within the developer organisation and shared 
with other organisations under a non-disclosure agreement 3 

Sensitive e.g. knowledge that is shared between discreet teams within the developer 
organisation, access to which is constrained only to team members  7 

Knowl-
edge of 
system  

Critical 
e.g. knowledge that is known by only a few individuals, access to which is 
very tightly controlled on a strict need-to-know basis and individual under-
taking 

11 

Un-
necessary/ 
unlimited  

The attack does not need any kind of opportunity to be realized because there 
is no risk of being detected during access to the target of the attack and it is no 
problem to access the required number of targets for the attack.  

0 

Easy Access is required for ≤ 1 day and number of targets required performing the 
attack ≤ 10.  1 

Moderate Access is required for ≤ 1 month and number of targets required to perform 
the attack ≤ 100.  4 

Difficult Access is required for > 1 month or number of targets required to perform the 
attack > 100.  10 

Window 
of Op-
portu-
nity 

None 
The opportunity window is not sufficient to perform the attack (the access to 
the target is too short to perform the attack, or a sufficient number of targets is 
not accessible to the attacker).  

∞2 

Standard readily available to the attacker  0 

Specialised 
not readily available to the attacker, but acquirable without undue effort. This 
could include purchase of moderate amounts of equipment or development of 
more extensive attack scripts or programs.  

43 

Bespoke 
not readily available to the public because equipment may need to be specially 
produced, is so specialised that its distribution is restricted, or is very 
expensive.  

7 

Equip-
ment 

Multiple 
bespoke 

Different types of bespoke equipment are required for distinct steps of an 
attack. 9 

                                                 
1 When several proficient persons are required to complete the attack path, the resulting level of expertise still 

remains “proficient”. 
2 This indicates that the attack path is not exploitable due to other measures in the intended operational 

environment. 
3 If clearly different test benches consisting of specialised equipment are required for distinct steps of an 

attack, this should be rated as bespoke. 
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Table 6 Rating of attack potential and attack probability 

Values Attack potential required to identify and exploit 
attack scenario 

Attack probability P (reflecting 
relative likelihood of attack) 

0-9 Basic 5 
10-13 Enhanced-Basic 4 
14-19 Moderate 3 
20-24 High 2 
≥ 25 Beyond High 1 

C.1.4 Estimating risk 

For convenience in subsequent analysis, it is desirable to describe the attack trees in a tabular 
form that captures the points were severity, attack potential of individual steps, and combined 
attack potential for attack scenarios can be assigned, whilst compressing the level of detail to 
just that required to assess the combined attack potential (see Table 7). The aim of this is to 
achieve a more compact representation of the attack tree information by focussing on the 
“asset attacks”, which can be assigned an attack potential in some way, and how they contrib-
ute to “attack objectives”, where the severity of the attack consequences can be assessed. In 
this it is useful to retain the “attack methods”, since these are described in terms of particular 
combinations of “asset attacks”. However, both intermediate attack goals and the detailed 
breakdown associated with each of the asset attacks can be suppressed.  

Table 7 Tabular representation of key elements of an attack tree 

Attack Objective Attack Method Asset attack 

A1 a & 
b 
d 
e 

A 
A2 

f 
a & 
b & 
c B1 
c & 
h 

B 

B2 g 

Tables representing the key elements of the attack trees can be augmented with the severity 
(S, a vector) for the attack objective and the estimated attack potential for the contributing 
asset attacks, using the numerical scale proposed in Table 6 to reflect the relative probability 
of a successful attack (P, a scalar). The relationships between the latter are then used to derive 
a combined attack potential for the particular attack method (A, a scalar). 

If an attack method can be implemented using any one of a number of asset attacks 
(i.e. OR relationship) the combined attack probability (AOR) is taken to be the highest of the 
attack probabilities (Pi) for the available asset attack options: 

( ) { }iiOR PPA max=      (C1) 
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(i.e. the attack probability of a set of alternative attack steps is as high as the highest of the 
possible alternatives). 

Where the attack method requires a conjunction of asset attacks (i.e. AND relationship), 
the combined attack probability (AAND) is taken to be the lowest of the attack probabilities (Pi) 
associated with the contributing asset attacks: 

( ) { }iiAND PPA min=      (C2) 

(i.e. the attack probability of combined attack steps is only as high as the lowest of the 
required components). 

When the attack method involves asset attacks combined using both AND and OR 
relationships the combined attack probability is built up using the rules (B1) and (B2) as 
appropriate. This process is illustrated in Table 8, for the example presented in Table 7. 

Table 8 Attack tree of Table 7 augmented with risk analysis parameters 

Attack 
Objective 

Severity 
(S) 

Attack 
Method 

Risk level 
(R) 

Combined attack potential 
(A) 

Asset 
(attack) 

Attack 
Probability 

(P) 
A1 RA1(SA,AA1) AA1=min{Pa,Pb} a & 

b 
Pa 
Pb 

d Pd 
e Pe 

A SA 

A2 RA2(SA,AA2) AA2=max{Pd,Pe,Pf} 

f Pf 
a & 
b &  
c 

Pa 
Pb 
Pc 

B1 RB1(SB,AB1) AB1=max[min{Pa,Pb,Pc}, 
                min{Pc,Ph}] 

c &  
h 

Pc 
Ph 

B SB 

B2 RB2(SB,AB2) AB2=Pg g Pg 

The risk level (R, a vector) is determined from the severity (S) associated with the attack 
objective and the combined attack probability (A) associated with a particular attack method. 
This is achieved by mapping the severity and attack probability to the risk using a “risk 
graph” approach. For severity aspects that are not safety related the risk graph maps two 
parameters (attack probability and severity) to a qualitative risk level. Combinations of sever-
ity and combined attack probability are mapped to a range of “security risk levels” (denoted 
Ri, where “i” is an integer) in Table 9 for non-safety security threats. The security risk level 
attributed to an attack increases with increasing severity and/or attack probability (the latter 
corresponding to lower attack potential).  

Table 9 Proposed security risk graph for non-safety security threats (privacy, financial and 
operational) 

Combined attack probability (A) Security Risk Level (R) A=1 A=2 A=3 A=4 A=5 
Si=1 R0 R0 R1 R2 R3 
Si=2 R0 R1 R2 R3 R4 
Si=3 R1 R2 R3 R4 R5 Non-safety severity (Si) 
Si=4 R2 R3 R4 R5 R6 
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Where the severity vector includes a non-zero safety component, the risk assessment may 
include an additional probability parameter that represents the potential for the driver to influ-
ence the severity of the outcome. In the MISRA Safety Analysis Guidelines [3] and ISO/DIS 
26262 [2] this possibility is reflected in a qualitative measure referred to as “controllability” 
(see Table 10).  

Table 10 Classification for controllability of safety hazards 

Class Meaning 

C1 Despite operational limitations, avoidance of an accident is normally possible with a 
normal human response. 

C2 Avoidance of an accident is difficult, but usually possible with a sensible human 
response.  

C3 Avoidance of an accident is very difficult, but under favourable circumstances some 
control can be maintained with an experienced human response. 

C4 Situation cannot be influenced by a human response. 

In order to include the additional parameter (controllability) in the assessment of safety-
related security risks it is necessary to use of a different risk graph as proposed in Table 11, 
which maps three parameters (severity, attack probability, and controllability) to qualitative 
risk levels. The class “R7+” that is used in Table 11 denotes levels of risk that are unlikely to 
be considered acceptable, such as safety hazards with the highest severity classes and threat 
levels, coupled with very low levels of controllability. 

Table 11 Proposed security risk graph for safety-related security threats 

Combined Attack Probability (A) Controllability 
(C) 

Safety-related 
Severity (SS) A=1 A=2 A=3 A=4 A=5 

SS=1 R0 R0 R1 R2 R3 
SS=2 R0 R1 R2 R3 R4 
SS=3 R1 R2 R3 R4 R5 

C=1 

SS=4 R2 R3 R4 R5 R6 
SS=1 R0 R1 R2 R3 R4 
SS=2 R1 R2 R3 R4 R5 
SS=3 R2 R3 R4 R5 R6 C=2 

SS=4 R3 R4 R5 R6 R7 
SS=1 R1 R2 R3 R4 R5 
SS=2 R2 R3 R4 R5 R6 
SS=3 R3 R4 R5 R6 R7 

C=3 

SS=4 R4 R5 R6 R7 R7+ 
SS=1 R2 R3 R4 R5 R6 
SS=2 R3 R4 R5 R6 R7 
SS=3 R4 R5 R6 R7 R7+ C=4 

SS=4 R5 R6 R7 R7+ R7+ 

C.1.5 Requirements for countermeasures 

The risk analysis based on the attack trees provides the rationale for developing security 
requirements. 
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In safety engineering, the opportunities for mitigating the severity of the outcome of a haz-
ardous situation (e.g. the use of airbags to reduce injury levels) are often limited. The most 
common approach for risk reduction is therefore to attempt to reduce “exposure” to the haz-
ard. This is also likely to be true of security threats. 

The attack trees provide a convenient basis for the systematic evaluation of possible attack 
methods and “cutting branches” from the tree is a possible mechanism for identifying 
requirements for specific countermeasures. The selection of branches to be cut can be priori-
tised based on risk levels and attack potential: 

• where a number of possible attack objectives may achieve the attack goal, the attack objec-
tive with the highest perceived risk level is the priority for countermeasures to reduce the 
risk level for the attack objective; 

• where a number of possible attack methods may lead to the same attack objective, the 
attack method with the highest perceived attack probability (i.e. lowest attack potential) is 
the priority for countermeasures to reduce the risk level for the attack objective; 

• where a number of asset attacks may lead to the same attack objective, the asset attack with 
the highest perceived attack probability (i.e. lowest attack potential) is the priority for 
countermeasures to reduce the risk level for the attack objective. 

Eliminating the asset attacks judged to have the highest attack probability (i.e. lowest attack 
potential) reduces the threat level for the associated attack method, and if the attack probabil-
ity for this attack method dominates the risk level for the associated attack objective then the 
attack objective risk level will also be reduced. 

Since the functions investigated all assume a common basic architecture, it is likely that 
common patterns will arise in the attack trees derived from the dark-side scenarios analysis. 
Consequently, the repeated occurrence of particular attack patterns in attack trees is a further 
indicator for prioritising countermeasures that are likely to provide favourable cost-benefit 
properties. However, the expected cost of the proposed countermeasures also needs to be 
taken into account in selecting specific security requirements.  

C.2 EVITA Risk Analysis 

C.2.1 Attack potential 

Table 12 summarizes estimates for the “attack potential”, together with the underlying esti-
mates for the influencing factors, for various attacks identified from the attack trees. The 
estimates are based on as-is automotive on-board networks, prior to the introduction of secu-
rity measures.  
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Table 12 Evaluation of required attack potential for asset attacks identified from attack trees 

Required attack 
potential 

Attack tree 
node number 

Asset (attack) Elapsed 
time 

Expertise Knowledge 
of system 

Window of 
opportunity 

Equipment 

Value Rating 
[3.2.2.4.2.3], 
[9.3.2.2], 
[9.2.1.1], 
[9.2.1.2], 
[12.2.2] 

In-car Sensors 
(external ma-
nipulation of 
sensor input) 

0 0 3 0 0 3 Basic 

[6.2.2.1], GPS (jamming) 0 0 0 0 4 4 Basic 

[9.1.2.1], 
[9.3.1.1] 

Wireless Com-
munications 
(jamming) 

1 3 0 0 4 8 Basic 

[1.1.1.2], 
[3.1.2.1.3], 
[3.2.2.1.1], 
[4.3.1.1.1], 
[4.3.2.1.1.1], 
[5.3.3.1], 
[8.2.2.2], 
[15.4.1] 

Wireless Com-
munications 
(corrupt or fake 
messages and 
information) 

1 3 0 0 4 8 Basic 

[9.3.2.2] 

In-car Sensors 
(disable or 
Denial of Ser-
vice) 

4 0 0 1 4 9 Basic 

[4.3.2.1.2.3], 
[4.3.3.2.1], 
[6.2.2.2], 
[5.2.1], 
[5.3.3.2], 
[8.2.2.1.1.1], 
[12.2.1] 

GPS (spoofing) 4 3 0 0 4 11 Enhanced-
Basic 

[6.3.2.2], 
[9.1.1.1], 
[9.3.3.3],  

Communica-
tions Unit (de-
nial of service) 

0 3 3 1 4 11 Enhanced-
Basic 

[7.4.3] 

In-car Commu-
nications (dis-
able or Denial 
of Service) 

4 3 3 1 0 11 Enhanced-
Basic 

[15.3.1] 

In-car wireless 
interfaces for 
short range 
communication 
(access) 

4 0 3 1 4 12 Enhanced-
Basic 

[9.1.2.2], 
[9.3.1.2], 
[9.1.2.3], 
[9.3.1.3], 
[9.3.2.1], 
[7.1.3], [7.4.4.1] 

In-car Commu-
nications (jam-
ming) 

4 3 0 1 4 12 Enhanced-
Basic 

[1.1.1.1.2.2.1], 
[3.2.2.4.1.1], 
[3.2.2.4.1.2], 
[8.2.1.1.1.2], 
[15.5.1] 

In-car inter-
faces (access – 
exploit vulner-
abilities, intro-
duce bogus 
data) 

0 6 3 1 4 14 Moderate 

[15.1.1], 
[15.2.1] 

In-car user 
hardware inter-
faces (access) 

4 3 3 1 4 15 Moderate 

[1.1.1.1.2.2.1.2.
1] 
[1.2.1.1], 
[2.1.1.1], 
[3.1.1.1.1] 

Roadside Unit 
(access) 4 6 3 1 4 18 Moderate 
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Required attack 
potential 

Attack tree 
node number 

Asset (attack) Elapsed 
time 

Expertise Knowledge 
of system 

Window of 
opportunity 

Equipment 

Value Rating 

[6.2.3.3], 
[6.3.1.3], 
[6.3.2.3] 

E-call Service 
Centre inter-
faces (exploit 
interfaces) 

4 6 3 1 4 18 Moderate 

[1.1.1.1.2.2.2] 

In-car Commu-
nications 
(exploit vulner-
ability or im-
plementation 
error) 

4 3 3 4 4 18 Moderate 

[1.1.1.1.2.3.1]  

In-car inter-
faces (access – 
physical tam-
pering) 

4 6 3 1 7 21 High 

[5.3.4.1.1.2], 
[8.2.1.1.1.1.1], 
[8.2.2.1.1.1.1] 

Head Unit 
(gain root 
access to em-
bedded OS) 

10 3 0 4 4 21 High 

[6.2.3.1], 
[6.3.1.1], 
[6.3.2.1] 

E-call Service 
Centre (over-
load) 

4 0 3 10 4 21 High 

[9.1.1.2], 
[9.3.3.1],  

Chassis Safety 
Controller 
(denial of ser-
vice) 

10 3 3 1 4 21 High 

[7.1.2] 

In-car ECU 
(disable or 
Denial of Ser-
vice) 

10 3 3 1 4 21 High 

[4.3.3.2.2], 
[4.3.3.1.1], 
[4.3.3.3.1], 
[7.1.1.2], 

In-car ECU or 
bus (configura-
tion change) 

10 3 3 1 4 21 High 

[10.1.1.2.2], 
[11.1.1.2.2], 
[12.1.1.2], 
[13.1.1.2.1] 

Communica-
tions Unit 
(malware deliv-
ered by mobile 
device) 

10 6 3 4 0 23 High 

[3.1.1.2.1.3], 
[7.2.2.3.1.1], 
[10.1.1.1], 
[11.1.1.1], 
[15.5.2] 

Communica-
tions Unit 
(exploit vulner-
ability of exter-
nal communi-
cation proto-
cols) 

10 6 3 0 4 23 High 

[1.1.1.1], 
[2.1.2.1], 
[2.1.3.1], 
[3.1.1.2.2.1], 
[3.1.2.1.1], 
[3.2.2.1.2], 
[3.2.2.3.3.1.1], 
[4.1.1.1], 
[4.1.1.2], 
[4.1.2], 
[4.3.2.1.1.1], 
[4.3.2.1.2.1] 

Wireless Com-
munications 
(listen, inter-
cept, alter, 
inject, replay) 

10 6 3 0 4 23 High 
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Required attack 
potential 

Attack tree 
node number 

Asset (attack) Elapsed 
time 

Expertise Knowledge 
of system 

Window of 
opportunity 

Equipment 

Value Rating 
[1.1.1.1], 
[2.1.2.1], 
[2.1.3.1], 
[3.1.1.2.1.1], 
[3.1.2.1.2], 
[4.3.1.1.2], 
[6.1.2.1], 
[6.2.1.1], 
[6.1.2.2], 
[6.2.1.2], 
[6.2.1.3], 
[6.1.2.3], 
[7.2.2.3.1.1] 

Wireless Com-
munication 
(exploit vulner-
ability or 
implementation 
error) 

10 6 3 0 4 23 High 

[3.2.2.4.2.1], 
[7.3.1.1]. [7.4.1] 

In-car Commu-
nications (cor-
rupt or fake 
messages) 

10 6 3 0 4 23 High 

[2.2.2.1] 

Roadside Unit 
to Authority 
Communica-
tion (listen, 
intercept, alter, 
inject, replay) 

10 6 3 0 4 23 High 

[3.2.2.4.2.2], 
[4.3.2.1.2.2] 

In-car Sensors 
(spoof) 10 3 3 4 4 24 High 

[1.2.2.2], 
[2.1.1.3], [4.2.2] 

Roadside Units 
(exploit con-
figuration 
errors) 

10 6 3 0 7 26 Beyond 
High 

[6.2.3.2], 
[6.3.1.2], 
[6.3.2.2] 

E-call Service 
Centre inter-
faces (denial of 
service) 

4 6 3 10 4 27 Beyond 
High 

[2.1.1.4], 
[2.2.1.4] 

Roadside Units 
(gain root 
access) 

10 6 3 4 4 27 Beyond 
High 

[1.1.1.1.2.1.1], 
[7.3.1.3] 

In-car ECU or 
bus (exploit 
vulnerability or 
implementation 
error) 

10 3 3 4 7 27 Beyond 
High 

[8.1.1.1], 
[8.1.1.2], 
[9.3.3.2],  

Chassis Safety 
Controller (cor-
rupt code or 
data) 

10 6 7 1 4 28 Beyond 
High 

[7.2.1] 

Powertrain 
Peripherals 
(corrupt code 
or data) 

10 6 7 1 4 28 Beyond 
High 

[2.1.1.2], 
[4.2.1],  

Roadside Units 
(exploit proto-
col implemen-
tation flaws) 

10 6 7 0 7 30 Beyond 
High 
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Required attack 
potential 

Attack tree 
node number 

Asset (attack) Elapsed 
time 

Expertise Knowledge 
of system 

Window of 
opportunity 

Equipment 

Value Rating 
[1.1.1.1.2.3.2], 
[3.1.1.2.1.2], 
[3.2.2.3.3.2.1], 
[5.3.4.2], 
[5.3.4.3], 
[8.2.2.1.1.1.2], 
[15.1.2], 
[15.2.2], 
[15.3.2], 
[15.4.2], 
[15.6.1] 

Head Unit 
(exploit vulner-
ability or im-
plementation 
error) 

10 6 6 4 7 33 Beyond 
High 

[3.1.1.1.2.1.2], 
[7.4.4.2], 
[2.1.2.2] 

Keys (illegal 
acquisition, 
modification or 
breaking) 

17 6 7 4 1 35 Beyond 
High 

[3.1.1.1.2.1.1], 
[3.2.2.1.3], 
[3.2.2.3.1.1.1], 
[3.2.2.3.3.1.2], 
[5.3.2.1], 
[5.3.1.1], 
[4.1.1.1], 
[4.1.1.2], 
[4.1.2], 
[8.1.1.1.1], 
[8.1.1.2.1], 
[8.2.1.2.1], 
[9.1.2], [9.3.1], 
[9.2.3.1] 

In-car Commu-
nications 
(listen, inter-
cept, alter, 
inject, replay) 

17 6 6 4 4 37 Beyond 
High 

[8.3.1] 

Environment 
Sensors (flash 
malicious code 
to firmware) 

17 6 7 4 7 41 Beyond 
High 

[7.2.2.3.1.2], 
[10.1.1.2.1], 
[11.1.1.2.1], 
[12.1.1.1], 
[13.1.1.1.1] 

Communica-
tions Unit 
(malware 
flashed with 
OBD update) 

17 6 7 4 7 41 Beyond 
High 

[8.1.2], 

Chassis Safety 
Controller 
(flash mali-
cious code to 
firmware) 

17 6 7 4 7 41 Beyond 
High 

[5.3.4.1.1.1]  
Head Unit 
(malware 
flashed) 

17 6 7 4 7 41 Beyond 
High 

[7.1.2.1], 
[7.1.4.1], 
[7.2.2.2] 

In-Car ECU 
(malware 
flashed with 
OBD update) 

17 6 7 4 7 41 Beyond 
High 

[7.2.2.2] 

Powertrain 
controller 
(malware 
flashed with 
OBD update) 

17  6  7  4   7  41 Beyond 
High  

Note that Table 12 includes two attack methods on wireless and in-car communications 
(i.e. “corrupt or fake messages” and “listen, intercept, alter, inject, replay”) that have similar 
descriptions but are allocated very different attack potentials. The reasoning behind these dif-
ferences is that while the attacker does not need to be in the communication path in order to 
send corrupt or fake messages, in order to intercept or inject packets the attacker must be in 
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the communication path and able to “hide” the genuine packets from the legitimate receiver. 
The later case is more difficult and requires a higher level of knowledge and preparation. 
Furthermore, the attacker does not need to be aware of the correct usage of the communica-
tion protocol in order to send corrupt or fake messages, but to inject or replay packets (that 
have to be accepted by the receiver) the attacker has to use a potentially proprietary commu-
nications protocol correctly (this covers all phases of communication: connecting, disconnect-
ing, sending and requesting data). The later case is again more difficult and requires a higher 
level of knowledge and preparation from the attacker. 

C.2.2 Attack active brake function 

This attack is derived from the use case “Safety Reaction: Active Brake” [5]. The risk analy-
sis table (see Table 13) is based on the corresponding attack tree (Figure 12). 

Where an attack method could be implemented by a number of alternative means, the asset 
attack probabilities shown in bold are the most significant component for the resulting com-
bined attack probability. In cases involving the AND relationship, the least significant asset 
attack probabilities for the combination are shown in italics. Consequently, the typeface and 
value assigned to the asset attack probabilities in the risk analysis tables give a visual indica-
tion of the priorities for risk reduction measures. 

Loss of the active braking function is not expected to result in an additional safety hazard, 
since it is assumed that drivers will be able to respond to driving hazards by conventional 
manual braking. However, widespread loss of functionality may be detrimental to the reputa-
tion of this function, and thereby to vehicle manufacturers and system suppliers, suggesting 
an operational severity rating SO=2.  

In this example, an attack method involving an asset attack rated with attack probability P5 
is identified for each attack objective (see Table 13). Since the asset attacks associated with 
each of the attack methods are all simple alternatives (i.e. OR relationship), the worst-case 
threat level for all of the attack objectives is simply the highest attack probability (P5). This 
translates to a risk level R4 since the severity SO=2 is not safety related (see Table 9), indicat-
ing a moderate commercial risk. 
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Table 13 Risk analysis for “Attack Active Brake Function” 

Attack 
Objective 

Severity 
(S) 

Attack 
Method 

Risk 
level 
(R) 

Combined 
attack 

probability 
(A) 

Asset (attack) 

Attack 
prob-
ability 

(P) 
9.1.1.2 Chassis Safety Controller 
(denial of service) 2 Delay com-

putation RO=R3 4 
9.1.1.1 Communications Unit (denial 
of service) 4 

9.1.2.1 Wireless Communications 
(jamming) 5 

9.1.2.2 Backbone Bus (jamming) 4 

9.1 Delay 
active 
braking 
(e.g. by x 
ms) 

SS=0 
SP=0 
SF=0 
SO=2 Delay data 

transmission RO=R4 5 

9.1.2.3 Chassis Safety Bus (jamming) 4 
9.3.3.1 Chassis Safety Controller 
(denial of service) 2 

9.3.3.2 Chassis Safety Controller 
(corrupt code or data) 1 Prevent com-

putation RO=R3 4 

9.3.3.3 Communications Unit (denial 
of service) 4 

9.3.1.1 Wireless Communications 
(jamming) 5 

9.3.1.2 Backbone Bus (jamming) 4 
Prevent data 
transmission RO=R4 5 

9.3.1.3 Chassis Safety Bus (jamming) 4 
9.3.2.2 ABS and ESP Sensors 
(disable)  5 

9.3 Prevent 
active 
braking 

SS=0 
SP=0 
SF=0 
SO=2 

Force brake 
controller into 
fallback mode 

RO=R4 5 
9.3.2.1 Chassis Safety Bus (jamming) 4 
9.2.1.1Environment Sensors (corrupt) 5 
9.2.1.2 Sensor Environment (fake 
conditions) 5 

9.2 Degrade 
active 
braking 
(e.g. by z 
m/s2) 

SS=0 
SP=0 
SF=0 
SO=2 

Manipulate 
environment 
information 

RO=R4 5 
9.2.1.3 Chassis Safety Bus (insert 
fake environment data) 1 

C.2.3 Tamper with warning message 

Tampering with warning messages relates to the use cases “Local Danger Warning to/from 
other Cars”. The risk analysis table (see Table 14) is based on the corresponding attack tree 
(Figure 8). 

Loss of the danger warning function is not expected to result in an additional safety hazard, 
since it is assumed that drivers will be able to respond to driving hazards by conventional 
manual braking. Loss of warning messages may not be discernible to drivers, suggesting an 
operational severity rating SO=2. However, widespread late or erroneous messages will be 
more obvious to drivers and are likely to be detrimental to the reputation of this function (and 
thereby to vehicle manufacturers and system suppliers), suggesting an operational severity 
rating SO=3 for the attack objectives “delayed warning” and “wrong warning”. No financial or 
privacy aspects are expected to be associated with this attack.  
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Table 14 Risk analysis for “Tamper with Warning Message” 

Attack 
Objective 

Severity 
(S) 

Attack 
Method 

Risk 
level 
(R) 

Combined 
attack 

probability 
(A) 

Asset (attack) 
Attack 

probability 
(P) 

9.1.1.2 Chassis Safety Control-
ler (denial of service) 2 Delay com-

putation RO=R4 4 
9.1.1.1 Communications Unit 
(denial of service) 4 

9.1.2.1 Wireless Communica-
tions (jamming) 5 

9.1.2.2 Backbone Bus 
(jamming) 4 

5.1 Delay 
warning 
message 

SS=0 
SP=0 
SF=0 
SO=3 Delay data 

transmission RO=R5 5 

9.1.2.3 Chassis Safety Bus 
(jamming) 4 

9.3.3.1 Chassis Safety Control-
ler (denial of service) 2 

9.3.3.2 Chassis Safety Control-
ler (corrupt code or data) 1 Prevent com-

putation RO=R3 4 

9.3.3.3 Communications Unit 
(denial of service) 4 

9.3.1.1 Wireless Communica-
tions (jamming) 5 

9.3.1.2 Backbone Bus 
(jamming) 4 Prevent data 

transmission RO=R4 5 

9.3.1.3 Chassis Safety Bus 
(jamming) 4 

5.2 Prevent 
warning 
message 

SS=0 
SP=0 
SF=0 
SO=2 

Spoof current 
GPS position RO=R3 4 5.2.1 GPS (spoofing) 4 

Tamper with 
air communi-
cations 

RO=R2 2 
5.3.2.1 Wireless Communica-
tions (listen, intercept, alter, 
inject, replay) 

2 

Tamper with 
bus communi-
cations 

RO=R2 2 
5.3.1.1 Backbone bus Commu-
nications (listen, intercept, alter, 
inject, replay) 

2 

Fake air 
communica-
tions warning 

RO=R4 4 

5.3.3.2 GPS (spoofing)  
& 
5.3.3.1 Wireless Communica-
tions (corrupt or fake warning 
messages) 

4 
 
5 

5.3.4.1.1.1 Head Unit (gain root 
access to embedded OS) 1 

5.3 Display 
wrong 
warning 
message 

SS=0 
SP=0 
SF=0 
SO=3 

Fake visual 
warning info RO=R1 1 5.3.4.1.1.2 Head Unit (malware 

delivered during flashing) 1 

C.2.4 Attacking E-Call 

This attack relates to the use case “E-Call”. The risk analysis table (see Table 15) is based on 
the corresponding attack tree (Figure 9). 

Although this attack does not directly produce safety hazards, there are potential indirect 
safety implications, since denial or degradation of service may lead to a more severe medical 
outcome for some casualties. Triggering spurious calls is also an approach to denying or 
degrading the service. Consequently, the operational severity is set to SO=3 (significant 
impact for some, noticeable impact for many) for all attack objectives. No financial or privacy 
aspects are associated with this attack. 
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Table 15 Risk analysis for “Attacking E-Call” 

Attack 
Objective 

Severity 
(S) 

Attack 
Method 

Risk 
level 
(R) 

Combined 
attack 

probability 
(A) 

Asset (attack) 

Attack 
prob-
ability 

(P) 
5.3.1.1 Backbone bus Communica-
tions (listen, intercept, alter, inject, 
replay) 

2 
Generate false 
emergency 
brake message 

RO=R4 4 5.3.3.2 GPS (spoofing)  
& 
5.3.3.1 Wireless Communications 
(corrupt or fake warning messages) 

4 
 

5 

6.1 Trigger 
spurious 
E-Call 

SS=0 
SP=0 
SF=0 
SO=3 

Generate false 
e-Call mes-
sage 

RO=R2 2 6.1.2.1/2 Wireless Communications 
(listen, intercept, alter, inject, replay)  2 

6.2.3.1 Service Centre (overload) 2 
6.2.3.3 Service Centre interfaces 
(denial of service) 1 Attack service 

centre RO=R3 3 
6.2.3.3 Service Centre Interfaces 
(exploit interfaces) 3 

Corrupt 
transmitted 
information 

RO=R2 2 6.2.1.1-3Wireless Communications 
(listen, intercept, alter, inject, replay) 2 

6.2.2.1 GPS (jamming) 5 

6.2 Degrade  
E-Call ser-
vice quality 

SS=0 
SP=0 
SF=0 
SO=3 

Corrupt GPS 
information RO=R5 5 

6.2.2.2 GPS (spoofing) 4 

6.3.3.1 Service Centre (overload) 2 
6.3.3.2 Service Centre interfaces 
(denial of service) 1 Attack service 

centre RO=R3 3 
6.3.3.3 Service Centre Interfaces 
(exploit interfaces) 3 

6.3.2.5 Communications Unit 
(denial of service) 4 

6.3.2.4 Wireless Communications 
(jamming) 5 

6.3.2.1 Service Centre (overload) 2 
6.3.2.2 Service Centre interfaces 
(denial of service) 1 

Attack com-
munications 
with service 
centre 

RO=R5 5 

6.3.2.2 Service Centre Interfaces 
(exploit interfaces) 3 

6.3 Denial 
of service  
For E-Call 

SS=0 
SP=0 
SF=0 
SO=3 

Make Com-
munications 
Unit contact 
non-working 
service centre 

RO=R2 2 6.3.3.1 Communications Unit 
(corrupt data) 2 

C.2.5 Unauthorized brake 

The unauthorized brake attack is derived from the use case “Safety Reaction: Active Brake”. 
The risk analysis table (see Table 16) is based on the corresponding attack tree (Figure 11). 

The operational impact for unauthorized braking is SO=4 (significant impact for multiple 
vehicles). There may also be significant safety implications (SS=4), potentially with poor con-
trollability (C3). The safety-related risks are assessed using the appropriate risk graph (see 
Table 11). No financial or privacy aspects are associated with this attack. 
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Table 16 Risk analysis for “Unauthorized brake” 

Attack 
Objective 

Severity 
(S) 

Attack 
Method 

Risk 
level 
(R) 

Combined 
attack 

probability 
(A) 

Asset (attack) 
Attack 

probability 
(P) 

Corrupt envi-
ronment 
sensors 

RS=R4 
RO=R2 1 

8.3.1 Environment Sensors 
(flash malicious code to firm-
ware) 

1 

8.1.1 Chassis Safety Controller 
(exploit implementation flaws) 2 

8.1.2 Chassis Safety Controller 
(flash malicious to firmware) 1 

Corrupt Chas-
sis Safety 
Controller 

RS=R5 
RO=R3 2 

8.1.1.1.1 Chassis Safety Bus 
(listen, intercept, alter, inject, 
replay) 

1 

8.2.1.2.1 Bus Communications 
(corrupt or fake brake warning 
message) 

1 

8.2.1.1.1.1.1 Head Unit (gain 
root access to embedded OS) 
& 
8.2.1.1.1.1.2 In-car Interfaces 
(access) 

1 
 
 
3 

8.2.2.2 Wireless Communica-
tions (corrupt or fake brake 
warning message) 
& 
8.2.2.1.1.1 Head Unit (gain root 
access to embedded OS) 

5 
 
 
 
1 

8.2.2.2 Wireless Communica-
tions (corrupt or fake brake 
warning message) 
& 
8.2.2.1.1.1 Head Unit (exploit 
vulnerability or implementation 
error) 

5 
 
 
 
1 

8.2.1.3.1 Domain Controllers 
(malware delivered during 
flashing) 

3 

8 False 
brake com-
mand on 
Chassis 
Safety Bus 

SS=4, C3 
SP=0 
SF=0 
SO=4 

Spoof brake 
event in im-
mediate 
locality 

RS=R7 
RO=R5 

4 

8.2.2.2 Wireless Communica-
tions (corrupt or fake brake 
warning message) 
& 
8.2.2.1.1.1 GPS (spoofing) 

5 
 
 
 
4 

C.2.6 Attack E-Toll 

The four attack trees relating to the use case “E-Tolling” are combined into a single risk 
analysis table, since the individual attack trees are more readily associated with attack objec-
tives with implications for the stakeholders. The risk analysis table (see Table 17) is based on 
the corresponding attack trees (see Figure 13 to Figure 16). 

The financial severity of modifying toll payments is perhaps SF=2 (multiple losses ~€10 
perhaps), but the operational severity is probably SO=3 (noticeable impact for many vehicles) 
for increased toll payments. Access to private data may allow driver/vehicle tracking of mul-
tiple vehicles (SP=4), but the victims are unlikely to be aware of this (SO=2). No safety aspects 
are associated with these attacks. 
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Table 17 Risk analysis for “Attacking E-Toll” 

Attack 
Objective 

Severity 
(S) 

Attack 
Method 

Risk 
level 
(R) 

Combined 
attack 

probability 
(A) 

Asset (attack) 
Attack 

probability 
(P) 

10.1.1.1 Communications Unit 
(exploit vulnerability of exter-
nal communication protocols) 

2 

10.1.1.2.1 In-car ECU (malware 
flashed with OBD update) 1 

10 Prevent 
victim from 
passing 

SS=0 
SP=0 
SF=0 
SO=3 

Attack non-
repudiation of 
billing mes-
sage 

RO=R2 2 

10.1.1.2.2 Communications 
Unit (malware delivered by 
mobile device) 

2 

11.1.1.1 Communications Unit 
(exploit vulnerability of exter-
nal communication protocols) 

2 

11.1.1.2.1 In-car ECU (malware 
flashed with OBD update) 1 

11 Increase 
victim toll 
payment 

SS=0 
SP=0 
SF=2 
SO=3 

Modify GPS 
billing data 

RF=R1 
RO=R2 2 

11.1.1.2.2 Communications 
Unit (malware delivered by 
mobile device) 

2 

12.1.1.1 In-car ECU (malware 
flashed with OBD update) 1 

Replace GPS 
trace RF=R1 2 12.1.1.2 Communications Unit 

(malware delivered by mobile 
device) 

2 

12.2.1 GPS (spoofing) 4 

12 Reduce 
own toll 
payment 

SS=0 
SP=0 
SF=2 
SO=0 Fake GPS 

trace for 
lower bill 

RF=R4 5 12.2.2 In car sensors (manipu-
late heading, speed, orientation) 5 

13.1.1.1.1 In-car ECU (malware 
flashed with OBD update) 1 13 Access 

victim’s 
private data 

SS=0 
SP=4 
SF=0 
SO=2 

Access user’s 
GPS trace 

RP=R3 
RO=R1 2 13.1.1.2.1 Communications 

Unit (malware delivered by 
mobile device) 

2 

C.2.7 Green light ahead of attacker 

This attack is related to the use cases “Traffic Information to/from Other Entities”. The risk 
analysis table (see Table 18) is based on the corresponding attack tree (Figure 4). 

No privacy issues are expected to arise from this attack. However, there may be potential 
safety hazards from manipulating speed limits or speed limit information; rapid and haphaz-
ard changes, for example, may lead to widespread confusion and driver distraction, with 
potential for multiple minor incidents (SS=2). Nonetheless, controllability is likely to be rea-
sonable (C2) in the urban environments where this type of attack is most likely to be 
deployed. Possible financial implications could be speeding fines for minor speeding by mis-
informed vehicles (SF=2). This could lead to loss of confidence in the systems (SO=4). No 
financial or privacy aspects are associated with this attack. 
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Table 18 Risk analysis for “Green light ahead of attacker” 

Attack 
Objective 

Severity 
(S) 

Attack 
Method 

Risk 
level 
(R) 

Combined 
attack 

probability 
(A) 

Asset (attack) 
Attack 

probability 
(P) 

Physical 
modification  Not in 

scope 1.2.1.1 Roadside units (modify) Not in 
scope 1.2 Tamper 

with road-
side equip-
ment 

SS=2, C2 
SP=0 
SF=0 
SO=4 

Take control 
of roadside 
units using 
C2I 

RS=R1 
RO=R2 1 

1.2.2.2 Roadside Units (exploit 
configuration errors) & 
1.2.2.1 Roadside Units (exploit 
protocol implementation flaws) 

1 
 
1 

1.1.1.2 Wireless Communica-
tions (fake messages) & 
1.1.1.1.1 Wireless Communica-
tions (listen, intercept, alter, 
inject, replay) 

5 
 
2 

1.1.1.2 Wireless Communica-
tions (fake messages) & 
1.1.1.1.2.1.1 In-car ECU or bus 
(exploit vulnerability or imple-
mentation flaw) 

5 
 
1 

1.1.1.2 Wireless Communica-
tions (fake messages) & 
1.1.1.1.2.1.2 In-car Communi-
cations (listen, intercept, alter, 
inject, replay) 

5 
 
1 

1.1.1.2 Wireless Communica-
tions (fake messages) & 
1.1.1.1.2.2.1.1 Keys (illegal 
acquisition, modification or 
breaking) & 
1.1.1.1.2.2.1.2.1 Roadside Units 
(modify) 

5 
 
1 
 
 

Not in scope 

1.1.1.2 Wireless Communica-
tions (fake messages) & 
1.1.1.1.2.2.1.1 Keys (illegal 
acquisition, modification or 
breaking) & 
1.1.1.1.2.2.1.2.2 Roadside Units 
(exploit protocol implementa-
tion flaws) 

5 
 
1 
 
 
1 

1.1.1.2 Wireless Communica-
tions (fake messages) & 
1.1.1.1.2.3.1 In-car interfaces 
(physical tampering) 

5 
 
2 

1.1.1.2 Wireless Communica-
tions (fake messages) & 
1.1.1.1.2.3.2 Communications 
Unit (exploit vulnerability or 
implementation error) 

5 
 
2 

1.1 Imper-
sonate 
emergency 
vehicle 

SS=2, C2 
SP=0 
SF=0 
SO=4 

Wireless con-
trol of road-
side equip-
ment 

RS=R2 
RO=R3 2 

1.1.1.2 Wireless Communica-
tions (fake messages) & 
1.1.1.1.2.3.3 Head Unit (exploit 
vulnerability or implementation 
error) 

5 
 
1 

C.2.8 Manipulate speed limits 

This attack is related to the use cases “Traffic Information to/from Other Entities”. The risk 
analysis table (see Table 19) is based on the corresponding attack tree (Figure 5). 
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No privacy issues are expected to arise from this attack. However, there may be potential 
safety hazards from manipulating speed limits or speed limit information; rapid and haphaz-
ard changes, for example, may lead to widespread confusion and driver distraction, with 
potential for multiple minor incidents (SS=2). Nonetheless, controllability is likely to be rea-
sonable (C2) in the urban environments where this type of attack is most likely to be 
deployed. Possible financial implications could be speeding fines for minor speeding by mis-
informed vehicles (SF=2). This could lead to loss of confidence in the systems (SO=4). Such 
an attack could also be part of a wider objective to manipulate traffic flow or to cause a traffic 
jam.  

Alternatively, an attacker may simply be trying to exceed authorised speed limits. Exces-
sive speed in the urban environment may also pose an increased safety hazard for pedestrians 
and other road users (SS=3), with poor controllability (C3). A possible motivation for this 
could be to avoid fines for significant speeding, so there may also be a financial implication 
for the authorities (perhaps SF=3). Reducing speed limits could also be part of a wider objec-
tive to manipulate traffic flow or to cause a traffic jam. 

Table 19 Risk analysis for “Manipulate speed limits” 

Attack 
Objective 

Severity 
(S) 

Attack 
Method 

Risk 
level 
(R) 

Combined 
attack 

probability 
(A) 

Asset (attack) 

Attack 
prob-
ability 

(P) 
Fake wired 
speed update 
messages 
from authority 

 Not in 
scope 

2.2.2.1 Wired infrastructure (fake 
speed limit messages) 

Not in 
scope 

2.2.1.3 Roadside Units (exploit 
configuration errors) 1 

2.2.1.4 Roadside Units (gain root 
access) 1 

2.2.1.2 Roadside Units (exploit 
protocol implementation flaws) 1 

2.2.2.1 Roadside Unit to Authority 
communication (access wire infra-
structure) 

Not in 
scope 

2.2 Modify 
limits en-
forced by 
roadside 
equipment 

SS=3, C3 
SP=0 
SF=3 
SO=0 Take control 

of roadside 
units 

RS=R3 
RF=R1 1 

2.2.1.1 Roadside Units (modify) Not in 
scope 

2.1.2.1 Wireless Communications 
(replay speed limit message) 2 Impersonate 

authority 

RS=R2 
RF=R1 
RO=R3 

2 
2.1.2.2 Authorisation keys (illegal 
acquisition by physical attack) 

Not in 
scope 

Influence 
roadside 
equipment 

RS=R5 
RF=R4 
RO=R6 

5 2.1.3.1 Wireless Communications 
(fake traffic conditions messages) 5 

2.1.1.2 Roadside Units (exploit 
configuration errors) 1 

2.1.1.3 Roadside Units (exploit 
protocol implementation flaws) 1 

2.1.1.4 Roadside Units (gain root 
access) 1 

2.1 Issue 
bogus speed 
limit notices 
to other 
vehicles 

SS=2, C2 
SP=0 
SF=2 
SO=4 

Take control 
of roadside 
units 

RS=R1 
RF=R0 
RO=R2 

1 

2.1.1.1 Roadside Units (modify) Not in 
scope 
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C.2.9 Simulate traffic jam 

This attack is related to the use cases “Traffic Information to/from Other Entities”. The risk 
analysis table (see Table 20) is based on the corresponding attack tree (Figure 7). 

No direct safety or privacy implications are expected to arise from this attack. However, 
there may be operational threats in terms of customer dissatisfaction and loss of reputation for 
vehicle manufacturers and their system suppliers (SO=4), as well transport authorities and ITS 
system operators. Possible financial implications could include loss of earnings for individu-
als and more widespread harm to the economy (SF=4). 

C.2.10 Manipulate traffic flow 

This attack is related to the attack trees “unauthorized braking”, “green light ahead of 
attacker”, “simulate traffic jam” and “manipulate speed limits”. The risk analysis table (see 
Table 21) is based on the corresponding attack tree (Figure 6). 

No privacy issues are expected to arise from this attack. However, there may be potential 
safety hazards from manipulating speed limits or speed limit information, or from routing 
traffic the wrong way into one-way systems, with potential for multiple minor incidents. 
(SS=2). More serious is the possibility of exploiting the unauthorized brake attack as a means 
of slowing or stopping cars. The operational impact for unauthorized braking is SO=4 (signifi-
cant impact for multiple vehicles), and there may also be significant safety implications 
(SS=4) associated with such attacks. Nonetheless, controllability of safety hazards is likely to 
be reasonable (C2) in the urban environments where this type of attack would be most likely 
to be deployed.  

Possible financial implications could be fines for minor speeding or other breaches of traf-
fic regulation by misinformed vehicles (SF=2). The financial implications associated with 
inducing traffic jams could be more severe (SF=4), including loss of earnings for individuals 
and more widespread harm to the economy. Such attacks could also lead to loss of confidence 
in the associated systems if security breaches are identified as the mechanism (SO=4).  
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Table 20 Risk analysis for “Simulate traffic jam for target car” 

Attack 
Objective 

Severity 
(S) 

Attack 
Method 

Risk 
level 
(R) 

Combined 
attack prob-

ability (A) 
Asset (attack) Attack prob-

ability (P) 

Impersonate 
roadside 
equipment 

RF=R3 
RO=R3 2 

4.1.2 Wireless Communi-
cations (insert fake RSU 
traffic jam warning) 

2 

4.1 Attack 
I2C mes-
sages 

SS=0 
SP=0 
SF=4 
SO=4 

Forward traf-
fic jam mes-
sage and fal-
sify location 

RF=R3 
RO=R3 2 

4.1.1.2 Wireless Communi-
cations (modify position 
data in traffic jam message 
from other location) 
& 
4.1.1.1 Wireless Communi-
cations (forward modified 
traffic jam message) 

2 
 
 
 
 
 

2 

4.3.2.1.1.1 Wireless Com-
munications (listen, inter-
cept, alter, inject, replay) 

2 

4.3.1.1.1 Wireless Commu-
nications (corrupt or fake 
messages 
& 
4.3.2.1.1.1 Wireless Com-
munications (listen, inter-
cept, alter, inject, replay 

5 
 
 
 

2 

4.3.1.1.1 Wireless Commu-
nications (corrupt or fake 
messages 
& 
4.3.2.1.1.2 In-car sensors 
(spoofing) 

5 
 
 
 

2 

4.3.1.1.1 Wireless Commu-
nications (corrupt or fake 
messages 
& 
4.3.3.2.1 GPS (spoofing) 

5 
 
 
 

4 
4.3.2.1.1.1 Wireless Com-
munications (listen, inter-
cept, alter, inject, replay) 
& 
4.3.2.1.1.2 In-car sensors 
(spoofing) 

2 
 
 
 
 

2 

Alter position 
data for cars 
in traffic jam  

RF=R5 
RO=R5 4 

4.3.2.1.1.1 Wireless Com-
munications (listen, inter-
cept, alter, inject, replay) 
& 
4.3.3.2.1 GPS (spoofing) 

2 
 
 
 
 

4 
4.3.1.1.2 Wireless Commu-
nications (exploit vulner-
ability or implementation 
errors) 

2 
 Simulate the 

existence of 
many cars 

RF=R6 
RO=R6 5 

4.3.1.1.1 Wireless Commu-
nications (corrupt or fake 
messages) 

5 

4.3.3.2.2 In-car ECU or bus 
(configuration changes) 2 

4.3 Attack 
C2I mes-
sages 

SS=0 
SP=0 
SF=4 
SO=4 

Modify car to 
believe itself 
in a traffic 
jam  

RF=R5 
RO=R5 4 

4.3.3.2.1 GPS (spoofing) 4 

4.2.1 Roadside Units 
(exploit protocol imple-
mentation flaws) 

Not in scope 4.2 Tamper 
with road-
side equip-
ment 

Not in 
scope 

Attack infra-
structure   

4.2.2 Roadside Units (ex-
ploit configuration errors)  
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Table 21 Risk analysis for “Manipulate traffic flow” 

Attack 
Objective 

Severity 
(S) 

Attack 
Method 

Risk 
level 
(R) 

Combined 
attack 

probability 
(A) 

Asset (attack) 
Attack 

probability 
(P) 

3.1.1.1.1 Roadside Unit 
(access) Not in scope 

3.1.1.1.2.1.1 In-car Communi-
cations (listen, intercept, alter, 
inject, replay) 

1 

3.1.1.1.2.1.2 Keys (illegal 
acquisition, modification or 
breaking) 

1 

3.1.1.2.1.1 Wireless Communi-
cations (exploit vulnerability or 
implementation error) 

2 

3.1.1.2.1.2 Head Unit (exploit 
vulnerability or implementation 
error) 

1 

3.1.1.2.1.3 Communications 
Unit (exploit vulnerability or 
implementation error) 

2 

Spread bogus 
accident 
warnings 

RS=R2 
RF=R1 
RO=R3 

2 

3.1.1.2.2.1 Wireless Communi-
cations (listen, intercept, alter, 
inject, replay) 

2 

3.1.2.1.1 Wireless Communica-
tions (listen, intercept, alter, 
inject, replay) 

2 

3.1.2.1.3 Wireless Communica-
tions (exploit vulnerability or 
implementation error) 

2 

Divert 
vehicles 

SS=2, C2 
SP=0 
SF=2 
SO=4 

Spread bogus 
traffic jam 
information 

RS=R5 
RF=R4 
RO=R6 

5 

3.1.2.1.3 Wireless Communica-
tions (corrupt or fake messages) 5 

8.3.1 Environment Sensors 
(flash malicious code to firm-
ware) 

1 

8.1.1.2 Chassis Safety Control-
ler (exploit implementation 
flaws) 

2 

8.1.1.2 Chassis Safety Control-
ler (corrupt code or data) 1 

8.2.1.1.1.1.1 Head Unit (gain 
root access to embedded OS) 
& 
8.2.1.1.1.1.2 In-car Interfaces 
(access) 

1 
 
 
3 

8.2.1.2.1 Bus Communications 
(corrupt or fake brake warning 
message) 

1 

8.2.2.2 Wireless Communica-
tions (corrupt or fake brake 
warning message) 
& 
8.2.2.1.1.1 Head Unit (gain root 
access to OS) 

5 
 
 
 
1 

Induce traf-
fic jam 

SS=4, C2 
SP=0 
SF=4 
SO=4 

Make cars 
stop (see un-
authorized 
brake attack) 

RS=R6 
RF=R5 
RO=R5 

4 

8.2.2.2 Wireless Communica-
tions (corrupt or fake brake 
warning message) 
& 
8.2.2.1.1.1 Head Unit (exploit 
vulnerability or implementation 
error) 

5 
 
 
 
1 
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8.2.1.3.1 Domain Controllers 
(malware delivered during 
flashing) 

3 

8.2.2.2 Wireless Communica-
tions (corrupt or fake brake 
warning message) 
& 
8.2.2.1.1.1 GPS (spoofing) 

5 
 
 
 
4 

3.2.2.1.1 Wireless Communica-
tions (corrupt or fake messages) 5 

3.2.2.1.2 Wireless Communica-
tions (listen, intercept, alter, 
inject, replay) 

2 

3.2.2.1.3 In-car Communica-
tions (listen, intercept, alter, 
inject, replay) 

1 

3.2.2.3.1.1.2 In-car ECU or Bus 
(exploit vulnerability or imple-
mentation error) 

1 

3.2.2.3.3.2.1 Head Unit (exploit 
vulnerability or implementation 
error) 

1 

3.2.2.4.1.1/2 In-car Interfaces 
(access – exploit vulnerabilities) 3 

3.2.2.4.2.1 In-car Communica-
tions (corrupt or fake messages) 2 

3.2.2.4.2.2 In-car sensors 
(spoof) 2 

3.2.2.4.2.3 In-car sensors 
(manipulate) 5 

2.1.1.3 Roadside Units (exploit 
configuration errors) 1 

2.1.1.2 Roadside Units (exploit 
protocol implementation flaws) 1 

2.1.2.1 Wireless Communica-
tions (replay speed limit mes-
sage) 

2 

2.1.3.1 Wireless Communica-
tions (fake traffic conditions 
messages) 

5 

2.1.1.3 Roadside Units (exploit 
configuration errors) 1 

Slow cars 
down 
(includes 
manipulate 
speed limits 
attack) 

RS=R7 
RF=R6 
RO=R6 

5 

2.1.1.3 Roadside Units (exploit 
protocol implementation flaws) 1 

C.2.11 Engine denial of service 

This attack is not directly related to any of the use cases, but many of them may provide 
opportunities for mounting attacks (i.e. those involving wireless communications, nomadic 
devices and workshop updating). The risk analysis table (see Table 22) is based on the cor-
responding attack tree (Figure 10). 

No direct safety, privacy or financial implications are expected to arise from this attack. 
However, there may be operational threats in terms of customer dissatisfaction and loss of 
reputation for vehicle manufacturers and their system suppliers (SO=3). 



 

 109

Table 22 Risk analysis for “Engine denial of service” 

Attack 
Objective 

Severity 
(S) 

Attack 
Method 

Risk 
level 
(R) 

Combined 
attack 

probability 
(A) 

Asset (attack) 
Attack 

probability 
(P) 

7.1.2.1 Powertrain Controller 
(PTC malware flashed with 
OBD update) 

1 Disable 
Powertrain 
Controller 

RO=R2 2 
7.1.1.2 In-car ECU or bus 
(configuration change – bus 
parameters changed to disable) 

2 

Powertrain 
Controller 
unreachable 

RO=R4 4 7.1.3 In-car Communications 
(jamming) 4 

7.1.4 In-car ECU (disable or 
denial of service) 2 

7.1 Engine 
controller is 
not reach-
able 

SS=0 
SP=0 
SF=0 
SO=3 

Disable 
Engine Con-
trol Unit 

RO=R2 2 7.1.4.1 Engine Control Unit 
(ECU malware flashed with 
OBD update) 

1 

7.4.4.2 Cryptographic Data 
(modified) 1 Owner access 

denied RO=R4 4 
7.4.4.1 In-car Communications 
(jamming) 4 

Message cor-
rupted RO=R2 2 7.4.1 In-car Communications 

(corrupt message or data) 2 

7.4 Power-
train con-
troller does 
not receive 
order 

SS=0 
SP=0 
SF=0 
SO=3 

Backbone Bus 
disabled RO=R4 4 7.4.3 Backbone Bus (denial of 

service) 4 

7.2.2.2 Powertrain Controller 
(corrupt code or data) 1 

7.2.2.3.1.2 Communications 
Unit (malware flashed with 
OBD update) 

1 
False warning 
from Power-
train Control-
ler 

RO=R2 2 
7.2.2.3.1.1 Wireless Communi-
cations (exploit vulnerability of 
external communication proto-
cols) 

2 

7.2.1 Powertrain Peripherals 
(corrupt code or data) 1 

7.2 Engine 
controller 
receives 
warning 

SS=0 
SP=0 
SF=0 
SO=3 

False warning 
on Powertrain 
Domain Bus 

RO=R1 1 7.2.2.2 Powertrain Controller 
(PTC malware flashed with 
OBD update) 

1 

7.3.1.1 In-car Communications 
(corrupt or fake messages on 
Powertrain Bus) 

2 

7.3.1.2 In-car Communications 
(exploit vulnerability of exter-
nal communication protocols) 

3 
7.3 Essen-
tial engine 
component 
out of order 

SS=0 
SP=0 
SF=0 
SO=3 

Previously 
issue bogus 
commands to 
induce dam-
age 

RO=R2 3 

7.3.1.3 In-car ECU or bus 
(exploit vulnerability or imple-
mentation error) 

1 

C.3 Summary and conclusions 

Analysis of the attack trees demonstrates that specific asset attacks may contribute to different 
attack objectives within the same attack tree, and may also contribute to attack objectives 
associated with other attack trees. For a particular asset attack, both the risk level (reflecting 
the attack potential and the severity of outcome) and the number of instances from the collec-
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tion of attack trees are indicators of the importance of the asset attack and the likely benefits 
of measures for reducing its attack potential. 

The attack potentials for jamming GPS and wireless transmissions are very high and domi-
nate several of the risk analyses. Measures for detecting tampering with GPS and wireless 
transmissions, and avoiding reliance on GPS signals alone as a source of position data, would 
help to reduce the associated risk levels. 

It should be noted that EVITA is not aiming to develop new vehicle systems with particu-
lar levels of security, or to enhance the security of existing systems. The EVITA project is 
concerned with prototyping a “toolkit” of security measures (which may software, hardware, 
and architectural) that could be selected for further development and implementation in future 
systems. Consequently, the requirements analysis activity is based on a representative range 
of possible applications and a generic vehicle architecture, with the aim of identifying what 
kind of security requirements may need to be met, as well as their likely prevalence and dis-
tribution amongst the system assets.  

Nonetheless, it is expected that much of the EVITA security engineering process could be 
adapted to support future product development processes. The risk analysis approach could be 
used, in combination with the vehicle manufacturer’s security policy, in order to decide 
whether to accept or transfer the identified security risks, or to take measures to reduce or 
avoid specific risks where this is deemed necessary.  
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Appendix D – Identifying security requirements 

D.1 Abstract functional path approach 

D.1.1 Abstract functional system model 

As a basis for the security requirements analysis, a functional model is derived from the use 
cases. The nature of the use case descriptions is such that it is not possible to identify the 
complete system under investigation. Therefore an abstract functional component model is 
developed, which represents the behaviour of a single car within the system (see Figure 19). It 
provides an overview of every action happening at the functional borders of the car compo-
nent, as well as the interactions with other cars or with other entities of the system. 

The functional flow is illustrated in the form of arrows from inputs4 to outputs5 of the sys-
tem component model within the TOE box (Target of Evaluation). The arrows outside the 
TOE box denote the functional relations between different components of the global system. 
The intermediate predicates6 represent an abstraction of the condition checking, which leads 
to a certain system action. It is not intended to represent the behaviour of the system compo-
nent under investigation, but only the implicit functional decisions. The predicates are not 
defined further, as this is the subject of research being done in the area of safety reaction sys-
tems and not directly related to security. Also, it is not necessary to define them in our 
abstract model in order to derive the necessary security requirements, aside from ensuring a 
guaranteed behaviour of the system. 

Based on the functional component model, one may now start to reason about the overall 
system. The synthesis of the inner and the outer system behaviour builds the global system 
behaviour. The distinction between internal and external flow description regarding the func-
tional component model is expressed in terms of internal and external functional flow. 

                                                 
4 Inputs: DSRC-Receive Neighbourhood-Information), DSRC-Receive(C2X-Message(Emergency)), 

Environment-sensing(Environment-Information), Chassis-Sensing(Vehicle-Dynamics), 
DSRC-Receive(Cooperative-Awareness-Message), DSRC-Receive(Traffic-Information-Message), 
Sensing(Data), GPS-Sensing(Position), BT-Receive(OpenHood), HMI-Read(POI-Configuration), 
Receive(POI-Info), USB-Receive(Software), HIM-Read(Inputs), BT-Receive(Display(Data)), 
HIM-Read(Inputs), BT-Receive(SeatPosition), Receive(Diagnosis-Request), DSRC-Receive(Firmware), 
Diag-Receive(Firmware) 

5 Outputs: DSRC-Send(Neighbourhood-Token), DSRC-Forward(C2X-Message(Emergency)), Brake, 
Driving-Power-Reduction, DSRC-Send(C2X-Message(Emergency)), HMI-Display(Warning), 
HMI/Navigation-Display(Warning), PTC-Action, DSRC-Send(Cooperative-Awareness-Message), 
Send(Traffic-Information-Message), GSM-Send(Billing-Information), GSM-Send(eCall-Request(Position), 
Open(Hood), HMI-Show(POI-Info), HIM-Show(SW-Interface), HIM-Show(Data), BT-Send(Inputs), 
Adjust(SeatPosition), Send(Diagnosis-Data) 

6 Intermediate predicates: Forwarding-Message=true, 
Danger-Avoidance->Emergency-Braking=true,Processing->Warning=true, Processing->ShowInfo=true, 
Situation-Assessment->Emergeny=true, Processing->critical-situation-recognition=true, Aggregation, 
Collecting->TollRoad->Calculation=true, Crash-calculation=true, Show-POI=true, Execution 
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Figure 19 Abstract functional system model pattern 
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Figure 20 illustrates an example of a functional system model instance derived from the 
functional component model (Figure 19) with a subset of actions. This should help to illus-
trate how to interpret the component model. Of course, an exhaustive list of all possible 
instances of the system models would be too big to be written down. Therefore, the identifi-
cation of border actions of the overall system that are relevant to the security requirements is 
performed within the component model. However, the functional dependencies among several 
component instances must still be taken into account during this process. 

 

Figure 20 Abstract functional system model instance 

D.1.2 Security Requirements Engineering Process 

D.1.2.1 Authenticity 

Each functional flow arrow within the system description describes a functional dependency 
in the reverse direction. Associated with each functional dependency is an authenticity 
requirement. Therefore, each functional flow arrow can be viewed as an authenticity require-
ment in the reverse direction that spans from the output border action to all input border 
actions that it depends and relies on. 

Additionally, authenticity is required regarding the actions “Replacement/Addition of 
ECU” and “DSRC / diag receive (firmware)” for every output action performed by the system 
under investigation. These requirements originate from the system’s dependence on the 
underlying hardware and software. Accordingly, changes to those may result in an alteration 
of the intended system behaviour. Also for the driver of a following car, or an RSU, this must 
be authentic. 
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As the critical point regarding liability and safety is the driver, we assume that the driver is 
the subject of each of the authenticity requirements. This means, that the driver is the agent 
that must be assured of all requirements regarding the functional safety of the car2car system. 

D.1.2.2 Confidentiality 

For confidentiality we will assume a strategy of minimal disclosure: Unless the functional 
flow requires a disclosure of information, the information shall be confidential. These 
requirements can then be grouped regarding the kind of data they address regarding classical 
confidentiality, anonymity and privacy. 

D.2 Detailed functional path and mapping approach 

D.2.1 Methodology 

D.2.1.1 Introduction 

Developing a model of the system to be analysed usually requires that it already exists or is 
fully specified. In the context of the security requirements definition things are slightly differ-
ent because the purpose is to contribute to the specification process by adding some security 
related constraints. We thus need to live with a system that is neither yet available nor speci-
fied. The following is an attempt to define a model in a generic way, using a set of generic 
physical and functional components, characterized by a set of generic parameters. Our pri-
mary goal is to offer a framework dedicated to security analysis, flexible enough to be 
adapted to any actual system but still capable of producing accurate analysis results. This 
framework could be used as follows: 

1. A candidate on-board network structure is designed by selecting components, interconnect-
ing them and characterizing them (that is, assigning values to their generic parameters). 

2. One or several typical use cases are selected as a starting point of investigation. 

3. The functional description of the use cases is built as a graph of communicating tasks. As 
for the architecture this is done by selecting, connecting and characterizing generic com-
ponents.  

4. The functional description is mapped on the architecture: each task is allocated to a com-
puting node; each logical communication channel is allocated to physical links and memo-
ries. All the mapping parameters are set (arbitration policies, priorities, etc.) This defines a 
fully mapped system.  

5. Attack trees are designed representing the different ways an attacker could pursue his/her 
goals. The attack trees are refined up to the point where more information is needed about 
the architecture (internals of a component) or a branch can be cut thanks to the parameters 
of the mapped system (the cost/skills factor exceeds the threshold for the considered 
goal/attacker’s class). Attack tree nodes are fully numbered so as to further evaluate the 
coverage of attacks.  
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6. The architecture, the functional description and the mapping are refined whenever needed 
to further explore a branch.  

7. Remaining branches are cut by modifying the system (architecture and/or functional 
description and/or mapping). New attacks may also have been identified 

8. Security requirements are listed. They are found considering use cases’ description, func-
tional and mapping views, as well as attack trees. Those requirements shall provide a full 
coverage of attack tree nodes. 

9. Attack trees might be updated according to new attacks that may have been found when 
modelling functional and mapping views, or when listing requirements. Then, we restart 
from point “5.” until the list of requirements remains unchanged. 

Risk evaluation of the system under investigation (every remaining branch in an attack tree 
represents a risk) is also an output of that methodology. The graph shown in Figure 21 illus-
trates the overall analysis flow.  

 

Figure 21 Identification of security requirements 

D.2.1.2 Functional and architectural description  

A full system is made of a functional specification, a physical architecture and a mapping of 
the former to the latter. 

A functional description is a collection of communicating functions. In the DIPLODOCUS 
approach, functions may communicate using either abstract data channel, or abstract event. 
This difference of communication semantics is not really meaningful for capturing security 
requirements. Also: 

• Functions generating input to the system are considered as related to sensors. 

• Functions generating commands to the outside of the system are related to actuators 

• Other functions are meant to be executed on either CPU nodes, or hardware nodes such as 
hardware accelerators or I/O devices. 
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Note that, even if functions are meant to be mapped on physical architectures, the functional 
specification shall describe the system with as few references to an underlying physical 
architecture as possible. 

An architectural description is a collection of interconnected hardware nodes. Those hard-
ware nodes are computing nodes (CPUs, I/O devices, hardware accelerators), storage nodes 
(RAM, etc.), sensors and actuators. The interconnection between those nodes is described in 
term of busses, networks and wireless links. 

The general mapping framework is the following. Each functional element of the system 
under investigation is mapped on a physical component of the architectural view. Tasks are 
mapped on computing nodes and on memories. A task has code memory segments and data 
memory segments. Each memory segment must be mapped on a memory component or on a 
computing component (the latter case represents embedded memories that are not yet visible 
at this architecture refinement level). Data segments cannot be mapped on read only memory 
components (read-only data are considered as a code segment). Segments are optionally split 
in two views: the load view and the runtime view. When a code segment is split, its two views 
can be mapped on two different memory components. During the initialization of the system 
the load view is read from its memory and copied in another, creating the runtime segment. 
An un-split code segment and the load view of a split code segment cannot be mapped on a 
volatile memory. The load view of a split data segment cannot be mapped on a volatile mem-
ory. An unsplit data segment can be mapped on a volatile memory (in this case it is uninitial-
ized or always initialized to the same value at boot time).  

The systems under consideration carry out computing and communicating activities. Both 
activities usually rely on a third important one: information storage. Acquisition of environ-
ment characteristics and physical actions on mechanical devices are the two other important 
activities of automotive systems taken into account, both at security requirement level and at 
modelling level. Note that, from a functional point of view, communication and storage look 
very similar (sending and writing could be considered as the same operation; receiving and 
reading too), but they are different: Communication takes place between different tasks while 
storage is dedicated to a single task, for its own needs. Moreover, reading is an action while 
receiving a message is an event: A task decides to read or not but has no control on messages 
reception, even if received messages can be ignored. Of course, when considering the physi-
cal view, it may be that communications are implemented through read and write operations 
in a memory and, in most cases, read and write operations of a task are implemented as trans-
actions on a physical communication link between a processor and its external memories. 
Each of the five activities has a physical and functional counterpart, as outlined in Table 22. 

Table 23 Views on activities 

Activity  Physical view  Functional view  
Computing  CPU or dedicated hardware 

accelerator  
Processing task  

Communication  Wired bus or network, wireless link  Send/receive messages on logical 
channels  

Storage  Memory (RAM, ROM, flash)  Read/write data from/to address spaces  
Acquisition  Sensors  Get measurements from the environment  
Command  Actuators  Do actions on the environment  
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D.2.2 Classification of attacks 

We will consider two classes of attacks:  

• attacks modifying the behaviour of the system (active attacks) and  

• attacks aiming at information retrieval without modifying the behaviour (passive attacks).  

Note: passive attacks are frequently a pre-requisite of active attacks; the attacker first analyses 
the system in a passive way to understand it or recover useful crypto material and then 
exploits this knowledge to actively attack. There are two possible ways to identify the differ-
ent types of attacks: the physical one and the functional one. In the following we analyse the 
attacks against our five physical components. For each physical attack we also indicate which 
functional attack it can be used for.  

Active attacks:  

1. Computing attacks are targeting computing nodes (CPUs, hardware accelerators). They 
consist in physical modifications of the component (like modifying the content of an 
embedded ROM or the structure of an operator), its replacement or even its destruction. 
Transient faults injection is another way. The consequence is the production of results that 
differ in some way from those that would have been produced in normal operations, 
including failure to produce results when expected or the converse. Note: the purpose of a 
fault attack is very frequently to retrieve an embedded secret, in which case the modifica-
tion of the behaviour is not the real goal of the attacker but more something like a mean. 
On the functional point of view, these physical attacks can translate into computing, com-
munication, storage or command attacks: modifying the behaviour of a task can indeed 
lead to modifications of the results it produces, of the messages it exchanges with its envi-
ronment, of the content of the memories it manages or of the orders it sends to actuators. 

2. Communication attacks are targeting communication links. There are two main means to 
implement attacks against a physical communication link: tampering with it (modifying its 
topology, jamming it, modifying its main parameters like arbitration policy, frequency, 
etc.) and injection of forged transactions. Because computing devices and memories are 
usually connected through busses, attacks against communication links can be used to 
tamper with the communication or the storage activity. Consequences of communication 
attacks are on the receiver side only (attacks aiming at modifying or cancelling a message 
before it is actually sent are in fact attacks against the sending computing node). They 
comprise the modification of a message between its emission and its reception, the cancel-
lation of a message that will thus never reach its destination or the reception of a message 
that would never have been received during normal operation. When a memory bus is 
attacked, it can be to modify the function of a task (software code modification) or the data 
it processes. There are three classes of memory bus injection attacks: spoofing (the injected 
information was forged by the attacker), splicing (the injected information was taken at a 
different location in the memory) and replay (the injected information was taken at the 
same location in the memory but at a previous date, where it differed from the expected 
one). The same classes apply to messages. The attacks against communication links are the 
more powerful of all because, on the functional point of view, these physical attacks can 
translate in computing, communication, storage, acquisition, or command attacks. 
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3. Active attacks against storage all consist in modifying the regular content of a memory. As 
a consequence the read operations performed by the tasks accessing the address space do 
not return the expected information, that is, the last one that was written at the same loca-
tion. The consequences are very similar to the consequences of attacks against memory 
busses. The means used to achieve content modification depend on the technology: ROMs 
can be replaced, non-volatile writeable memories (EEPROMs, flashes) can be replaced or 
reprogrammed, volatile memories (static and dynamic RAMs) are much more difficult to 
attack in a conscious way but more or less random bit flips can be induced by voltage, 
clock frequency, temperature modifications or more active fault attacks. In some cases, 
volatile memories can even be cooled, removed from their PCB and plugged on another 
host without losing their content which can then be read out and / or modified before the 
component is plugged back in its regular host system. 

4. The consequences of acquisition attacks are the production of altered measured metrics. 
They consist in artificial modifications of the environment (like, for instance, the use of a 
heating device to increase the measured temperature), modification, destruction or 
replacement of the sensor. 

5. Attacks against actuators, as for the attacks against sensors, consist in modifications of the 
environment (increase of the friction to reduce the effect of an action applied with a con-
stant force), modification, destruction or replacement of the actuator. They lead to a differ-
ent action than the intended one.  

Passive attacks:  

1. Passive attacks against the computing activity aim at retrieving either a secret quantum of 
data (secret key) or the processing definition itself (software code extraction). As every 
computation is actually performed by a physical device, measurable syndromes are pro-
duced, like power consumption, computing time or electro-magnetic emissions that can be 
exploited to guess what operations are performed or what is the value of some sensitive 
data. This kind of analysis is referred to as side channel attacks in the literature. Observing 
the external communication or the exchanges with memories is another mean to get infor-
mation about the computing but fall in the passive communication attacks category. 

2. Communication can be spied at and sensitive messages or read/written data exposed. On-
board or on-bus probing is a very effective and attractive mean for wired communications. 
Wireless communications are even more sensitive to this kind of attack as they can be con-
ducted in a completely remote and undetectable way. On-chip probing requires package 
removal, expensive equipment and very skilled attackers. 

3. Storage passive attack consists in reading the content of a memory. Some very sophisti-
cated analysis tools can be used to investigate memories but they usually imply package 
removal plus some on-silicon scanning. Memories can also be dumped from their regular 
I/O. A ROM or a non-volatile memory can be isolated or even removed from its printed 
circuit board, its address bus driven and its content recorded by a logic analyser or any 
similar equipment. In some cases, volatile memories can even be cooled, removed from 
their PCB and plugged on the recording host without losing their content. 

4. Passive attacks against sensors are not applicable. 
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Security requirements listed in that document address both active and passive attacks. Func-
tional and architectural views used for modelling the system capture some of the hardware 
and software elements mentioned above, such as CPU, RAM, TOM, communication links, 
etc. Some elements might be captured only at architectural view level. 

From a security point of view they are all potential targets of attacks but by different means 
and consequences. Security requirements shall therefore address all system elements that 
might be involved in attacks identified in attack trees. 

Additionally, attacks might be classified according to the system description itself. To do 
so, we might provide attributes to functional and physical element, such as the cost to make a 
software exploit on a given software task, or the cost to dump a given memory. This full set of 
attributes will be defined and used at formal verification step (Task 3400). 

D.2.3 SysML based security requirements  

D.2.3.1  Rationale 

The increasing complexity of large-scale heterogeneous systems such as embedded systems 
has made requirements engineering the most critical phase during system conceptualization. 
Security requirements in particular should be specified and taken into account before the sys-
tem architecture is fully defined. However, determining such requirements within embedded 
systems generally and paradoxically necessitates a detailed enough knowledge of the system 
components and interactions, like how functions are mapped onto hardware, whether some 
communication might be seen by an attacker, etc. Security requirements in fact constitute the 
most abstract documentation of the expected system behaviour.  

As such, security requirements should provide a specification that has to be satisfied at 
every subsequent stage of the system design, validation, development, and testing. Establish-
ing relationships between requirements and such later phases of engineering should thus 
receive appropriate support: for instance, it should be possible to document the fact that some 
security mechanism is introduced in order to satisfy one security requirement, or to point at 
some test over the implementation in order to verify that it is compliant with the same 
requirement. In the case of embedded systems, the need for hardware protection to satisfy 
security requirements should be supported by the methodology used. 

Security requirements should furthermore constitute a manageable documentation for the 
average system engineer. As of today, requirements are mainly defined using natural language 
descriptions and are largely text based. However, such techniques are often imprecise and 
may lead to the specification of inconsistent security requirements. In particular, security 
requirements are often defined independently from the security threat analysis or, on the con-
trary, they are mixed together. A precise description of a separately defined threat coverage 
however is necessary to provide convincing arguments as to the security achieved by the sys-
tem under design. Furthermore, a text based description also does not make it possible to 
define relationships between different requirements that would make it possible to organize 
the set of security requirements into a description with different levels of complexity that 
would be more manageable by a human being. In that respect, graphical formalisms typically 
exhibit many advantages in terms of human readability, although text-based tables may be 
more appropriate for checking the consistency of a set of requirements. 
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Finally, because they are defined on a partially specified system, security requirements are 
likely to evolve during the engineering process. Requirement traceability is thus another 
important issue which is missing in text-based approaches: providing a rationale about the 
definition of fine-grained requirements is necessary to understand whether some requirement 
is still necessary if some assumption about the environment, an attacker, or even the system 
architecture changes. Another problem with tracing the origin of some requirement stems 
from the fact that system design is generally architecture and function driven, whereas secu-
rity is generally non-functional and introduced orthogonally to components. 

D.2.3.2  Related Work 

Modelling and validating requirements is a topic at stake in system engineering [22][23][24] 
more specifically to propose standardized environments/languages. Many specification 
approaches have followed the road of defining profiles [22][24][26][27][28][29] based on the 
Unified Modelling Language (UML) [25]: in addition to the graphical specification, portabil-
ity and interoperability are usually among the strength of such profiles. The specification also 
being semi-formal provides a great deal of flexibility at an early stage of engineering. The 
next paragraphs discuss the ins and outs of several of those profiles. 

A UML profile has been introduced based on the KAOS methodology, one of the most 
advanced approaches to the specification of security requirements. KAOS provides a lan-
guage and method to goal-driven requirements design [30] yet was not originally devised with 
a UML centric approach in mind. KAOS provides semantic elements to represent time, 
agents, events, goals, goal patterns, goal categories and subgoals as well as conflicting goals 
and constraints. A relevant feature of KAOS is that goals and related constraints can be 
defined formally using temporal logic [28]. However, in order to define such expressions 
accurately, design should be as precise as possible. KAOS properties also span several classes 
and may properly express non-functional requirements like security ones [28]. However 
KAOS lacks a systematic coverage of threats and does not provide any support for software-
hardware co-design nor code generation and testing in that setting. 

The Enterprise Distributed Object Computing profile (EDOC) [30] relies on the Object 
Constraint Language (OCL) to represent and check requirement satisfaction. However, this 
profile has been designed to specify functional requirements rather than security ones, and 
also to improve business processes. It thus does not provide appropriate support for security 
requirements specification. 

The Refinement Calculus for Object System (rCOS) is an object-based language with a 
rich variety of features including subtypes, inheritance, type casting, dynamic binding, and 
polymorphism [31]. rCOS permits the mathematical characterization of objects through 
Labelled Transition Systems. Despite its benefits, rCOS is inherently software oriented, which 
is perfectly fit for service oriented design [26] but not appropriate for the specification of 
security requirements at system level. 

UMLsec [33] introduces a security-oriented methodology based on activity diagrams, 
state-charts, sequence diagrams, class diagrams, and deployment diagrams. As shown in [34] 
the UMLsec approach can be complemented with automated verification of security proper-
ties using an industrial tool. The examples provided with UMLsec outline that the methodol-
ogy is more about security mechanism design than about security requirements linked with 
use cases: guidelines might be provided for handling secrecy, secure key management, and 
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security protocol specification. In addition, the specification might be ambiguous due to the 
UML diagrams used: for instance, defining integrity on top of a link between execution nodes 
in the deployment diagram may be interpreted either as a property that the link should imple-
ment or as a mechanism that the link already implements independently from requirements. 
Another drawback of UMLsec comes from the fact that it is an extension of UML, and there-
fore not recognized by most existing tools. Some authors [35] also even claimed that OCL 
constraints were enough to introduce similar specifications without extending UML. 

SecureUML is a profile that aims to provide security again using an extension of the UML 
specification [36]. SecureUML however only specifies security polices for Role-Based 
Access Control (RBAC) using graphical notation and logical constraints, so it is essentially 
adapted to application security.  

Since these UML profiles are design-oriented, they are generally more suited to describing 
security mechanisms than security requirements. Other non UML-based environments can 
also be mentioned, that rely directly on a formal framework like for instance the Symbolic 
Trace Analyser (STA). STA is a model checker for cryptographic protocols relying on sym-
bolic techniques [37]. Protocols are described in a dialect of the spi calculus. Intruders can be 
modelled based on the well-known Dolev-Yao model. STA allows to express and verify 
authentication and secrecy properties. The lack of parametrization of STA leads to large 
specifications when a more instances are needed. Another example is the On-the-fly Model-
Checker (OFMC). OFMC implements bounded verification of protocols by exploring its tran-
sition system described in a specification in a demand-driven way. OFMC also support the 
specification of algebraic properties of cryptographic operators. To our knowledge STA and 
OFMC, as well as other non UML-based security-oriented environments, do not have specific 
constructs to represent security properties. An exception to the latest statement could be ST-
Tool [23]. ST-Tool provides a Graphical User Interface, a Data Modeller and Formal Lan-
guage and Analysis components that are based on the formal language TROPOS. This profile 
is mainly intended for Security Requirements Engineering. A general problem with such 
approaches comes from the need to define cryptographic protocols between the elements of 
the system in the first place, before security properties of the system be specified. 

D2.3.3 The SysML profile 

SysML (Systems Modelling Language) is a specification defined and promoted by the Object 
Management Group (OMG). OMG produces and maintains computer industry specifications 
for interoperable, portable and reusable enterprise applications in heterogeneous environments 
[38]. SysML is intended to provide simple but powerful constructs to model a wide range of 
system engineering problems. The goal of the SysML specification is to provide a “standard 
modelling language for a systems engineering to analyze, specify, design, and verify complex 
systems, intended to enhance system quality, improve the ability to exchange systems engi-
neering information amongst tools and help bridge the semantic gap between systems, soft-
ware and other engineering disciplines” [39]. As a legacy of the Unified Modelling Language 
(UML) specification, the SysML reuses a subset of that specification extending its semantics 
to emphasize requirements and parametric constraints [39]. Such features are particularly 
useful when security requirements are at stake.  
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Figure 22 SysML Diagram Description 

The SysML Requirement Diagram provides constructs to define and specify requirements 
that systems under design shall satisfy. Each requirement is specified in a single node with its 
name, its identifier and a brief plain text description of the requirement. The relationships 
between requirements can be established through links between nodes. Each path has a 
defined syntax. Based on this specification several operators have been implemented in TTool 
[13] to relate requirements in diagrams. Since these operators are used in Security Require-
ments Diagrams in the next subsections, they are listed and explained in Table 24.  All links 
defined in SysML can be found in [40].  
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Table 24 Description of SysML symbols  

Link Symbol Description 

Composition 

 The requirement attached to the sharp edge A should be 
satisfied in order that the one attached to the crossed cir-
cle B be also fulfilled. The requirement A is part of the 
requirement B; therefore, the requirement B is fully 
described by the requirements it is composed of and a 
dependency relationship is established between B and its 
composing requirements. 

Derive 
Requirement 

 

 

          <<deriveReqt>> 

The requirement attached to the sharp edge A should be 
satisfied in order that the one attached to the crossed cir-
cle B be also fulfilled. The requirement A is part of the 
requirement B; therefore, the requirement B is fully 
described by the requirements it is composed of and a 
dependency relationship is established between B and its 
composing requirements. 

Copy 

 

 

                 <<copy>> 

A copy operator between requirements A and B estab-
lishes a master/slave relationship between them in such 
way that the text of the slave A is a read-only copy of the 
text of the master B. For each slave a unique master 
should be related but several slaves are possible for each 
master. 

Verify 

 

 

 

 

                <<verify>> 

A relationship between a requirement A and a test case O 
can determine whether the system that is represented in 
other diagrams, fulfils the requirement A or not. In our 
profile the test case O is expressed through nodes called 
Tobservers. Additional actions can be attached to observ-
ers if after verification the requirement A is not satisfied. 
Observers are defined with a name, a related diagram, an 
informal description of the property and an identifier that 
is used when the property is not satisfied. Observers are 
the medium through which system model and Require-
ment Diagrams are linked for verification purposes. 

D.2.3.4  SysML for EVITA: Expected outcomes 

In our proposed framework, security requirements are described with an approach close to the 
language of use case designers and system engineers. SysML is a standardized specification 
intended for software and hardware system engineering modelling. Models based on this pro-
file satisfy interoperability and portability criteria. Moreover, SysML can be used within a 
Model Driven Approach. In EVITA, we have been using the domains defined by use cases to 
classify the security requirements determined in addition to their security properties and 
describing the relationships between security requirements and in particular their respective 
dependencies as explained in Table 24. This is the reason why security requirements are mod-
elled in the SysML requirement diagram [39]. We are additionally working on the introduc-

A B 

O A 

A B 

A B 
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tion of attack specifications into the parametric diagram in order to obtain a more complete 
description of requirements and their coverage. 

• Security requirements are described in a way that relates to threats identification (i.e., trace 
security requirements aimed at threat mitigation or anti-goal prevention rather than security 
property or goal achievement). Security requirements also contain observers, which may 
be seen as test cases meant to be used for the formal verification (or simulation) phase. 
Observers may additionally be seen as a means to document requirements. This set of 
requirements and observers altogether provides a conceptual model of the security expec-
tations of the system, abstracted from the literary description of use cases.  

• Security requirements are defined using different relationships. We have more particularly 
used containment, dependency – deriveReqt, and reuse in different namespaces copy rela-
tionships.  

• In our framework, threat modelling, security requirements, the Y-chart approach to hard-
ware/software co-design [41], formal verification, and code generation, all are integrated 
into one environment (TTool) [13]. This feature is not present in environments presented in 
the related work section, for example in UMLSec [33]. TTool offers a unified environment 
for modelling and engineering embedded systems with security and real-time constraints.  

• Requirement traceability is another important capability of our approach. Requirements 
can indeed be linked to attacks and to models of the system. SysML Requirements imple-
mented in TTool can reference attacks of attacks trees, therefore facilitating the coverage 
study of attacks. We also intend, in a near future, to model attack trees with SysML para-
metric diagrams, therefore improving the integration of our solution. Parametric Diagrams 
are defined through graphical nodes that represent constraints or value types: constraints 
are meant to relate value types together. More precisely, value types could represent 
attacks while constraints are meant to model relations between attacks (or, and, etc.).  

• Another advantage of using the SysML requirements diagram in EVITA is to show its rela-
tionship with other modelling elements to bridge the gap between traditional requirement 
management tools and other SysML models.  

D.2.3.5  Environment Related Security Requirements 

Prevent Malicious Modifications on the Environment Representation 
This set of security requirements is organized under the more abstract requirement of pre-
venting malicious modifications to the environment representation. This security requirement 
aims at preventing attackers from feeding wrong environmental information to the gateways 
and sensors. Prevent Malicious Modifications on the environment representation security 
requirement (GSR-1) has Requirement Containment Relationship which contains further 
security requirements such as Integrity of Messages (GSR-1.1), Message Freshness(GSR-1.2), 
Authenticating Message Sources (GSR-1.3) and Environment Information Attestation (GSR-
1.4). More fine grained definition of these security requirements are explained in the next sec-
tion. These requirements can be used alone or combined together as shown in Figure 23, in 
order to cut an attack tree node or different branches of attack tree(s). 
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Figure 23 SysML Environment Related Security Requirements 
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D.2.3.6  Availability Requirements 

This set of security requirements is focusing on properties that should be maintained despite 
denial of service attacks, coming either under the form of computational resource oriented 
DoS, network DoS, or even degradation of real-time constraints. ECU availability security 
requirement will ensure that: “A service or a physical device providing a service is opera-
tional”.  Ensure Availability of ECUs (ASR-1), requirement has requirement containment 
relationship, which contains Ensure Bus Availability (ASR-1.1) Ensure CPU Availability 
(ASR-1.2), Ensure RAM Availability (ASR-1.3) and Ensure External Communication Device 
Availability (ASR-1.4).  These requirements aim at preventing (temporary) denial of service 
attacks compromising the availability of their target at functional levels.  An availability 
property applies to a service or to a physical device such as CPU, RAM or Bus. Furthermore 
Availability of Highest Priority Functions (ASR-3) and Availability of Radio Medium (ASR-2) 
must be ensured as shown in Figure 24. 

D.2.3.7  Privacy Requirements 

These security requirements are intended to protect the driver privacy in the cases when the 
relation between the vehicle and its use, and the identity of its owner or driver is confidential. 
The driver privacy requirement can be ensured having a Controlled Access to Emergency Ser-
vice Messages and Data by the authorized entities, giving a Privacy Policy for Disclosure of 
Information about of the driver and his vehicle, and assuring Unlinkability of Emergency Ser-
vices on Critical Messages. This Unlinkability of Emergency Services security requirement 
can be achieved by assuring Car to External entities Message Privacy, being Unlikable 
Driver Identification between Services and being Unlinkable Time Ordering of Messages as is 
shown in Figure 25. 

D.2.3.8  Fake Command Requirements 

This set of requirements is organized based on the abstract requirement to prevent sending 
fake commands. This security requirement will prevent attackers from sending wrong or fake 
commands from within or from outside the TOE. Prevent Sending Fake Command (FSR-1) 
requirement has requirement containment relationship, which contains further security 
requirements such as Prevent Man In The Middle Attack (FSR-1.1), Prevent Replacement of 
Chips on Local Busses (FSR-1.2) and Protect ECU Flashing Process (FSR-1.3) as shown in 
Figure 26. 
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Figure 24 SysML Availability Security Requirements 
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Figure 25 SysML Privacy Security Requirements 
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Figure 26 SysML Fake Command Security Requirements 
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D.2.3.9  Flashing Requirements 

This set of security requirements will ensure that a flashing update takes place with authorized 
firmware, whose IPR is not endangered. Whenever a flashing process is performed, a Con-
trolled Access to Flash Memory (FBSR-1) requirement may be specified. This will ensure that 
flash memory should be paired with their ECU to prevent flash replacement. Controlled 
Access to Flash Memory has a requirement containment relationship which contains: Con-
trolled Access to Flashing Function (FBSR-1.1): This security property requires Integrity 
Property – Code Integrity (FBSR-1.1.1) and Integrity of Firmware Update requirements 
(FBSR-1.1.1.1).  Whereas Controlled Access Property – Controlled Access to Read from 
Flash (FBSR-1.2):  This security property requires Confidentiality Property – Confidentiality 
of Firmware Data (FBSR-1.2.1) and Confidentiality of Firmware Update (FBSR-1.2.1.1) 
requirements as shown in Figure 26. 

D.2.3.10 Braking DoS Requirements 

This set of requirements is intended to ensure that braking manoeuvres that are triggered in 
the vehicle be done when they are required and by the authorized entities or actors in the 
manoeuvre. To ensure the availability of the services and entities required in braking situa-
tions is necessary Prevent Brake Denial of Service attacks when Emergency Situations happen 
and Prevent broadcast (of this) Denial of Service attacks When Emergency Situations happen 
too. To ensure that the breaking manoeuvres are triggered by the authorized entities is neces-
sary to Prevent Sending Fake Command and Authentication of Functional Path to Prevent 
Head Unit Spoofing. A detailed view of these requirements can be found in Figure 28.  

D.2.3.11 Security requirements coverage  

To illustrate the application of the abovementioned security requirements, their coverage was 
analyzed for two attack trees (Automatic Brake Function and Unauthorized Braking) as 
shown in Table 25.  

D.2.4 Functional and mapping views of use cases 

Figure 29 shows the functional view of the “Safety Reaction: Active Brake” use case. Figure 
30 shows the mapping view of the “Safety Reaction: Active Brake” use case. Figure 31 shows 
the functional view of the “Flashing per OBD” use case. Figure 32 shows the mapping view 
of the “Flashing per OBD” use case. 

Messages between functions have been categorized into data or events. The system archi-
tecture is made of four CPUs. Each CPU comes with its own local bus on which is connected 
a bridge, a RAM, a flash memory, and possibly input/output devices. Four of these CPU 
blocks are considered: CU (Communication Unit), BU (Braking Unit), PTC (Powertrain 
Controller), CSC (Chassis and Safety Controller). The mapping of functions has been per-
formed according to the use case description. 
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Figure 27 SysML Flashing Security Requirements 
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Figure 28 SysML Braking DoS Security Requirements 
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Table 25 Security Requirements Coverage – Attack Trees 8 and 9  

Security Requirements Attack Tree Nodes 
Integrity of 
Messages 

Enforce Trusted Integ-
rity Verification  

8.2.1.2.1, 8.2.2.1.1.1, 9.2.1.3, 
9.2.1.2, 9.2.1.1 

Environment Infor-
mation Attestation 

Enforce Trusted 
Sources of Attestation 

8.2.1.2.1, 8.2.2.1.1.1, 
8.2.2.1.1.2.1, 8.3.1, 9.2.1.1.1, 
9.2.1.3 

Authenticating Mes-
sage Sources 

Enforce Trusted 
Authentication 

8.2.1.2.1, 8.2.1.1.2, 8.2.1.1.1, 
8.2.2.1.1.2, 8.2.2.1.1.2.1, 
9.2.1.1.1, 9.2.1.3 

Environ-
ment 
related 
Security 
Require-
ments – 
General 
Require-
ments (1) 

Prevent Mali-
cious Modifi-
cations of the 
Environment 
Representation 

Message Freshness Enforce Correct and 
Updated Time Source  

8.2.1.2.1, 8.2.2.1.1.1, 
8.2.2.1.1.2.1, 9.2.1.1.1, 
9.2.1.3 

Prevent Man In The 
Middle Attack 

Authentication of 
Functional Path 

8.1.1.1.1, 8.1.1.2.1, 8.2.1.3.1, 
8.2.2.2 

 Message Freshness 
along Functional Path 

8.1.1.1.1, 8.1.1.2.1, 8.2.1.3.1, 
8.2.2.2 

 Integrity of Message 
Attributes along 
Functional Path 

8.1.1.1.1, 8.1.1.2.1, 8.2.2.2 

Prevent Replace-
ment of Chips on 
Local Busses 

  

Protect ECU Flash-
ing Process 

Code Origin Authen-
tication 

8.1.2, 8.1.1.2, 8.2.1.3.1, 8.3.1 

 Code Integrity 8.1.2, 8.1.1.2, 8.2.1.3.1, 8.3.1 

Fake 
Com-
mand 
Require-
ments – 
General 
Require-
ments (4) 

Prevent Send-
ing Fake Com-
mand 

 Flashing Command 
Freshness 

8.1.2, 8.1.1.2, 8.2.1.3.1, 8.3.1 

Car2Car Message 
Anonymity 

  

e-Call Message Pri-
vacy 

  

Privacy 
Require-
ments – 
General 
Require-
ments (3) 

Protect Driver 
Privacy 

Controlled Dis-
closure of Time 

  

Ensure Bus Avail-
ability 

 9.1.2.2, 9.3.1.2, 9.1.2.3, 
9.1.1.1, 9.1.1.2, 9.3.1.3, 
9.3.2.1, 9.3.2.2, 9.3.3.1, 
9.3.3.3 

Ensure CPU Avail-
ability 

 9.1.2.2, 9.3.1.2, 9.1.2.3, 
9.1.1.1, 9.1.1.2, 9.3.1.3, 
9.3.2.1, 9.3.2.2, 9.3.3.1, 
9.3.3.3 

Ensure RAM Avail-
ability 

 9.1.2.2, 9.3.1.2, 9.1.2.3, 
9.1.1.1, 9.1.1.2, 9.3.1.3, 
9.3.2.1, 9.3.2.2, 9.3.3.1, 
9.3.3.3 

Ensure Avail-
ability of 
ECUs 

Ensure External 
Communication 
Device Availability 

 9.1.2.1, 9.3.1.1, 9.3.3.3 

Ensure Avail-
ability Radio 
Medium 

  9.3.3.3 

Availabil-
ity and 
Overhead 
Require-
ments – 
General 
Require-
ments (2) 

Ensure High-
est Availabil-
ity for Highest 
Priority Func-
tions 
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Figure 29 Functional view of Safety Reaction Active Brake 
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Figure 30 Mapping view of Safety Reaction Active Brake 
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Figure 31 Functional view of Flashing per OBD 
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Figure 32 Mapping view of Flashing per OBD 
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