

Project acronym: EVITA
Project title: E-safety vehicle intrusion protected applications
Project reference: 224275
Programme: Seventh Research Framework Programme (2007–2013) of the

European Community
Objective: ICT-2007.6.2: ICT for cooperative systems
Contract type: Collaborative project
Start date of project: 1 July 2008
Duration: 36 months

Deliverable D2.3:
Security requirements for automotive on-board networks based
on dark-side scenarios

Authors: Alastair Ruddle, David Ward (MIRA);

Benjamin Weyl (BMW Group Research and Technology GmbH);
Sabir Idrees, Yves Roudier (EURECOM);
Michael Friedewald, Timo Leimbach (Fraunhofer Institute ISI);
Andreas Fuchs, Sigrid Gürgens, Olaf Henniger, Roland Rieke,
Matthias Ritscher (Fraunhofer Institute SIT);
Henrik Broberg (Fujitsu Services AB);
Ludovic Apvrille, Renaud Pacalet, Gabriel Pedroza (Institut Télécom)

Reviewers: Enno Kelling (Continental Teves AG & Co. oHG);

Antonio Kung (Trialog);
Marko Wolf (escrypt GmbH)

Dissemination level: Public
Deliverable type: Report
Version: 1.1
Submission date: 30 December 2009

 ii

Abstract

The objective of the EVITA project is to design, verify, and prototype an architecture for
automotive on-board networks where security-relevant components are protected against
tampering and sensitive data are protected against compromise. Thus, EVITA will provide a
basis for the secure deployment of electronic safety aids based on vehicle-to-vehicle and
vehicle-to-infrastructure communication. A key activity for the EVITA project is the capture
of security requirements for the secure system architecture and associated software and hard-
ware components based on a set of use cases and an investigation of security threat scenarios
(dark-side scenarios). This document outlines the processes used to identify and evaluate
security requirements, and details the results of their application to automotive on-board net-
works. It provides input to the secure on-board architecture design.

 iii

Terms of use

This document was developed within the EVITA project (see http://evita-project.org), co-
funded by the European Commission within the Seventh Framework Programme (FP7), by a
consortium consisting of a car manufacturer, automotive suppliers, security experts, hardware
and software experts as well as legal experts. The EVITA partners are

• BMW Group Research and Technology GmbH,

• Continental Teves AG & Co. oHG,

• escrypt GmbH,

• EURECOM,

• Fraunhofer Institute for Secure Information Technology,

• Fraunhofer Institute for Systems and Innovation Research,

• Fujitsu Services AB,

• Infineon Technologies AG,

• Institut Télécom,

• Katholieke Universiteit Leuven,

• MIRA Ltd.,

• Robert Bosch GmbH and

• TRIALOG.

This document is intended to be an open specification and as such, its contents may be freely
used, copied, and distributed provided that the document itself is not modified or shortened,
that full authorship credit is given, and that these terms of use are not removed but included
with every copy. The EVITA partners shall take no liability for the completeness, correctness
or fitness for use. This document is subject to updates, revisions, and extensions by the
EVITA consortium. Address questions and comments to:

evita-feedback@listen.sit.fraunhofer.de

The comment form available from http://evita-project.org/deliverables.html may be used for
submitting comments.

 iv

Contents

1 Introduction ... 1
1.1 Background .. 1
1.2 Purpose and scope.. 2
1.3 Organisation of the document .. 3

2 Security Engineering Process... 4
2.1 Security properties ... 4

2.1.1 Informal description ... 4
2.1.2 Security modelling framework... 6

2.2 Approach.. 14
2.3 System under investigation and its environment ... 15
2.4 Summary of use cases .. 16
2.5 System assets.. 18
2.6 Threat identification (dark-side scenarios) .. 18
2.7 Overview of risk analysis... 19
2.8 Identification of security requirements .. 20

2.8.1 Overview .. 20
2.8.2 Abstract functional path approach.. 21
2.8.3 Detailed functional path and mapping approach.. 21

3 EVITA Security Requirements.. 24
3.1 Security objectives ... 24
3.2 Security requirements .. 24

3.2.1 Overview .. 24
3.2.2 Authenticity.. 25
3.2.3 Integrity .. 33
3.2.4 Controlled access.. 35
3.2.5 Freshness .. 36
3.2.6 Non-repudiation ... 37
3.2.7 Anonymity.. 38
3.2.8 Privacy.. 39
3.2.9 Confidentiality.. 42
3.2.10 Availability... 43

3.3 Priority of security requirements.. 45

4 Conclusions .. 57

Appendix A – Glossary .. 58

Appendix B – Dark-side scenarios.. 63
B.1 Introduction.. 63
B.2 Attack motivations ... 64

B.2.1 Overview .. 64
B.2.2 Do psychological or physical harm to the driver ... 64
B.2.3 Gain information about the driver.. 65
B.2.4 Gain reputation as a hacker .. 65

 v

B.2.5 Financial gain ... 65
B.2.6 Gain personal advantages (non financial) .. 66
B.2.7 Gain information about vehicle manufacturer ... 66
B.2.8 Harm the economy ... 67
B.2.9 Mass terrorism.. 67

B.3 Possible attacks – Combining attack motivations and use cases 68
B.3.1 Force Green Wave/Getting traffic lights green ahead of the attacker............ 68
B.3.2 Manipulate Speed Limits ... 70
B.3.3 Manipulate Traffic Flow .. 70
B.3.4 Simulate Traffic Jam .. 72
B.3.5 Tamper with Warning Message ... 72
B.3.6 E-Call ... 75
B.3.7 Engine DoS-Attack (Engine Refuse to Start)... 75
B.3.8 Unauthorized Brake.. 76
B.3.9 Attacking Active Brake Function... 79
B.3.10 Attacking E-Toll... 80

B.4 Attack Trees Detailing Asset Attacks .. 82
B.4.1 Flashing per OBD... 82
B.4.2 Head Unit Attack.. 84

Appendix C – Threat and risk analysis.. 85
C.1 Analysis methodology.. 85

C.1.1 Introduction .. 85
C.1.2 Notion of severity... 85
C.1.3 Notion of probability of occurrence of successful attack (attack

potential)... 86
C.1.4 Estimating risk.. 89
C.1.5 Requirements for countermeasures .. 91

C.2 EVITA Risk Analysis .. 92
C.2.1 Attack potential .. 92
C.2.2 Attack active brake function .. 97
C.2.3 Tamper with warning message... 98
C.2.4 Attacking E-Call... 99
C.2.5 Unauthorized brake .. 100
C.2.6 Attack E-Toll.. 101
C.2.7 Green light ahead of attacker ... 102
C.2.8 Manipulate speed limits ... 103
C.2.9 Simulate traffic jam.. 105
C.2.10 Manipulate traffic flow... 105
C.2.11 Engine denial of service ... 108

C.3 Summary and conclusions ... 109

Appendix D – Identifying security requirements .. 111
D.1 Abstract functional path approach ... 111

D.1.1 Abstract functional system model .. 111
D.1.2 Security Requirements Engineering Process.. 113

 vi

D.2 Detailed functional path and mapping approach.. 114
D.2.1 Methodology .. 114
D.2.2 Classification of attacks ... 117
D.2.3 SysML based security requirements .. 119
D.2.4 Functional and mapping views of use cases... 130

References ... 138

 vii

List of figures

Figure 1 Generalised architecture of automotive on-board networks.................................. 15
Figure 2 EVITA use case reference architecture ... 16
Figure 3 Generic attack tree structure.. 63
Figure 4 Attack tree 1: Force green lights ahead of attacker ... 69
Figure 5 Attack tree 2: Manipulate speed limits.. 70
Figure 6 Attack tree 3: Manipulate traffic flow... 71
Figure 7 Attack tree 4: Simulate traffic jam .. 73
Figure 8 Attack tree 5: Tamper with warning messages ... 74
Figure 9 Attack tree 6: Attacking E-Call ... 76
Figure 10 Attack tree 7: Engine refuses to start... 77
Figure 11 Attack tree 8: Unauthorized brake... 78
Figure 12 Attack tree 9: Attack active brake function... 79
Figure 13 Attack tree 10: Prevent driver from passing toll gate.. 80
Figure 14 Attack tree 11: Increase driver’s toll bill... 81
Figure 15 Attack tree 12: Reduce driver’s toll bill .. 81
Figure 16 Attack tree 13: Compromise driver privacy .. 82
Figure 17 Attack tree 14: OBD flashing attack ... 83
Figure 18 Attack tree 15: Head unit attack .. 84
Figure 19 Abstract functional system model pattern ... 112
Figure 20 Abstract functional system model instance ... 113
Figure 21 Identification of security requirements.. 115
Figure 22 SysML Diagram Description... 122
Figure 23 SysML Environment Related Security Requirements... 125
Figure 24 SysML Availability Security Requirements.. 127
Figure 25 SysML Privacy Security Requirements .. 128
Figure 26 SysML Fake Command Security Requirements ... 129
Figure 27 SysML Flashing Security Requirements... 131
Figure 28 SysML Braking DoS Security Requirements.. 132
Figure 29 Functional view of Safety Reaction Active Brake .. 134
Figure 30 Mapping view of Safety Reaction Active Brake... 135
Figure 31 Functional view of Flashing per OBD .. 136
Figure 32 Mapping view of Flashing per OBD ... 137

 viii

List of tables

Table 1 Generic security threats and security objectives ... 19
Table 2 Combined risk graph for safety-related (C≥1) and non-safety (C=1) security

threats .. 46
Table 3 Summary findings of risk analysis .. 47
Table 4 Proposed severity classification scheme for security threats 86
Table 5 Rating of aspects of attack potential.. 88
Table 6 Rating of attack potential and attack probability... 89
Table 7 Tabular representation of key elements of an attack tree...................................... 89
Table 8 Attack tree of Table 7 augmented with risk analysis parameters.......................... 90
Table 9 Proposed security risk graph for non-safety security threats (privacy, financial

and operational)... 90
Table 10 Classification for controllability of safety hazards.. 91
Table 11 Proposed security risk graph for safety-related security threats............................ 91
Table 12 Evaluation of required attack potential for asset attacks identified from attack

trees ... 93
Table 13 Risk analysis for “Attack Active Brake Function” ... 98
Table 14 Risk analysis for “Tamper with Warning Message” ... 99
Table 15 Risk analysis for “Attacking E-Call” .. 100
Table 16 Risk analysis for “Unauthorized brake”.. 101
Table 17 Risk analysis for “Attacking E-Toll” .. 102
Table 18 Risk analysis for “Green light ahead of attacker” ... 103
Table 19 Risk analysis for “Manipulate speed limits” ... 104
Table 20 Risk analysis for “Simulate traffic jam for target car”.. 106
Table 21 Risk analysis for “Manipulate traffic flow” .. 107
Table 22 Risk analysis for “Engine denial of service”... 109
Table 23 Views on activities .. 116
Table 24 Description of SysML symbols... 123
Table 25 Security Requirements Coverage – Attack Trees 8 and 9................................... 133

 ix

List of abbreviations

ABS Anti-lock Braking System
CSC Chassis Safety Controller
CPU Central Processing Unit
CU Communication Unit
DoS Denial of Service
DSRC Digital Short Range Communication
ECU Electronic Control Unit
EEPROM Electrically Erasable Programmable Read-Only Memory
ESP Electronic Stability Program
GPS Global Positioning System
GSM Global System for Mobile Communications
HMI Human Machine Interface
HU Head Unit
IPR Intellectual Property Rights
ITS Intelligent Transport System
OBD On-Board Diagnostics
PoI Point of Interest
PSAP Public Safety Access Point
PTC Powertrain Controller
RAM Random Access Memory
RSU Road Side Unit
TOE Target of Evaluation
UMTS Universal Mobile Telecommunications System
USB Universal Serial Bus

 x

Document history

Version Date Description
1.0 31/03/2009 First issue of deliverable
1.1 30/12/2009 Disposition of the comments received at the first EVITA project review

 1

1 Introduction

1.1 Background

Future visions of road transportation include the networked vehicles and intelligent transport
systems (ITS) that will enhance the safety of drivers and other road users, minimize pollution
and maximize the efficiency of travel. The nature and interests of the stakeholders involved in
future road transport systems therefore include:

• vehicle users – safe and efficient driving, valid financial transactions, personal privacy,
protection of personal data;

• other road users – safe and efficient transport;

• vehicle/sub-system manufacturers – successful and affordable satisfaction of customer
expectations, protection of IPR;

• ITS system operators – safe and efficient operation of systems, valid financial trans-
actions, protection of user data;

• civil authorities – safe and efficient transportation networks, reliable financial trans-
actions, data protection.

For the networked vehicles and intelligent transport systems (ITS) envisaged for the future,
unauthorized access to vehicle or personal data may become possible, while the corruption of
data or software could result in anomalies in vehicle function or traffic behaviour. Potential
threat agents and their objectives may include:

• dishonest drivers – avoid financial obligations, gain traffic advantages;

• hackers – gain/enhance reputation as a hacker;

• criminals and terrorists – financial gain, harm or injury to individuals or groups;

• dishonest organisations – driver profiling, industrial espionage, sabotage of competitor
products;

• “rogue states” – achieve economic harm to other societies.

Security functional requirements for information systems are broadly categorized into three
types [1]:

• confidentiality – prevention of unwanted/unauthorized disclosure of data;

• integrity – prevention of unwanted/unauthorized alteration or creation of data;

• availability – prevention of unwanted/unauthorized loss of data or access to data.

The EVITA project is concerned specifically with on-board networks within individual vehi-
cles, rather than the wider ITS systems. In future road transport scenarios, breaches in the
security of vehicle information or functions could lead to possible issues for stakeholders in
four main areas:

• privacy – unwanted/unauthorized acquisition of data relating to vehicle/driver activity,
vehicle/driver identity data, or vehicle/sub-system design and implementation;

 2

• financial – unwanted/unauthorized commercial transactions, or access to vehicle;

• operational – unwanted/unauthorized interference with on-board vehicle systems or
Car2X communications that may impact on the operational performance of vehicles and/or
ITS systems (without affecting physical safety);

• safety – unwanted/unauthorized interference with on-board vehicle systems or Car2X
communications that may impact on the safe operation of vehicles and/or ITS systems.

An important implication of this is that a subset of security issues may also impact on func-
tional safety. Engineering processes that aim to ensure functional safety properties in pro-
grammable automotive systems are described in ISO/DIS 26262 [2] and the MISRA safety
analysis guidelines [3]. These methods are based on the process industry standard IEC 61508
[4], with adaptations to reflect the particular issues associated with automotive applications.
Thus, there is a need to ensure that security issues with safety implications also meet the
requirements of safety engineering processes. In addition, there is also a need to adapt the ap-
proaches defined in the IT security evaluation standard ISO/IEC 15408 [1] in order to address
the particular issues of automotive applications, such as the possibility that a security threat
may also have safety implications.

In order to define security and safety requirements for a system it is necessary to have an
understanding of the operating environment and intended behaviour of the system. This is
achieved through the specification of use cases for automotive on-board networks [5]. These
use cases may themselves suggest a number of security-related user requirements. However,
the use cases also provide the basis for investigating a number of “dark scenarios” (threats),
which are intended to establish ways in which the system could become a target for malicious
attacks. The security issues identified from the dark scenarios are likely to include examples
that also have safety implications.

1.2 Purpose and scope

The aim of the security requirements analysis is to derive, justify and prioritise IT security
requirements and IT security related safety requirements for automotive on-board networks.
Only run-time requirements are considered. How to gain assurance during the development
process that these requirements are met at run time is out of scope of this report.

The inputs to the security requirements analysis are example use cases [5], dark-side sce-
narios, and the state of the art in standards and research. These inputs are viewed as the
rationale for the requirements. The use cases require certain security functions in order to
protect identified assets within the use case scenarios. The use cases also provide constraints
and assumptions, such as performance constraints for the security functions. Security risk
analysis of the threats identified in the dark-side scenarios will be documented as the rationale
for the security objectives and security requirements. Traceability between the threats, objec-
tives and requirements is accomplished by a structured approach.

The security requirements then provide inputs to the secure on-board architecture design,
to the model-based verification of on-board architecture and protocol specifications, to the
security architecture implementation as well as to the analysis of legal aspects presented in
forthcoming EVITA deliverables.

This report defines a process for identifying vehicle security requirements, for assessing
the relative risks of possible threats, and for addressing the subset of these security require-

 3

ments that may be safety related. This process is then piloted to formulate requirements for
the countermeasures needed to reduce the vulnerability of the vehicle’s on-board architecture
to threats that may lead to possible safety concerns and risks to assets. The results of its appli-
cation are documented in this report. In addition, this document also details the translation of
these requirements into a semi-formal requirements specification, which will provide the
starting point for the model-based verification. It should be noted, however, that the specifi-
cation of security requirements is an iterative process, rather than a completely self-contained
activity. It is anticipated that the security requirements will evolve in the course of the design
process, as is the case with other types of requirements (operational, functional safety etc.).
The security requirements and priorities may also shift slightly when other use cases of auto-
motive on-board networks and new threats are taken into consideration.

1.3 Organisation of the document

The process developed for deriving the security requirements analysis is outlined in Section 2.
That section provides a wider description of the security engineering process, including
aspects such as use case definition and dark-side scenarios investigation. The security
requirements derived from the use cases and risk analysis of the attack trees are detailed in
Section 3. Section 4 details the conclusions drawn from this activity.

A glossary detailing key terminology used in this document can be found in Appendix A –
Glossary. Appendix B – Dark-side scenarios − summarizes relevant results (including attack
trees) from the dark-side scenarios investigation, while Appendix C – Threat and risk analysis
− provides details of the risk analysis approach and the results of its application to the attack
trees. Appendix D – Identifying security requirements − contains a more detailed description
of the approaches used to derive security requirements from the use cases, attack trees and
risk analysis.

 4

2 Security Engineering Process

2.1 Security properties

2.1.1 Informal description

2.1.1.1 Introduction

Before detailing the security engineering process, we introduce classes of security require-
ments that are relevant for automotive on-board networks. The (informal) explanations reflect
the way these concepts are generally understood.

2.1.1.2 Data origin authenticity

A data origin authenticity property applies to a quantum of information and a claimed author.
The property is satisfied when the quantum of information truly originates from the author.
The property can be made more specific by providing an observation of the quantum of in-
formation (defined, e.g., by a time and a location in the system). The author can also be con-
strained by adding a time and/or a place of creation of the quantum of information. Note that
in most security-oriented frameworks data origin authenticity implies integrity.

2.1.1.3 Integrity

An integrity property applies to a quantum of information between two observations (defined,
e.g., by a time and a location in the system). The property is satisfied when the quantum of
information has not been modified between the two observations. It guarantees for instance
that the content of a storage facility has not been modified between two given read operations,
or that a message sent on a communication channel has not been altered during its journey.

2.1.1.4 Controlled access (authorization)

A controlled access property or requirement applies to a set of actions and/or information and
a set of authorized entities. The property is guaranteed if the specified entities are the only
entities that can perform the actions or access the information. The property can be further
detailed with time constraints on the period of authorization.

Controlled access is needed to ensure that stakeholders only have access to information
and functions that they are authorized to access as appropriate to their expected activities.

2.1.1.5 Freshness

A freshness property or requirement applies to a quantum of information, a receiving entity
and a given time. The property is satisfied if the quantum of information received by the
entity at the given time is not a copy of the same information received by the same or another
entity in the past. Ensuring freshness can be used to prevent replay attacks.

 5

2.1.1.6 Non-repudiation

A non-repudiation property or requirement applies to an action and an entity performing the
action. The non-repudiation of the action is guaranteed if it is impossible for the entity that
performed the action to claim that it did not perform the action. This property can be further
detailed with a set of entities for which the action needs to be undeniable, with a time limit,
etc.

There may be specific legal requirements for non-repudiation. However, non-repudiation
may also be introduced for convenience, for example, as an aid in providing evidence or
proving liability.

2.1.1.7 Privacy/anonymity

A privacy property or requirement applies to an entity and a set of information. Privacy is
guaranteed if the relation between the entity and the set of information is confidential. Ano-
nymity, for instance, is the property that the relation between an entity and its identity is con-
fidential.

Privacy is frequently a major concern when the entity involved is an individual or a vehicle
owned by an individual. For example, an adversary constantly recording the location of a
vehicle and knowing the identity of the driver may be considered as violating the driver’s pri-
vacy with respect to her movements.

Privacy requirements are needed to ensure that the anonymity of stakeholders and confi-
dentiality of their sensitive information are assured. Sensitive information introduced by the
application shall be identified. For users, sensitive information may include (but is not limited
to) the following:

• identity of a specific car and/or driver,

• current location of a specific car and/or driver,

• past locations of a specific car and/or driver,

• properties of the vehicle that can be used for tracking a specific car and/or driver (e.g. car
manufacturer, model, colour),

• behaviour of a specific car and/or driver (e.g. number of critical situations, speeding),

• records of telephone calls, internet activity, email messages, account information and driv-
ing characteristics,

• identity of specific cars and/or drivers involved in particular C2X transactions.

For vehicle manufacturers and system suppliers, sensitive information may include (but is not
limited to) the following:

• identity of a specific car,

• car manufacturer and model,

• design information (algorithms, control parameters),

• performance data.

 6

Privacy requirements must be made consistent with potentially conflicting requirements for
identification, auditing, non-repudiation and jurisdictional access, which may require users to
be identified and information about their interactions to be stored.

2.1.1.8 Confidentiality

A confidentiality property applies to a quantum of information and a set of authorized entities.
The property is satisfied when the authorized entities are the only ones that can know the
quantum of information. Privacy relies on confidentiality and can be considered as a special
case of confidentiality.

2.1.1.9 Availability

An availability property or requirement applies to a service or a physical device providing a
service. The property is satisfied when service is operational. Denial of service attacks aim at
compromising the availability of their target. The property can be further detailed with the
specification of a period during which the availability is required and of a set of client entities
requesting the availability.

2.1.2 Security modelling framework

2.1.2.1 Overview

In the following the Security Modelling Framework (SeMF) of Fraunhofer SIT is informally
described. It allows describing more abstract security requirements than the concepts of Sec-
tion 2.1 and is useful when modelling systems at high levels of abstraction. This framework
will be used in Section 3 to specify high-level security requirements that are relevant to auto-
motive on-board networks.

The underlying formal model describes system behaviours as (sets of) sequences (traces)
of actions. These actions in turn are mostly associated with agents in the systems (system
entities or stakeholders). The actions describe what can happen in the system and have to be
carefully chosen in order to be able to express all desired system properties. System specifica-
tion based on sequences of actions is very common, but for security properties additional
information is required:

• First, satisfaction of security properties depends on the agents’ view of the system. In
SeMF, this view has to be specified for each system entity for which a security property
shall hold.

• Second, for each agent the knowledge about the global system has to be part of the system
specification. For example, trust in underlying security mechanisms, such as cryptographic
algorithms, is described as knowledge about the system.

In the following sub-sections an informal description of SeMF is given with the objective to
understand the properties that are being specified for the EVITA use cases. For the formal
framework, we refer the reader to [6][7][8] and to forthcoming EVITA deliverables.

 7

Throughout this section we will use a simple example to illustrate our explanations. Our
simple example system has four different agents: users U and V, and service providers S and
T. Service providers send offers to users by using actions sOffer(sp,user,price); these are
received by the users with action rOffer(user,sp,price). Users can then order (action
sOrder(user,sp,price)), and the service providers can receive the orders (action
rOrder(sp,user,price)). For simplicity, price can have two different values: cheap and exp.

Note that this example is just to illustrate our approach and does not restrict the framework
to communication scenarios. Any type of actions with appropriate type and number of
parameters can be used. Possible examples relevant to EVITA include Sense(sensor,Emer-
gencyBrakeMessage), Send(otherCar,message), brake(Brake-Controller(Car)), etc. If some
agent performs an action we usually denote this agent using the first parameter of this action.

A system and its security properties are specified by those sequences of actions that can
happen in the system. In our example system, a possible sequence of actions could be
sOffer(S,U,cheap) rOffer(U,S,cheap) sOrder(U,S,cheap) rOrder(S,U,cheap). Another possi-
ble sequence could be sOffer(S,U,cheap) sOffer(S,V,exp) rOffer(U,S,cheap). However, in our
system we would probably not allow a message to be received without having been sent, thus
sOffer(S,U,cheap) rOrder(T,V,exp) would not be a possible sequence for the system.

2.1.2.2 Agents’ view and knowledge of global system behaviour

2.1.2.2.1 General

Security properties can only be satisfied relative to particular sets of underlying system
assumptions. Examples include assumptions regarding cryptographic algorithms, secure stor-
age, and trust in the correct behaviour of agents or reliable data transfer. Relatively small
changes in these assumptions can result in huge differences concerning satisfaction of security
properties. Every model for secure systems must address these issues.

In order to provide the required flexibility, we extend the system specification by two com-
ponents:

• the agents’ initial knowledge about the global system behaviour and

• the agents’ views.

The knowledge about the system consists of all traces that an agent initially considers possi-
ble, i.e. all traces that do not violate any system assumptions. The local view of an agent
specifies which parts of the system behaviour the agent can actually see. In the following sub-
sections, these two components and their relations are explained in more detail.

2.1.2.2.2 Agents’ initial knowledge

For any agent P, WP denotes its knowledge about the global system behaviour and contains
those sequences of actions that P considers to be principally possible in the system. WP is con-
sidered to be part of the system specification. We may assume for example that a message that
was received must have been sent before. Thus an agent’s WP will contain only those
sequences of actions in which a message is first sent and then received. As another example,

 8

all sequences of actions included in WP in which a digital signature is received and verified by
using some agent Q’s public key will contain an action where Q generated this signature.

Care must be taken when specifying the sets WP for all agents P in order to avoid specify-
ing properties that are desirable but not guaranteed by verified system assumptions. For
example, in a scenario where we assume one-time passwords are used, if P trusts Q, WP con-
tains only those sequences of actions in which Q sends a certain password only once. How-
ever, if Q cannot be trusted, WP will also contain sequences of actions in which Q sends a
password more than once.

2.1.2.2.3 Agents’ local view

The set WP describes what P knows initially. However, in a running system P can learn from
actions that have occurred. Satisfaction of security properties obviously also depends on what
agents are able to learn. After a sequence of actions w of the system has happened, every
agent can use its local view of w to determine the sequences of actions it considers to be pos-
sible. For any system specification, the local view of the agents has to be specified appropri-
ately. One simple local view is that agents only see their own actions. In this case, user U’s
local view of the sequence of actions

w = sOffer(S,U,cheap) rOffer(U,S,cheap) sOrder(U,S,cheap) rOrder(S,U,cheap)

is rOffer(U,S,cheap) sOrder(U,S,cheap). In some systems, however, it may be possible for an
agent to also notice actions such as send and receive performed by other agents, but not to be
able to actually recognize the messages that are being sent and received. In this case, U’s local
view of w would be sOffer(S,U) rOffer(U,S,cheap) sOrder(U,SP,cheap) rOrder(S,U).

Let us consider now a specific sequence of actions w. Since an agent P only sees parts of it,
there are other sequences in the system that look the same for P, i.e. that result in the same
local view for P. In the case where agents only see their own actions, for example, U’s view
of w is rOffer(U,S,cheap) sOrder(U,S,cheap). But this is also U’s local view of the sequence

w2 = sOffer(T,V,exp) sOffer(S,U,cheap) rOffer(V,T,exp) rOffer(U,S,cheap) sOrder(U,S,cheap)
rOrder(S,U,cheap),

and of many other possible sequences of actions in the system.
Depending on its knowledge about the system, underlying security mechanisms and system

assumptions, an agent does not consider all sequences that look the same as w to be possible.
Thus it can use its knowledge to reduce this set: after w has happened, agent P considers only
those sequences of actions that look like w with respect to its local view and that are at the
same time included in its initial knowledge WP to be possible. Although the sequence

w3 = rOffer(V,S,cheap) sOffer(S,U,cheap) rOffer(U,S,cheap) sOrder(U,S,cheap)
rOrder(S,U,cheap)

looks the same as

sOffer(S,U,cheap) rOffer(U,S,cheap) sOrder(U,S,cheap) rOrder(S,U,cheap)

for U, U does not consider w3 possible after w has happened because it knows that a message
that has been received must have been sent before, and w3 violates this assumption.

 9

The set of sequences of actions that a specific agent considers possible after a specific
sequence of actions has happened is the basis for the security properties described in the next
subsections.

2.1.2.3 Authenticity

2.1.2.3.1 Concept

In the context of sequences of actions, authenticity is a property of a particular action. This
property only makes sense from the viewpoint of a particular agent: while one agent wants a
specific message authentically to originate from a specific sender, for example, another agent
might not even know that the message exists. Thus we call a particular action a authentic for
agent P if in all sequences that P considers possible after a sequence of actions w has hap-
pened, a must have happened some time in the past. In other words, all sequences of actions
that look like w for P with respect to its local view and that are also contained in P’s initial
knowledge WP, must contain an action a.

By extending this definition to a set of actions being authentic for P if one of the actions in
the set is authentic for P, we gain the flexibility that P does not necessarily need to know all
parameters of the action in order to be authentic. For example, a message may consist of one
part protected by a digital signature and another irrelevant part without protection. Then, the
recipient can know that the signer has sent a message containing the signature, but the rest of
the message is not authentic. Therefore, in this case, the set of actions to be authentic for P
comprises all messages containing the relevant signature and arbitrary other message parts.

A possible authenticity requirement for our example system could be that having received
an order presumably made by user U, S wants the respective send action to have authentically
been performed by U. In Section 3, we will use particular instantiations of authenticity:

authentic(action1, action2, agent)

denotes the property that each time agent has performed action2, action1 is authentic for her.
Concrete local views and initial knowledge of agents will be specified later in the project
since they can only be specified when the mechanisms to provide the security properties are
identified.

The concept of authenticity is a generalization of data origin authenticity as explained in
Section 2.1: A data origin authenticity property applies to a quantum of information and a
claimed author. The property is satisfied when the quantum of information truly originates
from the author.

Once the actions are fixed in which the quantum of information is generated and genera-
tion by a particular author is claimed, respectively, data origin authenticity can be expressed
by requiring that for each entity for which the property shall hold, each time they perform the
action in which generation of the information by a particular author is claimed, the generation
action must have been authentically performed by this author.

2.1.2.3.2 Proof of authenticity – non-repudiation

Some actions do not only require authenticity but also need to provide a proof of authenticity.
If agent P owns a proof of authenticity for a set of actions, it can provide this proof to other

 10

agents (e.g. by sending it) who can in turn take possession of the proof (e.g. by receiving it)
and can then be convinced of the action’s authenticity. So for the definition of proof of
authenticity of a specific set of actions the following aspects are relevant:

1. Once an agent P has performed an action that brings it into possession of the proof, P itself
must be convinced of the authenticity of the action the proof refers to.

2. It must be possible for P to forward the proof to any other agent of the system (e.g. by
sending it).

3. Each other agent, when getting forwarded the proof by P, must be able to perform an
action that results in owning it (e.g. receiving). The agent must then be convinced of the
authenticity of the action the proof refers to.

In the formal definition we use three sets of action: the set of actions that shall be authen-
tic, the set of actions to forward a proof, and the set of actions that result in owning the proof.
The definition is the simplest one. Other definitions consider the fact that proofs of authentic-
ity can get lost or deleted by the agents, or that although a proof has been forwarded it is
never actually received.

The concept of proof of authenticity is in line with the concept of non-repudiation intro-
duced in Section 2.1. More specific proofs of authenticity can be defined, for example, to cap-
ture the case in which it is necessary to reduce the set of agents for which proofs shall exist, or
to allow for loss of proofs, etc. Particular non-repudiation requirements as explained in the
following examples are taken again from our example system:

 For a service provider, non-repudiation of origin of the order is provided if the service pro-
vider, having performed the rOrder action, owns a proof of authenticity of the respective
sOrder action having been performed by a specific user.

 A user might require non-repudiation of the receipt of its order by the service provider.
This can be accomplished by introducing one more actions that model the sending of a
receipt performed by the service provider. Then non-repudiation of receipt is the require-
ment that when the user has received this acknowledgement message by a specific service
provider, she owns a proof that this message is authentically sent by this service provider.

 non-repudiation of submission and delivery require a third party, thus our example system
would need to be extended to cover this. We will not consider these requirements any fur-
ther as they are not relevant in EVITA.

In Section 3, we will use particular instantiations of proof of authenticity to express particular
non-repudiation requirements: non-rep-origin (action1,action2,agent) denotes the property
that each time agent has performed action2, action1 is authentic for her and she owns a proof
of authenticity for action1. Again, concrete local views and initial knowledge of agents will
be specified later in the project since they can only be specified when the mechanisms to pro-
vide security properties are identified.

2.1.2.3.3 Authenticity with respect to a phase

In many cases it is not only necessary to know who has performed a particular action, but also
the specific time of the action. As our specification does not model any real-time properties,

 11

time is modelled in terms of relations between actions in a sequence. However, discrete time
can be included explicitly by introducing a clock.

In order to capture time, we use the definition of a phase provided in [9]. A phase is a sub-
system of a system that is closed with respect to continuation of actions. Generally a phase
can be a very complex part of the system. Phases often have well defined start and end
actions. However for the purposes of EVITA it is sufficient to consider only those phases that
have one start action and usually also only one end action (unless we want to model timeouts,
for example). Closure with respect to continuation means that when the start action of a phase
is performed, all actions that can continue this sequence of actions must be contained in the
phase (i.e. cannot happen outside) until (one of) the last action(s) is reached.

This concept together with the concept of authenticity matches perfectly, for example, the
idea of authentication protocols. An agent sends out a challenge (a random number) that starts
the phase. Everything that can happen after that is part of the phase until the agent finally
receives the challenge along with e.g. some digital signature, which ends the phase. We say
that a set of actions is authentic for an agent P after a sequence of actions w with respect to a
phase V if the set of actions is authentic for P and has happened within phase V. That is, in all
sequences of actions P considers possible after w has happened, some action of this set must
have happened within the phase V.

Integrity as explained in Section 2.1.1.3 can be expressed in terms of authenticity within a
phase. In Section 2.1.1.3, we have defined integrity as a property that holds when a quantum
of information has not been modified between two particular observations which can be deter-
mined for instance by a particular time and location in the system. This means that we have
two actions that instantiate these observations, for example the consecutive reading of some
data by some entity. We then require that each time the data be read, it must not have changed
with respect to the last read action. In terms of authenticity within a phase, we define a phase
to start with a read action by a particular entity and then require that for this entity, when she
performs the next read action reading data, the first read action must have processed data and
must have authentically occurred within the phase.

2.1.2.4 Confidentiality

2.1.2.4.1 Concept

Confidentiality in SeMF essentially formalizes the concept that an agent P, having monitored
a specific sequence of actions w, cannot tell from its local view of what it has monitored and
from its initial knowledge WP about the system which was the specific parameter used in a
specific action (or actions) of w, even if the set of possible parameters is known. Various
aspects are included in our definition.

1. First, we have to consider agent P’s local view of the sequence w it has monitored and the
set of sequences that are identical for P with respect to its local view.

2. Second, P can discard some of the sequences from this set, depending on its knowledge of
the system and the system assumptions, all formalized in WP. For example, dependencies
may exist between parameters in different actions known by P, such as a credit card num-
ber remaining the same for a long time, in which case P considers only those sequences of
actions possible in which an agent always uses the same credit card number.

 12

3. We need to identify the dependencies between actions that agents are generally allowed to
know. We may want to allow them to know that credit card numbers for Master and Visa,
respectively, remain the same, but we may not allow them to know that agents use a spe-
cific credit card (either Master or Visa) for ordering specific services.

4. Finally, we need to identify what it is exactly that we want to be confidential. There are
several possibilities. We may be interested in the confidentiality of one specific parameter
in one specific action, regardless of whether or not P knows dependencies between actions
concerning this parameter. We may on the other hand want to formalize that P is not
allowed to know certain dependencies between some actions that use this parameter,
regardless of whether or not P knows the actual parameter that is used in a specific action.
We may further want to formalize a combination of these two requirements.

Essentially, in our definition, parameter confidentiality is captured by requiring that for the
action(s) having happened in w that shall be confidential for agent P with respect to some
parameter p, all possible (combinations of) values for p occur in the set of sequences of
actions P considers possible after w.

2.1.2.4.2 Confidentiality example

We again use our simple example introduced at the beginning. We want the system to meet
the following requirement: V is not allowed to know which price S offered to U. This require-
ment already addresses point 4 in the above list as it specifies that we are only interested in
the confidentiality of a specific parameter in one single action, namely in sOffer(S,U,p).

Concerning point 1, let us assume that V can only see its own actions. Further, agents ini-
tially know that a message received must have been sent. V additionally knows that U only
orders cheap and that U only orders after having received an offer. This addresses point 2 in
the above list. As to the question of which are the allowed dependencies (point 3 above), we
allow agents to know that a receive action must be preceded by a send. Let us assume the fol-
lowing sequence of actions has happened:

w = sOffer(S,U,cheap) rOffer(U,S,cheap) sOffer(S,V,exp) rOffer(V,S,exp) sOrder(U,S,cheap).

V’s local view of w is rOffer(V,S,exp) since V does not see the actions of the other agents.
Sequences of actions that look identical for V with respect to its local view include all combi-
nations of sending and receiving offers and orders performed by U, S and T with its own
action rOffer(V,S,exp) somewhere in between, and could include the following examples:

sOffer(S,U,cheap) rOffer(U,S,cheap) sOffer(S,V,exp) rOffer(V,S,exp)
sOffer(S,U,cheap) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp)
sOffer(S,U,exp) rOffer(U,S,cheap) sOffer(S,V,cheap) rOffer(V,S,exp)
sOffer(S,U,exp) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp)
sOffer(S,U,cheap) rOffer(U,S,cheap) sOffer(S,V,exp) rOffer(V,S,exp) sOrder(U,S,cheap) sOffer(S,U,cheap)
sOffer(S,U,cheap) rOffer(U,S,cheap) sOffer(S,V,exp) rOffer(V,S,exp) sOrder(U,S,cheap) sOffer(S,U,exp)
sOffer(S,U,exp) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp) sOrder(U,S,exp) sOffer(S,U,cheap)
sOffer(S,U,exp) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp) sOrder(U,S,exp) sOffer(S,U,exp)
sOffer(S,U,exp) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp) sOffer(S,U,cheap)
sOffer(S,U,exp) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp) sOffer(S,U,exp)

Now V can use its initial knowledge to disregard those sequences that violate this knowledge.
Hence sequences are disregarded that contain a receive action without the respective send

 13

action before. Further, those sequences in which U orders exp are disregarded. The resulting
set of sequences contains, for example:

sOffer(S,U,cheap) rOffer(U,S,cheap) sOffer(S,V,exp) rOffer(V,S,exp)
sOffer(S,U,exp) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp)
sOffer(S,U,cheap) rOffer(U,S,cheap) sOffer(S,V,exp) rOffer(V,S,exp) sOrder(U,S,cheap) sOffer(S,U,cheap)
sOffer(S,U,cheap) rOffer(U,S,cheap) sOffer(S,V,exp) rOffer(V,S,exp) sOrder(U,S,cheap) sOffer(S,U,exp)
sOffer(S,U,exp) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp) sOffer(S,U,cheap)
sOffer(S,U,exp) rOffer(U,S,exp) sOffer(S,V,exp) rOffer(V,S,exp) sOffer(S,U,exp)

We now formalize that we are only interested in the parameter actually offered by S to U, dis-
regarding the dependencies agents might know. This results in a set of sequences of actions
containing only sOffer(S,U,cheap) and sOffer(S,U,exp) in arbitrary combinations. This
reduces the above set (which is of course only a subset of all sequences deduced so far) to:

sOffer(S,U,cheap)
sOffer(S,U,exp)
sOffer(S,U,cheap) sOffer(S,U,cheap)
sOffer(S,U,cheap) sOffer(S,U,exp)
sOffer(S,U,exp) sOffer(S,U,cheap)
sOffer(S,U,exp) sOffer(S,U,exp)

and so forth. This set determines what V knows with respect to its local view, its initial knowl-
edge, and with respect to the actions and parameters we want to be confidential for V. What
we require for this set is that for each sequence of actions in this set containing
sOffer(S,U,cheap) at a specific point there must be another sequence of actions that contains
sOffer(S,U,exp) at this specific point. This is the case in the above set of sequences of actions,
thus parameter confidentiality with respect to all above listed conditions (local view, initial
knowledge, relevant actions, possible parameters, etc.) is provided.

2.1.2.4.3 Confidentiality and privacy/anonymity

Privacy and anonymity as introduced in Section 2.1 reflect the property that the relation
between an entity and a set of information is confidential. This can easily be expressed using
the above concept of confidentiality: the parameter(s) to be confidential will be the entities
performing specific actions, and/or other parameters of these actions expressing location or
time. By specifying particular local views and initial knowledge for agents, and specific
dependencies between actions with respect to knowledge about certain parameters, very fine-
grained properties can be specified.

In Section 3.2 we will use an instantiation of the general concept of parameter confidential-
ity in order to formalize anonymity and privacy requirements. Confidential(actions-to-learn-
from, data-to-be-confidential, possible-values, allowed-dependencies, who) denotes that no
agents except those in the set who may learn the value of data-to-be-confidential from the
actions in actions-to-learn-from although knowing the set possible-values that contains the
possible values of the data to be confidential. In this first stage allowed-dependencies speci-
fies the case in which no dependencies between actions are allowed to be known. This is the
strongest requirement that can be specified and will probably be weakened once we know
more about the architecture of the system. As already said before, concrete local views and

 14

initial knowledge of agents can only be specified when the mechanisms to provide the secu-
rity properties are identified.

2.2 Approach

The approach for deriving security requirements is based on a number of standards and best
practice guidance documents [1][2][3][4]. The basic elements that are required of security and
safety engineering processes are similar and include the following activities:

• develop a high-level (functional) model of the system to be analysed;

• identify safety hazards or security threats;

• classify the safety hazards or security risks;

• assess the associated risks;

• derive requirements for specific functions and assurance levels to mitigate the risks;

• evaluate the design and implementation for compliance with the requirements.

Although there are differences between safety and security engineering issues, there are also
many similarities [10]. One of the aims in EVITA is to avoid a separation between security
requirements and security issues with safety related implications.

The security engineering process for the EVITA project aims to infer security functional
requirements based on the key methodology from ISO/IEC 15408 [1] and adopting the
ISO/DIS 26262 [2] process together with systems engineering practices. The intentions of [1]
are used to adapt the process for security issues and facilitate security evaluations. We
emphasize, that we do not consider a complete security evaluation process according to [1]
and highlight the differences to our process where necessary.

The methodology for inferring security functional requirements involves the following
steps, which are based on the security requirements process described in [11]:

1. Description of system under investigation and its environment;

2. Description of relevant use cases (cf. Deliverable 2.1 [5]);

3. Identification of the assets to be protected within the described use cases (e.g. ECU, appli-
cation/process, sensor, data, communication between system entities, etc.);

4. Identification of the threats posed to each asset in order to infer basic security functional
requirements;

5. Evaluation and assignment of respective risks (probability of threat, cost/loss, risk classi-
fication);

6. Identification of respective security functional requirements for each threat according to
risk analysis.

 15

2.3 System under investigation and its environment

The system under investigation is an automotive on-board network consisting of embedded
electronic control units (ECUs), sensors, and actuators that are connected with each other via
some bus systems. Figure 1 shows the assumed on-board network architecture.

Figure 1 Generalised architecture of automotive on-board networks

The on-board network is assumed to possess interfaces to the outside for communicating with
mobile devices, service providers, roadside units, and other vehicles:

• wireless interfaces such as GSM, UMTS, Bluetooth, W-LAN and DSRC and

• a wire-bound diagnostic interface.

For example, the on-board network may possess a Bluetooth interface in order to connect
with mobile devices inside the car.

The generalised architecture of Figure 1 is too abstract for describing use cases. Therefore,
use cases are described in [5] in terms of the reference architecture shown in Figure 2, which
is an instantiation of the generalised architecture in Figure 1, based on recommendations
originating from the EASIS project.

 16

Figure 2 EVITA use case reference architecture

The system under investigation is assumed to operate in an uncontrolled environment. There-
fore, the system under investigation must protect its assets against a variety of threats.

2.4 Summary of use cases

In order to identify requirements for systems it is necessary to have a conceptual model of
how they should function. Use cases are an approach for building scenarios that describe the
functional properties that may be required from a system in order to satisfy the goals of users.

The purpose of a use case is to describe the interaction between a system and the initiator
of the interaction as a sequence of simple steps that are needed to achieve a specified goal.
Use cases should focus on what the system must do, rather than how it is to be done, treating
the system as a “black box”. The interactions with the system, including system responses,
should be described as perceived from outside the system.

For the purposes of the EVITA project, the use cases are intended to identify a range of
specific future vehicle functions that could have possible security implications. The use cases
are described in EVITA Deliverable D2.1 [5]. The development of these use cases involved
the following steps:

• selection of a series of use cases appropriate to the objectives of EVITA;

• definition of the functionalities required to support the use cases;

• identification of relevant communication entities (e.g. vehicles, driver, backend infra-
structure) and communication relations;

• specification of required data (in-vehicle, backend) as well as exchanged information;

• description of technical requirements (e.g. performance, bandwidth, distance, etc.) other
than security.

Powertrain
PTC

Body Electronic
BEM

Diagnosis
Interface

Hybrid Drive

Engine Control

Bluetooth

USB

Communication

 Unit CU

Transmission

Chassis & Safety
CSC

Chassis /
Steering

Brake Control

Environmental
Sensors

Passive Safety

Door Modules

Instrument

Light Control

Display /
Video

Audio

Navigation

Head Unit
HU

Mobile Device

In-vehicle network structure

PT Sensors

Chassis Sensors
e.g. Steer Angle

GPS/Galileo
UMTS
DSRC

Telephone Climate

Seat ECU

 17

The use cases are grouped into a number of categories for which e-security related intrusions
were considered to be possible issues. The use cases that have been developed include the
following:

• Car2MyCar (communication from other car to own car)

Use case 1: Safety reaction: Active brake

Use case 2: Local Danger Warning from other Cars

Use case 3: Traffic Information from other Entities

• MyCar2Car (communication from own car to other car)

Use case 4: Messages lead to safety reaction

Use case 5: Local Danger Warning to other Cars

Use case 6: Traffic Information to other Entities

• Car2I and I2Car (communication from car to infrastructure and from infrastructure to car)

Use case 7: eTolling

Use case 8: eCall

Use case 9: Remote Car Control

Use case 10: Point of Interest

• Nomadic Devices/USB Sticks/MP3

Use case 11: Install applications

Use case 12: Secure Integration

Use case 13: Personalize the car

• Aftermarket

Use case 14: Replacement of Engine ECU

Use case 15: Installation of a Car2x Unit

• Workshop/Diagnosis

Use case 16: Remote Diagnosis

Use case 17: Remote Flashing

Use case 18: Flashing per OBD

The use cases may themselves immediately suggest some security and safety requirements.
However, they are also required as inputs to the “dark-side scenario” analysis, in order to
identify the potential for malicious attacks. For example, interference with safety critical in-
vehicular components and disruption of traffic flow by means of counterfeit messages are just
two possibilities that need to be considered.

 18

2.5 System assets

The main components of an automotive on-board network (see Figure 1 and Figure 2) that
may become targets of attacks are:

• In-vehicle devices: ECUs, sensors and actuators,

• Safety critical and non-safety critical applications running on in-vehicle devices,

• Communication links internally within ECUs, between ECUs, between ECUs and sensors,
between ECUs and actuators and between applications running on in-vehicle devices.

2.6 Threat identification (dark-side scenarios)

The purpose of developing the “dark-side” scenarios is to identify possible security threats
and to allow aspects such as the desirability (to the attacker), opportunity, probability and
severity of attacks to be assessed in order to support the security risk assessment activities.

The approach adopted in developing the dark-side scenarios for the EVITA project is
based on the following elements:

• identification and classification of possible attack motivations;

• evaluation of associated attacker capabilities (e.g. technical, financial);

• attack modelling, comprising:

– identification of specific attack goals that could satisfy the attack motivations;

– construction of possible attack trees that could achieve attack goals, based on the func-
tionality identified in the use cases [5].

This approach has already been used in the Network-on-Wheels project [12]. The attack trees
are interpreted in terms of an initiating “attack goal”, providing the attacker with an illegiti-
mate benefit, which can be satisfied by one or more “attack objectives” that have a negative
impact on the stakeholders. Each “attack objective” could be achieved by one or more attack
methods, which may consist of one or more combinations of attacks on specific system assets.

Attacks that could have an impact on the safety of a car based on direct physical access in
order to manipulate the hardware of that car (e.g. modification of ECUs or other electronic
components) are excluded from this analysis as they are beyond the scope of the EVITA pro-
ject. These classes of attacks are already feasible and probably always will be. While some
outcomes of EVITA will help in the detection of malevolent modifications to a vehicle, this is
not a specific objective of the project. Consequently, direct physical attacks against the hard-
ware of the targets of attacks are out of scope. However, manipulations of devices that are
under the control of the attacker are within the scope of EVITA (e.g. side channel attacks or
extraction of keys); since attackers may modify their own vehicle in order to perform attacks
against others.

Detailed results of the dark-side scenario analysis that are relevant to the security require-
ments analysis can be found in Appendix B – Dark-side scenarios.

 19

2.7 Overview of risk analysis

In order to assess the “risk” associated with an attack it is necessary to assess the “severity” of
the possible outcome for the stakeholders, and the “probability” that such an attack can be
successfully mounted.

At the highest level, the security objectives are:

• operational – to maintain the intended operational performance of all vehicle and ITS
functions;

• safety – to ensure the functional safety of the vehicle occupants and other road users;

• privacy – to protect the privacy of vehicle drivers, and the intellectual property of vehicle
manufacturers and their suppliers;

• financial – to prevent fraudulent commercial transactions and theft of vehicles.

These security objectives counter generic security threats, as outlined in Table 1.

Table 1 Generic security threats and security objectives

Generic Security Threats
Aims Target Approach Motivation

Security
Objectives

Harming
individuals

Driver or passenger Interference with safety func-
tions of a specific vehicle

Criminal or terror-
ist activity

Safety
Privacy

Harming
groups

City or state economy,
through vehicles and/or
transport system

Interfere with safety functions
of many vehicles or traffic
management functions

Criminal or terror-
ist activity

Safety
Operational

Driver or passenger Theft of vehicle information
or driver identity, vehicle
theft, fraudulent commercial
transactions

Criminal or terror-
ist activity

Privacy
Financial

Vehicle Interference with operation of
vehicle functions

Build hacker
reputation

Operational
Privacy

Gaining
personal
advantage

Transport system,
vehicle networks,
tolling systems

Interference with operation of
traffic management functions
or tolling systems

Enhanced traffic
privileges, toll
avoidance,

Operational
Privacy
Financial

Driver or passenger Avoiding liability for acci-
dents, vehicle or driver
tracking

Fraud, criminal or
terrorist activity,
state surveillance

Privacy
Financial

Gaining
organiza-
tional
advantage Vehicle Interference with operation of

vehicle functions, acquiring
vehicle design information

Industrial espio-
nage or sabotage

Privacy
Operational
Safety

The severity of an attack is considered in terms of the four different aspects that may be asso-
ciated with harm to the stakeholders (operational, safety, privacy, and financial aspects), as a
4-component vector with a range of qualitative levels that are based on the severity classifica-
tions used in vehicle safety engineering. The severity of an attack is assessed using the attack
trees, by considering the potential implications of the attack objectives for the stakeholders.

The probability of a successful attack is also derived from the attack trees, by identifying
combinations of possible attacks on the system assets that could contribute to an attack
method. Thus, the risk analysis is organized by attack tree, and decomposed down to asset

 20

level. However, further decomposition may be helpful in estimating the probability of success
(which is related to the “attack potential”) for attacks on specific assets.

The probability and severity combinations are mapped to a series of risk levels ranging
from 0 (lowest) to 6 (highest) in order to rank relative risks. In this scheme, high probability
attacks with the severest outcomes have the highest risk levels, while low probability attacks
with the least severe outcomes have the lowest risk levels. Between the extremes, the risk
levels increase with rising probability and severity.

As severity is expressed in the form of a 4-component vector, the risk measure associated
with an attack is also a 4-component vector. Furthermore, as several different attack methods
may achieve the same attack objective, the result of the risk assessment is a set of risk vectors.
This provides a convenient basis for systematically identifying threats that need to be coun-
tered with priority:

• Where a number of possible attack objectives may achieve the attack goal, the attack
objective with the highest perceived risk level is the priority for countermeasures to reduce
the risk level for the attack goal;

• Where a number of possible attack methods may lead to the same attack objective, the
attack method with the highest perceived combined attack probability is the priority for
countermeasures to reduce the risk level for the attack objective;

• Where a number of asset attacks may lead to the same attack method, the asset attack with
the highest perceived attack probability (i.e. lowest attack potential) is the priority for
countermeasures to reduce the risk level for the attack method.

• The repeated occurrence of particular attack patterns in attack trees is a further indicator
for prioritising countermeasures that are likely to provide favourable cost-benefit prop-
erties.

A more detailed description of this process, including its application to the attack trees devel-
oped in Appendix B – Dark-side scenarios – can be found in Appendix C – Threat and risk
analysis.

2.8 Identification of security requirements

2.8.1 Overview

Identification of security requirements in the EVITA project is based on two different but
complementary viewpoints:

• abstract functional path – based on a purely functional representation of the use cases,
providing security requirements by class (confidentiality, authenticity);

• detailed functional path and mapping – based on mapping a functional representation of
the use cases to an architecture, providing both functional and architectural (availability,
timing) requirements by use case

Merging the results of these two viewpoints should ensure that the security requirements are
sufficiently comprehensive to support subsequent design activities. Brief overviews of these
approaches are given below. More detailed descriptions can be found in Appendix D –
Identifying security requirements.

 21

2.8.2 Abstract functional path approach

2.8.2.1 Overview

The functional path model describes only the functional behaviour of the system under inves-
tigation and the information flows at its boundaries. Each information flow is associated with
requirements for:

• establishing the authenticity of the incoming data and their origins;

• ensuring appropriate levels of confidentiality for the outgoing data.

This approach provides a very compact description of vehicle-to-X communications and a
systematic approach to the identification of their associated security requirements.

2.8.3 Detailed functional path and mapping approach

2.8.3.1 Overview

The detailed functional path and mapping approach maps the functions to a generic architec-
ture, allowing functional and architectural requirements to be identified. Consequently,
aspects such as availability and timing, and dependencies between requirements, can be con-
sidered. An iterative process is employed, consisting of the following steps:

• Extract requirements from use cases

– derive functional view

– derive architectural mapping and correct functional view if necessary

• Verify coverage

– attack trees

– use case consistency/completeness

• Generate new requirements for unmatched threats / changed use cases

– re-evaluate threat coverage

Additional benefits of this approach include more precise definition of the use cases, verifica-
tion of existing attack trees, identification of new attacks, and more explicit mapping of secu-
rity requirements to functions and assets.

A semi-formal description of security requirements based on SysML diagrams has several
objectives:

• Describe security requirements with an approach close to the language of use case design-
ers and with references to these use cases, based on both functional and mapping views.
This specification distinctly aims at providing a system-oriented view, including timing
and mapping issues, rather than an information-oriented view on requirements. We have
been using the domains defined by use cases to classify the security requirements deter-
mined in addition to their security properties.

• Describe relationships between security requirements and in particular their respective
dependencies.

 22

• Describe in what way security requirements relate to attack trees (i.e., trace security
requirements aimed at threat mitigation or anti-goal prevention rather than security prop-
erty or goal achievement).

• One objective of this approach is to prove whether security requirement are met.

• Another objective is to determine which security mechanisms are to be defined in order to
address or at least mitigate threats.

To identify security requirements, we have used the following methodology:

• For each use case, we derived one functional view of the system, using the UML compos-
ite structure diagrams defined in the DIPLODOCUS UML profile implemented in TTool
[13]. TTool is an open-source toolkit supporting several UML2 profiles, including the DIP-
LODOCUS profile [20][21]. TTool has editing capabilities as well as simulation and for-
mal verification capabilities. Indeed, all profiles implemented by TTool have a formal
semantics defined as a translation to a process algebra. More specifically, the DIPLODO-
CUS profile targets the design space exploration of System-on-Chip. DIPLODOCUS
stands for DesIgn sPace expLoration based on fOrmal Description teChniques, UML and
SystemC. DIPLODOCUS follows the Y methodology which includes three views: func-
tional view, architectural view, and then mapping view.

• For each use case, we also derived one mapping view of the system, using the UML
deployment diagrams defined in the DIPLODOCUS UML profile implemented in TTool.
That mapping view defines the locations where functions are executed. Functions are
mapped either on hardware devices (sensors / actuators plus controller coming with those
sensors/actuators) or on CPUs. For functions mapped on CPUs, we assume their code is
stored, before execution, within the flash memory located on the same bus as the CPU. We
also assume that, at execution time, the function code and data are stored within RAMs
located on the same bus. Note that performing the mapping view has sometimes led to
modifying the functional view directly derived from use cases, since one function can be
mapped onto only one hardware execution node (i.e. at most on one CPU or one hardware
device): when one function was to be mapped onto more than one hardware execution
node, it was split into several sub-functions.

• Then, considering attack trees, use cases, functional and mapping views, we have settled
on a list of security requirements. The latter have been modelled with the SysML diagrams
implemented by TTool. The relations between requirements that have been considered are:
Containment, dependency (<<deriveReqt>>), and reuse in different namespaces
(<<copy>>). Those diagrams also contain observers, which may be seen as test cases
meant to be used for the formal verification (or simulation) phase. Observers may addi-
tionally be seen as a means to document requirements. At last, a table of requirements is
automatically derived from SysML diagrams. This set of requirements and observers alto-
gether provides a conceptual model of the security expectations of the system, abstracted
from the literary description of use cases.

 23

2.8.3.2 Security requirements modelling

2.8.3.2.1 Overview

The security requirements defined using a SysML formalism have “Requirement Contain-
ment Relationship” and “Derive Dependency” SysML relationships [1]. A general method-
ology has been applied according to an iterative process, on functional and mapping views, on
security requirements, and also on attack trees. The coverage and completeness of attack trees
and use cases has thus been verified whilst listing security requirements.

Different semiformal definitions are used while defining security requirements, which will
help us to prove future solutions.

2.8.3.2.2 Definition: Command

A command is an event or data (i.e. a message) sent from inside the on-board network to a
function running on an actuator or on a sending device.

2.8.3.2.3 Definition: Functional Path

A use case always starts with a given message sent by one element outside of the on-board
network to a function of the TOE. Let us call that message ‘startMessage’. We assume that
‘startMessage’ is received by a function f0. A use case is meant to produce commands. Let us
call Fc the set of functions producing commands in the considered use case.

The functional path of a use case is a tuple consisting of a set C of events and data chan-
nels and of a set F of functions. C and F are defined as follows:

• Fc is included into F

• C contains all channels which destination is a function of F

• F contains all functions that output messages in channels of C.

Therefore, the functional path of a use case includes all data and events that are taken as an
input by all functions involved in the direct or indirect production of commands defined in the
use case.

Property: The functional path of a use case is considered as valid if and only if, using the
previous definition, f0 is an element of F.

 24

3 EVITA Security Requirements

3.1 Security objectives

At the highest level, the security objectives (cf. Section 2.7) are:

• to maintain the intended operational performance of all vehicle and ITS functions;
• to ensure the functional safety of the vehicle occupants and other road users;
• to protect the privacy of vehicle drivers, and the intellectual property of vehicle manu-

facturers and their suppliers;
• to prevent fraudulent commercial transactions and theft of vehicles.

3.2 Security requirements

3.2.1 Overview

This section documents the security requirements that are needed to satisfy the stakeholders’
security objectives considering the identified threats and assumed system architecture. Secu-
rity requirements are constraints arising from security concerns; these requirements do not
specify how the constraints are satisfied, but only what the constraint is. It is out of scope to
address security mechanisms. The security requirements shall not make any assumptions
regarding possible realisations. This is subject of the forthcoming task of secure on-board
architecture specification.

The security requirements are based on the use cases [5] and attack trees (Appendix B –
Dark-side scenarios) and derived in a systematic manner. The level of detail directly origi-
nates from the size of the use case model. The level of coverage is restricted to the amount of
information that was input to the security analysis.

The fulfilment of security requirements is not measurable beyond Boolean (i.e. true or
false). The fulfilment of security requirements in on-board architecture and protocol specifi-
cations will be verified by formal methods.

The following subsections list the security requirements determined using the two
approaches outlined in the previous section, classified according to security properties. The
requirements numbered under 100 correspond to requirements determined using the security-
modelling framework SeMF, whereas requirements numbered above 100 were obtained fol-
lowing the system-oriented SysML approach. The latter are also described in a finer grained
fashion, organized according to topics/diagrams, in Appendix D – Identifying security
requirements.

 25

3.2.2 Authenticity

Requirement reference: Authenticity_1

Informal description:
Whenever an active braking action is performed, the own Environment Information measured by the
sensors that the action is based on shall be authentic in terms of origin, content and time.

Semi-formal description:
auth(Environment-Sensing(car,Environment-Information,t),braking(car),Driver(car))

Use case references: 1

Requirement reference: Authenticity_2

Informal description:
Whenever an active braking action is performed, the own Vehicle Dynamics measured by the sen-
sors that the action is based on shall be authentic in terms of origin, content and time.

Semi-formal description:
auth(Chassis-Sensing(car,Vehicle-Dynamics,t),braking(car),Driver(car))

Use case references: 1

Requirement reference: Authenticity_3

Informal description:
Whenever an active braking action is performed, the own Position-Information that the action is
based on shall be authentic in terms of origin, content and time.

Semi-formal description:
auth(GPS-sensing(car,Position,t),braking(car),Driver(car))

Use case references: 1

Requirement reference: Authenticity_4

Informal description:
Whenever an active braking action is performed, the Position-Information of the original warning
car that the action is based on shall be authentic in terms of origin, content and time.

Semi-formal description:
auth(GPS-Sensing(otherCar,Position,t),braking(car),Driver(car))

Use case references: 1

Requirement reference: Authenticity_5

Informal description:
Whenever an active braking action is performed, the sensor information of the original warning car
that led to the warning and ultimately to the braking shall be authentic in terms of origin, content and
time.

Semi-formal description:
auth(Chassis-Sensing(otherCar,Vehicle-Dynamics,t),braking(car),Driver(car))

Use case references: 1, 4

 26

Requirement reference: Authenticity_6

Informal description:
Whenever an active braking action is performed, the position information for all vehicles that is
being recorded in the neighbourhood tables shall be authentic for the braking action in terms of ori-
gin, content and time.

Semi-formal description:
auth(GPS-Sensing(allCars,Position,t),braking(car),Driver(car))

Use case references: 1 (textual description only)

Notes:
Analysis shows that this is an availability requirement, which appears here for the functional
dependence of the braking

Requirement reference: Authenticity_7

Informal description:
Whenever a Warning is shown on HMI, the own Position-Information that the action is based on
shall be authentic in terms of origin, content and time.

Semi-formal description:
auth(GPS-Sensing(car,position,t),HMI-Display(car,Warning),Driver(car))

Use case references: 2

Requirement reference: Authenticity_8

Informal description:
Whenever a Danger-Warning is shown on HMI, the Position-Information of the warning car or the
Cooperative-Awareness-Message sent by the RSU, depending on which the action is based on, shall
be authentic in terms of origin, content and time.

Semi-formal description:
auth({GPS-Sensing(otherCar,position,t), send(RSU, CAM)}, HMI-Display(car,Warning),
Driver(car))

Use case references: 2, 5 (RSU from textual description)

Requirement reference: Authenticity_9

Informal description:
Whenever a Danger-Warning is shown on HMI, the other vehicles sensor-information or the Co-
operative-Awareness-Message sent by the RSU, depending on which the action is based on, shall be
authentic in terms of origin, content and time.

Semi-formal description:
auth({sensing(otherCar, data,t), send(RSU, CAM)}, HMI-display(car,Warning), Driver(car))

Use case references: 2, 5 (RSU from textual description)

 27

Requirement reference: Authenticity_10

Informal description:
Whenever a Navigation-Warning is shown on HMI, the own Position-Information that the action is
based on shall be authentic in terms of origin, content and time.

Semi-formal description:
auth(GPS-Sensing(car,Position,t),HMI/Navigation-Display(Warning),Driver(car))

Use case references: 3

Requirement reference: Authenticity_11

Informal description:
Whenever a Navigation-Warning is shown on HMI, the Position-Information of the warning car or
the Traffic-Information-Message sent by the RSU, depending on which the action is based on, shall
be authentic in terms of origin, content and time.

Semi-formal description:
auth({GPS-Sensing(otherCar,position,t), send(RSU,TIM)}, HMI/Navigation-Display(Warning),
Driver(car))

Use case references: 3, 6

Requirement reference: Authenticity_12

Informal description:
Whenever a Traffic Information Message is shown on HMI, the other vehicles’ sensor-information
or the Traffic Information Message sent by the RSU, depending on which the action is based on,
shall be authentic in terms of origin, content and time.

Semi-formal description:
auth({sensing(otherCar, data,t), send(RSU, TIM)}, HMI/Navigation-Display(Warning),Driver(car))

Use case references: 3, 6

Requirement reference: Authenticity_13

Informal description:
Whenever a Traffic Information Message is received by the RSU, the sensor-data that it is based on
shall be authentic in terms of origin, content and time.

Semi-formal description:
auth({sensing(otherCar, data,t), send(RSU, TIM)}, Processing-Showinfo,Driver(car))

Use case references: 3, 6

 28

Requirement reference: Authenticity_14

Informal description:
Whenever eTolling information is received by the Service Provider’s RSU, the accumulated position
information at the car shall be authentic for the service provider.

Semi-formal description:
auth(GPS-Sensing(car,position,t),GSM-Receive(RSU(SP), car, Billing-Information),SP)

Use case references: 7

Requirement reference: Authenticity_15

Informal description:
Whenever an eCall request is received by the service provider, the position information that this was
based on shall be authentic for the service provider in terms of origin, content and time.

Semi-formal description:
auth(GPS-Sensing(car,position,t),receive(SP,car,Crash-Info(Position)),SP)

Use case references: 8

Requirement reference: Authenticity_16

Informal description:
Whenever an eCall request is received by the service provider, the sensor information that this was
based on shall be authentic for the service provider in terms of origin, content and time.

Semi-formal description:
auth(sensing(car,data,t),receive(SP,car,Crash-Info(Position)),SP)

Use case references: 8

Requirement reference: Authenticity_17

Informal description:
Whenever the car’s hood is opened remotely, it shall be authentic for the owner that the command
leading to this was sent by the allowed mobile device.

Semi-formal description:
auth(BT-Send(MobileDevice,openhood,t), open(car,hood), Owner(car))

Use case references: 9

Requirement reference: Authenticity_18

Informal description:
Whenever the PoI- (Point Of Interest) Information is displayed on the HMI, it shall be authentic for
the driver that the information was sent by a PoI-Provider authorized by the driver.

Semi-formal description:
auth(send(PoI-Provider,PoI-Info),HMI-Show(car,PoI-Info),Driver(car))

Use case references: 10

 29

Requirement reference: Authenticity_19

Informal description:
Whenever PoI (Point Of Interest) information is displayed on the HMI, it shall be authentic for the
driver that this type of information is admitted by the PoI-Configuration (the driver’s pre-configura-
tion regarding the reception of PoI information).

Semi-formal description:
auth(HMI-Read(car,PoI-Configuration(PoI-Info-Type),t), HMI-Show(car,PoI-Info(PoI-Info-Type),
Driver(car))

Use case references: 10

Requirement reference: Authenticity_20

Informal description:
Whenever a new software interface is displayed on the HMI, the software shall originate from an
allowed mobile device.

Semi-formal description:
auth(USB-Receive(car,MobileDevice, Software),HMI-Show(SW-Interface),Driver(car))

Use case references: 11

Requirement reference: Authenticity_21

Informal description:
Whenever a new software interface is displayed on the HMI, the computed result shall be based on
the user’s inputs.

Semi-formal description:
auth(HMI-Read(car,driver(car), Inputs),HMI-Show(SW-Interface), Driver(car))

Use case references: 11

Requirement reference: Authenticity_22

Informal description:
Whenever a new external interface is displayed on the HMI, it shall originate from an allowed
mobile device.

Semi-formal description:
auth(BT-Receive(car,MobileDevice,Display(Data)),HMI-Show(Data),Driver(car))

Use case references: 12

Requirement reference: Authenticity_23

Informal description:
Whenever inputs for an application installed on a mobile device are sent from the car to the mobile
device, these inputs shall originate from the car’s HMI.

Semi-formal description:
auth(HMI-Read(Inputs), BT-Send(car,MobileDevice,Inputs), Driver(car))

Use case references: 12

 30

Requirement reference: Authenticity_24

Informal description:
Whenever the vehicle’s seats are adjusted, it shall be authentic for the owner that the command
leading to this was sent by an authorized mobile device.

Semi-formal description:
auth(BR-Receive(car,AuthDevice,SeatPosition),adjust(car,SeatPosition),Driver(car))

Use case references: 13

Requirement reference: Authenticity_25

Informal description:
Whenever an ECU is replaced in the car, it shall be authentically crafted by the manufacturer.

Semi-formal description:
auth(craft(Manufacturer,ECU),replace(car,ECU),Owner(car))
auth(craft(Manufacturer,ECU),replace(car,ECU),Manufacturer(car))

Use case references: 14

Notes:
This property is related to a different system model, outside the runtime component-model of the car.

Requirement reference: Authenticity_26

Informal description:
Whenever an ECU is added to the car, it shall be authentically crafted by the manufacturer.

Semi-formal description:
auth(craft(Manufacturer,ECU),install(car,ECU),Owner(car))
auth(craft(Manufacturer,ECU),install(car,ECU),Manufacturer(car))

Use case references: 15

Notes:
This property is related to a different system model, outside the runtime component-model of the car.

Requirement reference: Authenticity_27

Informal description:
Whenever diagnosis-data is sent to a maintenance-shop, it shall be authentic that it is a manu-
facturer-authorized maintenance-shop.

Semi-formal description:
auth(authorize(manufacturer,maintenance-shop),send(car,maintenance-shop,data),Owner(car))

Use case references: 16

 31

Requirement reference: Authenticity_28

Informal description:
Whenever data is received by the maintenance-shop, it shall be authentic that it originates from the
car.

Semi-formal description:
auth(store(car,data),receive(maintenance-shop,car,data),Owner(car))

Use case references: 16

Notes:
This is also an integrity requirement.

Requirement reference: Authenticity_29

Informal description:
Whenever a firmware is installed to the car, it shall be authentically programmed by the manu-
facturer.

Semi-formal description:
auth(program(Manufacturer,Firmware),install(car,Firmware),Owner(car))
auth(program(Manufacturer,Firmware),install(car,Firmware),Manufacturer(car))

Use case references: 17, 18

Notes:
This property is related to a different system model, outside the runtime component-model of the car.

Requirement reference: Authenticity_101

Informal description:
Message source authentication along functional path:
1. Whenever a command (see Section 2.8.3.2.2) is sent from one internal ECU to another internal

ECU, authentication of information along functional path must be ensured.
Use Case Reference: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

2. Whenever a message is received from a Mobile Device, authentication of all those messages must
be ensured.
Use Case Reference: 9, 11, 12, 13

3. Whenever a message is sent from vehicle to a Mobile Device, authentication of all those mes-
sages along functional path must be ensured.
Use Case Reference: 9, 11, 12, 13

Semi-formal description:
FSR-1.1.1 (General requirements – Fake Command related Requirements SysML diagram)

 32

Requirement reference: Authenticity_102

Informal description:
Code origin authentication: Whenever a command (see Section 2.8.3.2.2) is sent to ECU for flash-
ing, code origin authentication must be ensured.

Use Case Reference: 14, 15, 17, 18

Semi-formal description:
FSR-1.3.1 (General requirements –Fake Command related Requirements SysML diagram)

Requirement reference: Authenticity_103

Informal description:
Authenticating message sources notifying a change in the environment coming in/out from vehicle:
1. Whenever an environment related information collected from gateways and sensors, data origin

authentication of all those information must be ensured.
Use case Reference: 1, 4, 5, 6.

2. Whenever an immediate danger message from environment sensors is received at Communica-
tion Unit (CU), data origin authentication of all messages must be ensured.
Use case Reference: 1, 2, 4

3. Whenever a message (warning message) is received from other neighbourhood vehicles, data
origin authentication of all messages along functional path must be ensured.
Use case Reference: 1, 2, 3

4. Whenever CSC receives more information for plausibility check (vehicle dynamics data), data
origin authentication of all information along functional path must be ensured.
Use case Reference: 1, 2, 4, 5, 6,

5. Whenever a message (RSU, Traffic Light, Infrastructure based Server or other Vehicle) arrived
at vehicle reception, data origin authentication of all those messages must be ensured.
Use Case Reference: 1, 2, 3, 10, 16, 17, 18

6. Whenever a message is sent to RSU, data origin authentication of all those messages along
functional path must be ensured.
Use Case Reference: 7, 8, 16, 17

7. Whenever a message (warring message) is sent to other neighbourhood vehicles, data origin
authentication of all those messages along functional path must be ensured.
Use Case Reference: 4, 5, 6,

8. Whenever a warning is shown on the HMI, warning generated due to unexpected behaviour or
warning message arrived from other vehicle, data origin authentication of these entire messages
along functional path must be ensured.
Use Case Reference: 2, 3, 5, 6,

9. Whenever an additional information messages (PoI) is received and showed, data origin authen-
tication of these entire messages along functional path must be ensured.
Use Case Reference: 10

Semi-formal description:
GSR-1.3 (General requirements – Environment related Requirements SysML diagram)

 33

3.2.3 Integrity

Unauthorized modification of data and functionality shall be prevented or at least detected.
There shall be provisions for verifying the integrity of transported and stored data. This shall
apply to both external and internal communications.

Requirement reference: Integrity_101

Informal description:
Integrity of messages notifying a change in the environment coming in /out from vehicle:
1. Whenever an environment related information collected from gateways and sensors, Integrity of

all those information must be ensured.
Use case Reference: 1, 4, 5, 6.

2. Whenever an immediate danger message from environment sensors is received at Communica-
tion Unit (CU), Integrity of all messages must be ensured.
Use case Reference: 1, 2, 4

3. Whenever a message (warning message) is received from other neighbourhood vehicles, Integ-
rity of all messages along functional path must be ensured.
Use case Reference: 1, 2, 3

4. Whenever CSC receives more information for plausibility check (vehicle dynamics data), Integ-
rity of all information along functional path must be ensured.
Use case Reference: 1, 2, 4, 5, 6,

5. Whenever a message (RSU, Traffic Light, Infrastructure based Server or other Vehicle) arrived
at vehicle reception, Integrity of all those messages must be ensured.
Use Case Reference: 1, 2, 3, 10, 16, 17, 18

6. Whenever a message is sent to a RSU, Integrity of all those messages along functional path
must be ensured.
Use Case Reference: 7, 8, 16, 17

7. Whenever a message (warning message) is sent to other neighbourhood vehicles, Integrity of all
those messages along functional path must be ensured.
Use Case Reference: 4, 5, 6,

8. Whenever a warning is shown on the HMI, warning generated due to unexpected behaviour,
integrity of these entire messages along functional path must be ensured.
Use Case Reference: 2, 3, 5, 6,

9. Whenever an additional information messages (PoI) is received and showed, integrity of these
entire messages along functional path must be ensured.
Use Case Reference: 10

Semi-formal description:
GSR-1.1 (General Security Requirements – Environment related requirements SysML diagram)

 34

Requirement reference: Integrity_102

Informal description:
Flashing Command Integrity (the flashing went to its end): Whenever a flashing command (see
Section 2.8.3.2.2) is sent to an ECU for flashing, integrity of flashing command must be ensured.

Use Case Reference:14, 15, 17, 18

Semi-formal description:
FBSR-4.1 (Flashing per OBD use case specific requirements SysML diagram)

Requirement reference: Integrity_103

Informal description:
It should be ensured that firmware data received as an update has not been modified since it left the
manufacturer servers (code integrity): Whenever a flashing command (see Section 2.8.3.2.2) is sent
to an ECU, the integrity of the firmware must be ensured.

Use Case Reference:14, 15, 17, 18

Semi-formal description:
FSR-1.3.2 (General Security Requirements –Fake Command related requirements SysML diagram),
FBSR-1.1.1 (Flashing per OBD use case specific requirements SysML diagram)

Requirement reference: Integrity_104

Informal description:
Integrity of Message Attributes Along Functional Path. This particular requirement derives from the
more general requirement of preventing Man-In-The-Middle attacks:
1. Whenever a command (see Section 2.8.3.2.2) is sent from one internal ECU to another internal

ECU, integrity of information along functional path must be ensured.
Use Case Reference: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

2. Whenever a message is received from a Mobile Device, Integrity of all those messages must be
ensured.
Use Case Reference: 9, 11, 12, 13

3. Whenever a message is sent from vehicle to a Mobile Device, Integrity of all those messages
along functional path must be ensured.
Use Case Reference: 9, 11, 12, 13

Semi-formal description:
FSR-1.1.3 (General requirements – Fake Command related Requirements SysML diagram)

Requirement reference: Integrity _105

Informal description:
Ensure Correct Decision of Emergency Situation: Whenever an emergency situation happens and the
driver or the vehicular system trigger to an emergency manoeuvre, the integrity of correcting deci-
sions must be ensured along the functional path.
Use Case Reference: 1, 2, 4,5,8

Semi-formal description:
BDOS-1.2-2.1 (Braking use case DoS Requirements SysML diagram)

 35

3.2.4 Controlled access

Requirement reference: Access_101

Informal description:
Controlled Access To Flashing Function: Whenever a flashing command (see Section 2.8.3.2.2) is
sent to ECU, controlled access to flashing function must be ensured.
Use Case Reference: 14, 15, 17, 18

Semi-formal description:
FBSR-1.1 (SysML General Requirements – Flashing Requirements)

Requirement reference: Access_102

Informal description:
Controlled Access To Read From Flash: Whenever a flashing command (see Section 2.8.3.2.2) is
sent to ECU, controlled access to read from flash must be ensured.
Use Case Reference: 14, 15, 17, 18

Semi-formal description:
FBSR-1.2 (SysML General Requirements – Flashing Requirements)

 36

3.2.5 Freshness

Requirement reference: Freshness_101

Informal description:
Freshness of messages carrying some environment related data and notifying a change in the
environment coming in/out from vehicle should be ensured, in particular to prevent that replaying
these data may trigger some undesirable behaviour from the TOE:
1. Whenever an environment related information is collected from gateways and sensors, freshness

of all those information must be ensured.
Use case Reference: 1, 4, 5, 6.

2. Whenever an immediate danger message from environment sensors is received at Communica-
tion Unit (CU), freshness of all messages must be ensured.
Use case Reference: 1, 2, 4

3. Whenever a message (warning message) is received from other neighbourhood vehicles, fresh-
ness of all messages along functional path must be ensured.
Use case Reference: 1, 2, 3

4. Whenever CSC receives more information for plausibility check (vehicle dynamics data), fresh-
ness of all information along functional path must be ensured.
Use case Reference: 1, 2, 4, 5, 6,

5. Whenever a message (RSU, Traffic Light, Infrastructure based Server or other Vehicle) arrived
at vehicle reception, freshness of all those messages must be ensured.
Use Case Reference: 1, 2, 3, 10, 16, 17, 18

6. Whenever a message is sent to RSU, freshness of all those messages along functional path must
be ensured.
Use Case Reference: 7, 8, 16, 17

7. Whenever a message (warring message) is sent to other neighbourhood vehicles, freshness of all
those messages along functional path must be ensured.
Use Case Reference: 4, 5, 6,

8. Whenever a warning is shown on the HMI, warning generated due to unexpected behaviour or
warning message arrived from other vehicle, freshness of these entire messages along functional
path must be ensured.
Use Case Reference: 2, 3, 5, 6,

9. Whenever an additional information messages (PoI) is received and showed, freshness of these
entire messages along functional path must be ensured.
Use Case Reference: 10

Semi-formal description:
GSR-1.2 (General requirements – Environment related Requirements SysML diagram)

 37

Requirement reference: Freshness_102

Informal description:
The freshness of the series of messages generated in sequence by all gateways or ECUs traversed
along the functional path should be ensured in order to prevent the undesirable triggering of com-
mands:
1. Whenever a message resulting in commands (see Section 2.8.3.2.2) is sent from one internal

ECU to another internal ECU, freshness of information along functional path must be ensured.
Use Case Reference: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12,13, 14, 15, 16, 17, 18

2. Whenever a message is received from a Mobile Device, freshness of all those messages must be
ensured.
Use Case Reference: 9, 11, 12, 13

3. Whenever a message is sent from vehicle to a Mobile Device, freshness of all those messages
along functional path must be ensured.
Use Case Reference: 9, 11, 12, 13

Semi-formal description:
FSR-1.1.2 (General requirements – Fake Command related Requirements SysML diagram)

Requirement reference: Freshness_103

Informal description:
Flashing command freshness: Whenever a command (see Section 2.8.3.2.2) is sent to ECU for
flashing, flashing command freshness must be ensured.

Use Case Reference: 14, 15, 17, 18

Semi-formal description:
FSR-1.3.3 (General requirements – Fake Command related Requirements SysML diagram)

3.2.6 Non-repudiation

The enforcement of non-repudiation is not necessary for the satisfaction of functional safety.
Non-repudiation requirements arise when evidence of actions shall be presented to another
entity later. Usually, these are motivated by legal requirements from law, liability or billing.
Additional requirements might therefore arise during the forthcoming legal framework and
requirements analysis.

Requirement reference: Proof-of-Authenticity_1

Informal description:
The eTolling-Service Provider shall be able to prove the authenticity of the Billing-Information
being based on the aggregated sensor data.

Semi-formal description:
non-rep-origin(GPS-Sensing(car,position,t),receive(SP,car, Billing-Information),SP)

Use case references: 6

Notes:
Compare with the requirement Authenticity_14.

 38

3.2.7 Anonymity

Anonymity requirements target broadcast data-packets and require the identity to be confi-
dential. In the semi-formal descriptions of these requirements Lzero describes the condition
that no dependencies between actions are allowed to be known.

Requirement reference: Confidentiality_1

Informal description:
The identity of the car shall be confidential. This includes especially those actions during which it is
involved in wireless communication.

Semi-formal description:
confidential(actionsToLearnFrom1, car, allCars, Lzero, car)
actionsToLearnFrom1={DSRC-Send(car, Neighbourhood-Token),
DSRC-Send(car, C2X-Message(Emergency)), DSRC-Forward(car, C2X-Message(Emergency)),
DSRC-Send(car, Cooperative-Awareness-Message), Send(car, Traffic-Information-Message), GSM-
Send(car,Billing-Information), GSM-Send(car,eCall-Request),
BT-Send(car,MobileDevice, InputData), BT-Send(MobileDevice,car,OpenHood),
Send(MobileDevice, car, Software), BT-Send(MobileDevice,car,DisplayData),
BT-Send(MobileDevice, car, SeatPosition), DSRC-Send(RSU(Manufacturer), car, Firmware)}

Use case references: 1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 17

Notes:
This may be weakened by adjusting Lzero during the engineering to the use of pseudonymity.

Requirement reference: Confidentiality_2

Informal description:
During operations that involve remote accesses to the vehicle (e.g. open hood, adjust seat, software
install, integration etc.), the anonymity of the mobile device shall be guaranteed.

Semi-formal description:
confidential({BT-Send(MobileDevice,car,OpenHood), BT-Send(MobileDevice, car, SeatPosition),
Send(MobileDevice, car, Software), BT-Send(MobileDevice, car, DisplayData), BT-
Send(car,MobileDevice, Inputs)}, MobileDevice, allMobileDevices, Lzero, car)

Use case references: 9, 11, 12, 13

 39

3.2.8 Privacy

These requirements target every relation between identity and privacy-relevant information
that are not already covered by the anonymity requirements.

Requirement reference: Confidentiality_3

Informal description:
The position of a car at a certain point in time must be confidential.

Semi-formal description:
confidential({GPS-Sensing(car,Position), GSM-Send(car, Billing-Information)}, Position,
allPositions, Lzero, car)
Use case references: 7

Requirement reference: Confidentiality_4

Informal description:
The personal information stored within the car shall remain confidential even during exchange of
ECUs.

Semi-formal description:
confidential({ExchangeECU(Maintanance,car,ECU(Data)},Data, allData, Lzero, car)

Use case references: 14

Requirement reference: Confidentiality_5

Informal description:
The PoI-Configuration (the driver’s preconfiguration regarding the reception of PoI- (Point of Inter-
est) information) stored within the vehicle for a driver shall remain confidential even during
exchange of data with an RSU.

Semi-formal description:
confidential({Receive(car,PoI-Info)}, PoI-Configuration, allPoIConfs, Lzero, car)

Use case references: 10

Notes:
The configuration of the vehicle can reveal personal information. In the case of PoIs, for example,
personal preferences may be revealed.

 40

Requirement reference: Confidentiality_6

Informal description:
The seat position information for a driver shall remain confidential, even during exchange of data
with a mobile device.

Semi-formal description:
confidential({Send(MobileDevice,car,SeatPosition)}, SeatPosition, allSeatPositions, Lzero, car)

Use case references: 13

Notes:
The configuration of the car can reveal personal information. In the case of SeatPosition, for exam-
ple, the height of the driver could be inferred.

Requirement reference: Privacy_101

Informal description:
Controlled access to e-service message data: an e-service message is a message sent from a car to
an entity external to the TOE and car maker, and providing a service, for example:
• service center residing in the infrastructure (e.g. eCall center, eToll)
• garage (e.g. remote flashing)
Whenever a message is sent from a vehicle to an entity external to the TOE and car maker, and pro-
viding a service, controlled access to e-service message data must be ensured.

Use Case Reference: 7, 8, 16, 17

Semi-formal description:
PSR-1.1 (SysML General Requirements – Privacy Requirements)

Requirement reference: Privacy_102

Informal description:
User Driven Privacy Policy: Users shall be able to determine by themselves the disclosure of
information acceptable for various applications regarding their private profile or their car profile,
providing it is lawful (e.g. car plates may need to be sent in some critical messages as required by
law). That policy should be enforced according to user specifications.
1. Whenever a message is sent from a car to a RSU, PSAP and/or other fixed based server archi-

tecture, user driven privacy policy of all those messages must be ensured.
Use Case Reference: 6, 7, 8

2. Whenever a message is sent from a car to car, user driven privacy policy of all those
messages must be ensured.
Use Case Reference: 5, 6

Semi-formal description:
PSR1.2 (SysML General Requirements – Privacy Requirements)

 41

Requirement reference: Privacy_103

Informal description:
Car2X message anonymity: The sending of a critical message should not make it possible to connect
the driver to other messages previously sent, e.g. promiscuous listening of the network
1. Whenever a message is sent from a car to a RSU, PSAP and/or other fixed based Server archi-

tecture, anonymity of all those messages must be ensured.
Use Case Reference: 7, 8

2. Whenever a message is sent from a car to car, anonymity of all those messages must be
ensured.
Use Case Reference: 5

Semi-formal description:
PSR-1.3.1 (SysML General Requirements – Privacy Requirements)

Requirement reference: Privacy_104

Informal description:
Unlinkable driver identification between services: some applications will need to prevent two
different services from linking their respective knowledge of the drivers

Semi-formal description:
PSR-1.3.2 (SysML General Requirements – Privacy Requirements)

Requirement reference: Privacy_105

Informal description:
Unlinkable time ordering of messages: some applications will need to prevent or limit the possibility
to order a set of predetermined critical messages in order to gain indirect information about the
behaviour of a driver.
1. Whenever a message is sent from a car to a RSU, PSAP and/or other fixed based Server archi-

tecture, unlinkable time ordering of all those messages must be ensured.
Use Case Reference: 6, 7, 8

2. Whenever a message is sent from a car to car, unlinkable time ordering of all those messages
must be ensured.
Use Case Reference: 5, 6

Semi-formal description:
PSR1.3.3 (SysML General Requirements – Privacy Requirements)

 42

3.2.9 Confidentiality

These requirements target classic confidentiality of transferred bilateral data.

Requirement reference: Confidentiality_7

Informal description:
The Billing-Information shall remain confidential between the car and the RSU.

Semi-formal description:
confidential({GSM-Send(car,Billing-Information), Billing-Information, allBillingInfos, Lzero, {car,
RSU(SP)})

Use case references: 7

Notes:
The confidentiality of the billing agent is already captured by Confidentiality_1.

Requirement reference: Confidentiality_101

Informal description:
Firmware data should remain confidential when updates are distributed by the manufacturer:
Whenever a flashing command (see Section 2.8.3.2.2) is sent to ECU, confidentiality of firmware
data must be ensured.
Use Case Reference: 14, 15, 17, 18

Semi-formal description:
FBSR-1.2.1 (SysML General requirements – Flashing Requirements)

Requirement reference: Confidentiality_102

Informal description:
Confidentiality of firmware update should be ensured: attackers should not gain information out of
the flashing process about the version of firmware being installed or the ECU being updated:
Whenever a flashing command (see Section 2.8.3.2.2) is sent to ECU, confidentiality of firmware
update must be ensured.
Use Case Reference: 14, 15, 17, 18

Semi-formal description:
FBSR-1.2.1.1 (SysML General requirements – Flashing Requirements)

 43

3.2.10 Availability

Requirement reference: Availability_101

Informal description:
The availability of the bus should be ensured for some applications (especially safety critical ones):
Whenever information is exchanged between different ECU’s, CU, HU, Sensors, and other units of
vehicle availability of Bus must be ensured.
Use Case Reference: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. (some of them could
be considered with lower priority: 9, 10, 11, 12, 13, 14, 15)

Semi-formal description:
ASR-1.1 (SysML General Requirements – Availability Requirements)

Requirement reference: Availability_102

Informal description:
The availability of ECU CPUs should be ensured for some applications (especially those that require
some computation or message routing to take place): Whenever information is exchanged between
different ECU’s, CU, HU, Sensors, and other units of vehicle availability of CPU must be ensured.
Use Case Reference: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. (some of them could
be considered with lower priority: 9, 10, 11, 12, 13, 14, 15)

Semi-formal description:
ASR-1.2 (SysML General Requirements – Availability & Overhead Requirements), ASR-1.2
(SysML General Requirements – Availability Requirements)

Requirement reference: Availability_103

Informal description:
The availability of RAM attached to an ECU should be ensured (to access some the ECU software or
some data): Whenever information is exchanged between different ECU’s, CU, HU, Sensors, and
other units of vehicle availability of RAM must be ensured.
Use Case Reference: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. (some of them could
be considered with lower priority: 9, 10, 11, 12, 13, 14, 15)

Semi-formal description:
ASR-1.3 (SysML General Requirements – Availability Requirements)

 44

Requirement reference: Availability_104

Informal description:
The availability of external communication device should be ensured for applications that need to
communicate with the environment of the TOE:
1. Whenever information is sent from vehicle to neighbourhood vehicles, RSU, or others entities,

availability of external communication device (communication unit) must be ensured.
Use Case Reference: 1, 4, 5, 6, 7, 8, 11, 12, 15, 16, 17, 18 (some of them could be considered
with lower priority: 11, 12, 15)

2. Whenever information is received for a vehicle from neighbourhood vehicles, RSU, or other
authorized entities, availability of external communication device (communication unit) must be
ensured.
Use Case Reference: 1, 2, 3, 7, 8, 10, 11, 12, 15, 16, 17, 18 (some of them could be considered
with lower priority: 10, 11, 12, 15)

Semi-formal description:
ASR-1.4 (SysML General Requirements – Availability Requirements)

Requirement reference: Availability_105

Informal description:
The availability of the radio medium should be ensured for applications that need to communicate
with the environment of the TOE:
1. Whenever information is sent from vehicle to neighbourhood vehicles, RSU or other entities,

availability of radio medium (antennas) must be ensured.
Use Case Reference: 1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17 (some of them could be
considered with lower priority: 9, 11, 12, 13, 15)

2. Whenever information is received for a vehicle from neighbourhood vehicles, RSU or other
authorized entities, availability of radio medium (antennas) must be ensured.
Use Case Reference: 1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17 (some of them could be
considered with lower priority: 9, 10, 11, 12, 13, 15)

Semi-formal description:
ASR-2 (SysML General Requirements – Availability Requirements)

Requirement reference: Availability_106

Informal description:
The highest availability should be ensured for highest priority functions (in particular those essential
to safety-critical applications):
1. Whenever information is sent from vehicle to neighbourhood vehicles, RSU or others entities

highest availability of requested devices must be ensured for highest priority functions.
Use Case Reference: 1, 4, 5, 6, 7, 8, 16, 17, 18

2. Whenever information is received for a vehicle from neighbourhood vehicles, RSU or other
entities, highest availability of requested devices must be ensured for highest priority functions.
Use Case Reference: 1, 2, 3, 7, 8, 16, 17, 18

Semi-formal description:
ASR-3 (SysML General Requirements – Availability Requirements)

 45

Requirement reference: Availability_107

Informal description:
Prevent Broadcast Brake DoS When Emergency Situation: Whenever an emergency brake message
was broadcasted to a vehicle, availability of broadcasting system must be ensured.
Use Case Reference: 5

Semi-formal description:
BDOS-2.2 (Braking use case DoS Requirements SysML diagram)

Requirement reference: Availability_108

Informal description:
Brake Total Response Time: Whenever an emergency brake was triggered by the driver or
automatically generated by the vehicular system availability of the braking total response time must
be ensured.

Use Case Reference: 1, 4, 5, 8

Semi-formal description:
BDOS-1.1 (Braking use case DoS Requirements SysML diagram)

3.3 Priority of security requirements

Analysis of the attack trees demonstrates that specific asset attacks may contribute to different
attack objectives within the same attack tree, and may also contribute to attack objectives
associated with other attack trees. For a particular asset attack, both the risk level (which
reflects the severity of outcome for an attack, and the attack potential associated with the asset
attacks that contribute to it) and the number of instances from the collection of attack trees are
indicators of the importance of the asset attack and the likely benefits of countermeasures for
reducing the probability of successful attacks of this nature.

The severity measure is considered in terms of a four-component vector that reflects
potential safety, operational, privacy and financial aspects that may be associated with a secu-
rity attack (see Section C.1.2). For safety-related security threats the “controllability” of the
hazard by the driver (see [2][3]) constitutes an additional dimension for the probability con-
tribution to the relative risk level. The severity, controllability and attack potential estimates
relating to the asset attacks identified from the attack trees are detailed in Appendix C. The
proposed mapping of these parameters to relative risk level is summarised in Table 2, where
non-safety risks and highly controllable safety-related risks are associated with controllability
C=1, and only safety–related risks are associated with the higher controllability measures
(i.e. Table 2 combines Table 9 and Table 11 of Appendix C). In principle the relative risk is
also a four-component vector, inheriting this property from the severity, although in the
EVITA analysis it is usually found to be of lower order. The class “R7+” that is used in Table
2 denotes levels of risk that are unlikely to be considered acceptable, such as safety hazards
with the highest severity classes and threat levels, coupled with very low levels of control-
lability.

 46

Table 2 Combined risk graph for safety-related (C≥1) and non-safety (C=1) security
threats

Combined Attack Probability (A) Controllability
(C)

Severity (Si)
A=1 A=2 A=3 A=4 A=5

Si=1 R0 R0 R1 R2 R3
Si=2 R0 R1 R2 R3 R4
Si=3 R1 R2 R3 R4 R5

C=1

Si=4 R2 R3 R4 R5 R6
SS=1 R0 R1 R2 R3 R4
SS=2 R1 R2 R3 R4 R5
SS=3 R2 R3 R4 R5 R6 C=2

SS=4 R3 R4 R5 R6 R7
SS=1 R1 R2 R3 R4 R5
SS=2 R2 R3 R4 R5 R6
SS=3 R3 R4 R5 R6 R7

C=3

SS=4 R4 R5 R6 R7 R7+
SS=1 R2 R3 R4 R5 R6
SS=2 R3 R4 R5 R6 R7
SS=3 R4 R5 R6 R7 R7+ C=4

SS=4 R5 R6 R7 R7+ R7+

Analysis of the attack trees, which were based on the EVITA use cases [5] and an assumed
architecture based on the EASIS project, has identified small numbers of possible attack
methods on various system assets that could lead to the achievement of potential attacker
objectives. These “asset attacks” represent the terminal nodes of the attack trees, and specific
subsets of the security requirements that are considered to be necessary to protect against such
attacks have been identified. The risk analysis identifies severity at the higher levels of the
attack trees and works up associated probability measures from the asset attacks that termi-
nate the lower levels of the attack trees. Thus, the attack trees, risk analysis and security
requirements are mapped to each other via the concept of asset attacks.

The same asset attacks often appear in more than one of the attack trees, but may be asso-
ciated with different risk levels because the severity measures differ between trees. The
results of the EVITA risk analysis activity (detailed in Appendix C – Threat and risk analysis)
are therefore summarized in terms of the number of occurrences of particular risk levels asso-
ciated with specific asset attacks in Table 3, which also lists the security requirements to
counter each such asset attack. Thus, Table 3 also provides an indication of the relative
importance of the security requirements detailed in Section 3.2.

The risk level reported in Table 3 is based on the worst case where more than one element
of the risk vector is present in the risk analysis tables. Where alternative attack routes are
available, the associated risk level is adjusted to reflect the attack probability for the asset
attacks involved. Consequently, Table 3 indicates the worst case risk estimates for all of the
attack alternatives listed in the risk analysis tables. Thus, if high risk asset attacks are miti-
gated by appropriate security countermeasures, the only change required to Table 3 is to
remove or modify the entries corresponding to the risks that have been mitigated. The risk
levels associated with lower risk attack alternatives remain unchanged.

 47

Table 3 Summary findings of risk analysis

Identified threats Risk analysis results

Asset Attack Risk
level

Number of
instances

Security requirements

Denial of
service

1
2

3
1

Authenticity_6, Availability_102,
Availability_106

Exploit
implementa-
tion flaws

4
5

1
1

Authenticity_1, Authenticity_2, Authenticity_3,
Authenticity_4, Authenticity_5, Authenticity_101,
Authenticity_102, Authenticity_103,
Confidentiality_101, Confidentiality_102,
Integrity_101, Integrity_102, Integrity_103,
Integrity_104, Integrity_105, Freshness_101,
Freshness_102, Freshness_103, Availability_101,
Availability_102, Availability_103,
Availability_106, Availability_107,
Availability_108, Privacy_101, Privacy_102,
Privacy_103, Privacy_104, Privacy_105

Corrupt data
or code 3 1

Authenticity_1, Authenticity_2, Authenticity_5,
Authenticity_6, Authenticity_101,
Authenticity_102, Authenticity_103,
Confidentiality_101, Confidentiality_102,
Integrity_101, Integrity_102, Integrity_103,
Integrity_104, Integrity_105, Freshness_101,
Freshness_102, Freshness_103, Availability_101,
Availability_102, Availability_103,
Availability_106, Availability_107,
Availability_108, Access_101, Access_102,
Privacy_101, Privacy_102, Privacy_103,
Privacy_104, Privacy_105

Chassis
Safety
Controller

Flash mali-
cious code

4
5
6

1
1
1

Authenticity_1, Authenticity_2, Authenticity_3,
Authenticity_4, Authenticity_5, Authenticity_101,
Authenticity_102, Authenticity_103,
Confidentiality_101, Confidentiality_102,
Integrity_101, Integrity_102, Integrity_103,
Integrity_104, Integrity_105, Freshness_101,
Freshness_102, Freshness_103, Availability_101,
Availability_102, Availability_103,
Availability_106, Availability_107,
Availability_108, Access_101, Access_102,
Privacy_101, Privacy_102, Privacy_103,
Privacy_104, Privacy_105

 48

Identified threats Risk analysis results

Asset Attack Risk
level

Number of
instances

Security requirements

Corrupt or
fake mes-
sages

2
3
4
5
6
7

5
5
4
1
4
3

Authenticity_4, Authenticity_6, Authenticity_8,
Authenticity_9, Authenticity_11, Authenticity_12,
Authenticity_13, Authenticity_14,
Authenticity_15, Authenticity_16,
Authenticity_17, Authenticity_18,
Authenticity_20,Authenticity_22,
Authenticity_23, Authenticity_24,
Authenticity_27, Authenticity_28,
Confidentiality_1, Confidentiality_2,
Authenticity_101, Authenticity_102,
Authenticity_103, Integrity_101, Integrity_102,
Integrity_103, Integrity_104, Integrity_105,
Availability_102, Availability_106,
Availability_107, Availability_108, Privacy_101,
Privacy_103

Jamming 4
5

3
2

Availability_103, Availability_104,
Availability_105, Availability_107,
Availability_108, Integrity_102

Listen, inter-
cept, alter,
inject, replay

2
3
4
5

2
11
2
1

Authenticity_4, Authenticity_6, Authenticity_8,
Authenticity_9, Authenticity_11, Authenticity_12,
Authenticity_13, Authenticity_14,
Authenticity_15, Authenticity_16,
Authenticity_17, Authenticity_18,
Authenticity_20, Authenticity_22,
Authenticity_23, Authenticity_24,
Authenticity_27, Authenticity_28,
Confidentiality_1, Confidentiality_2,
Confidentiality_3, Authenticity_101,
Authenticity_102, Authenticity_103,
Confidentiality_101, Confidentiality_102,
Integrity_101, Integrity_102, Integrity_103,
Integrity_104, Integrity_105, Freshness_101,
Freshness_102, Freshness_103, Availability_102,
Availability_105, Availability_107,
Availability_108, Privacy_101, Privacy_103,
Privacy_104, Privacy_105

Wireless
Communi-
cations

Exploit vul-
nerability or
implementa-
tion error

2
3

2
3

Authenticity_4, Authenticity_6, Authenticity_8,
Authenticity_9, Authenticity_11, Authenticity_12,
Authenticity_13,Authenticity_14,
Authenticity_15, Authenticity_16,
Authenticity_17, Authenticity_18,
Authenticity_20, Authenticity_22,
Authenticity_23, Authenticity_24,
Authenticity_27, Authenticity_28,
Confidentiality_1, Confidentiality_2,
Confidentiality_3, Authenticity_101,
Authenticity_102, Authenticity_103,
Confidentiality_101, Confidentiality_102,
Integrity_101, Integrity_102, Integrity_103,
Integrity_104, Integrity_105, Freshness_101,
Freshness_102, Freshness_103, Availability_102,
Availability_105, Availability_107,
Availability_108, Privacy_101, Privacy_103,
Privacy_105

 49

Identified threats Risk analysis results

Asset Attack Risk
level

Number of
instances

Security requirements

Jamming 3 4

Availability_101, Availability_103,
Availability_104, Availability_105,
Availability_107, Availability_108,
Availability_106, Integrity_102

Insert fake
data 1 1

Authenticity_1, Authenticity_2, Authenticity_3,
Authenticity_4, Authenticity_5, Authenticity_6,
Authenticity_7, Authenticity_8, Authenticity_9,
Authenticity_10, Authenticity_11,
Authenticity_12, Authenticity_13,
Authenticity_14, Authenticity_15,
Authenticity_16, Authenticity_17,
Authenticity_18, Authenticity_24,
Authenticity_27, Authenticity_28,
Authenticity_101, Authenticity_103,
Availability_102, Availability_106, Privacy_101,
Privacy_103, Privacy_105, Integrity_105

Disable or
denial of
service

4 1

Authenticity_1, Authenticity_2, Authenticity_3,
Authenticity_4, Authenticity_5, Authenticity_6,
Authenticity_7, Authenticity_8, Authenticity_9,
Authenticity_10, Authenticity_11,
Authenticity_12, Authenticity_13,
Authenticity_14, Authenticity_15,
Authenticity_16, Authenticity_17,
Authenticity_18, Authenticity_24,
Authenticity_27, Authenticity_28,
Availability_101, Availability_103,
Availability_104, Availability_105,
Availability_107, Availability_108,
Availability_106, Integrity_102

Listen, inter-
cept, alter,
inject, replay

2
3
4

6
2
3

Authenticity_1, Authenticity_2, Authenticity_3,
Authenticity_4, Authenticity_5, Authenticity_6,
Authenticity_7, Authenticity_8, Authenticity_9,
Authenticity_10, Authenticity_11,
Authenticity_12, Authenticity_13,
Authenticity_14, Authenticity_15,
Authenticity_16, Authenticity_17,
Authenticity_18, Authenticity_24,
Authenticity_27, Authenticity_28,
Confidentiality_3, Authenticity_101,
Authenticity_102, Authenticity_103,
Confidentiality_101, Confidentiality_102,
Integrity_101, Integrity_102, Integrity_103,
Integrity_104, Integrity_105, Freshness_101,
Freshness_102, Freshness_103, Availability_101,
Availability_102, Availability_103,
Availability_104, Availability_107,
Availability_108, Availability_106, Access_101,
Access_102, Privacy_101, Privacy_102,
Privacy_103, Privacy_105

In-car com-
munications

Configura-
tion change

2
3

1
1

Integrity_101, Integrity_102, Integrity_103,
Integrity_104

 50

Identified threats Risk analysis results

Asset Attack Risk
level

Number of
instances

Security requirements

Exploit vul-
nerability or
implementa-
tion error

2
3

1
1

Authenticity_1, Authenticity_2, Authenticity_3,
Authenticity_4, Authenticity_5, Authenticity_6,
Authenticity_7, Authenticity_8, Authenticity_9,
Authenticity_10, Authenticity_11,
Authenticity_12, Authenticity_14,
Authenticity_14, Authenticity_15,
Authenticity_16, Authenticity_17,
Authenticity_18, Authenticity_24,
Authenticity_27, Authenticity_28,
Confidentiality_3, Authenticity_101,
Authenticity_102, Authenticity_103,
Confidentiality_101, Confidentiality_102,
Integrity_101, Integrity_102, Integrity_103,
Integrity_104, Integrity_105, Freshness_101,
Freshness_102, Freshness_103, Availability_101,
Availability_102, Availability_103,
Availability_104, Availability_105,
Availability_106, Availability_107,
Availability_108, Privacy_101, Privacy_101,
Privacy_102, Privacy_103, Privacy_105

Jamming 5 1

Authenticity_3, Authenticity_4, Authenticity_7,
Authenticity_8, Authenticity_10, Authenticity_11,
Authenticity_14, Authenticity_15,
Availability_106, Integrity_102

GPS

Spoofing

3
4
5
6
7

4
3
2
1
1

Authenticity_3, Authenticity_4, Authenticity_7,
Authenticity_8, Authenticity_10, Authenticity_11,
Authenticity_14, Authenticity_15,
Authenticity_103, Availability_106, Privacy_101,
Privacy_103, Privacy_105

Communica-
tions Unit

Denial of
service

3
4

3
2

Authenticity_3, Authenticity_4, Authenticity_6,
Authenticity_7, Authenticity_8, Authenticity_9,
Authenticity_10, Authenticity_11,
Authenticity_12, Authenticity_13,
Authenticity_14, Authenticity_15,
Authenticity_16, Authenticity_17,
Authenticity_27, Authenticity_28,
Availability_102, Availability_104,
Availability_106, Availability_107,
Availability_108, Integrity_102

 51

Identified threats Risk analysis results

Asset Attack Risk
level

Number of
instances

Security requirements

Corrupt code
or data 2 1

Authenticity_3, Authenticity_4, Authenticity_6,
Authenticity_7, Authenticity_8, Authenticity_9,
Authenticity_10, Authenticity_11,
Authenticity_12, Authenticity_13,
Authenticity_14, Authenticity_15,
Authenticity_16, Authenticity_17,
Authenticity_27, Authenticity_28,
Confidentiality_1, Confidentiality_3,
Confidentiality_7, Authenticity_101,
Authenticity_102, Authenticity_103,
Confidentiality_102, Integrity_101, Integrity_102,
Integrity_103, Integrity_104, Integrity_105,
Freshness_101, Freshness_102, Freshness_103,
Availability_101, Availability_102,
Availability_103, Availability_104,
Availability_105, Availability_106,
Availability_107, Availability_108, Access_101,
Access_102, Privacy_101, Privacy_102,
Privacy_103, Privacy_104, Privacy_105

Exploit vul-
nerability of
external
communica-
tion proto-
cols

2
3

4
2

Authenticity_3, Authenticity_4, Authenticity_6,
Authenticity_8, Authenticity_9, Authenticity_11,
Authenticity_12, Authenticity_13,
Authenticity_14, Authenticity_15,
Authenticity_16, Authenticity_17,
Authenticity_27, Authenticity_28,
Confidentiality_1, Confidentiality_3,
Confidentiality_7, Authenticity_101,
Authenticity_102, Authenticity_103,
Confidentiality_102, Integrity_101, Integrity_102,
Integrity_103, Integrity_104, Integrity_105,
Freshness_101, Freshness_102, Freshness_103,
Availability_101, Availability_102,
Availability_104, Availability_105,
Availability_106, Availability_107,
Availability_108, Privacy_101, Privacy_102,
Privacy_103, Privacy_104, Privacy_105

Malware
flashed with
OBD update

1
2
3
5
6

3
2
1
1
1

Authenticity_3, Authenticity_4, Authenticity_6,
Authenticity_8, Authenticity_10, Authenticity_11,
Authenticity_12, Authenticity_13,
Authenticity_14, Authenticity_15,
Authenticity_16, Authenticity_17,
Authenticity_27, Authenticity_28,
Confidentiality_1, Confidentiality_3,
Confidentiality_7, Authenticity_101,
Authenticity_102, Authenticity_103,
Confidentiality_102, Integrity_101, Integrity_102,
Integrity_103, Integrity_104, Integrity_105,
Freshness_101, Freshness_102, Freshness_103,
Availability_101, Availability_102,
Availability_103, Availability_104,
Availability_105, Availability_106,
Availability_107, Availability_108, Access_101,
Access_102, Privacy_101, Privacy_102,
Privacy_103, Privacy_104, Privacy_105

 52

Identified threats Risk analysis results

Asset Attack Risk
level

Number of
instances

Security requirements

Malware
delivered by
mobile
device

1
2
3

1
2
1

Authenticity_3, Authenticity_4, Authenticity_6,
Authenticity_8, Authenticity_9, Authenticity_10,
Authenticity_11, Authenticity_12,
Authenticity_13, Authenticity_14,
Authenticity_15, Authenticity_16,
Authenticity_27, Authenticity_28,
Confidentiality_1, Confidentiality_3,
Confidentiality_7, Authenticity_101,
Authenticity_102, Authenticity_103,
Confidentiality_102, Integrity_101, Integrity_102,
Integrity_103, Integrity_104, Integrity_105,
Freshness_101, Freshness_102, Freshness_103,
Availability_101, Availability_102,
Availability_103, Availability_104,
Availability_105, Availability_106,
Availability_107, Availability_108, Access_101,
Access_102, Privacy_101, Privacy_102,
Privacy_103, Privacy_104, Privacy_105

Manipulate 4
7

4
1

Authenticity_1, Authenticity_2,
Authenticity_5, Authenticity_9, Authenticity_12,
Authenticity_13, Authenticity_16,
Authenticity_103, Availability_106

Malware
flashed

3
4

1
1

Authenticity_1, Authenticity_2, Authenticity_5,
Authenticity_9, Authenticity_12, Authenticity_13,
Authenticity_16, Authenticity_101,
Authenticity_102, Authenticity_103,
Confidentiality_101, Confidentiality_102,
Integrity_101, Integrity_102, Integrity_103,
Integrity_104, Integrity_105, Freshness_101,
Freshness_102, Freshness_103, Availability_101,
Availability_102, Availability_103,
Availability_106, Availability_107,
Availability_108, Access_101, Access_102,
Privacy_101, Privacy_102, Privacy_103,
Privacy_104, Privacy_105

Disable or
denial of
service

4 1

Authenticity_1, Authenticity_2, Authenticity_5,
Authenticity_9, Authenticity_12, Authenticity_13,
Authenticity_16, Availability_102,
Availability_106, Availability_107,
Availability_108, Integrity_102

In-car
sensors

Spoof 3
4

2
1

Authenticity_1, Authenticity_2, Authenticity_5,
Authenticity_9, Authenticity_12, Authenticity_13,
Authenticity_16, Authenticity_103,
Availability_106, Access_101, Access_102,
Privacy_101, Privacy_103, Privacy_104,
Privacy_105

 53

Identified threats Risk analysis results

Asset Attack Risk
level

Number of
instances

Security requirements

Gain root
access to
embedded
OS

1
3
4

1
2
2

Authenticity_7, Authenticity_8, Authenticity_9,
Authenticity_10, Authenticity_11,
Authenticity_12, Authenticity_17,
Authenticity_18, Authenticity_19,
Authenticity_20, Authenticity_21,
Authenticity_22, Authenticity_23,
Confidentiality_1, Confidentiality_2,
Authenticity_101, Authenticity_102,
Authenticity_103, Confidentiality_101,
Confidentiality_102, Integrity_101, Integrity_102,
Integrity_103, Integrity_104, Integrity_105,
Freshness_101, Freshness_102, Freshness_103,
Availability_101, Availability_102,
Availability_103, Availability_105,
Availability_106, Availability_107,
Availability_108, Access_101, Access_102,
Privacy_101, Privacy_102, Privacy_103,
Privacy_104, Privacy_105

Exploit vul-
nerability or
implementa-
tion error

2
3
4

2
2
1

Authenticity_7, Authenticity_8, Authenticity_9,
Authenticity_10, Authenticity_11,
Authenticity_12, Authenticity_17,
Authenticity_18, Authenticity_19,
Authenticity_20, Authenticity_21,
Authenticity_22, Authenticity_23,
Confidentiality_1, Confidentiality_2,
Authenticity_101, Authenticity_102,
Authenticity_103, Confidentiality_101,
Confidentiality_102, Integrity_101, Integrity_102,
Integrity_103, Integrity_104, Integrity_105,
Freshness_101, Freshness_102, Freshness_103,
Availability_101, Availability_102,
Availability_103, Availability_105,
Availability_106, Availability_107,
Availability_108, Access_101, Access_102,
Privacy_101, Privacy_102, Privacy_103,
Privacy_104, Privacy_105

Head unit

Malware
flashed

1
5

1
1

Authenticity_7, Authenticity_8, Authenticity_9,
Authenticity_10, Authenticity_11,
Authenticity_12, Authenticity_17,
Authenticity_18, Authenticity_19,
Authenticity_20, Authenticity_21,
Authenticity_22, Authenticity_23,
Confidentiality_1, Confidentiality_2,
Authenticity_101, Authenticity_102,
Authenticity_103, Confidentiality_101,
Confidentiality_102, Integrity_101, Integrity_102,
Integrity_103, Integrity_104, Integrity_105,
Freshness_101, Freshness_102, Freshness_103,
Availability_101, Availability_102,
Availability_103, Availability_105,
Availability_106, Availability_107,
Availability_108, Access_101, Access_102,
Privacy_101, Privacy_102, Privacy_103,
Privacy_104, Privacy_105

In-car ECU
Disable or
denial of
service

2 1
Authenticity_25, Authenticity_26,
Availability_102, Availability_106,
Availability_107, Availability_108, Integrity_102

 54

Identified threats Risk analysis results

Asset Attack Risk
level

Number of
instances

Security requirements

Malware
flashed with
OBD update

1
2

4
3

Authenticity_25, Authenticity_26,
Confidentiality_4, Confidentiality_5,
Confidentiality_6, Authenticity_101,
Authenticity_102, Authenticity_103,
Confidentiality_101, Confidentiality_102,
Integrity_101, Integrity_102, Integrity_103,
Integrity_104, Integrity_105, Freshness_101,
Freshness_102, Freshness_103, Availability_101,
Availability_102, Availability_103,
Availability_106, Availability_107,
Availability_108, Access_101, Access_102,
Privacy_101, Privacy_102, Privacy_103,
Privacy_104, Privacy_105

Configura-
tion change

2
3

1
1

Authenticity_25, Authenticity_26,
Authenticity_29, Confidentiality_4,
Confidentiality_5, Confidentiality_6,
Integrity_101, Integrity_102, Integrity_103,
Integrity_104, Integrity_105, Availability_106

Exploit vul-
nerability or
implementa-
tion error

2
3

1
1

Authenticity_25, Authenticity_26,
Confidentiality_4, Confidentiality_5,
Confidentiality_6, Authenticity_101,
Authenticity_102, Authenticity_103,
Confidentiality_101, Confidentiality_102,
Integrity_101, Integrity_102, Integrity_103,
Integrity_104, Integrity_105, Freshness_101,
Freshness_102, Freshness_103, Availability_101,
Availability_102, Availability_103,
Availability_106, Availability_107,
Availability_108, Access_101, Access_102,
Privacy_101, Privacy_102, Privacy_103,
Privacy_104, Privacy_105

Powertrain
Controller

Malware
flashed with
OBD update

1
5
6

2
1
1

Authenticity_101, Authenticity_102,
Authenticity_103, Confidentiality_101,
Confidentiality_102, Integrity_101, Integrity_102,
Integrity_103, Integrity_104, Integrity_105,
Freshness_101, Freshness_102, Freshness_103,
Availability_101, Availability_102,
Availability_103, Availability_106,
Availability_107, Availability_108, Access_101,
Access_102, Privacy_101, Privacy_102,
Privacy_103, Privacy_104, Privacy_105

Powertrain
Peripherals

Corrupt code
or data 1 2

Authenticity_101, Authenticity_102,
Authenticity_103, Confidentiality_101,
Confidentiality_102, Integrity_101, Integrity_102,
Integrity_103, Integrity_104, Integrity_105,
Freshness_101, Freshness_102, Freshness_103,
Availability_102, Availability_103,
Availability_106, Availability_107,
Availability_108, Access_101, Access_102,
Privacy_101, Privacy_102, Privacy_103,
Privacy_104, Privacy_105

 55

Identified threats Risk analysis results

Asset Attack Risk
level

Number of
instances

Security requirements

Physical
access 3 1

Authenticity_101, Authenticity_102,
Authenticity_103, Integrity_101, Integrity_102,
Integrity_103, Integrity_104, Integrity_105,
Freshness_101, Freshness_102, Freshness_103,
Availability_101, Availability_102,
Availability_103, Availability_104,
Availability_106, Availability_107,
Availability_108, Access_101, Access_102,
Privacy_101, Privacy_103, Privacy_105

In-car Inter-
faces

Exploit vul-
nerabilities,
introduce
bogus data

3
4
5

1
1
1

Authenticity_17, Authenticity_24,
Confidentiality_5, Confidentiality_6,
Confidentiality_1,

Exploit con-
figuration
errors

2
3

2
3

Authenticity_8, Authenticity_9, Authenticity_11,
Authenticity_12, Authenticity_13,
Authenticity_14, Authenticity_18,
Confidentiality_1, Confidentiality_7,
Confidentiality_1, Authenticity_101,
Authenticity_103, Integrity_101, Integrity_102,
Integrity_103, Integrity_104, Integrity_105,
Freshness_101, Freshness_102, Freshness_103,
Availability_105, Availability_107,
Availability_108, Access_101

Gain root
access

2
3

1
1

Authenticity_8, Authenticity_9, Authenticity_11,
Authenticity_12, Authenticity_13,
Authenticity_14, Authenticity_18,
Confidentiality_1, Confidentiality_7,
Confidentiality_1, Authenticity_101,
Authenticity_103, Integrity_101, Integrity_102,
Integrity_103, Integrity_104, Integrity_105,
Freshness_101, Freshness_102, Freshness_103,
Availability_102, Availability_105,
Availability_107, Availability_108, Access_101,
Privacy_101, Privacy_103, Privacy_104,
Privacy_105

Roadside
Unit

Exploit pro-
tocol imple-
mentation
flaws

2
3
5

3
3

Authenticity_8, Authenticity_9, Authenticity_11,
Authenticity_12, Authenticity_13,
Authenticity_14, Authenticity_18,
Confidentiality_1, Confidentiality_7,
Authenticity_101, Authenticity_103,
Confidentiality_102, Integrity_101, Integrity_102,
Integrity_103, Integrity_104, Integrity_105,
Freshness_101, Freshness_102, Freshness_103,
Availability_102, Availability_105,
Availability_107, Availability_108, Access_101,
Privacy_101, Privacy_103, Privacy_104,
Privacy_105

 56

Identified threats Risk analysis results

Asset Attack Risk
level

Number of
instances

Security requirements

Physical
access Not in

scope

Authenticity_8, Authenticity_9, Authenticity_11,
Authenticity_12, Authenticity_13,
Authenticity_14, Authenticity_18,
Confidentiality_1, Confidentiality_7,
Authenticity_101, Authenticity_103,
Integrity_101, Integrity_102, Integrity_103,
Integrity_104, Integrity_105, Freshness_101,
Freshness_102, Freshness_103, Availability_102,
Availability_105, Availability_107,
Availability_108, Access_101, Privacy_101,
Privacy_103, Privacy_104, Privacy_105

Roadside
Unit to
Authority
Communi-
cations

Listen, inter-
cept, alter,
inject, replay

 Not in
scope

Authenticity_101, Authenticity_103,
Integrity_101, Integrity_102, Integrity_103,
Integrity_104, Integrity_105, Freshness_101,
Freshness_102, Freshness_103, Availability_102,
Access_101, Privacy_101, Privacy_103,
Privacy_104, Privacy_105

Denial of
service 1 3 Availability_105, Availability_106

E-call Ser-
vice Centre
Interfaces Exploit inter-

faces 3 3

Authenticity_15, Authenticity_16,
Confidentiality_1, Authenticity_101,
Authenticity_103, Availability_102,
Availability_106

E-call Ser-
vice Centre Overload 2 3 Availability_106

Keys

Illegal acqui-
sition, modi-
fication or
breaking

1
2

1
3

Authenticity_25, Authenticity_26,
Authenticity_29, Confidentiality_4,
Confidentiality_5, Confidentiality_6,
Authenticity_101, Authenticity_102,
Authenticity_103, Confidentiality_101,
Confidentiality_102, Integrity_101, Integrity_102,
Integrity_103, Integrity_104, Integrity_105,
Freshness_101, Freshness_102, Freshness_103,
Availability_103, Availability_106,
Availability_107, Availability_108, Access_101,
Access_102, Privacy_101, Privacy_102,
Privacy_103, Privacy_104, Privacy_105

 57

4 Conclusions

Future automotive safety applications based on vehicle-to-vehicle and vehicle-to-infra-
structure communication entail new security requirements for automotive on-board networks.
Security measures that are intended to counter potential threats will inevitably contribute to
the cost and complexity of future systems. Consequently, there is a need to ensure that such
measures are commensurate with the perceived risks. This report endeavours to put forward a
process to determine which security measures are appropriate and cost effective onto an
objective basis. The security engineering process is applied to an exemplary automotive on-
board network, considering exemplary use cases and typical threats.

The security requirements that were derived from this process are based on analysis of a
range of possible applications, rather than a specific and well-defined system, and assume an
underlying architectural topology. These requirements will require further refinement in order
to develop specifications for more concrete system development, where design decisions will
affect the need for and implementation of measures to respond to these requirements. This
process will be further investigated within the EVITA project in the secure on-board archi-
tecture design and verification.

 58

Appendix A – Glossary

This appendix provides a list of key terms and their definitions as well as the source of these
definitions. Cross-references within this glossary are indicated by the use of bold italics in the
definitions.

Where possible, the definitions used are taken directly from relevant standards or other
publications. In a number of cases, terms and phrases are used with a particular meaning in
this document for which explicit definitions have not been identified in relevant standards or
other publications. In these cases the source of these definitions is indicated as “EVITA”. In
some cases the definitions are cross-referenced to sections within this document that contain
more detailed descriptions. In some cases a definition from a relevant standard has been
adapted for the purposes of this work, in which case both the EVITA version and the standard
version (in brackets) are presented together in order to illustrate the differences.

Term Definition Source
anonymity the property that the relation between an

entity and its identity is confidential to
authorized entities

Section 2.1.1.7

assets information or resources that could be
subject to attack (possibly, but not neces-
sarily, requiring protection)
[entities that the owner of the TOE pre-
sumably places value upon]
[information or resources to be protected
by the countermeasures of a TOE]

EVITA

ISO/IEC 15408-1
Rev. 3 (draft)
ISO/IEC 15408-1

asset attack a particular type of attack on a specific
asset

EVITA

assurance grounds for confidence that an entity meets
its security objectives.

ISO/IEC 15408-1

attack exploitation of vulnerabilities to obtain un-
authorized access to or control of assets

EVITA

attacker an individual or group aiming to mount an
attack

EVITA

attack goal the ultimate objective of an attack, pro-
viding the attacker with a benefit of some
kind through achieving a degree of harm to
one or more stakeholders

EVITA

attack method one or more possible combinations of asset
attacks that could achieve a specific attack
objective

EVITA

 59

attack objective one or more system states or conditions
affecting the stakeholders that could satisfy
a particular attack goal

EVITA

attack potential measure of the effort to be expended in
attacking a TOE, expressed in terms of an
attacker’s expertise, resources and motiva-
tion
[the perceived potential for success of an
attack, should an attack be launched,
expressed in terms of an attacker’s exper-
tise, resources and motivation]

ISO/IEC 15408-1
Rev. 3 (draft)

ISO/IEC 15408-1

attack probability qualitative measure of the likelihood of a
successful attack using a numerical scale
mapped to the five attack potential classes
of the Common Criteria, ranging from 1
(corresponding to “beyond high”) up to 5
(corresponding to “basic”)

EVITA

attack tree graphical representation of possible
sequences of events to implement an
attack, derived from an initiating attack
goal

B. Schneier,
“Secrets and Lies”,
Chapter 21, Wiley,
2000 [16]

attacker type classification of attacker by budgetary
resources, technical skills, and motivation

EVITA

automotive safety
integrity level (ASIL)

one of four classes to specify the item’s
necessary safety requirements for achiev-
ing an acceptable residual risk with D rep-
resenting the highest and A the lowest
class

ISO/DIS 26262-1

authenticity includes data origin authenticity as well as
integrity (in terms of format and content)
and freshness for specified information

Section 2.1.2.3

availability the property that the specified device or
service is operational when required

Section 2.1.1.9

confidentiality the property that specified information can
only be accessed by authorized entities

Section 2.1.1.8

controllability avoidance of a specified harm or damage
through timely reactions of the persons
involved

ISO/DIS 26262-1

controlled access the property that only authorized entities
can access specified data or perform speci-
fied actions

Section 2.1.1.4

combined attack
probability

estimated attack probability for an attack
method involving a particular combination
of asset attacks

EVITA

 60

data origin authenticity the property that specified information
truly originates from the claimed source

Section 2.1.1.2

evaluation assessment of a PP, an ST or a TOE,
against defined criteria.

ISO/IEC 15408-1

evaluation assurance
level (EAL)

a package consisting of assurance compo-
nents from ISO/IEC 15408-3 that repre-
sents a point on ISO/IEC 15408 predefined
assurance scale

ISO/IEC 15408-1

exposure state of being in an operational situation
that may be hazardous if coincident with
the attack method under consideration
[state of being in an operational situation
that may be hazardous if coincident with
the failure mode under consideration]

EVITA

ISO/DIS 26262-1

formal expressed in a restricted syntax language
with defined semantics based on well-
established mathematical concepts

ISO/IEC 15408-1

formal verification mathematical proof of an algorithm or a
specification against properties

ISO/DIS 26262-1

freshness the property that specified information is
not a copy of the same information
received by an entity at an earlier time

Section 2.1.1.5

harm a negative impact on stakeholders (in
terms of physical safety, privacy, personal
or organisational finances, or operational
performance) either directly or indirectly
as a result of attacks on vehicle systems or
their operating environment
[physical injury or damage to the health of
people either directly or indirectly as a
result of damage to property or the envi-
ronment]

EVITA

ISO/DIS 26262-1

hazard potential source of harm ISO/DIS 26262-1
hazardous event coincidence of hazard and exposure ISO/DIS 26262-1
informal expressed in natural language ISO/IEC 15408-1
informal notation description technique that does not have its

syntax completely defined
ISO/DIS 26262-1

integrity the property that specified information
remains unchanged between observations

Section 2.1.1.3

non-repudiation The property that an entity cannot deny
that an action was performed by that entity

Section 2.1.1.6

 61

organisational security
policies

one or more security rules, procedures,
practices, or guidelines imposed by an
organisation upon its operations

ISO/IEC 15408-1

privacy the property that the relation between an
entity and specified information is confi-
dential to authorized entities

Section 2.1.1.7

protection profile (PP) an implementation-independent set of
security requirements for a category of
TOEs that meet specific consumer needs.

ISO/IEC 15408-1

residual risk risk remaining after protective measures
have been taken

MISRA Safety
Analysis, 2007

risk combination of the probability of occur-
rence of harm and the severity of that harm

ISO/DIS 26262-1

risk graph mapping of combinations of qualitative
severity and probability measures associ-
ated with possible harm to a qualitative
risk level scale

EVITA

risk level qualitative ranking of the relative risk
associated with possible harm based on a
range of qualitative severity and probabil-
ity measures

EVITA

safety functions functions to be implemented by a safety-
related system, which are intended to
maintain a safe state in respect of specified
hazards

MISRA Safety
Analysis, 2007

safety integrity the degree of confidence in a safety-related
system satisfactorily performing the
required safety functions under all the
stated conditions within a stated period of
time

MISRA Safety
Analysis, 2007

safety integrity level
(SIL)

discrete level for specifying the safety
integrity requirements of the safety func-
tions allocated to safety-related systems,
where SIL 4 has the highest level of safety
integrity and SIL 1 has the lowest

MISRA Safety
Analysis, 2007

safety-related system a designated system that:
• implements the required safety functions

necessary to achieve or maintain a safe
state for the total system; and

• is intended to achieve, on its own or
with other systems, the necessary safety
integrity for the required safety func-
tions

MISRA Safety
Analysis, 2007

 62

safety requirements the requirements of the safety functions
that have to be fulfilled by the safety-
related systems

MISRA Safety
Analysis, 2007

security function (SF) a part or parts of the TOE that have to be
relied upon for enforcing a closely related
subset of the rules from the TSP

ISO/IEC 15408-1

security target (ST) a set of security requirements and specifi-
cations to be used as the basis for evalua-
tion of an identified TOE

ISO/IEC 15408-1

semiformal expressed in a restricted syntax language
with defined semantics

ISO/IEC 15408-1

severity measure of the expected degree of harm to
stakeholders associated with a specific
attack objective
[measure of the expected degree of harm
to an endangered individual in a specific
situation]

EVITA

ISO/DIS 26262-1

stakeholders individuals and/or organizations that may
suffer harm as a result of a successful
attack on one or more assets (may include
vehicle users, other road users, ITS service
operators, civil authorities, vehicle manu-
facturers and system suppliers)

EVITA

target of evaluation
(TOE)

an IT product or system and its associated
guidance documentation that is the subject
of an evaluation

ISO/IEC 15408-1

TOE security policy
(TSP)

a set of rules that regulate how assets are
managed, protected and distributed within
a TOE

verification determination of completeness and cor-
rectness of specification or implementation
of requirements from a previous phase

ISO/DIS 26262-1

 63

Appendix B – Dark-side scenarios

B.1 Introduction

The main objectives of the dark-side scenario analysis are, firstly, to identify security threats
and, secondly, to provide a basis for assessing risk, which reflects the severity and probability
of attacks. We use the approach of attack trees [16] for this purpose. Attack trees are related to
fault trees, which are normally used for identifying safety hazards.

In order to support risk analysis, we propose to structure the attack trees in the following
manner. The root of an attack tree (Level 0) is an abstract “attack goal” that is associated with
a benefit to the attacker of some kind. Its child nodes (Level 1) represent different “attack
objectives” that could satisfy this attack goal. The attack objectives have a negative impact on
the stakeholders (e.g. vehicle users, other road users, ITS service operators, civil authorities,
vehicle manufacturers and system suppliers). Thus, the severity of the outcome can be esti-
mated at this level. The attack objectives may be further decomposed into a number of “attack
methods” that could be employed to achieve the attack objective. Each attack method will in
turn be based on a logical combination (AND/OR) of attacks against one or more “assets”
populating the lowest levels of the attack tree. These are described here as “asset attacks”, and
are the terminal nodes of the tree. The tree is truncated where the probability of success can
be estimated for asset attacks. These individual probabilities can subsequently be combined
using the tree logic to assess the overall probability for each of the attack methods.

This generic tree structure is illustrated in Figure 3. The possible depth of the analysis is
inevitably more limited in the early concept stage than when specific design and implementa-
tion decisions have been made.

Figure 3 Generic attack tree structure

Attack
Objective 1

Attack
Objective 2

Attack
Objective 3

Asset
Attack 1

Asset
Attack 2

Asset
Attack 3

 “&” node

&

Level 0: Attack Goal

Level 1: Attack Objectives

Level 2: Attack Methods

Intermediate or “dummy” nodes

Asset
Attack 2

Asset
Attack 3

Intermediate
step

Attack
Goal

Attack
Method 2

Attack
Method 1

 64

B.2 Attack motivations

B.2.1 Overview

Possible attack motivations can be broadly categorized as follows:

• harming an individual

– driver or passenger

– for the purposes of criminal or terrorist activity

• harming groups

– e.g. drivers, city/state economy

– for the purposes of criminal or terrorist activity

• gaining personal advantage

– e.g. identity or information theft, vehicle theft, fraudulent commercial transactions,
enhanced traffic privileges

– for the purposes criminal activity

• gaining organisational advantage

– e.g. avoiding liability for accidents, acquiring vehicle design information

– for the purposes of fraud, industrial/state espionage or sabotage

The attack motivations suggest particular types of attackers and attacker capabilities, as well
as associated attack goals.

B.2.2 Do psychological or physical harm to the driver

The goal of the attacker is to harm the driver. While this global goal can somehow be related
to others, like gaining financial or personal advantages, we consider only the situations where
there is no other aim in the attack. Harming the driver (and / or the car occupants) can be
refined in several subclasses:

• Undermining the reputation of the driver (either her self-esteem or from a legal point of
view). In order to compromise the reputation, the attacker will very likely impersonate her
or her car in one way or another and perform actions with these stolen identities,
e.g. violating some laws (speed limits) while pretending to be the victim.

• By preventing her from using her vehicle (denial of use). The denial of use attack intends
to cause some damage, like missing an important date. Remote control of the target vehicle
is an interesting possibility because more direct actions involving physical access may be
considered as more dangerous by the attacker.

• By injuring her (or worse). While not necessarily the most important attack, it is probably
the first one that comes in mind when dealing with automated cars because it is most
spectacular. The attacker will probably try to cause an accident.

 65

B.2.3 Gain information about the driver

In general the growing number of sensor allows measuring many quantities. The data from
these measurements are processed and partly stored. The attacker will either try to intercept
the communication between the sensors and the rest of the ICT system or get access to the
memory where this data is stored. Car data allows the construction of a profile for the car –
the time of activity, location, braking, acceleration and steering. This information can be used
for different purposes – lawful as well as un-lawful ones – that all have a negative impact on
the car owner or driver’s privacy:

• Law enforcement authorities will try to get access to mobility profiles in order to identify
cars that have been involved in accident and criminal activities.

• Insurance companies have a high interest in getting access to car data in order to calculate
a premium based on the individual risk related to the way a car is driven.

• Criminals could use the information from the mobility profile and actual data about the
car’s location for planning to steal or hijack the car or to kidnap the driver.

B.2.4 Gain reputation as a hacker

The main (maybe the only) goal of the attacker is to gain reputation by breaking/hacking the
system and publishing the results afterward. The publication of the results or merely the fact
that the system has been broken/hacked is the main goal − otherwise no reputation is gained.
Since the publication of the attack is the main goal no real harm is done through this attack.
Real harm will be only caused if the attacker finds a design flaw that is very hard to fix or
maybe even un-fixable or if they have secondary goals like: financial gain.

Other goals could result in reputation as a hacker: Hacking/reverse engineering in order to
create homebrew applications (e.g. for the Head-Unit). The attacker’s goal will not be reputa-
tion but rather the ability to run his own software on parts of the system installed in his car.

B.2.5 Financial gain

A financial gain is probably the motive behind most attacks. There are several possible com-
binations of attackers and motivations to break into the system of a car:

• First, after an accident the car owner could try to manipulate the data stored in the vehicle
to obscure culpable behaviour like exceeding the speed limit or driving with too little dis-
tance to the car in front. For this purpose it would also be possible to impersonate another
vehicle. In certain cases the attacker could also manipulate the vehicle software and pre-
tend that it was not up to date in order to make the vendor liable fort he damage.

• Second, a third party or criminals could tamper with the vehicle for new types of insurance
fraud: by causing another vehicle to brake or steer they could provoke an accident in order
to get a high compensation from the insurance company. Another possibility is, when the
car system is used to authenticate the driver/car for the utilisation of a charged service
(ranging from parking fees and tolls to charged entertainment content and software
downloads) an attacker can try to steal the driver or car’s identity and impersonate as this
car/driver. Another way would be to increase the regular usage costs of the vehicle by

 66

increasing its fuel consumption, by damaging some expensive parts, by reducing the time
interval between services, etc.

• Finally, experience also shows that any new device that is integrated in the Internet will
become subject of spamming. Attackers may easily find ways to send spam to mobile ICT
devices that are used in the car but they will certainly aim to place their messages on dis-
plays that demand the driver’s attention.

B.2.6 Gain personal advantages (non financial)

Personal advantages can be gained in different ways and for different purposes. One example
is to attack road regulations in order to go faster through the traffic or to stop other vehicles in
the traffic. Possible methods could be to force a green wave, e.g. getting all traffic lights in
front of the attacker to switch to green. Another one is to manipulate the traffic flow by
directing other cars to alternative routes or clearing any traffic jam in front of the attacker.
Finally a way of gaining a personal advantage would consist in manipulating the speed limits.
In particular, it might be possible to tamper with the infrastructure so that other vehicles are
notified of a lower speed limit than reality.

Another purpose could be to gain access to special areas like secured parking lots, fair
areas or similar, which is controlled by the vehicle identity. A possible method is to imper-
sonate the ID of authorized car or person, which was gained before.

B.2.7 Gain information about vehicle manufacturer

While most of the described attacks aimed at the drivers and their direct environment another
motivation can be to attack the car manufacturer. There are several reasons possible. First
attackers can try to steal intellectual property of the manufacturer by accessing to the vehicles
software, e.g. another manufacturer aims to disclose technical specs and to imitate them.
Methods that could be used to achieve this target could be reverse engineering methods un-
authorised diagnosis; mobility and status profiles; us probing to extract crypto material; get
unencrypted firmware from flashes

Another way of attack the vehicle manufacturer can be destroying his reputation. This
could be done in several ways, for example by manipulating the safety of a car to harm ran-
dom owners of one car manufacturer’s cars. Another example could be the disclosure or com-
promise of privacy to destroy reputation. While these attacks aim at destroying the public
reputation other attacks could aim at financial harm for the manufacturer. Possible targets in
this could be to reduce the life expectancy of a car or damage a car by manipulating the
engine control. Another possibility is to provoke unexpected behaviour or switch off of car
functions. Finally manipulations of the power train actuator could lead to higher fuel con-
sumption or reduce of service intervals could damage the reputation and end in expensive
lawsuits against a manufacturer.

 67

B.2.8 Harm the economy

This attack and underlying objectives should be envisaged at an organizational scale. It makes
use of potential attacks on the car platform to disrupt the economical value of the car-related
business by wreaking havoc to the road infrastructure.

This attack consists in the large-scale manipulation of traffic in order to generate huge traf-
fic jams, therefore rendering driving virtually impossible. This attack might in particular make
use of a variety of techniques used more directly for other attacks, simply in order to disrupt
the normal service of roads. Two approaches in particular represent avenues for large scale
attacks. First, protocols with the infrastructure might be subject to attacks with respect to car-
related information in order to tamper with signalling. In particular impersonation attacks
simulating the presence of emergency vehicles are quite likely. Such attacks might in par-
ticular result in signal lights being turned off or passed to red permanently or abnormally, the
traffic being disorganized as a result. Direct attacks to a large number of cars should also be
envisaged, for instance simultaneously triggered by timed logical bombs, for instance forcing
all vehicles to a halt at the same time. It is quite clear that a wave of such attacks would
quickly result in a generalized loss of confidence towards the economical value of cars and
might also indirectly harm the economy.

B.2.9 Mass terrorism

An augmentation of the attack motivation to harm the economic is mass terrorism. Most of
the possible attacks to do this are already described before, but there are important differ-
ences:

• First, the scale of the attack is different because mass terrorism will probably target a large
number of victims at a time.

• Another difference is that a terrorist organization will frequently accept to sacrifice some
of its agents and even more frequently try to be identified while a classic attacker will do
her very best to succeed without being caught and identified.

• In the same way the relation of expected results and involved resources, which are crucial
for criminal attackers aiming at positive financial gain, the amount of allocated resources
(financial but also in terms of man power, time, etc.) in case of mass terrorism is of minor
importance.

• Finally, while an attack targeting single individuals is very unlikely, terrorists could try to
cause huge traffic jams in order to harm a country’s economy with the difference to that
the effective harm is less important than the caused insecurity.

Due to all mentioned problems and differences and taking into account that the necessary
spread of a system will need a long term, this attack should be examined in another study.

 68

B.3 Possible attacks – Combining attack motivations and use cases

B.3.1 Force Green Wave/Getting traffic lights green ahead of the attacker

Based on the use cases about traffic information (from/to externals) one attack could consist
in getting all traffic lights in front of the attacker to switch to green. Suppressing all halts will
thereby increase the attacker’s speed. There are several ways to do that: The attacker might
have his car impersonate an emergency vehicle. Alternatively it is possible to directly tamper
with the infrastructure in order to gain access to traffic signalling functions: this could be pos-
sible by exploiting poorly designed protocols. A physical attack to the infrastructure might
also result in a similar result.

The attack tree based on this attack goal is shown in Figure 4 below.

 69

Figure 4 Attack tree 1: Force green lights ahead of attacker

 70

B.3.2 Manipulate Speed Limits

The manipulation of speed limits is based on the use cases about traffic information or local
danger warnings. In particular, it might be possible to tamper with the infrastructure so that
other vehicles are notified of a lower speed limit. Speed limit may be changed arbitrarily to
disorient drivers and to make them slow down, thereby slowing vehicles behind the attacker
for instance. If speed limit enforcing equipment (e.g. radar) is accessible and may be tampered
with, the attacker might set a higher speed limit. Also a physical attack to the infrastructure
might be able to have a similar result.

The attack tree based on this attack goal is shown in Figure 5 below.

Figure 5 Attack tree 2: Manipulate speed limits

B.3.3 Manipulate Traffic Flow

To manipulate the traffic flow an attacker can also abuse traffic information or local danger
warnings in different ways. One possibility is that the attacker might aim at re-direct other
cars to alternative routes, thereby clearing any traffic jam in front of him (and likely creating
more congestion elsewhere). This might again be made possible by impersonating an emer-
gency vehicle, notably to send fake information about accidents in order to direct vehicles to
alternative routes. The attacker might more importantly impersonate the infrastructure or tam-
per with it in order to send bogus information about the traffic ahead. Finally, the attacker
might impersonate a chain of “fake cars“ and transmit their supposed position to the infra-
structure and to nearby cars so that they all over-estimate the traffic at a given position on the
road.

The attack tree based on this attack goal is shown in Figure 6.

 71

Figure 6 Attack tree 3: Manipulate traffic flow

 72

B.3.4 Simulate Traffic Jam

The last case of misusing traffic information and local danger warning is to generate traffic
congestion at a given place. This might be achieved by generating fake warning messages to
make cars brake and slow down, or by tampering with the infrastructure and switching traffic
lights randomly to red. Another possible attack is to misuse guided tours with point of inter-
ests in way, that someone create bogus points of interest (PoIs), either sightseeing/tourism-
related, or traffic-related (like radars), to make cars slow down and to generate or increase
congestion. This might be realised through impersonating the infrastructure or by attacking
vehicular platforms directly.

The attack tree based on this attack goal is shown in Figure 7.

B.3.5 Tamper with Warning Message

On the one hand an attack to tamper with warning messages can be a consequence of an
attack on the head unit. By gaining control over the HU an attacker could fake a warning mes-
sage on the display and irritate or harm the driver by doing this. Another way to execute this
attack is to delay or prevent warning messages that come from the local warning system (see
for example “manipulate traffic flow”) or the brake info system (see “brake attacks“). A third
way is an attack via the communication with the infrastructure or the infrastructure directly.
One possibility is to spoof the GPS/Galileo signal send to the car. Another is to fake warning
messages, which pretend to be sent by the infrastructure or to hack the infrastructure and use
it for sending fake warnings. Finally one can attack the car physically and relay or fake mes-
sage in the backbone.

The attack tree based on this attack goal is shown in Figure 8.

 73

Figure 7 Attack tree 4: Simulate traffic jam

 74

Figure 8 Attack tree 5: Tamper with warning messages

 75

B.3.6 E-Call

Attacking the e-Call, which is intended to generate and send automatically the last positions
of the vehicle (position chain) based on GPS / Galileo signals to the PSAP, can pursue differ-
ent aims, either to trigger the e-Call without an accident, to degrade the quality of the service
or to disable the service completely. Each of these attacks has different possible entry points.
In the case of triggering an e-Call without accident the attacker can misuse the C2C brake info
system to start an emergency braking and to start an e-Call. Another way to trigger the e-Call
is to attack the function directly within the CU by sending corrupt data to initiate sending an
e-Call. This can have a point of departure in all use cases involving the CU. To degrade the
quality of the service an attacker can also misuse all use cases involving the CU. In this case
the attack would aim to send imprecise or wrong information about the position. Another way
to do this would be attacking the GPS module by jamming the signal outside of the car. If the
attacker aims to interrupt the service completely all use cases that involve the CU can be
abused. In this case the attacks would try to interrupt the communication to the service centre
by jamming the signals or by a DoS attack on the CU. Another way would be to manipulate
the CU in a way that it will try to contact a wrong number or non-existing service centre. A
final way to interfere the service is an attack on the service centre, but this attack is not in the
scope of EVITA.

The attack tree based on this attack goal is shown in Figure 9.

B.3.7 Engine DoS-Attack (Engine Refuse to Start)

One possibility to harm the driver or damage the reputation of a manufacturer can aim at pre-
venting the car to start. To achieve this objective one could attack the Powertrain (PTC) and
its devices. A possible attacker had to get access to these components of a car. The most
likely use cases, which can involve this, are those on “remote diagnosis”, “remote flashing” or
“flashing by OBD”. They allow corrupting the PTC or more directly the Engine controls (EC)
by flashing firmware with corrupt code, changing important parameters or produce wrong
communications. In all cases the PTC or EC would deny starting the car. Another way of
attacking would be jamming the backbone.

The attack tree based on this attack goal is shown in Figure 10.

 76

Figure 9 Attack tree 6: Attacking E-Call

B.3.8 Unauthorized Brake

Unauthorized braking can be the result of several possible attacks. One of these is an attack
on the environment sensors, which can trigger a brake, as well as to manipulate the Chassis
Safety Controller (CSC). While a direct attack of the sensors is only possible by flashing the
firmware with malicious code (use cases “flashing” or “remote flashing”), the CSC can also
be manipulated by exploiting implementation flaws or corrupt data. The most likely attack
would involve faking a brake event in the direct environment of the car to produce this cor-
rupt data. Therefore someone could misuse the C2C brake info to fake brake information
from another car

The attack tree based on this attack goal is shown in Figure 11.

 77

Figure 10 Attack tree 7: Engine refuses to start

 78

Figure 11 Attack tree 8: Unauthorized brake

 79

B.3.9 Attacking Active Brake Function

Besides of initiating an unauthorized braking an offender could also try to attack an author-
ized braking event. This attack can be executed in different ways. For one thing the attacker
can try to inhibit active braking completely; for another thing the attacker can try to delay the
braking or at least to degrade the quality of the active brake. As in other attacks several use
cases can constitute the starting point depending on the current circumstances, e.g. if the
attacker has direct access to the car or the target of attack (inhibit, delay, degrade). One exam-
ple, which is rather unlikely, is to corrupt or disable the environment sensors, sensors for ABS
and ESP or the CSC (as described above). It seems easier (and more likely) to attack the CU
or the CSC with a DoS attack to prevent or delay the computation/detection of events needed
for the active braking system. This attack could abuse most of the use cases that involve the
CU like the “integration of applications” or the “connection to external devices” such as
mobile phones. Another possibility to reach this attack goal is jamming of the air interface,
the CSC or Backbone bus.

The attack tree based on this attack goal is shown in Figure 12.

Figure 12 Attack tree 9: Attack active brake function

 80

B.3.10 Attacking E-Toll

By attacking the e-Toll system one can pursue different objectives. First the attacker can try to
harm another driver by denying the passage or increasing the toll, but it is also possible to
misuse this function to receive a victim’s personal data like bank account or credit card num-
ber. Another goal, maybe the most obvious, would be that attackers try to joy ride, i.e. to
avoid toll payments for themselves. Attacking the CU and its components like the GPS sys-
tem can carry out most of these attacks. For example the offender could manipulate the CU
with corrupt keys to prevent the victim from passing a toll station. This manipulation can be
done in several ways, for example by misusing a mobile device, which will be connected to
the CU (Use Case “Personalise car”) or by remote or hardwired flashing of the OBD. The
same attack paths can be used to modify the GPS billing data with the aim to increase or
decrease the toll payment. Another way to reduce payments is to jam or spoof the GPS signals
send. Finally it might also be possible to misuse the OBD updates (use cases “Remote Flash-
ing” or “OBD flashing)” or manipulate the CU to gain access to personal data.

Attacks on E-tolling are illustrated in Figure 13 to Figure 16.

Figure 13 Attack tree 10: Prevent driver from passing toll gate

 81

Figure 14 Attack tree 11: Increase driver’s toll bill

Figure 15 Attack tree 12: Reduce driver’s toll bill

 82

Figure 16 Attack tree 13: Compromise driver privacy

B.4 Attack Trees Detailing Asset Attacks

B.4.1 Flashing per OBD

There are two possible ways to attack the flashing via OBD. Most seriously an attacker would
abuse the flashing itself in a workshop to install infected or modified firmware. If this is not
possible the attacker can still try to gain access to the CU to interrupt or disturb the flashing
process while the car is in the workshop. Another possible attack would try to gain access to
the CU, for example within use cases like “Internet access” or “personalizing the car with an
external device”, to exploit vulnerabilities in the communication protocols of diagnostic inter-
face, CU and ECU to abort the next flashing per OBD.

The corresponding attack tree is shown in Figure 17.

 83

Figure 17 Attack tree 14: OBD flashing attack

 84

B.4.2 Head Unit Attack

Several use cases include the possibility to carry out an attack on the head unit of the vehicle.
First all use cases, which are directly related to the head unit, could be exploited. There are
four use cases, which are connected either by Bluetooth (remote car control, personalize the
car) or by USB (secure integration, installation of application). In these cases vulnerabilities
of Bluetooth, USB or direct access can be gained and used for an attack on the head unit. An-
other way of attacking the head unit could be to start an attack via the CU, which is also part
of several communications related use cases (such as remote flashing, remote diagnosis, traf-
fic information and all use cases involving Internet connection). In all these cases access con-
trol is the key for the attack. It is defined as the ability to permit or deny the use of a particular
resource. In general it is the basis for functionality that provides access to car internal and
external resources or other entities by dint of units like registered mobile phones, trusted
counterparts or the car itself. Examples for access control functionality within the use cases
that use identification, authorization and access control based on managing of possession and
location of registered mobile phones or trusted counterparts. Finally the head unit might be
targeted by a physical attack. The corresponding attack tree is shown in Figure 18.

Figure 18 Attack tree 15: Head unit attack

 85

Appendix C – Threat and risk analysis

C.1 Analysis methodology

C.1.1 Introduction

In order to identify the most relevant security requirement to be able to prevent or at least
detect and contain a threat, we need to assess the level of “risk” posed by potential attacks.
The risk of an attack is seen as a function of the possible severity (i.e. the cost and loss) of the
attack for the stakeholders and the estimated probability of occurrence of a successful attack.

C.1.2 Notion of severity

In vehicle safety engineering processes the primary focus is on physical injuries that might be
sustained by persons as the consequence of a safety hazard. Nonetheless, managing safety
risks also has the secondary benefit of helping to protect the reputation (and hence the market
share) of the vehicle manufacturer and their suppliers.

In considering security threats in the context of networked vehicles and ITS systems,
physical safety is only one of a number of aspects that may be subject to “harm”: other issues
could include loss of privacy or unauthorized financial transactions threats. Furthermore, the
impact of security threats may be more widespread than a single vehicle, and there is a wider
range of stakeholders who may be influenced by the consequences of security hazards
(i.e. other road users, ITS system operators, civil authorities, vehicle manufacturers and their
suppliers). Therefore, a variety of factors need to be considered in the EVITA security and
risk analysis.

In order to accommodate this more complex situation the classification proposed here (see
Table 4) separates and categorizes different aspects of the consequences of possible security
breaches. The starting point for this classification scheme is the safety severity classification
of ISO/DIS 26262, which is based on the Abbreviated Injury Scale [19]. For the purposes of
EVITA, this has been adapted and augmented to consider both the greater numbers of vehi-
cles that may be involved and implications for aspects other than safety, including:

• privacy – identification and tracking of vehicles or individuals;

• financial – financial losses that may be experienced by individuals or ITS operators;

• operational – interference with vehicle systems and functions that do not impact on func-
tional safety.

For example, it is possible that an attack has little or no impact on safety, but presents signifi-
cant risks in terms of compromised driver privacy or loss of reputation for vehicle manu-
facturers. This approach results in a kind of “severity vector” with four components that may
have different ratings. However, the components may translate to different relative risk levels,
depending on the probability measures that are applied to assess the associated risk level.

 86

Table 4 Proposed severity classification scheme for security threats

Aspects of security threats Security
threat sever-

ity class
Safety (SS) Privacy (Sp) Financial (SF) Operational (So)

0
No injuries. No unauthorized

access to data.
No financial
loss.

No impact on
operational per-
formance.

1
Light or moderate
injuries.

Anonymous data only
(no specific driver of
vehicle data).

Low-level loss
(~€10).

Impact not discerni-
ble to driver.

2

Severe injuries
(survival probable).

Light/moderate injuries
for multiple vehicles.

Identification of vehi-
cle or driver.

Anonymous data for
multiple vehicles.

Moderate loss
(~€100).

Low losses for
multiple
vehicles.

Driver aware of
performance degra-
dation.
Indiscernible im-
pacts for multiple
vehicles.

3

Life threatening
(survival uncertain) or
fatal injuries.
Severe injuries for mul-
tiple vehicles.

Driver or vehicle
tracking.

Identification of driver
or vehicle, for multiple
vehicles.

Heavy loss
(~1000).

Moderate losses
for multiple
vehicles.

Significant impact
on performance.

Noticeable impact
for multiple
vehicles.

4
Life threatening or fatal
injuries for multiple
vehicles.

Driver or vehicle
tracking for multiple
vehicles.

Heavy losses for
multiple
vehicles.

Significant impact
for multiple
vehicles.

C.1.3 Notion of probability of occurrence of successful attack (attack potential)

In IT security engineering, to be on the safe side, we must assume that each attack scenario
that is possible and promises whatsoever small benefit will definitely be carried out by some-
one. The probability that an attack, once launched, will be successful depends on

• the “attack potential” of the attacker and

• the attack potential that the system under investigation is able to withstand (which the
attack potential of the attacker needs to exceed).

If the attack potential of the attacker exceeds the attack potential that the system is able to
withstand, then the system will definitely not withstand the attack and the attack will be suc-
cessful.

The attack potential is well defined in [1][17]. The attack potential is a measure of the
minimum effort to be expended in an attack to be successful. Essentially, the attack potential
for an attack corresponds to the effort required creating and carrying out the attack. The
higher the attackers’ motivation, the higher efforts they may be willing to exert. There are
multiple methods of representing and quantifying the influencing factors. The following fac-
tors should be considered during analysis of the attack potential [17]:

a) Elapsed Time: This is the total amount of time taken by an attacker to identify that a par-
ticular potential vulnerability may exist, to develop an attack method and to sustain effort
required mounting the attack.

b) Specialist Expertise: This refers to the required level of general knowledge of the underly-
ing principles, product types or attack methods.

 87

c) Knowledge of the system under investigation: This refers to specific expertise in relation
to the system under investigation. Though it is related to general expertise, it is distinct
from that.

d) Window of opportunity: This has a relationship to the Elapsed Time factor. Identifica-
tion and exploitation of a vulnerability may require considerable amounts of access to a
system that may increase the likelihood of detection of the attack. Some attack methods
may require considerable effort off-line, and only brief access to the target to exploit.
Access may also need to be continuous or over a number of sessions.

e) IT hardware/software or other equipment: This refers to the equipment required to
identify and exploit vulnerability.

In many cases these factors are not independent, but may be substituted for each other in
varying degrees. For instance, expertise or equipment may be a substitute for time. Table 5
identifies the factors discussed above and, based on [17][18], associates numeric values with
each level. Intermediate values to those in the table can also be chosen.

To determine for each path in an attack tree the attack potential required to identify and
exploit it, sum up the appropriate values from Table 5 and apply Table 6 to classify the attack
potential. Note that once an attack scenario has been identified and been exploited once, it
may be exploited repeatedly with less effort than for the first time. Both phases, identification
and exploitation, are considered in conjunction.

In this context the term “attack potential” is really describing the difficulty of mounting a
successful attack, while for risk analysis purposes a probability measure is required. A high
probability of successful attack is assumed to correspond to the “basic” attack potential, since
many possible attackers will have the necessary attack potential. Conversely, a “high” attack
potential suggests a lower probability of successful attacks, since the number of attackers with
the necessary attack potential is expected to be comparatively small. Consequently, Table 6
also proposes an associated numerical scale that reflects the relative probability of success
associated with the attack potential in a more intuitive manner. The “attack probability”
measure (P) is higher for easier attacks that are associated with lower attack potentials, and
lower for more difficult attacks associated with the higher attack potentials.

 88

Table 5 Rating of aspects of attack potential

Factor Level Comment Value
≤ 1 day 0
≤ 1 week 1
≤ 1 month 4
≤ 3 months 10
≤ 6 months 17
> 6 months 19

Elapsed
Time

not practical The attack path is not exploitable within a timescale that would be useful to an
attacker. ∞

Layman Unknowledgeable compared to experts or proficient persons, with no particu-
lar expertise 0

Proficient Knowledgeable in being familiar with the security behaviour of the product or
system type. 31

Expert

Familiar with the underlying algorithms, protocols, hardware, structures,
security behaviour, principles and concepts of security employed, techniques
and tools for the definition of new attacks, cryptography, classical attacks for
the product type, attack methods, etc.

6

Exper-
tise

Multiple
experts

Different fields of expertise are required at an Expert level for distinct steps of
an attack. 8

Public e.g. as gained from the Internet 0

Restricted e.g. knowledge that is controlled within the developer organisation and shared
with other organisations under a non-disclosure agreement 3

Sensitive e.g. knowledge that is shared between discreet teams within the developer
organisation, access to which is constrained only to team members 7

Knowl-
edge of
system

Critical
e.g. knowledge that is known by only a few individuals, access to which is
very tightly controlled on a strict need-to-know basis and individual under-
taking

11

Un-
necessary/
unlimited

The attack does not need any kind of opportunity to be realized because there
is no risk of being detected during access to the target of the attack and it is no
problem to access the required number of targets for the attack.

0

Easy Access is required for ≤ 1 day and number of targets required performing the
attack ≤ 10. 1

Moderate Access is required for ≤ 1 month and number of targets required to perform
the attack ≤ 100. 4

Difficult Access is required for > 1 month or number of targets required to perform the
attack > 100. 10

Window
of Op-
portu-
nity

None
The opportunity window is not sufficient to perform the attack (the access to
the target is too short to perform the attack, or a sufficient number of targets is
not accessible to the attacker).

∞2

Standard readily available to the attacker 0

Specialised
not readily available to the attacker, but acquirable without undue effort. This
could include purchase of moderate amounts of equipment or development of
more extensive attack scripts or programs.

43

Bespoke
not readily available to the public because equipment may need to be specially
produced, is so specialised that its distribution is restricted, or is very
expensive.

7

Equip-
ment

Multiple
bespoke

Different types of bespoke equipment are required for distinct steps of an
attack. 9

1 When several proficient persons are required to complete the attack path, the resulting level of expertise still

remains “proficient”.
2 This indicates that the attack path is not exploitable due to other measures in the intended operational

environment.
3 If clearly different test benches consisting of specialised equipment are required for distinct steps of an

attack, this should be rated as bespoke.

 89

Table 6 Rating of attack potential and attack probability

Values Attack potential required to identify and exploit
attack scenario

Attack probability P (reflecting
relative likelihood of attack)

0-9 Basic 5
10-13 Enhanced-Basic 4
14-19 Moderate 3
20-24 High 2
≥ 25 Beyond High 1

C.1.4 Estimating risk

For convenience in subsequent analysis, it is desirable to describe the attack trees in a tabular
form that captures the points were severity, attack potential of individual steps, and combined
attack potential for attack scenarios can be assigned, whilst compressing the level of detail to
just that required to assess the combined attack potential (see Table 7). The aim of this is to
achieve a more compact representation of the attack tree information by focussing on the
“asset attacks”, which can be assigned an attack potential in some way, and how they contrib-
ute to “attack objectives”, where the severity of the attack consequences can be assessed. In
this it is useful to retain the “attack methods”, since these are described in terms of particular
combinations of “asset attacks”. However, both intermediate attack goals and the detailed
breakdown associated with each of the asset attacks can be suppressed.

Table 7 Tabular representation of key elements of an attack tree

Attack Objective Attack Method Asset attack

A1 a &
b
d
e

A
A2

f
a &
b &
c B1
c &
h

B

B2 g

Tables representing the key elements of the attack trees can be augmented with the severity
(S, a vector) for the attack objective and the estimated attack potential for the contributing
asset attacks, using the numerical scale proposed in Table 6 to reflect the relative probability
of a successful attack (P, a scalar). The relationships between the latter are then used to derive
a combined attack potential for the particular attack method (A, a scalar).

If an attack method can be implemented using any one of a number of asset attacks
(i.e. OR relationship) the combined attack probability (AOR) is taken to be the highest of the
attack probabilities (Pi) for the available asset attack options:

() { }iiOR PPA max= (C1)

 90

(i.e. the attack probability of a set of alternative attack steps is as high as the highest of the
possible alternatives).

Where the attack method requires a conjunction of asset attacks (i.e. AND relationship),
the combined attack probability (AAND) is taken to be the lowest of the attack probabilities (Pi)
associated with the contributing asset attacks:

() { }iiAND PPA min= (C2)

(i.e. the attack probability of combined attack steps is only as high as the lowest of the
required components).

When the attack method involves asset attacks combined using both AND and OR
relationships the combined attack probability is built up using the rules (B1) and (B2) as
appropriate. This process is illustrated in Table 8, for the example presented in Table 7.

Table 8 Attack tree of Table 7 augmented with risk analysis parameters

Attack
Objective

Severity
(S)

Attack
Method

Risk level
(R)

Combined attack potential
(A)

Asset
(attack)

Attack
Probability

(P)
A1 RA1(SA,AA1) AA1=min{Pa,Pb} a &

b
Pa
Pb

d Pd
e Pe

A SA

A2 RA2(SA,AA2) AA2=max{Pd,Pe,Pf}

f Pf
a &
b &
c

Pa
Pb
Pc

B1 RB1(SB,AB1) AB1=max[min{Pa,Pb,Pc},
 min{Pc,Ph}]

c &
h

Pc
Ph

B SB

B2 RB2(SB,AB2) AB2=Pg g Pg

The risk level (R, a vector) is determined from the severity (S) associated with the attack
objective and the combined attack probability (A) associated with a particular attack method.
This is achieved by mapping the severity and attack probability to the risk using a “risk
graph” approach. For severity aspects that are not safety related the risk graph maps two
parameters (attack probability and severity) to a qualitative risk level. Combinations of sever-
ity and combined attack probability are mapped to a range of “security risk levels” (denoted
Ri, where “i” is an integer) in Table 9 for non-safety security threats. The security risk level
attributed to an attack increases with increasing severity and/or attack probability (the latter
corresponding to lower attack potential).

Table 9 Proposed security risk graph for non-safety security threats (privacy, financial and
operational)

Combined attack probability (A) Security Risk Level (R) A=1 A=2 A=3 A=4 A=5
Si=1 R0 R0 R1 R2 R3
Si=2 R0 R1 R2 R3 R4
Si=3 R1 R2 R3 R4 R5 Non-safety severity (Si)
Si=4 R2 R3 R4 R5 R6

 91

Where the severity vector includes a non-zero safety component, the risk assessment may
include an additional probability parameter that represents the potential for the driver to influ-
ence the severity of the outcome. In the MISRA Safety Analysis Guidelines [3] and ISO/DIS
26262 [2] this possibility is reflected in a qualitative measure referred to as “controllability”
(see Table 10).

Table 10 Classification for controllability of safety hazards

Class Meaning

C1 Despite operational limitations, avoidance of an accident is normally possible with a
normal human response.

C2 Avoidance of an accident is difficult, but usually possible with a sensible human
response.

C3 Avoidance of an accident is very difficult, but under favourable circumstances some
control can be maintained with an experienced human response.

C4 Situation cannot be influenced by a human response.

In order to include the additional parameter (controllability) in the assessment of safety-
related security risks it is necessary to use of a different risk graph as proposed in Table 11,
which maps three parameters (severity, attack probability, and controllability) to qualitative
risk levels. The class “R7+” that is used in Table 11 denotes levels of risk that are unlikely to
be considered acceptable, such as safety hazards with the highest severity classes and threat
levels, coupled with very low levels of controllability.

Table 11 Proposed security risk graph for safety-related security threats

Combined Attack Probability (A) Controllability
(C)

Safety-related
Severity (SS) A=1 A=2 A=3 A=4 A=5

SS=1 R0 R0 R1 R2 R3
SS=2 R0 R1 R2 R3 R4
SS=3 R1 R2 R3 R4 R5

C=1

SS=4 R2 R3 R4 R5 R6
SS=1 R0 R1 R2 R3 R4
SS=2 R1 R2 R3 R4 R5
SS=3 R2 R3 R4 R5 R6 C=2

SS=4 R3 R4 R5 R6 R7
SS=1 R1 R2 R3 R4 R5
SS=2 R2 R3 R4 R5 R6
SS=3 R3 R4 R5 R6 R7

C=3

SS=4 R4 R5 R6 R7 R7+
SS=1 R2 R3 R4 R5 R6
SS=2 R3 R4 R5 R6 R7
SS=3 R4 R5 R6 R7 R7+ C=4

SS=4 R5 R6 R7 R7+ R7+

C.1.5 Requirements for countermeasures

The risk analysis based on the attack trees provides the rationale for developing security
requirements.

 92

In safety engineering, the opportunities for mitigating the severity of the outcome of a haz-
ardous situation (e.g. the use of airbags to reduce injury levels) are often limited. The most
common approach for risk reduction is therefore to attempt to reduce “exposure” to the haz-
ard. This is also likely to be true of security threats.

The attack trees provide a convenient basis for the systematic evaluation of possible attack
methods and “cutting branches” from the tree is a possible mechanism for identifying
requirements for specific countermeasures. The selection of branches to be cut can be priori-
tised based on risk levels and attack potential:

• where a number of possible attack objectives may achieve the attack goal, the attack objec-
tive with the highest perceived risk level is the priority for countermeasures to reduce the
risk level for the attack objective;

• where a number of possible attack methods may lead to the same attack objective, the
attack method with the highest perceived attack probability (i.e. lowest attack potential) is
the priority for countermeasures to reduce the risk level for the attack objective;

• where a number of asset attacks may lead to the same attack objective, the asset attack with
the highest perceived attack probability (i.e. lowest attack potential) is the priority for
countermeasures to reduce the risk level for the attack objective.

Eliminating the asset attacks judged to have the highest attack probability (i.e. lowest attack
potential) reduces the threat level for the associated attack method, and if the attack probabil-
ity for this attack method dominates the risk level for the associated attack objective then the
attack objective risk level will also be reduced.

Since the functions investigated all assume a common basic architecture, it is likely that
common patterns will arise in the attack trees derived from the dark-side scenarios analysis.
Consequently, the repeated occurrence of particular attack patterns in attack trees is a further
indicator for prioritising countermeasures that are likely to provide favourable cost-benefit
properties. However, the expected cost of the proposed countermeasures also needs to be
taken into account in selecting specific security requirements.

C.2 EVITA Risk Analysis

C.2.1 Attack potential

Table 12 summarizes estimates for the “attack potential”, together with the underlying esti-
mates for the influencing factors, for various attacks identified from the attack trees. The
estimates are based on as-is automotive on-board networks, prior to the introduction of secu-
rity measures.

 93

Table 12 Evaluation of required attack potential for asset attacks identified from attack trees

Required attack
potential

Attack tree
node number

Asset (attack) Elapsed
time

Expertise Knowledge
of system

Window of
opportunity

Equipment

Value Rating
[3.2.2.4.2.3],
[9.3.2.2],
[9.2.1.1],
[9.2.1.2],
[12.2.2]

In-car Sensors
(external ma-
nipulation of
sensor input)

0 0 3 0 0 3 Basic

[6.2.2.1], GPS (jamming) 0 0 0 0 4 4 Basic

[9.1.2.1],
[9.3.1.1]

Wireless Com-
munications
(jamming)

1 3 0 0 4 8 Basic

[1.1.1.2],
[3.1.2.1.3],
[3.2.2.1.1],
[4.3.1.1.1],
[4.3.2.1.1.1],
[5.3.3.1],
[8.2.2.2],
[15.4.1]

Wireless Com-
munications
(corrupt or fake
messages and
information)

1 3 0 0 4 8 Basic

[9.3.2.2]

In-car Sensors
(disable or
Denial of Ser-
vice)

4 0 0 1 4 9 Basic

[4.3.2.1.2.3],
[4.3.3.2.1],
[6.2.2.2],
[5.2.1],
[5.3.3.2],
[8.2.2.1.1.1],
[12.2.1]

GPS (spoofing) 4 3 0 0 4 11 Enhanced-
Basic

[6.3.2.2],
[9.1.1.1],
[9.3.3.3],

Communica-
tions Unit (de-
nial of service)

0 3 3 1 4 11 Enhanced-
Basic

[7.4.3]

In-car Commu-
nications (dis-
able or Denial
of Service)

4 3 3 1 0 11 Enhanced-
Basic

[15.3.1]

In-car wireless
interfaces for
short range
communication
(access)

4 0 3 1 4 12 Enhanced-
Basic

[9.1.2.2],
[9.3.1.2],
[9.1.2.3],
[9.3.1.3],
[9.3.2.1],
[7.1.3], [7.4.4.1]

In-car Commu-
nications (jam-
ming)

4 3 0 1 4 12 Enhanced-
Basic

[1.1.1.1.2.2.1],
[3.2.2.4.1.1],
[3.2.2.4.1.2],
[8.2.1.1.1.2],
[15.5.1]

In-car inter-
faces (access –
exploit vulner-
abilities, intro-
duce bogus
data)

0 6 3 1 4 14 Moderate

[15.1.1],
[15.2.1]

In-car user
hardware inter-
faces (access)

4 3 3 1 4 15 Moderate

[1.1.1.1.2.2.1.2.
1]
[1.2.1.1],
[2.1.1.1],
[3.1.1.1.1]

Roadside Unit
(access) 4 6 3 1 4 18 Moderate

 94

Required attack
potential

Attack tree
node number

Asset (attack) Elapsed
time

Expertise Knowledge
of system

Window of
opportunity

Equipment

Value Rating

[6.2.3.3],
[6.3.1.3],
[6.3.2.3]

E-call Service
Centre inter-
faces (exploit
interfaces)

4 6 3 1 4 18 Moderate

[1.1.1.1.2.2.2]

In-car Commu-
nications
(exploit vulner-
ability or im-
plementation
error)

4 3 3 4 4 18 Moderate

[1.1.1.1.2.3.1]

In-car inter-
faces (access –
physical tam-
pering)

4 6 3 1 7 21 High

[5.3.4.1.1.2],
[8.2.1.1.1.1.1],
[8.2.2.1.1.1.1]

Head Unit
(gain root
access to em-
bedded OS)

10 3 0 4 4 21 High

[6.2.3.1],
[6.3.1.1],
[6.3.2.1]

E-call Service
Centre (over-
load)

4 0 3 10 4 21 High

[9.1.1.2],
[9.3.3.1],

Chassis Safety
Controller
(denial of ser-
vice)

10 3 3 1 4 21 High

[7.1.2]

In-car ECU
(disable or
Denial of Ser-
vice)

10 3 3 1 4 21 High

[4.3.3.2.2],
[4.3.3.1.1],
[4.3.3.3.1],
[7.1.1.2],

In-car ECU or
bus (configura-
tion change)

10 3 3 1 4 21 High

[10.1.1.2.2],
[11.1.1.2.2],
[12.1.1.2],
[13.1.1.2.1]

Communica-
tions Unit
(malware deliv-
ered by mobile
device)

10 6 3 4 0 23 High

[3.1.1.2.1.3],
[7.2.2.3.1.1],
[10.1.1.1],
[11.1.1.1],
[15.5.2]

Communica-
tions Unit
(exploit vulner-
ability of exter-
nal communi-
cation proto-
cols)

10 6 3 0 4 23 High

[1.1.1.1],
[2.1.2.1],
[2.1.3.1],
[3.1.1.2.2.1],
[3.1.2.1.1],
[3.2.2.1.2],
[3.2.2.3.3.1.1],
[4.1.1.1],
[4.1.1.2],
[4.1.2],
[4.3.2.1.1.1],
[4.3.2.1.2.1]

Wireless Com-
munications
(listen, inter-
cept, alter,
inject, replay)

10 6 3 0 4 23 High

 95

Required attack
potential

Attack tree
node number

Asset (attack) Elapsed
time

Expertise Knowledge
of system

Window of
opportunity

Equipment

Value Rating
[1.1.1.1],
[2.1.2.1],
[2.1.3.1],
[3.1.1.2.1.1],
[3.1.2.1.2],
[4.3.1.1.2],
[6.1.2.1],
[6.2.1.1],
[6.1.2.2],
[6.2.1.2],
[6.2.1.3],
[6.1.2.3],
[7.2.2.3.1.1]

Wireless Com-
munication
(exploit vulner-
ability or
implementation
error)

10 6 3 0 4 23 High

[3.2.2.4.2.1],
[7.3.1.1]. [7.4.1]

In-car Commu-
nications (cor-
rupt or fake
messages)

10 6 3 0 4 23 High

[2.2.2.1]

Roadside Unit
to Authority
Communica-
tion (listen,
intercept, alter,
inject, replay)

10 6 3 0 4 23 High

[3.2.2.4.2.2],
[4.3.2.1.2.2]

In-car Sensors
(spoof) 10 3 3 4 4 24 High

[1.2.2.2],
[2.1.1.3], [4.2.2]

Roadside Units
(exploit con-
figuration
errors)

10 6 3 0 7 26 Beyond
High

[6.2.3.2],
[6.3.1.2],
[6.3.2.2]

E-call Service
Centre inter-
faces (denial of
service)

4 6 3 10 4 27 Beyond
High

[2.1.1.4],
[2.2.1.4]

Roadside Units
(gain root
access)

10 6 3 4 4 27 Beyond
High

[1.1.1.1.2.1.1],
[7.3.1.3]

In-car ECU or
bus (exploit
vulnerability or
implementation
error)

10 3 3 4 7 27 Beyond
High

[8.1.1.1],
[8.1.1.2],
[9.3.3.2],

Chassis Safety
Controller (cor-
rupt code or
data)

10 6 7 1 4 28 Beyond
High

[7.2.1]

Powertrain
Peripherals
(corrupt code
or data)

10 6 7 1 4 28 Beyond
High

[2.1.1.2],
[4.2.1],

Roadside Units
(exploit proto-
col implemen-
tation flaws)

10 6 7 0 7 30 Beyond
High

 96

Required attack
potential

Attack tree
node number

Asset (attack) Elapsed
time

Expertise Knowledge
of system

Window of
opportunity

Equipment

Value Rating
[1.1.1.1.2.3.2],
[3.1.1.2.1.2],
[3.2.2.3.3.2.1],
[5.3.4.2],
[5.3.4.3],
[8.2.2.1.1.1.2],
[15.1.2],
[15.2.2],
[15.3.2],
[15.4.2],
[15.6.1]

Head Unit
(exploit vulner-
ability or im-
plementation
error)

10 6 6 4 7 33 Beyond
High

[3.1.1.1.2.1.2],
[7.4.4.2],
[2.1.2.2]

Keys (illegal
acquisition,
modification or
breaking)

17 6 7 4 1 35 Beyond
High

[3.1.1.1.2.1.1],
[3.2.2.1.3],
[3.2.2.3.1.1.1],
[3.2.2.3.3.1.2],
[5.3.2.1],
[5.3.1.1],
[4.1.1.1],
[4.1.1.2],
[4.1.2],
[8.1.1.1.1],
[8.1.1.2.1],
[8.2.1.2.1],
[9.1.2], [9.3.1],
[9.2.3.1]

In-car Commu-
nications
(listen, inter-
cept, alter,
inject, replay)

17 6 6 4 4 37 Beyond
High

[8.3.1]

Environment
Sensors (flash
malicious code
to firmware)

17 6 7 4 7 41 Beyond
High

[7.2.2.3.1.2],
[10.1.1.2.1],
[11.1.1.2.1],
[12.1.1.1],
[13.1.1.1.1]

Communica-
tions Unit
(malware
flashed with
OBD update)

17 6 7 4 7 41 Beyond
High

[8.1.2],

Chassis Safety
Controller
(flash mali-
cious code to
firmware)

17 6 7 4 7 41 Beyond
High

[5.3.4.1.1.1]
Head Unit
(malware
flashed)

17 6 7 4 7 41 Beyond
High

[7.1.2.1],
[7.1.4.1],
[7.2.2.2]

In-Car ECU
(malware
flashed with
OBD update)

17 6 7 4 7 41 Beyond
High

[7.2.2.2]

Powertrain
controller
(malware
flashed with
OBD update)

17 6 7 4 7 41 Beyond
High

Note that Table 12 includes two attack methods on wireless and in-car communications
(i.e. “corrupt or fake messages” and “listen, intercept, alter, inject, replay”) that have similar
descriptions but are allocated very different attack potentials. The reasoning behind these dif-
ferences is that while the attacker does not need to be in the communication path in order to
send corrupt or fake messages, in order to intercept or inject packets the attacker must be in

 97

the communication path and able to “hide” the genuine packets from the legitimate receiver.
The later case is more difficult and requires a higher level of knowledge and preparation.
Furthermore, the attacker does not need to be aware of the correct usage of the communica-
tion protocol in order to send corrupt or fake messages, but to inject or replay packets (that
have to be accepted by the receiver) the attacker has to use a potentially proprietary commu-
nications protocol correctly (this covers all phases of communication: connecting, disconnect-
ing, sending and requesting data). The later case is again more difficult and requires a higher
level of knowledge and preparation from the attacker.

C.2.2 Attack active brake function

This attack is derived from the use case “Safety Reaction: Active Brake” [5]. The risk analy-
sis table (see Table 13) is based on the corresponding attack tree (Figure 12).

Where an attack method could be implemented by a number of alternative means, the asset
attack probabilities shown in bold are the most significant component for the resulting com-
bined attack probability. In cases involving the AND relationship, the least significant asset
attack probabilities for the combination are shown in italics. Consequently, the typeface and
value assigned to the asset attack probabilities in the risk analysis tables give a visual indica-
tion of the priorities for risk reduction measures.

Loss of the active braking function is not expected to result in an additional safety hazard,
since it is assumed that drivers will be able to respond to driving hazards by conventional
manual braking. However, widespread loss of functionality may be detrimental to the reputa-
tion of this function, and thereby to vehicle manufacturers and system suppliers, suggesting
an operational severity rating SO=2.

In this example, an attack method involving an asset attack rated with attack probability P5
is identified for each attack objective (see Table 13). Since the asset attacks associated with
each of the attack methods are all simple alternatives (i.e. OR relationship), the worst-case
threat level for all of the attack objectives is simply the highest attack probability (P5). This
translates to a risk level R4 since the severity SO=2 is not safety related (see Table 9), indicat-
ing a moderate commercial risk.

 98

Table 13 Risk analysis for “Attack Active Brake Function”

Attack
Objective

Severity
(S)

Attack
Method

Risk
level
(R)

Combined
attack

probability
(A)

Asset (attack)

Attack
prob-
ability

(P)
9.1.1.2 Chassis Safety Controller
(denial of service) 2 Delay com-

putation RO=R3 4
9.1.1.1 Communications Unit (denial
of service) 4

9.1.2.1 Wireless Communications
(jamming) 5

9.1.2.2 Backbone Bus (jamming) 4

9.1 Delay
active
braking
(e.g. by x
ms)

SS=0
SP=0
SF=0
SO=2 Delay data

transmission RO=R4 5

9.1.2.3 Chassis Safety Bus (jamming) 4
9.3.3.1 Chassis Safety Controller
(denial of service) 2

9.3.3.2 Chassis Safety Controller
(corrupt code or data) 1 Prevent com-

putation RO=R3 4

9.3.3.3 Communications Unit (denial
of service) 4

9.3.1.1 Wireless Communications
(jamming) 5

9.3.1.2 Backbone Bus (jamming) 4
Prevent data
transmission RO=R4 5

9.3.1.3 Chassis Safety Bus (jamming) 4
9.3.2.2 ABS and ESP Sensors
(disable) 5

9.3 Prevent
active
braking

SS=0
SP=0
SF=0
SO=2

Force brake
controller into
fallback mode

RO=R4 5
9.3.2.1 Chassis Safety Bus (jamming) 4
9.2.1.1Environment Sensors (corrupt) 5
9.2.1.2 Sensor Environment (fake
conditions) 5

9.2 Degrade
active
braking
(e.g. by z
m/s2)

SS=0
SP=0
SF=0
SO=2

Manipulate
environment
information

RO=R4 5
9.2.1.3 Chassis Safety Bus (insert
fake environment data) 1

C.2.3 Tamper with warning message

Tampering with warning messages relates to the use cases “Local Danger Warning to/from
other Cars”. The risk analysis table (see Table 14) is based on the corresponding attack tree
(Figure 8).

Loss of the danger warning function is not expected to result in an additional safety hazard,
since it is assumed that drivers will be able to respond to driving hazards by conventional
manual braking. Loss of warning messages may not be discernible to drivers, suggesting an
operational severity rating SO=2. However, widespread late or erroneous messages will be
more obvious to drivers and are likely to be detrimental to the reputation of this function (and
thereby to vehicle manufacturers and system suppliers), suggesting an operational severity
rating SO=3 for the attack objectives “delayed warning” and “wrong warning”. No financial or
privacy aspects are expected to be associated with this attack.

 99

Table 14 Risk analysis for “Tamper with Warning Message”

Attack
Objective

Severity
(S)

Attack
Method

Risk
level
(R)

Combined
attack

probability
(A)

Asset (attack)
Attack

probability
(P)

9.1.1.2 Chassis Safety Control-
ler (denial of service) 2 Delay com-

putation RO=R4 4
9.1.1.1 Communications Unit
(denial of service) 4

9.1.2.1 Wireless Communica-
tions (jamming) 5

9.1.2.2 Backbone Bus
(jamming) 4

5.1 Delay
warning
message

SS=0
SP=0
SF=0
SO=3 Delay data

transmission RO=R5 5

9.1.2.3 Chassis Safety Bus
(jamming) 4

9.3.3.1 Chassis Safety Control-
ler (denial of service) 2

9.3.3.2 Chassis Safety Control-
ler (corrupt code or data) 1 Prevent com-

putation RO=R3 4

9.3.3.3 Communications Unit
(denial of service) 4

9.3.1.1 Wireless Communica-
tions (jamming) 5

9.3.1.2 Backbone Bus
(jamming) 4 Prevent data

transmission RO=R4 5

9.3.1.3 Chassis Safety Bus
(jamming) 4

5.2 Prevent
warning
message

SS=0
SP=0
SF=0
SO=2

Spoof current
GPS position RO=R3 4 5.2.1 GPS (spoofing) 4

Tamper with
air communi-
cations

RO=R2 2
5.3.2.1 Wireless Communica-
tions (listen, intercept, alter,
inject, replay)

2

Tamper with
bus communi-
cations

RO=R2 2
5.3.1.1 Backbone bus Commu-
nications (listen, intercept, alter,
inject, replay)

2

Fake air
communica-
tions warning

RO=R4 4

5.3.3.2 GPS (spoofing)
&
5.3.3.1 Wireless Communica-
tions (corrupt or fake warning
messages)

4

5

5.3.4.1.1.1 Head Unit (gain root
access to embedded OS) 1

5.3 Display
wrong
warning
message

SS=0
SP=0
SF=0
SO=3

Fake visual
warning info RO=R1 1 5.3.4.1.1.2 Head Unit (malware

delivered during flashing) 1

C.2.4 Attacking E-Call

This attack relates to the use case “E-Call”. The risk analysis table (see Table 15) is based on
the corresponding attack tree (Figure 9).

Although this attack does not directly produce safety hazards, there are potential indirect
safety implications, since denial or degradation of service may lead to a more severe medical
outcome for some casualties. Triggering spurious calls is also an approach to denying or
degrading the service. Consequently, the operational severity is set to SO=3 (significant
impact for some, noticeable impact for many) for all attack objectives. No financial or privacy
aspects are associated with this attack.

 100

Table 15 Risk analysis for “Attacking E-Call”

Attack
Objective

Severity
(S)

Attack
Method

Risk
level
(R)

Combined
attack

probability
(A)

Asset (attack)

Attack
prob-
ability

(P)
5.3.1.1 Backbone bus Communica-
tions (listen, intercept, alter, inject,
replay)

2
Generate false
emergency
brake message

RO=R4 4 5.3.3.2 GPS (spoofing)
&
5.3.3.1 Wireless Communications
(corrupt or fake warning messages)

4

5

6.1 Trigger
spurious
E-Call

SS=0
SP=0
SF=0
SO=3

Generate false
e-Call mes-
sage

RO=R2 2 6.1.2.1/2 Wireless Communications
(listen, intercept, alter, inject, replay) 2

6.2.3.1 Service Centre (overload) 2
6.2.3.3 Service Centre interfaces
(denial of service) 1 Attack service

centre RO=R3 3
6.2.3.3 Service Centre Interfaces
(exploit interfaces) 3

Corrupt
transmitted
information

RO=R2 2 6.2.1.1-3Wireless Communications
(listen, intercept, alter, inject, replay) 2

6.2.2.1 GPS (jamming) 5

6.2 Degrade
E-Call ser-
vice quality

SS=0
SP=0
SF=0
SO=3

Corrupt GPS
information RO=R5 5

6.2.2.2 GPS (spoofing) 4

6.3.3.1 Service Centre (overload) 2
6.3.3.2 Service Centre interfaces
(denial of service) 1 Attack service

centre RO=R3 3
6.3.3.3 Service Centre Interfaces
(exploit interfaces) 3

6.3.2.5 Communications Unit
(denial of service) 4

6.3.2.4 Wireless Communications
(jamming) 5

6.3.2.1 Service Centre (overload) 2
6.3.2.2 Service Centre interfaces
(denial of service) 1

Attack com-
munications
with service
centre

RO=R5 5

6.3.2.2 Service Centre Interfaces
(exploit interfaces) 3

6.3 Denial
of service
For E-Call

SS=0
SP=0
SF=0
SO=3

Make Com-
munications
Unit contact
non-working
service centre

RO=R2 2 6.3.3.1 Communications Unit
(corrupt data) 2

C.2.5 Unauthorized brake

The unauthorized brake attack is derived from the use case “Safety Reaction: Active Brake”.
The risk analysis table (see Table 16) is based on the corresponding attack tree (Figure 11).

The operational impact for unauthorized braking is SO=4 (significant impact for multiple
vehicles). There may also be significant safety implications (SS=4), potentially with poor con-
trollability (C3). The safety-related risks are assessed using the appropriate risk graph (see
Table 11). No financial or privacy aspects are associated with this attack.

 101

Table 16 Risk analysis for “Unauthorized brake”

Attack
Objective

Severity
(S)

Attack
Method

Risk
level
(R)

Combined
attack

probability
(A)

Asset (attack)
Attack

probability
(P)

Corrupt envi-
ronment
sensors

RS=R4
RO=R2 1

8.3.1 Environment Sensors
(flash malicious code to firm-
ware)

1

8.1.1 Chassis Safety Controller
(exploit implementation flaws) 2

8.1.2 Chassis Safety Controller
(flash malicious to firmware) 1

Corrupt Chas-
sis Safety
Controller

RS=R5
RO=R3 2

8.1.1.1.1 Chassis Safety Bus
(listen, intercept, alter, inject,
replay)

1

8.2.1.2.1 Bus Communications
(corrupt or fake brake warning
message)

1

8.2.1.1.1.1.1 Head Unit (gain
root access to embedded OS)
&
8.2.1.1.1.1.2 In-car Interfaces
(access)

1

3

8.2.2.2 Wireless Communica-
tions (corrupt or fake brake
warning message)
&
8.2.2.1.1.1 Head Unit (gain root
access to embedded OS)

5

1

8.2.2.2 Wireless Communica-
tions (corrupt or fake brake
warning message)
&
8.2.2.1.1.1 Head Unit (exploit
vulnerability or implementation
error)

5

1

8.2.1.3.1 Domain Controllers
(malware delivered during
flashing)

3

8 False
brake com-
mand on
Chassis
Safety Bus

SS=4, C3
SP=0
SF=0
SO=4

Spoof brake
event in im-
mediate
locality

RS=R7
RO=R5

4

8.2.2.2 Wireless Communica-
tions (corrupt or fake brake
warning message)
&
8.2.2.1.1.1 GPS (spoofing)

5

4

C.2.6 Attack E-Toll

The four attack trees relating to the use case “E-Tolling” are combined into a single risk
analysis table, since the individual attack trees are more readily associated with attack objec-
tives with implications for the stakeholders. The risk analysis table (see Table 17) is based on
the corresponding attack trees (see Figure 13 to Figure 16).

The financial severity of modifying toll payments is perhaps SF=2 (multiple losses ~€10
perhaps), but the operational severity is probably SO=3 (noticeable impact for many vehicles)
for increased toll payments. Access to private data may allow driver/vehicle tracking of mul-
tiple vehicles (SP=4), but the victims are unlikely to be aware of this (SO=2). No safety aspects
are associated with these attacks.

 102

Table 17 Risk analysis for “Attacking E-Toll”

Attack
Objective

Severity
(S)

Attack
Method

Risk
level
(R)

Combined
attack

probability
(A)

Asset (attack)
Attack

probability
(P)

10.1.1.1 Communications Unit
(exploit vulnerability of exter-
nal communication protocols)

2

10.1.1.2.1 In-car ECU (malware
flashed with OBD update) 1

10 Prevent
victim from
passing

SS=0
SP=0
SF=0
SO=3

Attack non-
repudiation of
billing mes-
sage

RO=R2 2

10.1.1.2.2 Communications
Unit (malware delivered by
mobile device)

2

11.1.1.1 Communications Unit
(exploit vulnerability of exter-
nal communication protocols)

2

11.1.1.2.1 In-car ECU (malware
flashed with OBD update) 1

11 Increase
victim toll
payment

SS=0
SP=0
SF=2
SO=3

Modify GPS
billing data

RF=R1
RO=R2 2

11.1.1.2.2 Communications
Unit (malware delivered by
mobile device)

2

12.1.1.1 In-car ECU (malware
flashed with OBD update) 1

Replace GPS
trace RF=R1 2 12.1.1.2 Communications Unit

(malware delivered by mobile
device)

2

12.2.1 GPS (spoofing) 4

12 Reduce
own toll
payment

SS=0
SP=0
SF=2
SO=0 Fake GPS

trace for
lower bill

RF=R4 5 12.2.2 In car sensors (manipu-
late heading, speed, orientation) 5

13.1.1.1.1 In-car ECU (malware
flashed with OBD update) 1 13 Access

victim’s
private data

SS=0
SP=4
SF=0
SO=2

Access user’s
GPS trace

RP=R3
RO=R1 2 13.1.1.2.1 Communications

Unit (malware delivered by
mobile device)

2

C.2.7 Green light ahead of attacker

This attack is related to the use cases “Traffic Information to/from Other Entities”. The risk
analysis table (see Table 18) is based on the corresponding attack tree (Figure 4).

No privacy issues are expected to arise from this attack. However, there may be potential
safety hazards from manipulating speed limits or speed limit information; rapid and haphaz-
ard changes, for example, may lead to widespread confusion and driver distraction, with
potential for multiple minor incidents (SS=2). Nonetheless, controllability is likely to be rea-
sonable (C2) in the urban environments where this type of attack is most likely to be
deployed. Possible financial implications could be speeding fines for minor speeding by mis-
informed vehicles (SF=2). This could lead to loss of confidence in the systems (SO=4). No
financial or privacy aspects are associated with this attack.

 103

Table 18 Risk analysis for “Green light ahead of attacker”

Attack
Objective

Severity
(S)

Attack
Method

Risk
level
(R)

Combined
attack

probability
(A)

Asset (attack)
Attack

probability
(P)

Physical
modification Not in

scope 1.2.1.1 Roadside units (modify) Not in
scope 1.2 Tamper

with road-
side equip-
ment

SS=2, C2
SP=0
SF=0
SO=4

Take control
of roadside
units using
C2I

RS=R1
RO=R2 1

1.2.2.2 Roadside Units (exploit
configuration errors) &
1.2.2.1 Roadside Units (exploit
protocol implementation flaws)

1

1

1.1.1.2 Wireless Communica-
tions (fake messages) &
1.1.1.1.1 Wireless Communica-
tions (listen, intercept, alter,
inject, replay)

5

2

1.1.1.2 Wireless Communica-
tions (fake messages) &
1.1.1.1.2.1.1 In-car ECU or bus
(exploit vulnerability or imple-
mentation flaw)

5

1

1.1.1.2 Wireless Communica-
tions (fake messages) &
1.1.1.1.2.1.2 In-car Communi-
cations (listen, intercept, alter,
inject, replay)

5

1

1.1.1.2 Wireless Communica-
tions (fake messages) &
1.1.1.1.2.2.1.1 Keys (illegal
acquisition, modification or
breaking) &
1.1.1.1.2.2.1.2.1 Roadside Units
(modify)

5

1

Not in scope

1.1.1.2 Wireless Communica-
tions (fake messages) &
1.1.1.1.2.2.1.1 Keys (illegal
acquisition, modification or
breaking) &
1.1.1.1.2.2.1.2.2 Roadside Units
(exploit protocol implementa-
tion flaws)

5

1

1

1.1.1.2 Wireless Communica-
tions (fake messages) &
1.1.1.1.2.3.1 In-car interfaces
(physical tampering)

5

2

1.1.1.2 Wireless Communica-
tions (fake messages) &
1.1.1.1.2.3.2 Communications
Unit (exploit vulnerability or
implementation error)

5

2

1.1 Imper-
sonate
emergency
vehicle

SS=2, C2
SP=0
SF=0
SO=4

Wireless con-
trol of road-
side equip-
ment

RS=R2
RO=R3 2

1.1.1.2 Wireless Communica-
tions (fake messages) &
1.1.1.1.2.3.3 Head Unit (exploit
vulnerability or implementation
error)

5

1

C.2.8 Manipulate speed limits

This attack is related to the use cases “Traffic Information to/from Other Entities”. The risk
analysis table (see Table 19) is based on the corresponding attack tree (Figure 5).

 104

No privacy issues are expected to arise from this attack. However, there may be potential
safety hazards from manipulating speed limits or speed limit information; rapid and haphaz-
ard changes, for example, may lead to widespread confusion and driver distraction, with
potential for multiple minor incidents (SS=2). Nonetheless, controllability is likely to be rea-
sonable (C2) in the urban environments where this type of attack is most likely to be
deployed. Possible financial implications could be speeding fines for minor speeding by mis-
informed vehicles (SF=2). This could lead to loss of confidence in the systems (SO=4). Such
an attack could also be part of a wider objective to manipulate traffic flow or to cause a traffic
jam.

Alternatively, an attacker may simply be trying to exceed authorised speed limits. Exces-
sive speed in the urban environment may also pose an increased safety hazard for pedestrians
and other road users (SS=3), with poor controllability (C3). A possible motivation for this
could be to avoid fines for significant speeding, so there may also be a financial implication
for the authorities (perhaps SF=3). Reducing speed limits could also be part of a wider objec-
tive to manipulate traffic flow or to cause a traffic jam.

Table 19 Risk analysis for “Manipulate speed limits”

Attack
Objective

Severity
(S)

Attack
Method

Risk
level
(R)

Combined
attack

probability
(A)

Asset (attack)

Attack
prob-
ability

(P)
Fake wired
speed update
messages
from authority

 Not in
scope

2.2.2.1 Wired infrastructure (fake
speed limit messages)

Not in
scope

2.2.1.3 Roadside Units (exploit
configuration errors) 1

2.2.1.4 Roadside Units (gain root
access) 1

2.2.1.2 Roadside Units (exploit
protocol implementation flaws) 1

2.2.2.1 Roadside Unit to Authority
communication (access wire infra-
structure)

Not in
scope

2.2 Modify
limits en-
forced by
roadside
equipment

SS=3, C3
SP=0
SF=3
SO=0 Take control

of roadside
units

RS=R3
RF=R1 1

2.2.1.1 Roadside Units (modify) Not in
scope

2.1.2.1 Wireless Communications
(replay speed limit message) 2 Impersonate

authority

RS=R2
RF=R1
RO=R3

2
2.1.2.2 Authorisation keys (illegal
acquisition by physical attack)

Not in
scope

Influence
roadside
equipment

RS=R5
RF=R4
RO=R6

5 2.1.3.1 Wireless Communications
(fake traffic conditions messages) 5

2.1.1.2 Roadside Units (exploit
configuration errors) 1

2.1.1.3 Roadside Units (exploit
protocol implementation flaws) 1

2.1.1.4 Roadside Units (gain root
access) 1

2.1 Issue
bogus speed
limit notices
to other
vehicles

SS=2, C2
SP=0
SF=2
SO=4

Take control
of roadside
units

RS=R1
RF=R0
RO=R2

1

2.1.1.1 Roadside Units (modify) Not in
scope

 105

C.2.9 Simulate traffic jam

This attack is related to the use cases “Traffic Information to/from Other Entities”. The risk
analysis table (see Table 20) is based on the corresponding attack tree (Figure 7).

No direct safety or privacy implications are expected to arise from this attack. However,
there may be operational threats in terms of customer dissatisfaction and loss of reputation for
vehicle manufacturers and their system suppliers (SO=4), as well transport authorities and ITS
system operators. Possible financial implications could include loss of earnings for individu-
als and more widespread harm to the economy (SF=4).

C.2.10 Manipulate traffic flow

This attack is related to the attack trees “unauthorized braking”, “green light ahead of
attacker”, “simulate traffic jam” and “manipulate speed limits”. The risk analysis table (see
Table 21) is based on the corresponding attack tree (Figure 6).

No privacy issues are expected to arise from this attack. However, there may be potential
safety hazards from manipulating speed limits or speed limit information, or from routing
traffic the wrong way into one-way systems, with potential for multiple minor incidents.
(SS=2). More serious is the possibility of exploiting the unauthorized brake attack as a means
of slowing or stopping cars. The operational impact for unauthorized braking is SO=4 (signifi-
cant impact for multiple vehicles), and there may also be significant safety implications
(SS=4) associated with such attacks. Nonetheless, controllability of safety hazards is likely to
be reasonable (C2) in the urban environments where this type of attack would be most likely
to be deployed.

Possible financial implications could be fines for minor speeding or other breaches of traf-
fic regulation by misinformed vehicles (SF=2). The financial implications associated with
inducing traffic jams could be more severe (SF=4), including loss of earnings for individuals
and more widespread harm to the economy. Such attacks could also lead to loss of confidence
in the associated systems if security breaches are identified as the mechanism (SO=4).

 106

Table 20 Risk analysis for “Simulate traffic jam for target car”

Attack
Objective

Severity
(S)

Attack
Method

Risk
level
(R)

Combined
attack prob-

ability (A)
Asset (attack) Attack prob-

ability (P)

Impersonate
roadside
equipment

RF=R3
RO=R3 2

4.1.2 Wireless Communi-
cations (insert fake RSU
traffic jam warning)

2

4.1 Attack
I2C mes-
sages

SS=0
SP=0
SF=4
SO=4

Forward traf-
fic jam mes-
sage and fal-
sify location

RF=R3
RO=R3 2

4.1.1.2 Wireless Communi-
cations (modify position
data in traffic jam message
from other location)
&
4.1.1.1 Wireless Communi-
cations (forward modified
traffic jam message)

2

2

4.3.2.1.1.1 Wireless Com-
munications (listen, inter-
cept, alter, inject, replay)

2

4.3.1.1.1 Wireless Commu-
nications (corrupt or fake
messages
&
4.3.2.1.1.1 Wireless Com-
munications (listen, inter-
cept, alter, inject, replay

5

2

4.3.1.1.1 Wireless Commu-
nications (corrupt or fake
messages
&
4.3.2.1.1.2 In-car sensors
(spoofing)

5

2

4.3.1.1.1 Wireless Commu-
nications (corrupt or fake
messages
&
4.3.3.2.1 GPS (spoofing)

5

4
4.3.2.1.1.1 Wireless Com-
munications (listen, inter-
cept, alter, inject, replay)
&
4.3.2.1.1.2 In-car sensors
(spoofing)

2

2

Alter position
data for cars
in traffic jam

RF=R5
RO=R5 4

4.3.2.1.1.1 Wireless Com-
munications (listen, inter-
cept, alter, inject, replay)
&
4.3.3.2.1 GPS (spoofing)

2

4
4.3.1.1.2 Wireless Commu-
nications (exploit vulner-
ability or implementation
errors)

2
 Simulate the

existence of
many cars

RF=R6
RO=R6 5

4.3.1.1.1 Wireless Commu-
nications (corrupt or fake
messages)

5

4.3.3.2.2 In-car ECU or bus
(configuration changes) 2

4.3 Attack
C2I mes-
sages

SS=0
SP=0
SF=4
SO=4

Modify car to
believe itself
in a traffic
jam

RF=R5
RO=R5 4

4.3.3.2.1 GPS (spoofing) 4

4.2.1 Roadside Units
(exploit protocol imple-
mentation flaws)

Not in scope 4.2 Tamper
with road-
side equip-
ment

Not in
scope

Attack infra-
structure

4.2.2 Roadside Units (ex-
ploit configuration errors)

 107

Table 21 Risk analysis for “Manipulate traffic flow”

Attack
Objective

Severity
(S)

Attack
Method

Risk
level
(R)

Combined
attack

probability
(A)

Asset (attack)
Attack

probability
(P)

3.1.1.1.1 Roadside Unit
(access) Not in scope

3.1.1.1.2.1.1 In-car Communi-
cations (listen, intercept, alter,
inject, replay)

1

3.1.1.1.2.1.2 Keys (illegal
acquisition, modification or
breaking)

1

3.1.1.2.1.1 Wireless Communi-
cations (exploit vulnerability or
implementation error)

2

3.1.1.2.1.2 Head Unit (exploit
vulnerability or implementation
error)

1

3.1.1.2.1.3 Communications
Unit (exploit vulnerability or
implementation error)

2

Spread bogus
accident
warnings

RS=R2
RF=R1
RO=R3

2

3.1.1.2.2.1 Wireless Communi-
cations (listen, intercept, alter,
inject, replay)

2

3.1.2.1.1 Wireless Communica-
tions (listen, intercept, alter,
inject, replay)

2

3.1.2.1.3 Wireless Communica-
tions (exploit vulnerability or
implementation error)

2

Divert
vehicles

SS=2, C2
SP=0
SF=2
SO=4

Spread bogus
traffic jam
information

RS=R5
RF=R4
RO=R6

5

3.1.2.1.3 Wireless Communica-
tions (corrupt or fake messages) 5

8.3.1 Environment Sensors
(flash malicious code to firm-
ware)

1

8.1.1.2 Chassis Safety Control-
ler (exploit implementation
flaws)

2

8.1.1.2 Chassis Safety Control-
ler (corrupt code or data) 1

8.2.1.1.1.1.1 Head Unit (gain
root access to embedded OS)
&
8.2.1.1.1.1.2 In-car Interfaces
(access)

1

3

8.2.1.2.1 Bus Communications
(corrupt or fake brake warning
message)

1

8.2.2.2 Wireless Communica-
tions (corrupt or fake brake
warning message)
&
8.2.2.1.1.1 Head Unit (gain root
access to OS)

5

1

Induce traf-
fic jam

SS=4, C2
SP=0
SF=4
SO=4

Make cars
stop (see un-
authorized
brake attack)

RS=R6
RF=R5
RO=R5

4

8.2.2.2 Wireless Communica-
tions (corrupt or fake brake
warning message)
&
8.2.2.1.1.1 Head Unit (exploit
vulnerability or implementation
error)

5

1

 108

8.2.1.3.1 Domain Controllers
(malware delivered during
flashing)

3

8.2.2.2 Wireless Communica-
tions (corrupt or fake brake
warning message)
&
8.2.2.1.1.1 GPS (spoofing)

5

4

3.2.2.1.1 Wireless Communica-
tions (corrupt or fake messages) 5

3.2.2.1.2 Wireless Communica-
tions (listen, intercept, alter,
inject, replay)

2

3.2.2.1.3 In-car Communica-
tions (listen, intercept, alter,
inject, replay)

1

3.2.2.3.1.1.2 In-car ECU or Bus
(exploit vulnerability or imple-
mentation error)

1

3.2.2.3.3.2.1 Head Unit (exploit
vulnerability or implementation
error)

1

3.2.2.4.1.1/2 In-car Interfaces
(access – exploit vulnerabilities) 3

3.2.2.4.2.1 In-car Communica-
tions (corrupt or fake messages) 2

3.2.2.4.2.2 In-car sensors
(spoof) 2

3.2.2.4.2.3 In-car sensors
(manipulate) 5

2.1.1.3 Roadside Units (exploit
configuration errors) 1

2.1.1.2 Roadside Units (exploit
protocol implementation flaws) 1

2.1.2.1 Wireless Communica-
tions (replay speed limit mes-
sage)

2

2.1.3.1 Wireless Communica-
tions (fake traffic conditions
messages)

5

2.1.1.3 Roadside Units (exploit
configuration errors) 1

Slow cars
down
(includes
manipulate
speed limits
attack)

RS=R7
RF=R6
RO=R6

5

2.1.1.3 Roadside Units (exploit
protocol implementation flaws) 1

C.2.11 Engine denial of service

This attack is not directly related to any of the use cases, but many of them may provide
opportunities for mounting attacks (i.e. those involving wireless communications, nomadic
devices and workshop updating). The risk analysis table (see Table 22) is based on the cor-
responding attack tree (Figure 10).

No direct safety, privacy or financial implications are expected to arise from this attack.
However, there may be operational threats in terms of customer dissatisfaction and loss of
reputation for vehicle manufacturers and their system suppliers (SO=3).

 109

Table 22 Risk analysis for “Engine denial of service”

Attack
Objective

Severity
(S)

Attack
Method

Risk
level
(R)

Combined
attack

probability
(A)

Asset (attack)
Attack

probability
(P)

7.1.2.1 Powertrain Controller
(PTC malware flashed with
OBD update)

1 Disable
Powertrain
Controller

RO=R2 2
7.1.1.2 In-car ECU or bus
(configuration change – bus
parameters changed to disable)

2

Powertrain
Controller
unreachable

RO=R4 4 7.1.3 In-car Communications
(jamming) 4

7.1.4 In-car ECU (disable or
denial of service) 2

7.1 Engine
controller is
not reach-
able

SS=0
SP=0
SF=0
SO=3

Disable
Engine Con-
trol Unit

RO=R2 2 7.1.4.1 Engine Control Unit
(ECU malware flashed with
OBD update)

1

7.4.4.2 Cryptographic Data
(modified) 1 Owner access

denied RO=R4 4
7.4.4.1 In-car Communications
(jamming) 4

Message cor-
rupted RO=R2 2 7.4.1 In-car Communications

(corrupt message or data) 2

7.4 Power-
train con-
troller does
not receive
order

SS=0
SP=0
SF=0
SO=3

Backbone Bus
disabled RO=R4 4 7.4.3 Backbone Bus (denial of

service) 4

7.2.2.2 Powertrain Controller
(corrupt code or data) 1

7.2.2.3.1.2 Communications
Unit (malware flashed with
OBD update)

1
False warning
from Power-
train Control-
ler

RO=R2 2
7.2.2.3.1.1 Wireless Communi-
cations (exploit vulnerability of
external communication proto-
cols)

2

7.2.1 Powertrain Peripherals
(corrupt code or data) 1

7.2 Engine
controller
receives
warning

SS=0
SP=0
SF=0
SO=3

False warning
on Powertrain
Domain Bus

RO=R1 1 7.2.2.2 Powertrain Controller
(PTC malware flashed with
OBD update)

1

7.3.1.1 In-car Communications
(corrupt or fake messages on
Powertrain Bus)

2

7.3.1.2 In-car Communications
(exploit vulnerability of exter-
nal communication protocols)

3
7.3 Essen-
tial engine
component
out of order

SS=0
SP=0
SF=0
SO=3

Previously
issue bogus
commands to
induce dam-
age

RO=R2 3

7.3.1.3 In-car ECU or bus
(exploit vulnerability or imple-
mentation error)

1

C.3 Summary and conclusions

Analysis of the attack trees demonstrates that specific asset attacks may contribute to different
attack objectives within the same attack tree, and may also contribute to attack objectives
associated with other attack trees. For a particular asset attack, both the risk level (reflecting
the attack potential and the severity of outcome) and the number of instances from the collec-

 110

tion of attack trees are indicators of the importance of the asset attack and the likely benefits
of measures for reducing its attack potential.

The attack potentials for jamming GPS and wireless transmissions are very high and domi-
nate several of the risk analyses. Measures for detecting tampering with GPS and wireless
transmissions, and avoiding reliance on GPS signals alone as a source of position data, would
help to reduce the associated risk levels.

It should be noted that EVITA is not aiming to develop new vehicle systems with particu-
lar levels of security, or to enhance the security of existing systems. The EVITA project is
concerned with prototyping a “toolkit” of security measures (which may software, hardware,
and architectural) that could be selected for further development and implementation in future
systems. Consequently, the requirements analysis activity is based on a representative range
of possible applications and a generic vehicle architecture, with the aim of identifying what
kind of security requirements may need to be met, as well as their likely prevalence and dis-
tribution amongst the system assets.

Nonetheless, it is expected that much of the EVITA security engineering process could be
adapted to support future product development processes. The risk analysis approach could be
used, in combination with the vehicle manufacturer’s security policy, in order to decide
whether to accept or transfer the identified security risks, or to take measures to reduce or
avoid specific risks where this is deemed necessary.

 111

Appendix D – Identifying security requirements

D.1 Abstract functional path approach

D.1.1 Abstract functional system model

As a basis for the security requirements analysis, a functional model is derived from the use
cases. The nature of the use case descriptions is such that it is not possible to identify the
complete system under investigation. Therefore an abstract functional component model is
developed, which represents the behaviour of a single car within the system (see Figure 19). It
provides an overview of every action happening at the functional borders of the car compo-
nent, as well as the interactions with other cars or with other entities of the system.

The functional flow is illustrated in the form of arrows from inputs4 to outputs5 of the sys-
tem component model within the TOE box (Target of Evaluation). The arrows outside the
TOE box denote the functional relations between different components of the global system.
The intermediate predicates6 represent an abstraction of the condition checking, which leads
to a certain system action. It is not intended to represent the behaviour of the system compo-
nent under investigation, but only the implicit functional decisions. The predicates are not
defined further, as this is the subject of research being done in the area of safety reaction sys-
tems and not directly related to security. Also, it is not necessary to define them in our
abstract model in order to derive the necessary security requirements, aside from ensuring a
guaranteed behaviour of the system.

Based on the functional component model, one may now start to reason about the overall
system. The synthesis of the inner and the outer system behaviour builds the global system
behaviour. The distinction between internal and external flow description regarding the func-
tional component model is expressed in terms of internal and external functional flow.

4 Inputs: DSRC-Receive Neighbourhood-Information), DSRC-Receive(C2X-Message(Emergency)),

Environment-sensing(Environment-Information), Chassis-Sensing(Vehicle-Dynamics),
DSRC-Receive(Cooperative-Awareness-Message), DSRC-Receive(Traffic-Information-Message),
Sensing(Data), GPS-Sensing(Position), BT-Receive(OpenHood), HMI-Read(POI-Configuration),
Receive(POI-Info), USB-Receive(Software), HIM-Read(Inputs), BT-Receive(Display(Data)),
HIM-Read(Inputs), BT-Receive(SeatPosition), Receive(Diagnosis-Request), DSRC-Receive(Firmware),
Diag-Receive(Firmware)

5 Outputs: DSRC-Send(Neighbourhood-Token), DSRC-Forward(C2X-Message(Emergency)), Brake,
Driving-Power-Reduction, DSRC-Send(C2X-Message(Emergency)), HMI-Display(Warning),
HMI/Navigation-Display(Warning), PTC-Action, DSRC-Send(Cooperative-Awareness-Message),
Send(Traffic-Information-Message), GSM-Send(Billing-Information), GSM-Send(eCall-Request(Position),
Open(Hood), HMI-Show(POI-Info), HIM-Show(SW-Interface), HIM-Show(Data), BT-Send(Inputs),
Adjust(SeatPosition), Send(Diagnosis-Data)

6 Intermediate predicates: Forwarding-Message=true,
Danger-Avoidance->Emergency-Braking=true,Processing->Warning=true, Processing->ShowInfo=true,
Situation-Assessment->Emergeny=true, Processing->critical-situation-recognition=true, Aggregation,
Collecting->TollRoad->Calculation=true, Crash-calculation=true, Show-POI=true, Execution

 112

Figure 19 Abstract functional system model pattern

 113

Figure 20 illustrates an example of a functional system model instance derived from the
functional component model (Figure 19) with a subset of actions. This should help to illus-
trate how to interpret the component model. Of course, an exhaustive list of all possible
instances of the system models would be too big to be written down. Therefore, the identifi-
cation of border actions of the overall system that are relevant to the security requirements is
performed within the component model. However, the functional dependencies among several
component instances must still be taken into account during this process.

Figure 20 Abstract functional system model instance

D.1.2 Security Requirements Engineering Process

D.1.2.1 Authenticity

Each functional flow arrow within the system description describes a functional dependency
in the reverse direction. Associated with each functional dependency is an authenticity
requirement. Therefore, each functional flow arrow can be viewed as an authenticity require-
ment in the reverse direction that spans from the output border action to all input border
actions that it depends and relies on.

Additionally, authenticity is required regarding the actions “Replacement/Addition of
ECU” and “DSRC / diag receive (firmware)” for every output action performed by the system
under investigation. These requirements originate from the system’s dependence on the
underlying hardware and software. Accordingly, changes to those may result in an alteration
of the intended system behaviour. Also for the driver of a following car, or an RSU, this must
be authentic.

 114

As the critical point regarding liability and safety is the driver, we assume that the driver is
the subject of each of the authenticity requirements. This means, that the driver is the agent
that must be assured of all requirements regarding the functional safety of the car2car system.

D.1.2.2 Confidentiality

For confidentiality we will assume a strategy of minimal disclosure: Unless the functional
flow requires a disclosure of information, the information shall be confidential. These
requirements can then be grouped regarding the kind of data they address regarding classical
confidentiality, anonymity and privacy.

D.2 Detailed functional path and mapping approach

D.2.1 Methodology

D.2.1.1 Introduction

Developing a model of the system to be analysed usually requires that it already exists or is
fully specified. In the context of the security requirements definition things are slightly differ-
ent because the purpose is to contribute to the specification process by adding some security
related constraints. We thus need to live with a system that is neither yet available nor speci-
fied. The following is an attempt to define a model in a generic way, using a set of generic
physical and functional components, characterized by a set of generic parameters. Our pri-
mary goal is to offer a framework dedicated to security analysis, flexible enough to be
adapted to any actual system but still capable of producing accurate analysis results. This
framework could be used as follows:

1. A candidate on-board network structure is designed by selecting components, interconnect-
ing them and characterizing them (that is, assigning values to their generic parameters).

2. One or several typical use cases are selected as a starting point of investigation.

3. The functional description of the use cases is built as a graph of communicating tasks. As
for the architecture this is done by selecting, connecting and characterizing generic com-
ponents.

4. The functional description is mapped on the architecture: each task is allocated to a com-
puting node; each logical communication channel is allocated to physical links and memo-
ries. All the mapping parameters are set (arbitration policies, priorities, etc.) This defines a
fully mapped system.

5. Attack trees are designed representing the different ways an attacker could pursue his/her
goals. The attack trees are refined up to the point where more information is needed about
the architecture (internals of a component) or a branch can be cut thanks to the parameters
of the mapped system (the cost/skills factor exceeds the threshold for the considered
goal/attacker’s class). Attack tree nodes are fully numbered so as to further evaluate the
coverage of attacks.

 115

6. The architecture, the functional description and the mapping are refined whenever needed
to further explore a branch.

7. Remaining branches are cut by modifying the system (architecture and/or functional
description and/or mapping). New attacks may also have been identified

8. Security requirements are listed. They are found considering use cases’ description, func-
tional and mapping views, as well as attack trees. Those requirements shall provide a full
coverage of attack tree nodes.

9. Attack trees might be updated according to new attacks that may have been found when
modelling functional and mapping views, or when listing requirements. Then, we restart
from point “5.” until the list of requirements remains unchanged.

Risk evaluation of the system under investigation (every remaining branch in an attack tree
represents a risk) is also an output of that methodology. The graph shown in Figure 21 illus-
trates the overall analysis flow.

Figure 21 Identification of security requirements

D.2.1.2 Functional and architectural description

A full system is made of a functional specification, a physical architecture and a mapping of
the former to the latter.

A functional description is a collection of communicating functions. In the DIPLODOCUS
approach, functions may communicate using either abstract data channel, or abstract event.
This difference of communication semantics is not really meaningful for capturing security
requirements. Also:

• Functions generating input to the system are considered as related to sensors.

• Functions generating commands to the outside of the system are related to actuators

• Other functions are meant to be executed on either CPU nodes, or hardware nodes such as
hardware accelerators or I/O devices.

 116

Note that, even if functions are meant to be mapped on physical architectures, the functional
specification shall describe the system with as few references to an underlying physical
architecture as possible.

An architectural description is a collection of interconnected hardware nodes. Those hard-
ware nodes are computing nodes (CPUs, I/O devices, hardware accelerators), storage nodes
(RAM, etc.), sensors and actuators. The interconnection between those nodes is described in
term of busses, networks and wireless links.

The general mapping framework is the following. Each functional element of the system
under investigation is mapped on a physical component of the architectural view. Tasks are
mapped on computing nodes and on memories. A task has code memory segments and data
memory segments. Each memory segment must be mapped on a memory component or on a
computing component (the latter case represents embedded memories that are not yet visible
at this architecture refinement level). Data segments cannot be mapped on read only memory
components (read-only data are considered as a code segment). Segments are optionally split
in two views: the load view and the runtime view. When a code segment is split, its two views
can be mapped on two different memory components. During the initialization of the system
the load view is read from its memory and copied in another, creating the runtime segment.
An un-split code segment and the load view of a split code segment cannot be mapped on a
volatile memory. The load view of a split data segment cannot be mapped on a volatile mem-
ory. An unsplit data segment can be mapped on a volatile memory (in this case it is uninitial-
ized or always initialized to the same value at boot time).

The systems under consideration carry out computing and communicating activities. Both
activities usually rely on a third important one: information storage. Acquisition of environ-
ment characteristics and physical actions on mechanical devices are the two other important
activities of automotive systems taken into account, both at security requirement level and at
modelling level. Note that, from a functional point of view, communication and storage look
very similar (sending and writing could be considered as the same operation; receiving and
reading too), but they are different: Communication takes place between different tasks while
storage is dedicated to a single task, for its own needs. Moreover, reading is an action while
receiving a message is an event: A task decides to read or not but has no control on messages
reception, even if received messages can be ignored. Of course, when considering the physi-
cal view, it may be that communications are implemented through read and write operations
in a memory and, in most cases, read and write operations of a task are implemented as trans-
actions on a physical communication link between a processor and its external memories.
Each of the five activities has a physical and functional counterpart, as outlined in Table 22.

Table 23 Views on activities

Activity Physical view Functional view
Computing CPU or dedicated hardware

accelerator
Processing task

Communication Wired bus or network, wireless link Send/receive messages on logical
channels

Storage Memory (RAM, ROM, flash) Read/write data from/to address spaces
Acquisition Sensors Get measurements from the environment
Command Actuators Do actions on the environment

 117

D.2.2 Classification of attacks

We will consider two classes of attacks:

• attacks modifying the behaviour of the system (active attacks) and

• attacks aiming at information retrieval without modifying the behaviour (passive attacks).

Note: passive attacks are frequently a pre-requisite of active attacks; the attacker first analyses
the system in a passive way to understand it or recover useful crypto material and then
exploits this knowledge to actively attack. There are two possible ways to identify the differ-
ent types of attacks: the physical one and the functional one. In the following we analyse the
attacks against our five physical components. For each physical attack we also indicate which
functional attack it can be used for.

Active attacks:

1. Computing attacks are targeting computing nodes (CPUs, hardware accelerators). They
consist in physical modifications of the component (like modifying the content of an
embedded ROM or the structure of an operator), its replacement or even its destruction.
Transient faults injection is another way. The consequence is the production of results that
differ in some way from those that would have been produced in normal operations,
including failure to produce results when expected or the converse. Note: the purpose of a
fault attack is very frequently to retrieve an embedded secret, in which case the modifica-
tion of the behaviour is not the real goal of the attacker but more something like a mean.
On the functional point of view, these physical attacks can translate into computing, com-
munication, storage or command attacks: modifying the behaviour of a task can indeed
lead to modifications of the results it produces, of the messages it exchanges with its envi-
ronment, of the content of the memories it manages or of the orders it sends to actuators.

2. Communication attacks are targeting communication links. There are two main means to
implement attacks against a physical communication link: tampering with it (modifying its
topology, jamming it, modifying its main parameters like arbitration policy, frequency,
etc.) and injection of forged transactions. Because computing devices and memories are
usually connected through busses, attacks against communication links can be used to
tamper with the communication or the storage activity. Consequences of communication
attacks are on the receiver side only (attacks aiming at modifying or cancelling a message
before it is actually sent are in fact attacks against the sending computing node). They
comprise the modification of a message between its emission and its reception, the cancel-
lation of a message that will thus never reach its destination or the reception of a message
that would never have been received during normal operation. When a memory bus is
attacked, it can be to modify the function of a task (software code modification) or the data
it processes. There are three classes of memory bus injection attacks: spoofing (the injected
information was forged by the attacker), splicing (the injected information was taken at a
different location in the memory) and replay (the injected information was taken at the
same location in the memory but at a previous date, where it differed from the expected
one). The same classes apply to messages. The attacks against communication links are the
more powerful of all because, on the functional point of view, these physical attacks can
translate in computing, communication, storage, acquisition, or command attacks.

 118

3. Active attacks against storage all consist in modifying the regular content of a memory. As
a consequence the read operations performed by the tasks accessing the address space do
not return the expected information, that is, the last one that was written at the same loca-
tion. The consequences are very similar to the consequences of attacks against memory
busses. The means used to achieve content modification depend on the technology: ROMs
can be replaced, non-volatile writeable memories (EEPROMs, flashes) can be replaced or
reprogrammed, volatile memories (static and dynamic RAMs) are much more difficult to
attack in a conscious way but more or less random bit flips can be induced by voltage,
clock frequency, temperature modifications or more active fault attacks. In some cases,
volatile memories can even be cooled, removed from their PCB and plugged on another
host without losing their content which can then be read out and / or modified before the
component is plugged back in its regular host system.

4. The consequences of acquisition attacks are the production of altered measured metrics.
They consist in artificial modifications of the environment (like, for instance, the use of a
heating device to increase the measured temperature), modification, destruction or
replacement of the sensor.

5. Attacks against actuators, as for the attacks against sensors, consist in modifications of the
environment (increase of the friction to reduce the effect of an action applied with a con-
stant force), modification, destruction or replacement of the actuator. They lead to a differ-
ent action than the intended one.

Passive attacks:

1. Passive attacks against the computing activity aim at retrieving either a secret quantum of
data (secret key) or the processing definition itself (software code extraction). As every
computation is actually performed by a physical device, measurable syndromes are pro-
duced, like power consumption, computing time or electro-magnetic emissions that can be
exploited to guess what operations are performed or what is the value of some sensitive
data. This kind of analysis is referred to as side channel attacks in the literature. Observing
the external communication or the exchanges with memories is another mean to get infor-
mation about the computing but fall in the passive communication attacks category.

2. Communication can be spied at and sensitive messages or read/written data exposed. On-
board or on-bus probing is a very effective and attractive mean for wired communications.
Wireless communications are even more sensitive to this kind of attack as they can be con-
ducted in a completely remote and undetectable way. On-chip probing requires package
removal, expensive equipment and very skilled attackers.

3. Storage passive attack consists in reading the content of a memory. Some very sophisti-
cated analysis tools can be used to investigate memories but they usually imply package
removal plus some on-silicon scanning. Memories can also be dumped from their regular
I/O. A ROM or a non-volatile memory can be isolated or even removed from its printed
circuit board, its address bus driven and its content recorded by a logic analyser or any
similar equipment. In some cases, volatile memories can even be cooled, removed from
their PCB and plugged on the recording host without losing their content.

4. Passive attacks against sensors are not applicable.

 119

Security requirements listed in that document address both active and passive attacks. Func-
tional and architectural views used for modelling the system capture some of the hardware
and software elements mentioned above, such as CPU, RAM, TOM, communication links,
etc. Some elements might be captured only at architectural view level.

From a security point of view they are all potential targets of attacks but by different means
and consequences. Security requirements shall therefore address all system elements that
might be involved in attacks identified in attack trees.

Additionally, attacks might be classified according to the system description itself. To do
so, we might provide attributes to functional and physical element, such as the cost to make a
software exploit on a given software task, or the cost to dump a given memory. This full set of
attributes will be defined and used at formal verification step (Task 3400).

D.2.3 SysML based security requirements

D.2.3.1 Rationale

The increasing complexity of large-scale heterogeneous systems such as embedded systems
has made requirements engineering the most critical phase during system conceptualization.
Security requirements in particular should be specified and taken into account before the sys-
tem architecture is fully defined. However, determining such requirements within embedded
systems generally and paradoxically necessitates a detailed enough knowledge of the system
components and interactions, like how functions are mapped onto hardware, whether some
communication might be seen by an attacker, etc. Security requirements in fact constitute the
most abstract documentation of the expected system behaviour.

As such, security requirements should provide a specification that has to be satisfied at
every subsequent stage of the system design, validation, development, and testing. Establish-
ing relationships between requirements and such later phases of engineering should thus
receive appropriate support: for instance, it should be possible to document the fact that some
security mechanism is introduced in order to satisfy one security requirement, or to point at
some test over the implementation in order to verify that it is compliant with the same
requirement. In the case of embedded systems, the need for hardware protection to satisfy
security requirements should be supported by the methodology used.

Security requirements should furthermore constitute a manageable documentation for the
average system engineer. As of today, requirements are mainly defined using natural language
descriptions and are largely text based. However, such techniques are often imprecise and
may lead to the specification of inconsistent security requirements. In particular, security
requirements are often defined independently from the security threat analysis or, on the con-
trary, they are mixed together. A precise description of a separately defined threat coverage
however is necessary to provide convincing arguments as to the security achieved by the sys-
tem under design. Furthermore, a text based description also does not make it possible to
define relationships between different requirements that would make it possible to organize
the set of security requirements into a description with different levels of complexity that
would be more manageable by a human being. In that respect, graphical formalisms typically
exhibit many advantages in terms of human readability, although text-based tables may be
more appropriate for checking the consistency of a set of requirements.

 120

Finally, because they are defined on a partially specified system, security requirements are
likely to evolve during the engineering process. Requirement traceability is thus another
important issue which is missing in text-based approaches: providing a rationale about the
definition of fine-grained requirements is necessary to understand whether some requirement
is still necessary if some assumption about the environment, an attacker, or even the system
architecture changes. Another problem with tracing the origin of some requirement stems
from the fact that system design is generally architecture and function driven, whereas secu-
rity is generally non-functional and introduced orthogonally to components.

D.2.3.2 Related Work

Modelling and validating requirements is a topic at stake in system engineering [22][23][24]
more specifically to propose standardized environments/languages. Many specification
approaches have followed the road of defining profiles [22][24][26][27][28][29] based on the
Unified Modelling Language (UML) [25]: in addition to the graphical specification, portabil-
ity and interoperability are usually among the strength of such profiles. The specification also
being semi-formal provides a great deal of flexibility at an early stage of engineering. The
next paragraphs discuss the ins and outs of several of those profiles.

A UML profile has been introduced based on the KAOS methodology, one of the most
advanced approaches to the specification of security requirements. KAOS provides a lan-
guage and method to goal-driven requirements design [30] yet was not originally devised with
a UML centric approach in mind. KAOS provides semantic elements to represent time,
agents, events, goals, goal patterns, goal categories and subgoals as well as conflicting goals
and constraints. A relevant feature of KAOS is that goals and related constraints can be
defined formally using temporal logic [28]. However, in order to define such expressions
accurately, design should be as precise as possible. KAOS properties also span several classes
and may properly express non-functional requirements like security ones [28]. However
KAOS lacks a systematic coverage of threats and does not provide any support for software-
hardware co-design nor code generation and testing in that setting.

The Enterprise Distributed Object Computing profile (EDOC) [30] relies on the Object
Constraint Language (OCL) to represent and check requirement satisfaction. However, this
profile has been designed to specify functional requirements rather than security ones, and
also to improve business processes. It thus does not provide appropriate support for security
requirements specification.

The Refinement Calculus for Object System (rCOS) is an object-based language with a
rich variety of features including subtypes, inheritance, type casting, dynamic binding, and
polymorphism [31]. rCOS permits the mathematical characterization of objects through
Labelled Transition Systems. Despite its benefits, rCOS is inherently software oriented, which
is perfectly fit for service oriented design [26] but not appropriate for the specification of
security requirements at system level.

UMLsec [33] introduces a security-oriented methodology based on activity diagrams,
state-charts, sequence diagrams, class diagrams, and deployment diagrams. As shown in [34]
the UMLsec approach can be complemented with automated verification of security proper-
ties using an industrial tool. The examples provided with UMLsec outline that the methodol-
ogy is more about security mechanism design than about security requirements linked with
use cases: guidelines might be provided for handling secrecy, secure key management, and

 121

security protocol specification. In addition, the specification might be ambiguous due to the
UML diagrams used: for instance, defining integrity on top of a link between execution nodes
in the deployment diagram may be interpreted either as a property that the link should imple-
ment or as a mechanism that the link already implements independently from requirements.
Another drawback of UMLsec comes from the fact that it is an extension of UML, and there-
fore not recognized by most existing tools. Some authors [35] also even claimed that OCL
constraints were enough to introduce similar specifications without extending UML.

SecureUML is a profile that aims to provide security again using an extension of the UML
specification [36]. SecureUML however only specifies security polices for Role-Based
Access Control (RBAC) using graphical notation and logical constraints, so it is essentially
adapted to application security.

Since these UML profiles are design-oriented, they are generally more suited to describing
security mechanisms than security requirements. Other non UML-based environments can
also be mentioned, that rely directly on a formal framework like for instance the Symbolic
Trace Analyser (STA). STA is a model checker for cryptographic protocols relying on sym-
bolic techniques [37]. Protocols are described in a dialect of the spi calculus. Intruders can be
modelled based on the well-known Dolev-Yao model. STA allows to express and verify
authentication and secrecy properties. The lack of parametrization of STA leads to large
specifications when a more instances are needed. Another example is the On-the-fly Model-
Checker (OFMC). OFMC implements bounded verification of protocols by exploring its tran-
sition system described in a specification in a demand-driven way. OFMC also support the
specification of algebraic properties of cryptographic operators. To our knowledge STA and
OFMC, as well as other non UML-based security-oriented environments, do not have specific
constructs to represent security properties. An exception to the latest statement could be ST-
Tool [23]. ST-Tool provides a Graphical User Interface, a Data Modeller and Formal Lan-
guage and Analysis components that are based on the formal language TROPOS. This profile
is mainly intended for Security Requirements Engineering. A general problem with such
approaches comes from the need to define cryptographic protocols between the elements of
the system in the first place, before security properties of the system be specified.

D2.3.3 The SysML profile

SysML (Systems Modelling Language) is a specification defined and promoted by the Object
Management Group (OMG). OMG produces and maintains computer industry specifications
for interoperable, portable and reusable enterprise applications in heterogeneous environments
[38]. SysML is intended to provide simple but powerful constructs to model a wide range of
system engineering problems. The goal of the SysML specification is to provide a “standard
modelling language for a systems engineering to analyze, specify, design, and verify complex
systems, intended to enhance system quality, improve the ability to exchange systems engi-
neering information amongst tools and help bridge the semantic gap between systems, soft-
ware and other engineering disciplines” [39]. As a legacy of the Unified Modelling Language
(UML) specification, the SysML reuses a subset of that specification extending its semantics
to emphasize requirements and parametric constraints [39]. Such features are particularly
useful when security requirements are at stake.

 122

Figure 22 SysML Diagram Description

The SysML Requirement Diagram provides constructs to define and specify requirements
that systems under design shall satisfy. Each requirement is specified in a single node with its
name, its identifier and a brief plain text description of the requirement. The relationships
between requirements can be established through links between nodes. Each path has a
defined syntax. Based on this specification several operators have been implemented in TTool
[13] to relate requirements in diagrams. Since these operators are used in Security Require-
ments Diagrams in the next subsections, they are listed and explained in Table 24. All links
defined in SysML can be found in [40].

 123

Table 24 Description of SysML symbols

Link Symbol Description

Composition

 The requirement attached to the sharp edge A should be
satisfied in order that the one attached to the crossed cir-
cle B be also fulfilled. The requirement A is part of the
requirement B; therefore, the requirement B is fully
described by the requirements it is composed of and a
dependency relationship is established between B and its
composing requirements.

Derive
Requirement

 <<deriveReqt>>

The requirement attached to the sharp edge A should be
satisfied in order that the one attached to the crossed cir-
cle B be also fulfilled. The requirement A is part of the
requirement B; therefore, the requirement B is fully
described by the requirements it is composed of and a
dependency relationship is established between B and its
composing requirements.

Copy

 <<copy>>

A copy operator between requirements A and B estab-
lishes a master/slave relationship between them in such
way that the text of the slave A is a read-only copy of the
text of the master B. For each slave a unique master
should be related but several slaves are possible for each
master.

Verify

 <<verify>>

A relationship between a requirement A and a test case O
can determine whether the system that is represented in
other diagrams, fulfils the requirement A or not. In our
profile the test case O is expressed through nodes called
Tobservers. Additional actions can be attached to observ-
ers if after verification the requirement A is not satisfied.
Observers are defined with a name, a related diagram, an
informal description of the property and an identifier that
is used when the property is not satisfied. Observers are
the medium through which system model and Require-
ment Diagrams are linked for verification purposes.

D.2.3.4 SysML for EVITA: Expected outcomes

In our proposed framework, security requirements are described with an approach close to the
language of use case designers and system engineers. SysML is a standardized specification
intended for software and hardware system engineering modelling. Models based on this pro-
file satisfy interoperability and portability criteria. Moreover, SysML can be used within a
Model Driven Approach. In EVITA, we have been using the domains defined by use cases to
classify the security requirements determined in addition to their security properties and
describing the relationships between security requirements and in particular their respective
dependencies as explained in Table 24. This is the reason why security requirements are mod-
elled in the SysML requirement diagram [39]. We are additionally working on the introduc-

A B

O A

A B

A B

 124

tion of attack specifications into the parametric diagram in order to obtain a more complete
description of requirements and their coverage.

• Security requirements are described in a way that relates to threats identification (i.e., trace
security requirements aimed at threat mitigation or anti-goal prevention rather than security
property or goal achievement). Security requirements also contain observers, which may
be seen as test cases meant to be used for the formal verification (or simulation) phase.
Observers may additionally be seen as a means to document requirements. This set of
requirements and observers altogether provides a conceptual model of the security expec-
tations of the system, abstracted from the literary description of use cases.

• Security requirements are defined using different relationships. We have more particularly
used containment, dependency – deriveReqt, and reuse in different namespaces copy rela-
tionships.

• In our framework, threat modelling, security requirements, the Y-chart approach to hard-
ware/software co-design [41], formal verification, and code generation, all are integrated
into one environment (TTool) [13]. This feature is not present in environments presented in
the related work section, for example in UMLSec [33]. TTool offers a unified environment
for modelling and engineering embedded systems with security and real-time constraints.

• Requirement traceability is another important capability of our approach. Requirements
can indeed be linked to attacks and to models of the system. SysML Requirements imple-
mented in TTool can reference attacks of attacks trees, therefore facilitating the coverage
study of attacks. We also intend, in a near future, to model attack trees with SysML para-
metric diagrams, therefore improving the integration of our solution. Parametric Diagrams
are defined through graphical nodes that represent constraints or value types: constraints
are meant to relate value types together. More precisely, value types could represent
attacks while constraints are meant to model relations between attacks (or, and, etc.).

• Another advantage of using the SysML requirements diagram in EVITA is to show its rela-
tionship with other modelling elements to bridge the gap between traditional requirement
management tools and other SysML models.

D.2.3.5 Environment Related Security Requirements

Prevent Malicious Modifications on the Environment Representation
This set of security requirements is organized under the more abstract requirement of pre-
venting malicious modifications to the environment representation. This security requirement
aims at preventing attackers from feeding wrong environmental information to the gateways
and sensors. Prevent Malicious Modifications on the environment representation security
requirement (GSR-1) has Requirement Containment Relationship which contains further
security requirements such as Integrity of Messages (GSR-1.1), Message Freshness(GSR-1.2),
Authenticating Message Sources (GSR-1.3) and Environment Information Attestation (GSR-
1.4). More fine grained definition of these security requirements are explained in the next sec-
tion. These requirements can be used alone or combined together as shown in Figure 23, in
order to cut an attack tree node or different branches of attack tree(s).

 125

Figure 23 SysML Environment Related Security Requirements

 126

D.2.3.6 Availability Requirements

This set of security requirements is focusing on properties that should be maintained despite
denial of service attacks, coming either under the form of computational resource oriented
DoS, network DoS, or even degradation of real-time constraints. ECU availability security
requirement will ensure that: “A service or a physical device providing a service is opera-
tional”. Ensure Availability of ECUs (ASR-1), requirement has requirement containment
relationship, which contains Ensure Bus Availability (ASR-1.1) Ensure CPU Availability
(ASR-1.2), Ensure RAM Availability (ASR-1.3) and Ensure External Communication Device
Availability (ASR-1.4). These requirements aim at preventing (temporary) denial of service
attacks compromising the availability of their target at functional levels. An availability
property applies to a service or to a physical device such as CPU, RAM or Bus. Furthermore
Availability of Highest Priority Functions (ASR-3) and Availability of Radio Medium (ASR-2)
must be ensured as shown in Figure 24.

D.2.3.7 Privacy Requirements

These security requirements are intended to protect the driver privacy in the cases when the
relation between the vehicle and its use, and the identity of its owner or driver is confidential.
The driver privacy requirement can be ensured having a Controlled Access to Emergency Ser-
vice Messages and Data by the authorized entities, giving a Privacy Policy for Disclosure of
Information about of the driver and his vehicle, and assuring Unlinkability of Emergency Ser-
vices on Critical Messages. This Unlinkability of Emergency Services security requirement
can be achieved by assuring Car to External entities Message Privacy, being Unlikable
Driver Identification between Services and being Unlinkable Time Ordering of Messages as is
shown in Figure 25.

D.2.3.8 Fake Command Requirements

This set of requirements is organized based on the abstract requirement to prevent sending
fake commands. This security requirement will prevent attackers from sending wrong or fake
commands from within or from outside the TOE. Prevent Sending Fake Command (FSR-1)
requirement has requirement containment relationship, which contains further security
requirements such as Prevent Man In The Middle Attack (FSR-1.1), Prevent Replacement of
Chips on Local Busses (FSR-1.2) and Protect ECU Flashing Process (FSR-1.3) as shown in
Figure 26.

 127

Figure 24 SysML Availability Security Requirements

 128

Figure 25 SysML Privacy Security Requirements

 129

Figure 26 SysML Fake Command Security Requirements

 130

D.2.3.9 Flashing Requirements

This set of security requirements will ensure that a flashing update takes place with authorized
firmware, whose IPR is not endangered. Whenever a flashing process is performed, a Con-
trolled Access to Flash Memory (FBSR-1) requirement may be specified. This will ensure that
flash memory should be paired with their ECU to prevent flash replacement. Controlled
Access to Flash Memory has a requirement containment relationship which contains: Con-
trolled Access to Flashing Function (FBSR-1.1): This security property requires Integrity
Property – Code Integrity (FBSR-1.1.1) and Integrity of Firmware Update requirements
(FBSR-1.1.1.1). Whereas Controlled Access Property – Controlled Access to Read from
Flash (FBSR-1.2): This security property requires Confidentiality Property – Confidentiality
of Firmware Data (FBSR-1.2.1) and Confidentiality of Firmware Update (FBSR-1.2.1.1)
requirements as shown in Figure 26.

D.2.3.10 Braking DoS Requirements

This set of requirements is intended to ensure that braking manoeuvres that are triggered in
the vehicle be done when they are required and by the authorized entities or actors in the
manoeuvre. To ensure the availability of the services and entities required in braking situa-
tions is necessary Prevent Brake Denial of Service attacks when Emergency Situations happen
and Prevent broadcast (of this) Denial of Service attacks When Emergency Situations happen
too. To ensure that the breaking manoeuvres are triggered by the authorized entities is neces-
sary to Prevent Sending Fake Command and Authentication of Functional Path to Prevent
Head Unit Spoofing. A detailed view of these requirements can be found in Figure 28.

D.2.3.11 Security requirements coverage

To illustrate the application of the abovementioned security requirements, their coverage was
analyzed for two attack trees (Automatic Brake Function and Unauthorized Braking) as
shown in Table 25.

D.2.4 Functional and mapping views of use cases

Figure 29 shows the functional view of the “Safety Reaction: Active Brake” use case. Figure
30 shows the mapping view of the “Safety Reaction: Active Brake” use case. Figure 31 shows
the functional view of the “Flashing per OBD” use case. Figure 32 shows the mapping view
of the “Flashing per OBD” use case.

Messages between functions have been categorized into data or events. The system archi-
tecture is made of four CPUs. Each CPU comes with its own local bus on which is connected
a bridge, a RAM, a flash memory, and possibly input/output devices. Four of these CPU
blocks are considered: CU (Communication Unit), BU (Braking Unit), PTC (Powertrain
Controller), CSC (Chassis and Safety Controller). The mapping of functions has been per-
formed according to the use case description.

 131

Figure 27 SysML Flashing Security Requirements

 132

Figure 28 SysML Braking DoS Security Requirements

 133

Table 25 Security Requirements Coverage – Attack Trees 8 and 9

Security Requirements Attack Tree Nodes
Integrity of
Messages

Enforce Trusted Integ-
rity Verification

8.2.1.2.1, 8.2.2.1.1.1, 9.2.1.3,
9.2.1.2, 9.2.1.1

Environment Infor-
mation Attestation

Enforce Trusted
Sources of Attestation

8.2.1.2.1, 8.2.2.1.1.1,
8.2.2.1.1.2.1, 8.3.1, 9.2.1.1.1,
9.2.1.3

Authenticating Mes-
sage Sources

Enforce Trusted
Authentication

8.2.1.2.1, 8.2.1.1.2, 8.2.1.1.1,
8.2.2.1.1.2, 8.2.2.1.1.2.1,
9.2.1.1.1, 9.2.1.3

Environ-
ment
related
Security
Require-
ments –
General
Require-
ments (1)

Prevent Mali-
cious Modifi-
cations of the
Environment
Representation

Message Freshness Enforce Correct and
Updated Time Source

8.2.1.2.1, 8.2.2.1.1.1,
8.2.2.1.1.2.1, 9.2.1.1.1,
9.2.1.3

Prevent Man In The
Middle Attack

Authentication of
Functional Path

8.1.1.1.1, 8.1.1.2.1, 8.2.1.3.1,
8.2.2.2

 Message Freshness
along Functional Path

8.1.1.1.1, 8.1.1.2.1, 8.2.1.3.1,
8.2.2.2

 Integrity of Message
Attributes along
Functional Path

8.1.1.1.1, 8.1.1.2.1, 8.2.2.2

Prevent Replace-
ment of Chips on
Local Busses

Protect ECU Flash-
ing Process

Code Origin Authen-
tication

8.1.2, 8.1.1.2, 8.2.1.3.1, 8.3.1

 Code Integrity 8.1.2, 8.1.1.2, 8.2.1.3.1, 8.3.1

Fake
Com-
mand
Require-
ments –
General
Require-
ments (4)

Prevent Send-
ing Fake Com-
mand

 Flashing Command
Freshness

8.1.2, 8.1.1.2, 8.2.1.3.1, 8.3.1

Car2Car Message
Anonymity

e-Call Message Pri-
vacy

Privacy
Require-
ments –
General
Require-
ments (3)

Protect Driver
Privacy

Controlled Dis-
closure of Time

Ensure Bus Avail-
ability

 9.1.2.2, 9.3.1.2, 9.1.2.3,
9.1.1.1, 9.1.1.2, 9.3.1.3,
9.3.2.1, 9.3.2.2, 9.3.3.1,
9.3.3.3

Ensure CPU Avail-
ability

 9.1.2.2, 9.3.1.2, 9.1.2.3,
9.1.1.1, 9.1.1.2, 9.3.1.3,
9.3.2.1, 9.3.2.2, 9.3.3.1,
9.3.3.3

Ensure RAM Avail-
ability

 9.1.2.2, 9.3.1.2, 9.1.2.3,
9.1.1.1, 9.1.1.2, 9.3.1.3,
9.3.2.1, 9.3.2.2, 9.3.3.1,
9.3.3.3

Ensure Avail-
ability of
ECUs

Ensure External
Communication
Device Availability

 9.1.2.1, 9.3.1.1, 9.3.3.3

Ensure Avail-
ability Radio
Medium

 9.3.3.3

Availabil-
ity and
Overhead
Require-
ments –
General
Require-
ments (2)

Ensure High-
est Availabil-
ity for Highest
Priority Func-
tions

 134

Figure 29 Functional view of Safety Reaction Active Brake

 135

Figure 30 Mapping view of Safety Reaction Active Brake

 136

Figure 31 Functional view of Flashing per OBD

 137

Figure 32 Mapping view of Flashing per OBD

 138

References
[1] ISO/IEC 15408, “Information technology – Security techniques – Evaluation criteria for IT secu-

rity”, (3 parts).

[2] ISO/DIS 26262, “Road vehicles – Functional safety”, ISO, draft, 2009 (10 parts).

[3] “MISRA Guidelines for safety analysis of vehicle based programmable systems”, ISBN 978 0
9524156 5 7, MIRA, 2007.

[4] IEC 61508, “Functional safety of electrical/electronic/programmable electronic safety-related
systems”, IEC, 1998–2005 (8 parts).

[5] E. Kelling, M. Friedewald, T. Leimbach, M. Menzel, P. Saeger, H. Seudié, and B. Weyl, “Speci-
fication and evaluation of e-security relevant use cases”, Deliverable D2.1 of EVITA, 2009.

[6] S. Gürgens, P. Ochsenschläger, and C. Rudolph, “Authenticity and Provability – a Formal Frame-
work”, Infrastructure Security Conference 2002, October 2002, Springer Verlag.

[7] S. Gürgens, P. Ochsenschläger, and C. Rudolph, “Parameter confidentiality”, Informatik 2003 –
Teiltagung Sicherheit, Gesellschaft für Informatik, 2003.

[8] S. Gürgens, P. Ochsenschläger, and C. Rudolph, “Abstractions preserving parameter confidential-
ity”, Computer Security – ESORICS 2005, pp. 418–437, Springer Verlag, 2005.

[9] R. Grimm and P. Ochsenschläger, “Binding Cooperation. A Formal Model for Electronic Com-
merce”, Computer Networks, Vol. 37, Issue 2, pp. 171–193, October 2001.

[10] P.H. Jesty and D.D. Ward, “Towards a unified approach to safety and security”, Safety-critical
Systems Symposium, Bristol, UK, February 2007.

[11] D.G. Firesmith, “Specifying Reusable Security Requirements”, Journal of Object Technology
(JOT), 3(1), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, pp. 61–75, Janu-
ary/February 2004.

[12] A. Aijaz, B. Bochow, F. Dötzer, A. Festag, M. Gerlach, R. Kroh, and T. Leinmüller, “Attacks on
Inter Vehicle Communication Systems – an Analysis”, 3rd International Workshop on Intelligent
Transportation (WIT 2006) March 2006

[13] TTool: The TURTLE Toolkit. In http://labsoc.comelec.enst.fr/turtle/ttool.html.

[14] OMG Systems Modelling Language (OMG SysML™), Version 1.1

[15] D.D. Ward, P.H. Jesty and R.S. Rivett, “Decomposition scheme in automotive hazard analysis”,
SAE 2009 International Congress, Detroit, USA, April 2009, Paper 09AE-0248.

[16] B. Schneier, “Secrets and Lies − Digital Security in a Networked World”, Wiley, New York,
2000, Chapter 21.

[17] ISO/IEC 18045, “Information technology – Security techniques – Methodology for IT security
evaluation”.

[18] Common Criteria Supporting Document – Mandatory Technical Document – Application of
Attack Potential to Smartcards. Version 2.5, Revision 1, April 2008, CCDB-2008-04-001.

[19] “Abbreviated injury scale”, Association of the Advancement of Automotive Medicine; Barring-
ton, IL, USA (see www.carcrash.org).

[20] L. Apvrille, “TTool for DIPLODOCUS: an Environment for Design Space Exploration”, Pro-
ceedings of the 8th international conference on New Technologies in Dsitributed Systems, Lyon,
France, 2008.

[21] D. Knorreck, Ludovic Apvrille, Renaud Pacalet, “Fast Simulation Techniques for Design Space
Exploration”, 47 International Conference TOOLS EUROPE, Zurich, Switzerland, 2009.

 139

[22] L. Yin, J. Liu and X. Li, “Validating Requirements Model of a B2B System”, 8th International
Conference on Computer and Information Science, IEEE/ACIS, 2009.

[23] P. Giorgini, F. Massacci, J. Mylopoulos and N. Zannone, “ST-Tool: A CASE Tool for Security
Requirements Engineering”, 13th International Conference on Requirements Engineering, IEEE,
2005.

[24] S. Graf, I. Ober and I. Ober, “A Real-Time Profile for UML”, VERIMAG, France, in http://www-
verimag.imag.fr/.

[25] The Unified Modelling Language (UML) in http://www.uml.org/

[26] W. Sun, J. Wu, Y. Xiong, “Methodological Support for Service-oriented Design with rCOS”,
International Symposium on Information Engineering and Electronic Commerce, IEEE, 2009.

[27] O. Kath, M. Soden, M. Born, T. Ritter, A. Blazarenas, M. Funabashi, C. Hirai, “An Open Model-
ling Infrastructure integrating EDOC and CCM”, 7th International Enterprise Distributed Object
Computing Conference, IEEE, 2003.

[28] W. Heaven and A. Finkelstein, “A UML Profile to Support Requirements Engineering with
KAOS”, IEE Proceedings, 2004.

[29] A. Moore, “Extending the RT Profile to Support the OSEK Infrastructure”, 5th International Sym-
posium on Object-Oriented Real-Time Distributed Computing, IEEE, 2002.

[30] The Object Management Group (OMG), “The EDOC specification” in http://www.omg.org/mda.

[31] Z. Wang, X. Yu, G. Pu, L. Feng, H. Zhu and J. He, “Execution Semantics for rCOS”, 15th Asia-
Pacific Software Engineering Conference, IEEE, 2008.

[32] P. Bertrand, R. Darimont, E. Delor, P. Massonet, A. van Lamsweerde, “GRAIL/KAOS: An Envi-
ronment for Goal-Driven Requirements Engineering”, CEDITI-UCL and Université Catholique
de Lauvain, Belgium.

[33] J. Jürjens, “UMLsec: Extending UML for Secure Systems Develpment”, 5th International Confer-
ence on the Unified Modeling Language, pp. 412-425, 2002.

[34] J. Jürjens and P. Shabalin, “Automated Verification of UMLsec Models for Security Require-
ments”, Munich University of Technology, Germany, in http://www4.in.tum.de/~juerjens,
http://www4.in.tum.de/~shabalin.

[35] K.P. Peralta, A.M. Orozco, A.F. Zorzo, F.M. Oliveira, “Specifying Security Aspects in UML
Models”, Pontifical Catholic University of Rio Grande do Sul, Brazil.

[36] T. Lodderstedt, D.A. Basin, J. Doser, “SecureUML: A UML-based Modeling Language for
Model Driven Security”, 5th International Conference on the Unified Modeling Language,
pp. 426-441, 2002.

[37] M. Boreale and M.G. Buscemi, “Experimenting with STA, a Tool for Automatic Analysis of
Security Protocols”, Symposium on Applied Computing, ACM, Lecture Notes in Computer Sci-
ence, pp. 281-285, 2002.

[38] The Object Management Group (OMG) in http://www.omg.org.

[39] The OMG Systems Modelling Language in http://www.omgsysml.org

[40] OMG, “OMG Systems Modelling Language (OMG SysML) specification”, Final adopted specifi-
cation ptc/2006-05-04, 2007.

[41] P. Lieverse, P. van der Wolf, E. Deprettere, K. Vissers, “A Methodology for Architecture Explo-
ration of Heterogeneous Signal Processing Systems”, Workshop on Signal Processing Systems,
IEEE, 1999.

