
UNIVERSITAT POMPEU FABRA

PhD Research Proposal

Immersive Audiovisual Production

Enhancement based on 3D Audio

by

Andrés Pérez-López
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Abstract

Blind Source Separation of convolutive mixtures is a well-know problem. A common ap-

proach consists of using microphone array for exploting spatial information. Ambisonics

microphones are a special case of spherical arrays, which are designed to transform the

incoming signals into the spherical harmonics domain - thus, keeping an intrinsic spatial

representation of the sound scene, and easing source localization estimation procedures.

Some research has been carried on exploring how this potential can be used on the

BSS domain, but usually under simplified conditions (limeted to First Order Ambison-

ics and/or horizontal plane, for example). Furthermore, the successful introduction of

Deep Neural Networks for the BSS problem, which has already shown a very good per-

formance, has still not been fully applied to the Ambisonics domain. The aim of the

proposed thesis is then to investigate and apply the most relevant results on the inter-

section of the presented topics, in order to improve separation methods and provide the

basis for a new generation of immersive content creation and manipulation.
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Introduction

The present document describes the author’s Industrial PhD Research Proposal, which

is developed between the Music Technology Group of the Pompeu Fabra University,

under the supervision of Dr. Emilia Gómez, and the technological center Eurecat, under

the supervision of Dr. Adán Garriga.

In the present chapter we will briefly introduce the motivations and research context of

the work. Chapter 2 presents a comprehensive State-of-the-Art review on the related

topics. In Chapter 3 we will expose our Research Plan, based on the critical analysis of

the information gathered in Chapter 2.

1.1 Motivation

Blind Source Separation for complex sound scenes is a well know problem. Plenty of

methods have been proposed over last decades, covering a big range of use cases, devices

and mathematical formulations. Deep Neural Networks have been recently started to

be applied to the BSS problem in some cases, showing great results and outperforming

state of the art results. In an intuitive way, the more information we can gather or

estimate from the sound scene, the better the performance of the separation methods.

That’s why we focus on the analysis of existing proposals and possibilities of Ambisonics

microphones. Motivated by the current interest on immersive media and Virtual Re-

ality, many researchers and manufacturers have payed attention again to such devices,

and in general to the Ambisonics theory. The availability of new Ambisonics recording

devices makes interesting to explore their intrinsic spatial representation capabilities,

which on the other hand have been only partially explored by the research community.

The potential application possibilities of Blind Source Separation applied to Ambisonic

sound scenes go beyond the current geometrical approaches: automatic scene descrip-

tion, custom source enhancement and modification, de/reverberation, automatic speaker

3
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tracking, data compression, etc. In the musical domain, the potential possibilities for

innovative immersive production, analysis and manipulation tools are as well promising.

1.2 Context

Eurecat is the result of the merging process of the main Catalan Technology Centres,

a process which started in 2015 and still ongoing which counts already with the sum

of capacities of seven originals centres and beyond. Eurecat is currently the leading

Technology Centre in Catalonia, and the second largest private research organization in

Southern Europe. Eurecat manages a turnover of 43M and 600 professionals, is involved

in more than 160 RD projects and has a customer portfolio of over 1.000 companies.

The Audio Research Group, within the Multimedia Division, is one of Eurecat’s R&D

units. The group counts within its premises with a fully equipped 3D audio studio with

state of the art technology: 3D audio and binaural recording hardware, a 3D multichan-

nel reproduction system 25.1 and the Sfar software for 3D audio and music production.

The Audio Lab also provides 3D audio solutions for different creative sectors: music,

cinematic VR, videogames, audio installations (museums, theatres, festivals), and ad-

vertisement.



Scientific Background

2.1 Ambisonics

2.1.1 Introduction

Ambisonics is a sonic theory, developed in the 1970s by Gerzon [3], based on the spatial

decomposition of a soundfield into a sequence of spherical harmonics. Spherical Har-

monics conform a complete set of orthogonal functions defined in spherical coordinates

around a sphere. Figure 2.1 depicts the spherical harmonics up to the 3rd degree.

Figure 2.1: Spherical harmonics (from [1])

In an intuitive way, the Ambisonics decomposition might be compared with the Fourier

Transform. In the latter, a signal is decomposed by the weighted infinite summation

of a set of basis functions, and provides an alternative representation of the signal in

the Frequency Domain (Figure 2.2). The spherical harmonics decomposition provides a

similar approximation, transforming a soundfield into the spherical harmonics domain.

5
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Figure 2.2: Dual Time-Frequency representation of the Fourier Transform (from [2])

In practical scenarios, the degree of the spherical harmonics summation must be trun-

cated, and the so called Ambisonics order or L represents the maximum degree for a

given decomposition. The bigger L, the better the spatial resolution of the sound scene,

at the expense of a bigger bandwidth. The relationship between L and the number of

spherical harmonic functions N (which is equivalent to the number of channels of the

audio file) follows:

N = (L + 1)2 (2.1)

Due to historical reasons, emphasis is usually placed on the distinction between First

Order Ambisonics, as first described by Gerzon [3], and the so called Higher Order

Ambisonics, which were deeply studied by Daniel’s PhD Thesis [4]. The term B-Format

usually makes reference to a file which contains FOA audio, but it is sometimes also

applied to HOA files.

Ambisonics audio might be obtained by two different means. One possibility consist of

syntetically create the sound scene from the individual sources, by computing analyt-

ically the Ambisonics coefficients (in fact, the projection into the spherical harmonics

basis) given the source positions. The second way is to use spherical microphone arrays

(usually called Ambisonics microphone), which provide Ambisonics audio though digital

signal processing and beamforming techniques. In Subsection 2.1.3 we will briefly review

some of the existing Ambisonics microphones.

2.1.2 Spatial Audio Delivery

It is commonly agreed that there are three types of approaches or formats for spatial

audio delivery:
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• Scene-based: Ambisonics decomposition of the soundfield

• Object-based : Sound and position metadata are stored separately for each source.

• Channel-based : Classical stereophony (stereo, 5.1, etc), with each channel dedi-

cated to a specific listening position.

Table 2.1 shows some of the benefits and drawbacks for each approach. Please refer to

[5] for a more detailed comparison.

Format Pros Cons

Scene-
based

• Fixed amount of channels
• Layout-independent
• Allows for spatial transformations
• Standard file format (B-Format)
• Available microphones
• ”Includes” room information (reverb)

• Needs decoder for listening
• N grows exponentially for higher spatial

resolution (Eq. 2.1 )

Object-
based

• Very flexible
• Provides all information about sources
• Layout-independent

• Bandwidth increasing with number of
sources

• Needs non-audio information (metadata)
• No standard file format
• Does not include room information
• Needs rendering stage for listening

Channel-
based

• No rendering stage needed for listening
• De facto spatial audio delivery standard

• Imposed number and position of channels

Table 2.1: Comparison of spatial audio formats

Among the benefits of the scene-based approach, there are two which explains the in-

creasing popularity of Ambisonics. First, it provides an intermediate representation, in

the sense that it might be used to reconstruct the sound scene for any speaker layout

and, with appropriate processing, for binaural reproduction [6].

Second, the mathematical formulation of the spherical harmonics provides determinis-

tic methods for spatial transformations of the sound scene, including rotation around

the axes [7]. It is possible then, from a B-Format recording, to transform the scene

to binaural, and to rotate the scene according to the listener’s head movements with a

head-tracking device. It is proved that head-tracking improves the immersivity of the

sound scene, in terms of source localization and externalization [8].

Therefore, it is easy to understand the support of VR business to Ambisonics. In fact,

Ambisonics is currently the standard option for spatial audio support on major VR/360

audiovisual content providers, like Youtube [9] or Facebook [10].
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2.1.3 Ambisonics Recording

This situation has lead, as well, to a renewed interest in Ambisonics microphones. To-

gether with well-stablished products, as the SoundField MKII 1, the Tetramic and the

Eigenmike, a new set of microphones has been released in recent years. Examples of

them are the Sennheiser’s Ambeo, with a strong marketing emphasis on VR (”The new

dimension of VR audio productions” [12]), or the upcoming Zylia ZM-1, which is ori-

ented towards instrument source separation2. Zoom announced compatibility with VR

for the H2n3. The Twirling720 Lite, in pre-order at the moment of writting, will be the

first Ambisonics microphone designed for mobile devices (as a USB-compliant micro-

phone). The upcoming 8ball microphone will feature 8 microphones in a circular array,

providing first order horizontal recordings.

Table 2.2 lists several characteristics of some of the currently available Ambisonic mi-

crophones.

Ambisonics
Microphone

Number of
Capsules

Ambisonics
Order

Release
Year

SoundField 4 1 1978
Tetramic 4 1 2007
Eigenmike 32 4 2008
Ambeo 4 1 2016
Zoom H2n 3 1 horizontal 2016
Zylia ZM-1 19 3 (2017)
Twirling720 Lite 4 1 (2017)
8ball 8 1 horizontal (2017)

Table 2.2: Comparison of Ambisonics microphones

2.2 Sound Source Localization from Microphone Arrays

2.2.1 SSL with Linear Microphone Arrays

Sound Source Localization, also referred as Direction of Arrival (DOA) Estimation in

the acoustics field, has been an active research topic over last decades. SSL is a relevant

field across diverse scientific disciplines, as for instance radar, seismology or telecommu-

nications [14]. It often used, as well, as a preprocessing stage for other signal processing

applications, specially sound source enhancement, identification and/or separation.

1The first SoundField microphone was manufactured in 1978. Starting in 1993, when the patent
expired, other companies started to manufacture the model [11].

2In fact, the process of source separation has a preprocessing stage which requires every instrument
to play alone and in a fixed position. This fact suggests that the source separation is given by static
beamforming based on the preprocessed Direction of Arrival estimation

3The firmware version 2.00, released in 2016, allows to record in Spatial Audio mode, which is First
Order Ambisonics in the horizontal plane [13]
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The traditional approach for DOA estimation consists of calculating, for a single sound

source, the Time Difference of Arrival (TDoA) of the sound wave between a pair of

microphones. One of the most relevant algorithms is the Generalized Cross-Correlation

with Phase-Transform (GCC-PHAT), which exploits the coherence properties of the

microphone signals [15]. Multiple Signal Classification (MUSIC) [16], and Estimation

of Signal Parameters via Rotational Invariance Techniques (ESPRIT) [17], on the other

hand, are two of the most popular methods for the localization of several simultaneous

sound emitters.

This topic, however, exceeds the main focus of the thesis. Therefore, the reader is

encouraged to refer to [14] or [18] for further information.

2.2.2 SSL with Ambisonics Microphones

As introduced previously in Subsection 2.1.1, Ambisonics microphones are a special case

of microphone arrays, in which the capsules are arranged around the surface of a sphere

(hence the name spherical arrays). The signal might be then processed in the Ambisonic

domain, exploiting the structural and geometric properties of this specific arrangement.

Consequently, DOA estimation might benefit from this approach.

All methods presented in this section allow for multiple non-static source localization,

and are relatively robust against room reverberation effects. Table 2.3 presents a com-

prehensive comparison of the described methods.

The main Ambisonics SSL algorithm was presented by Pulkki in [19], as a processing

stage inside the so called Directional Audio Coding (DirAC). Pulkki derived theoret-

ically a method for computing DOA based on the energetic analysis of the incoming

sound wave. More specifically, he defined the Direction vector, D, and the Diffusseness,

Ψ, which can be computed directly from the zero-th and first Ambisonic order represen-

tation of the signal.

Assuming that humans are only able to instantaneously identify one sound source per

critical band [20], Pulkki proposed to compute D and Ψ for each Time-Frequency bin

after the STFT of the B-Format signal. This method is usually referred as the Intensity

Vector (IV) method.

This proposal was refined by Thiergart and Schultz-Amling [21], modelling the DOAs

with Gaussian Mixture Models (GMM), and Tervo [22], who introduced the Von Mises

circular distributions for azimuth estimation. Further contributions to the method were

authored by Pavlidi, Pulkki et. al. [23], who proposed the Single Source Zone estimator

for performance improvement, and again by Pulkki [24], partially extending the IV



Contents 10

concept to Higher Order Ambisonics. Recently, H. Chen and colleagues have proposed

several improvements based on binary mask of DOA estimations, by means of local DOA

variance analysis, accuracy estimation, beamforming or K-Means clustering [25, 26].

A closely related approach is the Pseudo-Intensity Vector (PIV), which is computed from

the function solutions (eigenbeams) of the spherical Fourier Transform of a HOA input

[27]. This method has been applied together with K-Means algorithm for the clustering

of the potential DOAs [28], and with the Direct-Path Dominance (DPD) Test as a way

to reduce the solution space [29]. DPD Test was first presented in [30], as one of the

steps of DOA estimation with spherical arrays based on Planar-Wave Decomposition

(PWD) and spatial correlation in the Spherical Harmonics domain.

To conclude this section, we must mention some other methods based, as well, on the

energetic analysis of the Ambisonics soundfield. On the one hand, the algorithm pro-

posed by Berge and Barret, which attempts to decompose the soundfield into two plane

waves [31, 32] - this method is commercially available under the name HARPEX [33].

On the other hand, the approaches by Dimoulas and colleagues, which described several

methods for Energy Based Localisation (EBL), considering as well arrays of SoundField

microphones for full 3D source localisation. [34, 35].

Article Method Ambisonics
Order

Microphone Number of
Capsules

Pulkki07 [19] IV 1 - -
Thiergart09 [21] IV + GMM 1 horizontal Custom circular 4
Tervo09 [22] IV + vonMises MM 1 horizontal Custom circular 4
Pavlidi15 [23] IV + SSZ 1 Custom spherical 32
Pulkki13 [24] Sectorial IV HOA - -
He17 [25] IV + local DOA + ac-

curacy + FOSDA
1 horizontal Custom circular 4

Ding17 [26] IV + local DOA + ac-
curacy + KMeans

1 horizontal Custom circular 4

Jarret10 [27] PIV HOA Eigenmike 32
Evers14 [28] PIV + K-Means HOA Custom spherical 32
Moore15 [29] PIV + DPD HOA Custom spherical 32
Nadiri14 [30] PWD + SCM + DPD HOA Eigenmike 32
Berge10 [31] Harpex 1 - -
Thiergart12 [32] Harpex 1 - -
Dimoulas07 [34] A-EBL 1 SoundField 4
Dimoulas09 [35] (DWT/SWT)-JTF-

A-EBL
1 SoundField 4

Table 2.3: Comparison of Ambisonics SSL methods
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2.3 Blind Source Separation

2.3.1 BSS for Monophonic Sources

Blind Source Separation is a well-known problem, which appears in a variety of different

scientific scopes as for example Biomedical Signals, Seismology or Radar. In the context

of audio source separation, there are several consolidated methods that have been exten-

sively used: Independent Component Analysis (ICA) [36], or the most recent Degenerate

Unmixing Estimation Technique [37] are good examples. In the following sections, we

will only focus on BSS approaches from multichannel recordings.

2.3.2 BSS for Multichannel Sources

Many researchers have been interested on the topic of Blind Source Separation for mul-

tichannel mixtures during last years. In words of Sawada, “As humans/animals have

two ears, multichannel processing is a way of realizing a more general source separation

capability because the spatial properties (directions or locations) of source signals can

be exploited” [38]. Indeed, the possibility of taking advantage of the spatial information

provided by the microphone array might be useful at one or more stages during the BSS

processing - for instance, the characterization of the source positions contributes to over-

come the well known permutation problem [39], by imposing spatial-temporal continuity

on the sources [40].

We will distinguish in the following paragraphs two types of approaches. In the first

group, we included methods which do not actively exploit DOA estimation (raw multi-

channel approaches). In the second group, the presented methods use deterministic SSL

estimation (by means of some of the algorithms reviewed in Section 2.2) as a fundamental

part of the separation process.

Raw Multichannel BSS

Most of the works on this field consist of multichannel extensions of the established

methods for monophonic BSS. The HOA extension for Independent Component Analysis

(ICA), first presented in [40], is a good exmaple. In that article, Epain and colleagues

investigated the usage of 2nd order HOA sources through anechoic simulations. This

line of research was continued by Baque et. al. [41], comparing several different ICA

algorithms under reverberant simulations, and using DOA estimation as an evaluation

metric.
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It must be noticed that, when using ICA algorithms with HOA, the number of target

sources must be smaller of equal to the number of spherical harmonics N for a given

Ambisonics order L (Equation 2.1). This condition would be equivalent to the limit of

the under-determined BSS in the Spherical Harmonics domain.

The method proposed by Ozerov and Fevotte [42] estimates a spectral model for each

source by means of Non-Negative Matrix Factorization (NMF). Despite the fact that

their methodology used 2 microphones, complying with the SiSEC 2008 [43] specifica-

tions, it did not consider any spatial cue of the mix.

Duong and colleagues investigated on the usage of full-rank Gaussian Spatial Covariance

Models for BSS [44], a method previously introduced for semi-blind source separation

in [45]. Separation is provided by Maximum Likelihood estimation though EM and

Wiener filters. It is interesting to mention that they considered DOA estimation in

the algorithm, but just as a mean to help parameter initialization, and for solving the

permutation problem.

By combining the spectral and spatial models from [42] and [44, 45], the algorithm by

Arberet et. at. outperformed the previous results for music blind source separation with

the audio mixture from two microphones [46].

Sawada and colleagues [38] proposed multichannel versions of several cost functions, such

as Euclidean distance and Isakura-Saito divergence, and designed a complex-valued NMF

procedure which involves a spatial matrix H.

To conclude this brief overview, we must mention the excellent and recent work by

Gannot, Vincent, Markovich-Golan and Ozerov [47]. They featured the most extensive

review, up to the present day, of the existing methods for speech enhancement with

microphone arrays, considering only the situation with one static speaker.

Table 2.4 summarizes the most relevant information about the exposed Raw Multichan-

nel BSS methods.

SSL-Based Multichannel BSS

As stated in the previous section, spatial information of the sound scene might be in-

cluded in the blind source separation process. The following proposals exploit actively

SSL techniques, usually as an initial step.

As in the case of Section 2.2.1, we will focus on the methods based on spherical mi-

crophone arrays. Therefore, we will not review the literature about Linear Micropone

Arrays. The reader might refer, for example, to [48] for an overview on the topic.
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Article Method Microphone
Array

L Target
Sound

Dataset Evaluation
Metrics

Epain10 [40] ICA Custom
spherical

2 Speech custom PESQ

Baque16 [41] ICA (ERBM) Custom
spherical

2 Speech custom SDR,
DOA

Ozerov09 [42] NMF Linear array - Music SiSEC08 SDR, ISR,
SIR, SAR

Duong11 [44] Gaussian SCM +
ML

Linear array - Speech custom SDR, ISR,
SIR, SAR

Arberet11 [46] Gaussian SCM +
NMF

Linear array - Music custom SDR

Sawada13 [38] Spatial CNMF Linear array - Music SiSEC11 SDR

Table 2.4: Comparison of Raw Multichannel BSS methods

Gunel and colleagues presented, in 2008, the first work featuring a preprocessing step of

DOA estimation from Intensity Vectors on the TF domain computed from a SoundField

microphone [49]. The histogram of the estimated DOAs is then used for obtaining

the probability density function of the sources. Provided that the algorithm requires

the source directions to be given, they are used to model the sources with von Mises

distributions. Finally, a directivity function (TF softmask) is applied to the spectrogram.

This approach has been further refined by Riaz in his PhD Thesis [50]. He proposed a

number of improvements, including microphone correction, adaptive filtering, location

estimation for moving sources and an extensive experimental validation.

A similar approach was researched by Shujau et. al. [51]. In this case, however, an

Acoustic Vector Sensor (AVS) was used - a device featuring pressure and velocity mi-

crophones, which is often found in the field of underwater acoustics [52]. The signal

output from the AVS is equivalent to First Order Ambisonics, so the energetic analysis

is performed in the same way. After the IV computation, the researchers proposed a

binary mask (based on the Voice Activity Detection (VAD) algorithm) to select the can-

didate TF bins, and then the DOAs are computed and clustered for separation. Unlike

Gunel [49], the information about number and position of the sources is not required,

thus making this algorithm more flexible.

X. Chen et. al. [53] proposed some improvements over the works by Gunel [49] and

Shujau [51]. Along with IV-based DOA estimation, they considered as well a Mixing

Vector (MV) estimation (also referred as Bin-wise classification) [54]. Von Mises and

Gaussian distributions are used to model both estimators, respectively, using an EM

algorithm. A soft TF masking is performed as a last step for source separation. Evalu-

ation is provided for both simulations and SoundField recordings, under a reverberant

environment for the under-, even- and over-determined cases.

Table 2.5 synthesizes the main features of the aforementioned methods.
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Article Method Ambisonics
Microphone

L Target
Sound

Dataset Evaluation
Metrics

Gunel08 [49] IV + vonMises MM
+ Softmask

SoundField 1 h Speech Music for
Archimedes

SDR, SIR

Riaz15 [50] Gunel + Mic Correc-
tion + Adaptive Fil-
ter + Location Esti-
mation

SoundField 1 h Speech,
Music

Music for
Archimedes

SDR, ISR,
SIR, SAR

Shujau11 [51] IV + VAD + DOA
Clustering + Binary
Mask

AVS 1 h Speech TIMIT SDR, ISR,
PESQ-
MOS

Chen15 [53] IV + MV + Softmask SoundField 1 h Speech TIMIT SDR, ISR,
PESQ-
MOS

Table 2.5: Comparison of Ambisonics SSL-Based Multichannel BSS methods

2.4 Multimodal Enhancement for BSS

2.4.1 Audiovisual SSL

Apart from the information that can be obtained from the audio signals, other infor-

mation sources might be as well analysed in order to improve the performance of the

algorithms. It is often the case, in the scope of cinematic VR, in which Ambisonics

microphones are widely used, that some kind of stereoscopic or 360 camera system is

simultaneously used.

Despite that image processing exceeds the scope of this proposal, information retrieval

from video might be used to improve performance of SSL and BSS algorithms. In

fact, as Gannot and colleagues point out in their considerations about future work on

Blind Source Separation, “the area of audio-visual speech processing remains largely

understudied despite its great promise” [47]. This approach was already explored by

some of the works that we will briefly review in the following paragraphs, and summarize

in Table 2.6.

In the context of audiovisual speech source localization, the simplest approach would be

to cluster each sensor-data space separately, and then find an optimal common represen-

tation of each unimodal solution . The team of Khalidov proposed the Conjugate Mixture

Model for joint GMM-clustering of sensor information - in that way, consistency across

data spaces can be guaranteed [55]. This algorithm was shown to outperform the former

approach of separate clustering, in both simulated and experimental environments with

static and moving speakers.

Gebru et al. investigated another extension of GMMs applied to audiovisual source

localization [56]. The Weighted-Data GMM (WD-GMM) proposed algorithm features a
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weighting factor, which integrates the reliability of each unimodal data in the gaussian

model. They evaluated the proposal through an experiment with multiple speakers,

recorded with a binaural dummy head and a camera.

An application of multimodal speaker localization was considered by Khan and col-

leagues [57]. Their algorithm faces BSS problem through a SSL-based approach. Com-

mon monaural and binaural cues from binaural audio, as MV, IDL or ILD, are used for

the separation stage. However, the localization stage is completely performed on the

visual domain, by using information from two cameras though the Markov chain Monte

Carlo based particle filter (MCMC-PF) method.

Article Localization
Method

Separation
Method

Target Mic Camera

Khalidov11 [55] Conjugate GMM - Speech 2 omni 2
Gebru14 [56] Weighted-Data

GMM
- Speech Binaural

head
1

Khan13 [57] MCMC-PF GMM-EM Speech Binaural
head

2

Table 2.6: Comparison of Multimodal SSL and BSS methods

2.5 DNN for BSS

2.5.1 DNN for Monophonic BSS

Despite its short lifetime, Deep Neural Networks have shown a great potential when

applied to a variety of MIR problems, in many cases using the knowledge obtained by

the Computer Vision research field. In this section, we will briefly overview some of the

recent works on musical instrument source separation. Table 2.7 shows a comparative

review of the selected works.

Huang and Kim [58] proposed several DNN architectures (RNN, DRNN, stacked RNN)

for the problem of separating singing-voice from background. They included an extra

output layer which performs a TF softmask, instead of applying it in as a separated

stage.

Uhlich and colleagues investigated the usage of DNN with ReLU layers, applied to instru-

ment separation [59]. The instrument types must be given as a problem parameter. In a

further work [60], Uhlich’s team proposed two DNN architectures capable of separating

four instruments independently (vocals, drums, bass and other).

Sebastian and Murthy studied the influence of using Modified Group-Delay (MOD-GD)

instead of the usual magnitude spectrum [61].
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Recently, Chandna and colleagues [62] proposed a low-latency DNN structure with or-

thogonal convolutional layers, each one for modelling a different axis in the magnitude

spectrogram.

Article DNN Architec-
ture

Target Dataset Evaluation
Metrics

Huang14 [58] DNN, DRNN,
sRNN

Singing Voice MIR-1k SDR, SIR, SAR

Uhlich15 [59] ReLU DNNU Predefined In-
strument

TRIOS SDR, SIR, SAR

Uhlich17 [60] Feed-Forward,
Bi-LSTM

Vocal, Bass,
Drum, other

DSD100 SDR,R

Sebastian16 [61] MOD-GD DRNN Singing Voice,
Vocal-Violin

MIR-1k SDR, SIR, SAR

Chandna17 [62] DNN, 2 convolu-
tional layers

Vocal, Bass,
Drum, other

DSD100,
MSD100

SDR, SIR, SAR,
ISR

Table 2.7: Comparison of DNN methods for Mono BSS

2.5.2 DNN for Multichannel BSS

In a similar fashion to Section 2.3.2, DNN algorithms applied to BSS might take profit

of the largest amount of information provided by a microphone array from a given sound

scene. Again, we will make a distinction between the proposals which provide an explicit

DOA estimation step prior to source separation, and the proposals who just exploit the

extra amount of data. We will start reviewing the latter option.

DNN for Raw Multichannel BSS

Nugraha, Liutkus and Vincent proposed two variants of a method considering 2 and 6

audio channel inputs, respectively [63, 64]. The first one addresses the problem of singing

voice separation, while the second one treats the problem of speech enhancement. The

methodology is similar to Duong11 [44] and Arberet11 [46], since the problem is reduced

to model PSDs and SCMs for each source, from the magnitude spectrogram. However,

in this case, DNNs are introduced for two different steps: a DNN for spectrogram

initialization, and a DNN for PSD-spectrogram fitting for each target.

On the other hand, Wisdom et. al [65] modelled the two speakers separation prob-

lem by means of multichannel GMM, and applied deep unfolding in order to derive a

specific DNN architecture, based on Markov Random Fields. It is noticeable that the

multichannel GMM processes complex TF values, instead of magnitude spectrogram.

We must mention the work of Erruz [66], still not publicly available at the moment of

writing. He proposed a CNN architecture for music source separation, based on stereo
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and synthetic binaural mixtures. Despite the fact that SSL is not performed explicitly,

the network takes advantage of the ILD spectrogram to integrate spatial information in

the learning stage.

Table 2.8 summarizes the reviewed methods.

Article Method Microphone
Array

#Mics Target
Sound

Dataset Evaluation
Metrics

Nugraha16
[63]

DNN-PSD +
SCM

Custom lin-
ear

2 Vocals DSD100 SDR, SIR,
ISR, SAR

Nugraha16(2)
[64]

DNN-PSD +
SCM

Custom lin-
ear

6 Speech CHiME-3 SDR, SIR,
ISR, SAR

Wisdom16
[65]

DMCGMM Custom cir-
cular

8 Speech WSJCAM0
REVERB

SDR

Erruz17 [66] ILD-CNN - 2 Music DSD100 SDR, SIR,
ISR, SAR

Table 2.8: Comparison of DNN Raw Multichannel BSS methods

DNN for SSL

Before we move forward with the DNN for BSS review, we want to mention a couple

of recent works that have been proposed on the scope of Sound Source Localization

using DNN. These works are relevant to the present review, since they show how DNNs

might be exploited across different aspects of the BSS problem. An overview of the most

relevant features of the methods is shown in Table 2.9.

Xiao and colleagues proposed a Multi-Layer Perceptron (MLP) architecture to model

the non-linear relationship between the TDoAs and the real DOA, by using an 8-capsule

circular microphone array, under noise and reverberant conditions [67]. They used the

known GCC-PHAT method, and modelled the problem as a 360-class pattern classifi-

cation task (using angular resolution of 1 degree in the horizontal plane). Experimental

results showed a great performance increase compared to the traditional LS method,

specially under very noisy environments.

Chakrabarty and Habets extended Xiao’s method in several aspects [68]. The most rele-

vant improvement consisted of using exclusively phase information (without magnitude

spectrum) for DOA estimation. In that way, training of the network might be performed

by synthesized noise signals, thus removing the necessity of a large database.

DNN for SSL-Based Multichannel BSS

Araki and colleagues [69] approached the speech enhancement problem wit a Denoising

Auto-Encoder (DAE) architecture, which is a specific neural network used to enhance
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Article Method Microphone
Array

#Mics Target
Sound

Dataset Evaluation
Metrics

Xiao15 [67] MLP GCC-
PHAT

Custom cir-
cular

8 Speech WSJCAM0 DOA
RMSE,
MAE

Chakrabarty17
[68]

phase spec-
trogram
CNN

Custom lin-
ear

4 Speech Synthesized
Noise

SDR

Table 2.9: Comparison of DNN SSL methods

speech and minimize noise effect. It is interesting to highlight the usage of analytically

computed binaural cues, ITD and ILD, as a part of input feature vector of the DAE.

Another binaural approach to multichannel BSS was presented by Jiang et. al. [70].

ITD and ILD are computed, for each TF bin, from the normalized Cross-Correlation

Function. They used as well monaural features, as the Gammatone Frequency Cepstral

Coefficients (GFCC), computed from the left signal, and used a DNN for processing the

speech segregation.

Based on their previous work, Xiao and colleagues proposed a methodology for speech

recognition with microphone arrays, featuring a DNN in each of its two stages [71]. The

first step is a straightforward implementation of their SSL method [67], with a Feed-

Forward NN which estimates DOA from the GCC-PHAT - the estimated DOA then is

used to perform a beamforming softmask to the complex spectrum. As a second step,

monaural features as log Mel filterbanks are computed, and given to a speech Acoustic

Model DNN, implemented as a LSTM network.

Article Method Microphone
Array

#Mics Target
Sound

Dataset Evaluation
Metrics

Araki15 [69] ITD, ILD
DAE

Binaural 2 Speech PASCAL
CHiME

SSNR, CD

Jiang14 [70] ITD, ILD,
GFCC DNN

Binaural 2 Speech Custom
speech,
ROOM-
SIM

HIT, FA,
HIT-FA,
SNR

Xiao16 [71] FF GCC-
PHAT,
LSTM AM

Custom cir-
cular

8 Speech WSJCAM0,
REVERB

WER

Table 2.10: Comparison of DNN SSL-Based Multichannel BSS methods



Contents 19

2.6 Summary

We have reviewed in this section the basic concepts and the most relevant works on the

edge between Ambisonics and Blind Source Separation. In order to provide a global, top-

down perspective, we have designed an Euler Diagram4 which shows the most relevant

relationships between the methods and concepts for our proposal.

Figure 2.3 shows the labelled fields and the overlapping between scopes. Fields that go

beyond this proposal, as for example Multichannel SSL (TDoA-like methods), or Mono

BSS with NN (as for example applied to speech) are not represented.

Figure 2.4 adds some information to the previous diagram. More precisely, we have

highlighted the fields for which we reviewed the State-of-the-Art in the present section.

There are two number codes associated with each mark. The top one represents the

Section number of the topic, while the above one shows the Table number with the

corresponding article review.

4“An Euler diagram is a diagrammatic means of representing sets and their relationships. [...] Unlike
Venn diagrams, which show all possible relations between different sets, the Euler diagram shows only
relevant relationships” (from [72]).
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Figure 2.3: Euler Diagram showing the proposal’s related topics

Figure 2.4: Euler Diagram highlighting the reviewed topics



Research Proposal

3.1 Goals and Contributions

In Chapter 2 we have broadly reviewed the most relevant works on the intersection of

the related domains: Ambisonics, Sound Source Localization, Blind Source Separation,

Multimodality and Deep Neural Networks. The Euler’s Diagram from Figures 2.3 and

2.4 help to conceptually organize the ideas, and to highlight the conclusions, which will

lead to our research proposals.

In short, the idea behind the proposal is based on the following assumption. Specific

knowledge about the sound scene, as the microphone characteristics or the nature of the

target sound, might be exploited in order to improve the quality of the Blind Source

Separation result. This consideration is aligned with the guidelines that Gannot et al.

propose for upcoming BSS methods [47].

• Conclusions

Ambisonics analytical approaches to SSL estimation are consolidated (Table 2.3),

and its application to BSS is as well mature (Table 2.5). However, most of the

approaches only make use of First Order Ambisonics in the horizontal plane, and

target speech sources in most of the cases (Table 2.4)

On the other hand, recent Deep Learning based methods have shown promising

results, both on the SSL domain 2.9) and in the BSS domain (Tables 2.7 and 2.8).

Again, the main target situations were pointing speech recognition/enhancement

and microphone arrays.

Lastly, the usage of multimodal data for SSL and BSS enhancement, mainly from

the image scope, represents a promising new research area 2.6.

• Research Goal

The main research line is focused on the investigation, adaptation and improve-

ment of existing state-of-the-art algorithms from all the domains involved, in order

21
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to design new methods for Blind Source Separation applied to Higher Order Am-

bisonics audio, and specially focusing on the musical application domain.

• Collateral Contributions

I A new HOA SSL method based on DNNs, for noisy and reverberant environ-

ments.

II The application of Contribution I to the BSS problem, potentially focusing

on musical sources.

III The investigation on DNN-based, raw multichannel BSS approaches to HOA

musical signals, including the definition of Music Descriptors in the Ambison-

ics Domain.

IV A new audiovisual multimodal approach to SSL and BSS focused on mu-

sical instruments for source localization and spectral modelling, eventually

considering 360 video images.

In order to visualize the proposed goals and contributions from a top-down perspective,

we have mapped them into the Euler Diagram, resulting in Figure 3.1. The red boxes

represent the Research Goal and the Collateral Contributions, each one with its roman

number label as previously presented.

Furthermore, this information has been also mixed with the scientific background repre-

sentation in Figure 3.2. The arrows represent the temporal and hierarchical relationships

between research areas.
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Figure 3.1: Euler Diagram with the proposal contributions

Figure 3.2: Euler Diagram with reviewed topics and proposal contributions

Before concluding this section, we must briefly clarify the research methodology related

with the multimodal approach. As already stated, the research field of image segmenta-

tion is out of the proposal’s scope. However, preliminary meetings and proposals have

been addressed in oder to collaborate with researchers on the field, as O. Slizovskaia

(Music Technology Group, UPF ), and R. Redondo and C. Bosch (Multimedia Technolo-

gies Group, Eurecat).
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3.2 Research Methodology

3.2.1 Data Generation and Acquisition

The nature of the BSS problem and its evaluation requires two different kinds of data. On

the one hand, solo anechoic recordings of speech and music are needed for groundtruth

validation and procedural mixture generation. For that purpose, several high-quality

standard datasets might be used, as the MSD100 [73], DSD100 [74] or MIR 1k [75] for

music recordings, and the TIMIT [76] or WSJCAM0 [77] for speech.

On the other hand, the BSS problem is specially challenging on the convolutive mixture

case, i.e., when reverberation is present on the recording due to the room acoustics -

this is, however, the most realistic scenario. Therefore, the most flexible option is to

gather Ambisonics IR data, either recorded or simulated. Synthetical sound mixtures

can then be generated, taking anechoic recordings and convolving them with the desired

IR. Such an approach would allow for arbitrary combinations of sound sources and IRs.

Ambisonics IR data is, though, more difficult to access. To the best of the author’s

knowledge, there is only one publicly accessible, high-quality, research-oriented database

of IRs: the OpenAir library, supported by the University of York [78]. At the moment

of writing, 26 sets of recorded IRs were available under the tag ”B-Format (4 Channel

Files)”, but any under the category ”Higher Order Ambisonics”.

Apart from real recordings, IRs might be obtained through simulations by using some of

the methods from the computational acoustics field. In the specific case of Ambisonics

IRs, the tool SMIR Generator [79, 80], created by Jarret and his team at the Interna-

tional Audio Laboratories Erlangen, extends the original image method from Allen and

Berkley [81] to provide a solution around a sphere, in the spherical harmonics domain.

Despite there is commercial software for acoustic simulations capable of providing Am-

bisonics IRs, we will not consider it on the present proposal, since it exceeds the academic

scope.

Therefore, the need for a tool which procedurally creates sound scenes arise. To the best

of the author’s knowledge, there is any software with such specifications. Furthermore,

it would be also desirable to use a systematic scene description methodology, in order

to automatize localization evaluation. One existing proposal in that direction is Spatial

Sound Description Interchange Format (SpatDIF) [82], which comes from the computer

music scope. Other options will be further investigated.
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• Contribution V

A tool for custom Ambisonic sound scene creation and description, given a database

of individual mono recordings and Ambisonics IRs.

A different approach would consist of using real Ambisonics recordings. However, in this

case, there are some major drawbacks. The first one is the commercial perspective of

most of the Ambisonics libraries available on the internet (Spheric Collection1, Ambyss2,

ProSound Effects3 or A Sound Miner4, to cite some of the most relevant). At the

moment of writing, FreeSound5 featured 48 sounds under the tag ”ambisonics” and 10

under ”b-format”, but only 7 under ”ambisonics” and ”4 channel”. No HOA recording

was available.

Another drawback consists of the ambience-centered Ambisonics recordings. It is cer-

tainly true that soundscapes and ambiences might be easily created or recorded through

Ambisonics, and therefore it might be argued that most of the recordings available online

follow this tendency.

The last point, related with the former one, is the lack of scene description content.

Neither explicit geometrical descriptions, nor associated data (for example images) which

might be susceptible of being manually annotated is usually provided6. Therefore, a

proper evaluation of the sound scene in terms of localization might be impossible.

However, it would be very desirable to evaluate the proposed algorithm’s performance

in a real experimental scenario, without being limited to the simulation scope. The so-

lution would imply to perform real recordings under an acoustically controlled scenario.

In order to preserve quality and integrity of the original sources, sound might be played

through speakers, either directly or using one of the existing sound spatialization tech-

niques (which would be more suitable for non-static sources). In that way, the sound

scene can be again procedurally created and evaluated.

Finally, we must consider the image data necessary for the multimodal processing. On

the one hand, regarding the learning stage, several standard datasets might be used,

such as the Youtube-8M7 for video, or the ImageNet8 for images. On the other hand,

the gathering of 360 images and videos suffers from the same problems as in the case of

1http://spheric-collection.com
2http://www.ambyss.com
3https://shop.prosoundeffects.com/collections/ambisonic
4https://www.asoundeffect.com/sound-category/misc-sounds/ambisonics/
5http://www.freesound.org
6The only exception can be found on the Ambyss database, which provides a 360 image preview for

each sound scene
7https://research.google.com/youtube8m/
8www.image-net.org
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audio recordings: lack of availability for research and lack of annotations or descriptive

data. Again, the solution for experimental setups might lie in the ad hoc recording of

scenes. As already mentioned, we will not enter into further details of image segregation

methods.

3.2.2 Evaluation

In order to assess the validity of the proposals, evaluation method and metrics must be

defined for each of the different sub-tasks. Regarding SSL problem, the most common

approach is to use objective geometrical evaluation metrics, such as Euclidean Distance

or Angular Difference to the groundtruth - combined with measures as the Root Mean

Square Error or the Mean of Absolute Error.

In the context of evaluating the performance quality of a separation algorithms, several

objective signal measurements have been broadly used: for instance, Signal to Distorsion

Ratio (SDR), Signal to Interference Ratio (SIR) or Signal to Artifacts Ratio (SAR). In

the case of speech segregation/enhancement, other specific metrics, such as the Percep-

tual Speech Quality (PESQ), might be considered. The option of subjective evaluations

has been also widely explored. For a comprehensive review of the topic, the reader is

encouraged to refer to the extensive work of Emiya and colleagues about the topic [83].

3.3 Schedule and Dissemination

The proposed work schedule, in the form of a Gannt Diagram, is showed in Figure 3.3.

It is divided in two main sections. The top part, under the label Research, shows the

different work units, divided by contributions, as stated in Section 3.1. The last month in

every work unit, represented with a darker colour, indicates as well that a dissemination

action might be performed upon the state of the research at that moment, for the given

work unit. Apart from that, the fields Literature Review and Thesis Review and Writing

are also scheduled. The darker colour represents an active, main dedication to the task,

while the lighter colour means a background, secondary activity dedication.

The second part collects a list of appropriate conferences where potential results might

be disseminated. The selected conventions are the following:

• LVA ICA: International Conference on Latent Variable Analysis and Signal Sepa-

ration
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• ICASSP : IEEE International Conference on Acoustics, Speech and Signal Process-

ing

• AES : Audio Engineering Society Convention

• SMC : Sound and Music Computing Conference

• EUSIPCO : European Signal Processing Conference

• ICSA: International Conference on Spatial Audio

• DAFx : International Conference on Digital Audio Effects

• INTERSPEECH

• MLSP : IEEE International Workshop on Machine Learning for Signal Processing

• ISMIR: International Society for Music Information Retrieval Conference

For each event we have marked the date in which it will take place, or in which it is

expected to take place.

The diagram also refers to some Evaluation Challenges that are related with the present

proposal. Date (or expeted date) is again pointed out, as well as the related conference

in which it takes place. The challenges are:

• SiSEC (LVA ICA)

• CHiME (INTERSPEECH)

• MIREX (ISMIR)

Finally, at the bottom of Figure 3.3, we have included a list of Journals where we could

potentially publish our results:

• Journal of the Acoustical Society of America

• IEEE Transactions on Audio, Speech and Language Processing

• IEEE Transactions on Multimedia

• Journal of Electrical and Computer Engineering

• Journal of New Music Research
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Figure 3.3: Gannt Diagram with the proposed Schedule and Dissemination
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