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1

Introduction

Die Sprache ist das Alleralltäglichste: es muss ein Philosoph sein, der sich
mit ihr abgiebt.

Nietzsche (1869 [1920]: Gedanken zur Einleitung, 21)

In Murder on the Orient Express, a famous piece of detective fiction written
by Agatha Christie (1890 – 1976), Belgian’s most famous detective, Hercule
Poirot, is confronted with a very tricky murder case. Boarding the Orient
Express to return from a trip in the Middle East, a passenger, Mr. Ratchett,
gets killed during the second night on the train, having been stabbed twelve
times. The circumstances are deeply mysterious. There are as many as twelve
suspects who could have committed the murder, but all have an aliby. Fur-
thermore, the stab wounds differ to a large extent, some appearing to have
been inflicted by a right-handed person, and some by a left-handed one, some
being very deep and lethal, and some being mere glancing blows. Based on
the evidence, Hercule Poirot comes to the only possible conclusion, namely
that all twelve suspects committed the murder together:

I fancy, though I may be wrong, that each person in turn entered Ratchett’s dark-
ened compartment through that of Mrs. Hubbard – and struck! They themselves
would never know which blow actually killed him. (Agatha Christie, Murder on
the Orient Express, Chapter 9)

Several clues lead Hercule Poirot to come to this conclusion. In a first instance
it is the behaviour of the suspects which can be best explained by assuming
that they cooperate:

I was particularly struck by the extraordinary difficulty of proving a case against
any one person on the train, and by the rather curious coincidence that in each case
the testimony giving an alibi came from what I might describe as an “unlikely”
person. (ibid.)
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The “twelve murderer hypothesis” can also best explain the “nature of the
wounds – each inflicted by a different person” (ibid.). Putting these pieces of
evidence together, it results in

a perfect mosaic, each person playing his or her allotted part. It was so arranged
that, if suspicion should fall on any one person, the evidence of one or more of
the others would clear the accused person and confuse the issue. (ibid.)

Hercule Poirot bases his conclusion on a rule which one might call the “rule of
the least unlikely explanation”, or, as Sherlock Holmes would say, the

maxim [...] that when you have excluded the impossible, whatever remains, how-
ever improbable, must be the truth. (Sir Arthur Conan Doyle, The Adventure of
the Beryl Coronet)

Given that there are twelve different stab wounds and twelve different suspects,
all having an aliby provided by somebody who is a suspect him- or herself, the
least unlikely explanation covering all facts is to assume that all twelve suspects
committed the murder. This rule plays an important role in many whodunit
stories where the reader is led astray by a plot that offers many seemingly
possible explanations while the only really possible explanation seems to be
completely unlikely.
When during the end of the 18th century scholars stumbled over some strik-

ing similarities between Sanskrit, the classical language of India, and Latin and
Old Greek, the classical languages of Europe (see Table 1.1), their conclusion
was – given the spirit of the age – somewhat similar to the solution of a mur-
der case by a least unlikely explanation. If these similarities between the three
languages were not a pure coincidence, the only possible explanation was to
assume that “all three [...] have sprung from some common source, which,
perhaps, no longer exists” (Jones 1798: 423). Today, the hypothesis that San-
skrit, Old Greek, and Latin have developed from a common ancestor language
has lost the sensational character it must have had during the end of the 18th
century, when many scholars still stuck to the biblical paradigm in believing
that the diversity of languages resulted from the Confusion of Tongues (Gene-
sis 11:1-9). During the more than 200 years since the genealogical relatedness
of the languages was first suspected, scholars have substantiated the hypothe-
sis with a large body of evidence. More and more languages could be shown
to be also related with the former three, and today the “Indo-European” lan-
guage family covers more than 400 living languages (count based on Lewis
and Fennig 2013).
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Meaning
Sanskrit Old Greek Latin

Orth. Pron. Pron. Pron. Orth. Pron.
‘field’ A:j"a aʤra ἀγρός agrɔs ager ager
‘I carry’ Ba:=+�a;ma bʱarami φέρω pʰeroː fero feroː
‘yoke’ yuaga juga ζυγόν ʣugon iugum jugum
‘father’ ;
a;pa;txa pitr̩ πατήρ pateːr pater pater
‘brother’ Bra;a:txa bʱraːtr̩ φράτηρ pʰrateːr frater frater

Table 1.1: Striking similarities between Sanskrit, Old Greek, and Latin. The examples
are adapted from Anttila (1972: 246) in a slightly altered form. Greek and Latin nouns
are given in the nominative, Sanskrit nouns are given in their root form.

All languages constantly change. Words are lost when speakers cease to
use them, new words are gained when new concepts evolve, and even the
pronunciation of the words changes slightly over time. Slight modifications
that can rarely be noticed during a person’s live time sum up to great changes
in the system of a language over centuries. When the speakers of a language
depart, their speech keeps on changing independently in the two communities,
and at a certain point of time the independent changes are so great that they can
no longer communicate with each other: what was one language has become
two.
Proving that two languages once were one is one of the major tasks of his-

torical linguistics, a subdiscipline of linguistics that deals with the history of
languages. The task exhibits some interesting parallels to crime investigations.
Both disciplines make use of circumstantial evidence in order to draw a sce-
nario of past events that explains a given situation in the present. While a
detective employs evidence found at the crime scene to reconstruct the pro-
gression of events that led to the crime, a historical linguist employs evidence
found in attested languages to reconstruct their unattested history. Since lan-
guage change is rather gradual than abrupt, the traces of common origin can
often still be detected through comparison. In historical linguistics, specific
methods have been developed to identify these traces. Their analysis results
in the construction of historical scenarios which shed light on how languages
evolved from their common ancestor into their current shape.
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French d ɑ̃

1

(e) complete evolutionary scenario

(c) reconstruction (first stage) (d) reconstruction (second stage)

(a) identifying corresponding sounds (b) ordering corresponding sounds

Figure 1.1: Reconstructing historical scenarios from words



5

An example for the construction of such a historical scenario is given in
Figure 1.1: The four words German Zahn [ʦaːn] ‘tooth’, English tooth [tʊːθ],
Italian dente [dɛnte] ‘tooth’, and French dent [dɑ̃] ‘tooth’ are successively
traced back to their ancestor form Proto-Indo-European *dent, via the in-
termediate stages Proto-Germanic *tanθ and Proto-Romance *dente.1 The
label “proto” that is added to the ancestor languages indicates that these lan-
guages are not attested in written sources. There is, however, strong evidence
that these languages once existed. The development of such a scenario goes
through two major stages. In a first stage, cognate words, i.e. words that are
supposed to go back to a common ancestor word, have to be detected and cor-
responding sounds in the cognate words have to be identified (Figure 1.1a and
b). In a second stage, proto-values for the corresponding sounds have to be
reconstructed (Figure 1.1c and d). For the first stage, I will adopt the term cog-
nate detection. The second stage is commonly called linguistic reconstruction
(Fox 1995).
Cognate detection is based on the comparison of words in different lan-

guages. Words themselves can be described as sequences of sounds denoting a
specific meaning. Cognate detection can therefore be seen as a specific kind of
sequence comparison. In historical linguistics, sequence comparison is usually
carried out manually. Linguists compare word lists from different languages,
identify probably related words and set up lists of corresponding sound seg-
ments. This is a very tedious task, since the number of word pairs which
could be compared grows exponentially with the number of languages being
investigated. Ethnologue (Lewis and Fennig 2013), a large database collect-
ing information for all languages in the world, lists as many as 7105 languages
that are spoken at the moment. Comparing all these languages with each other
yields a total of 71052−7105

2 = 25 236 960 pairs. So far, research in the field
of historical linguistics has led to the postulation of 128 different language
families, but – due to the tediousness of manual language comparison – only a
small amount of these language families have been thoroughly investigated so
far. Given the fact that the amount of digitally available data for the languages
of the world is growing from day to day, while there are only a few histori-
cal linguists who are trained to carry out the comparison of these languages,
the use of automatic methods to aid the task of sequence comparison seems
inevitable in the future.

1 Note that these reconstructions are simplified versions, based only on the evidence which
can be derived from the four words themselves.
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In this study, I will present automatic methods for sequence comparison
and cognate detection in historical linguistics. The method is based on a
larger framework of computational tools that I implemented as a Python li-
brary (LingPy, see Supplementary Material and http://lingpy.org). These
tools are supposed to aid the work of historical linguists by automatizing sev-
eral steps of the traditional methods for language and sequence comparison.
The strategy I pursued when developing the newmethod was to follow the tra-
ditional methods as closely as possible, while at the same time trying to find
solutions that had been developed for similar problems in other disciplines. If
the task of cognate detection in historical linguistics is understood as a specific
type of sequence comparison, one should be able to find solutions to similar
problems in those disciplines which explicitly deal with this task, such as com-
puter science, and evolutionary biology. The major work carried out for this
study was therefore to get a very close insight into the basic approaches to se-
quence comparison in these disciplines in order to adapt them for the specific
needs of historical linguistics.
This study consists of three main parts. In Chapter 2, I will give an intro-

duction into some major aspects of historical linguistics. I will define its basic
entities, languages and words (Section 2.1); I will describe the basic types
of change to which these entities are subject (Section 2.2), and I will point
to the basic relations between these entities that result from the basic types of
change (Section 2.3). Language change leaves its traces in specific kinds of re-
semblances between languages and words (Section 2.4). These resemblances
are crucial for the proof of language relations (Section 2.5). All these aspects
play an important role for the comparative method, the core method for cog-
nate detection and linguistic reconstruction in historical linguistics, which will
be briefly outlined in Section 2.6.
Having pointed to some of the fundamental theoretical and practical as-

pects of historical linguistics, I turn to the formal aspects of sequence com-
parison in Chapter 3. After a brief introduction into some basic aspects of
sequences (Section 3.1), and sequence comparison (Section 3.2), I turn to the
more specific, especially algorithmic aspects of alignments and alignment ana-
lyses. Alignments are a specific way to model differences between sequences.
Alignment analyses are an algorithmic framework to compute alignments. For
reasons of computational complexity, alignment analyses are usually divided
into pairwise alignment analyses, which are treated in Section 3.3, andmultiple
alignment analyses, which are treated in Section 3.4.

http://lingpy.org
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In Chapter 4, I present the new approaches to automatic sequence compar-
ison in historical linguistics. The new methods presented combine the most
recent research in the disciplines of computer science and biology with novel
approaches to sequence modelling in historical linguistics. Since the sound
sequences that are compared in historical linguistics show some crucial differ-
ences compared to sequences in biology and computer science, the approach
is based on a new framework for sequence modelling, which is introduced in
Section 4.1. This framework constitutes the core of a new method for phone-
tic alignment, i.e. the alignment of sound sequences, outlined in Section 4.2.
Finally, the task of cognate detection is addressed in Section 4.3, where a new
method for automatic cognate detection which builds on the new approaches
to sequence modelling and sequence alignment is presented.
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Historical Linguistics

Was die menschliche Rede im Innersten bewegt, was sonst die Wis-
senschaft von den Sprachen der Völker zu einer der lebensvollsten macht,
das tritt hier zurück [...]. [D]er Sprachhistoriker steht draussen vor seinem
Gegenstande: hier der Anatom, da der Cadaver.

Gabelentz (1891: 145)

When, during the end of the 18th century, more and more scholars became in-
terested in the striking similarities between certain languages, such as Sanskrit
and Old Greek, they had but a fuzzy idea about languages, language history,
and language change. Often, they confused the results with the processes. In-
stead of making a strict distinction between the specific patterns of similarity
between languages that result from language change with the process of change
itself, they directly identified the patterns with the process.1 As a result, the
first historical linguists assumed that the relation between Sanskrit and other
Indo-European languages, such as Old Greek and Latin, was like the relation
between a mother and her children, the latter being the offspring of the former.
It took scholars more than half a century to realize that a direct line of descent
could not be drawn between Sanskrit and the European languages, and that it
was more likely that they all were the children of a common, unknown ances-
tor language.2 A similar confusion arose from the specific “organic” notion of
languages which was propagated by some scholars. According to this notion,
1 This notion is prevalent inmost of the literature on language comparison in the first half of the
19th century. It is also reflected in the common terminology itself. Thus, the famous German
term “Lautverschiebung” (sound shift), points to a process, although all the examples by
which the process is usually described are merely its results (see, for example, Grimm 1822:
584).

2 This is explicitly expressed in the work of August Schleicher (1821 – 1868) who justified the
use of proto-forms by emphasizing “die Grundlosigkeit der noch immer nicht ganz verschol-
lenen Annahme, daß auch die nicht indischen indogermanischen Sprachen vom altindischen
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languages were comparable to organisms, i.e. they went through the stages of
birth, youth, middle age, old age, and – finally – death.3
Today, after 200 years of research in the field of historical linguistics, we

have amuch clearer picture of language, language history, and language change.
Many questions, however, still remain unsolved, many ideas about the entities,
the processes, and the relations that are dealt with in historical linguistics have
remained fuzzy. This fuzzyness is also reflected in the common methodology
by which languages are compared and language history is inferred. Histor-
ical linguistics is a historical discipline that – in a first instance – deals with
individual events rather than with general laws. It therefore bears certain re-
semblances with the work of historians who laboriously join tiny pieces of
evidence into a larger mosaic of past events. While historians draw the evi-
dence from direct or indirect sources, historical linguists seek the evidence in
the systems of languages as they are given in the present. Due to the “indi-
viduality” of the processes that historians and historical linguistics commonly
deal with, their methods tend to be impressionistic. The individual intuition
of the researcher plays a major role, and the methods and theories that are
commonly employed in both disciplines are not explicitly codified.
In the following, I will try to make the implicit theoretical and practical as-

sumptions of historical linguistics more explicit by giving a short introduction
into its main entities (Section 2.1), the basic change processes to which these
entities are subject (Section 2.2), and the crucial relations (Section 2.3) and re-
semblances between the entities (Section 2.4) that result from these processes.
I will then briefly address the question of how to prove that specific relations
hold between the entities (Section 2.5), and, in the end, briefly describe how
all these aspects cumulate in the common practice of the comparative method,
the fundamental technique of historical linguistics (Section 2.6).

2.1 Entities

It is important for a scientific discipline to define its object of research. Only
then it is possible to define the specific questions that the discipline is sup-
posed to investigate, and only than it is possible to develop specific methods

(Sanskrit) abstammen” in the second edition of his Compendium (Schleicher 1861 [1866]:
8).

3 Compare, for example, the discussion of the common stages of language history
(“Sprachengeschichte”) in Schleicher (1848: 16f).
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and theories that are adequate for the given discipline. Unfortunately, not all
scientific disciplines are in the comfortable situation that they can construct
their research object independently of the real world (like mathematics) or
that they can exclude the imponderableness of human behaviour (like physics
and chemistry). Being on the borderline between science and humanities, it
is especially difficult for the discipline of linguistics to define its research ob-
jects. Should linguistics only deal with the structure of concrete languages, or
are languages less important than the general language faculty, i.e. the spe-
cific ability of humans to speak? Should linguistics only deal with the system
of a language as it is given at a certain point of time, or should it deal with the
change of language systems?
While it is impossible to settle these questions for the discipline as a whole,

the subdisciplines, including historical linguistics, often answer them implic-
itly. While there are only a few explicit discussions regarding the definition
of the research objects in the literature, there are certain implicit assumptions
regarding the basic “entities” of historical linguistics and their basic charac-
teristics which manifest themselves in the research practice and the common
theories. Since the goal of this study is to develop automatic approaches to
some of the major tasks of historical linguistics, it is important to give an ex-
plicit account on these basic entities.

2.1.1 Languages

It is not an easy task, to give an exact definition of the term “language” as it
is applied in linguistics. The reason can be found in the daily use of the term
in non-linguistic contexts: What one calls a language, i.e. which traditions
of speech one classifies as belonging to one language, does not, usually, de-
pend on purely linguistic but rather on social and cultural criteria (Barbour and
Stevenson 1998: 8). Thus, one tends to say that the people from Shànghǎi,
Běijīng, and Měixiàn all speak “Chinese”, while, on the other hand, people
from Scandinavia speek “Norwegian”, “Swedish”, or “Danish”.
Table 2.1 gives phonetic transcriptions of translations of the sentence “The

North Wind and the Sun were disputing which was the stronger”4 in three Chi-
nese “dialects” (Běijīng Chinese, Hakka Chinese5, and Shànghǎi Chinese),
4 This is the first sentence of Aesop’s fable The Northwind and the Sun, which is traditionally
used in phonetic studies to illustrate the phonetic system of a language.

5 This is the traditional name given to the Chinese variety spoken in Měixiàn and some other
regions of China.



12 2 Historical Linguistics

Běijīng Chinese 1 iou²¹ i⁵⁵ xuei³⁵ pei²¹fəŋ⁵⁵ kən⁵⁵ tʰai⁵¹iaŋ¹¹ tʂ͡əŋ⁵⁵ ʦai⁵³ naɚ⁵¹ tʂ͡əŋ⁵⁵luən⁵¹
Hakka Chinese 1 iu³³ it⁵⁵ pai³³a¹¹ pet³³fuŋ³³ tʰuŋ¹¹ ɲit¹¹tʰeu¹¹ hɔk³³ e⁵³ au⁵⁵
Shànghǎi Chinese 1 ɦi²² tʰɑ̃⁵⁵ ʦɿ²¹ poʔ³foŋ⁴⁴ taʔ⁵ tʰa³³ɦiã⁴⁴ ʦəŋ³³ hɔ⁴⁴ ləʔ¹lə²³ʦa⁵³

Běijīng Chinese 2 ʂei³⁵ də⁵⁵ pən³⁵ liŋ²¹ ta⁵¹
Hakka Chinese 2 man³³ ɲin¹¹ kʷɔ⁵⁵ vɔi⁵³
Shànghǎi Chinese 2 sa³³ ɲiŋ⁵⁵ ɦəʔ²¹ pəŋ³³ zɿ⁴⁴ du¹³

Norwegian 1 nuːɾɑʋinˑn̩ ɔ suːln̩ kɾɑŋlət ɔm
Swedish 1 nuːɖanvɪndən ɔ suːlən tvɪ̥stadə ən gɔŋ ɔm
Danish 1 noʌʌ̯nvenˀn̩ ʌ soːl ̩ˀ n kʰʌm eŋg̊ɑŋ i sd̥ʁiðˀ ʌmˀ

Norwegian 2 ʋem ɑ dem sɱ̩ ʋɑː ɖɳ̩ stæɾk̥əstə
Swedish 2 vɛm ɑv dɔm sɔm vɑ staɹkast
Danish 2 vɛmˀ a bm̩̥ d̥ vɑ d̥n̩ sd̥æʌg̯̊əsd̥ə

Table 2.1: Translations of the sentence “The Northwind and the Sun were disput-
ing (1) which was the stronger (2)” in different varieties of Chinese and Scandina-
vian languages. The words are semantically aligned, i.e. all translational equivalents
are placed in the same column. Words shaded in gray are further etymologically re-
lated. The data for Běijīng Chinese and Hakka Chinese follows Lee and Zee (2003 and
2009) with slight modifications for tone letters and some phonetic symbols. The data
for Shànghǎi Chinese is taken from YINKU. The transcriptions for Norwegian (Oslo
dialect) are taken from NORDAVINDEN, the transcriptions for Swedish and Danish
follow Engstrand (1999) and Grønnum (1998).

and three Scandinavian “languages” (Norwegian, Swedish, and Danish). In
this table, all words which are semantically similar are aligned horizontally.
The words which share a common etymological origin are further highlighted
with a gray background.
As the phonetic transcriptions of the sentences show, the Chinese varieties

seem to differ to a similar or even greater degree than the Scandinavian ones, in
terms of both the amount of shared etymologically related words and the pho-
netic similarity between these words. Nevertheless, we address three speech
traditions, which are largely mutually intelligible, as “Norwegian”, “Swedish”,
and “Danish”, while we classify the speech of the people in Shànghǎi, Běijīng,
and Měixiàn (Hakka dialect), who can barely communicate with each other
when relying on their native speech varieties, as being dialects of the same
“Chinese” language.
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Standard Language

Diatopic Varieties

Diastratic Varieties

Diaphasic Varieties

Figure 2.1: Simplified representation of the variety space. On the top is the standard
language which serves as a Dachsprache for the different varieties. These can be fur-
ther subdivided into diatopic varieties (dialects), diastratic varieties (sociolects), and
diaphasic varieties (speech varieties depending on the situation).

In order to describe the complex heterogeneous structure of our modern
languages being defined on a socio-cultural basis, the model of the diasys-
tem is traditionally employed in sociolinguistics. This model goes back to the
dialectologist Uriel Weinreich (1926 – 1967) who originally thought of a lin-
guistic construct which would make it possible to describe different dialects in
a uniform way (Weinreich 1954, see also Branner 2006: 209). According to
the modern form of the model, a language is a complex aggregate of different
linguistic systems, “die miteinander koexistieren und sich gegenseitig beein-
flussen” (Coseriu 1973: 40). An important aspect for determining a linguistic
diasystem is the presence of a Dachsprache, i.e. a linguistic variety serving as
a standard for interdialectal communication (Goossens 1973: 11). The dif-
ferent linguistic varieties (dialects, sociolects) which are connected by such a
standard constitute the variety space of a language (Oesterreicher 2001), as
illustrated in Figure 2.1.
In historical linguistics, the term language is used in different ways, referring

either to a certain language tradition spoken at a certain time, or to a speech
tradition spoken during a certain period of time (Arapov and Xerc 1974: 7).
The question, what a language actually is, is rarely stated, and complex models
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of language, such as the sociolinguistic model of the diasystem, are seldom
applied. This lack of a theoretical model may be justified on the background of
the specific goal of historical linguistics: historical linguistics seeks to describe
how certain speech traditions evolved, i.e. “durch welche Veränderungen [...]
die Sprache zu ihrem jeweiligen Zustande gelangt [ist]” (Gabelentz 1891: 149),
and not to explain what languages actually are. Therefore, some scholars even
claim that for most of the problems in historical linguistics, like classification
or reconstruction,

it is not important, what exactly we have in mind when using the term “language”
as long as it is a discrete object x which we can distinguish from all other objects
of this kind, and as long as one can give a certain period of time t = [t1, t2]
during which the object exists. (Arapov and Xerc 1974: 7)6

Although this might be true in certain contexts, the reluctance of many his-
torical linguists to define their object of research has lead to many confusions
and endless discussions which only arose because scholars were unaware of
the fact that they were talking about different objects.7 In order to avoid such
a confusion in this study, it is important to define a language model, albeit a
simple one, upon which most historical linguists would probably agree.
Following Ferdinand de Saussure’s (1857 – 1913) traditional distinction be-

tween langue (language) and parole (speech, cf. Saussure 1916: 27-35), where
langue is seen “as an abstract system of signs and rules”, while parole corre-
sponds to “the concrete realization of language as it is used” (Bussmann 1996:
657), the primary concern of historical linguistics is the abstract language sys-
tem rather than its realization by the speakers. In a very broad notion, a system
consists of a set of elements and a set of relations which hold between the ele-
ments (Marchal 1975: 462f). According to the traditional view in linguistics,
the crucial elements of a language system are
(a) the sounds (phones / phonemes), and
(b) the signs (words / morphemes).
6 My translation, original text: “[Когда мы классифицируем языки,] то не существенно,
что именно мы имеем в виду под языком, лишь бы это был дискретный объект x,
который мы можем отличить от всех объектов этого рода, и можно было бы говорить
об определенном интервале времени t = [t1, t2], в течение которого этот объект
существует”.

7 An example for such a confusion is the so-called realist-abstractionalist debate dealing
with the “nature” of proto-languages: This discussion arose solely because many scholars
were confusing the ontological with the epistemological status of proto-languages (Kormišin
1988).
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The crucial relations are
(a) the phonotactic rules by which the sounds are combined to form signs (phono-

tactics), and
(b) the syntactical rules by which the signs are combined to form sentences (syntax).

Given the fact that most of the traditional fields of historical linguistics (such
as etymology and linguistic reconstruction) mainly focus on the lexical aspects
of languages and language history, the grammatical rules can be ignored in the
basic language model of historical linguistics. In the following, a language is
thus defined as a system consisting of
(a) a set of sounds along with a set of phonotactic rules which constitute the phono-

logical system of the language, and
(b) a set of words which constitutes the lexicon of the language.

In order to avoid to be dragged into the shallow waters of semiotics, I will
use the term sign only when addressing the abstract characteristics of form-
meaning pairs. When addressing concrete realizations of linguistic signs in a
given speech variety, I will prefer the term word instead.
This model differs from the one favored by Katičić (1966) and Holzer

(1996) who define a language as a set of linguistic signs, ignoring the set
of phonemes and the set of phonotactic rules. While such a model may be
sufficient in statistical applications dealing solely with lexical comparison on
the sequence level, such as lexicostatistics (Swadesh 1950 1952, 1955, Lees
1953), its modern derivations (Atkinson and Gray 2006, Gray and Atkinson
2003, Starostin 1989), or certain alternative approaches (Holm 2000, Ross
1950), it is certainly not sufficient for approaches dealing with comparisons
on the segment level, such as the one presented in this study.

2.1.2 Words

Roman Jakobson described the bilateral sign model, which was originally pro-
posed by Ferdinand de Saussure, as follows:

The sign has two sides: the sound, or the material side on the one hand, and
meaning, or the intelligible side on the other. Every word, and more generally
every verbal sign, is a combination of sound and meaning, or to put it another
way, a combination of signifier and signified [...]. (Jakobson 1976 [1978]: 3)

In Saussure’s original proposal the linguistic sign is characterized by its “image
acoustique” and the mental “concept” which the speaker immediately asso-
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↑ [kop͡f]
“head” ↓ ↑ [kʌp]

“cup” ↓
Figure 2.2: The Saussurean model of the linguistic sign

ciates with the acoustic image (Saussure 1916: 98). Since the language model
applied in this study is not based on a mental language conception, it is suffi-
cient to distinguish the form (signifier) of a word from its meaning (signified),
where the form corresponds to a “chain of sounds [which] acts as the support
of meaning” (Jakobson 1976 [1978]: 32). Following this model, the form
of the German word Kopf can be transcribed as [kɔp͡f] and the meaning can
be glossed as ‘head’. Accordingly, the form of English cup is [kʌp] and the
meaning is ‘cup’ (see Figure 2.2).
Although this model is very simple, it is a significant improvement over older

models in so far as the signified no longer directly denotes a real object but a
certain concept which itself can be used to denote an object, as it is reflected
in triadic sign models such as, e.g., the one proposed by Ogden and Richards
(1923 [1989]: 10-12).
An important property of the linguistic sign is its arbitrariness. Being deter-

mined by convention, the form of the linguistic sign does not have to resemble
its meaning, i.e. the connection between the form and the meaning of a sign
does not have to be motivated. This does not mean that the connection be-
tween the form and the meaning of a linguistic sign cannot be motivated, it
only means that there is no “necessary natural link [...], or a link due to some
resemblance or similarity” between form and meaning (Merrell 2001: 31).
In addition to form and meaning as constitutive parts of the linguistic sign,

every linguistic sign is characterized by the system to which it applies, i.e. by
the language in which the sign is used. Without this information, the linguistic
sign cannot be determined as such, and what we hear when hearing something
which sounds like [kop͡f] without knowing that it belongs to the German lan-
guage, it is just a sound sequence without any meaning (Ternes 1987: 22f). To
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FORM MEANING

SIGN

MEANING LANGUAGE

Figure 2.3: A graph representation of the linguistic sign

[kɔp͡f] “head” [kʌp] “cup”

Kopf cup

German English

FORM MEANING FORM MEANING

LANGUAGE LANGUAGE

Figure 2.4: Exemplary graph representation for two linguistic signs

sum up, three parts are constitutive for the model of the linguistic sign which
is applied in this study, namely
(a) the form, which will be given in phonetic transcription,
(b) the meaning, which will be rendered by a gloss, and
(c) the language, which will be addressed by the standard name of each given variety.

In order to display these three constitutive parts of the linguistic sign when
dealing with words, a graph representation, as given in Figure 2.3, can be
used. Figure 2.4 gives an example on how the words German Kopf [kɔp͡f]
‘head’ and English cup [kʌp] ‘cup’ can be represented.
This sign model is, of course, not exhaustive, and one might easily iden-

tify additional constitutive parts of the linguistic sign, such as, e.g., the way in
which words can be combined with each other to form higher units of speech
(Mel’čuk 2006: 384f). However, since such properties of linguistic signs be-
long to the range of the syntax, which is not included in the language model
applied in this study, further parts of the linguistic sign can be ignored in most
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cases. Note that, although this is again a very simple model which contains
many reductions, this is the way the matter is usually treated in historical lin-
guistics.

2.1.3 Forms

Two aspects of the form of the linguistic sign are important in historical linguis-
tics: its substance and its structure. Substance refers to the material properties
of the form, i.e. to its sensually perceptible aspects. Structure, on the other
hand, refers to the way the substance of the sign form is organized. The sub-
stance of the sign form can be addressed from two perspectives: the perspec-
tive of productionwhich focuses on the articulatory movements characterizing
speech, and the perspective of perception which characterizes its acoustic and
auditive features (Hall 2000: 1f). The most striking aspect of the structure of
the sign form is its linearity. The phonic substance is produced and perceived
in dependence of time and can be measured “dans une seule dimension: c’est
une ligne” (Saussure 1916: 103).
The substantial aspects of the sign form are usually addressed by dividing

the continuum of speech into discrete units of “linguistically relevant” ele-
ments (IPA Handbook 1999: 4). These discrete units, the sound segments, do
not find a direct reflection in reality, since speech production is not charac-
terized by the succession but rather by the overlap of articulatory movements
(Jakobson 1976 [1978]: 11, Geisler 1992: 10f). Nevertheless, the segmen-
tation of speech into discrete sounds seems to be practically unavoidable, not
only for historical linguistics but also for phonetic analysis in general.
It is common to distinguish two different levels of abstraction according to

which sound segments can be described: the phonetic level and the phonemic
level. The phonetic perspective deals with the substantial aspects of sound
segments (phones), i.e. with the general acoustic and articulatory properties
which characterize the sounds of different languages. The phonemic perspec-
tive, on the other hand, deals with the functional aspects of sounds (phonemes),
that is, with the capacity of sounds or classes of sounds to distinguish the
meaning of words in a given language (Hall 2000: 38). The main difference
between the phonetic and the phonemic perspective lies in the level of abstrac-
tion applied in the transcription of sound segments. A phonemic (or broad)
transcription assigns phonetically distinct sounds of a given language to the
same category (expressed by the same phonetic symbol), if they are function-
ally equivalent, i.e. if they either do not change the meaning of a word when
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occurring in the same context (free variants, ibid.: 46f), or if they are phonet-
ically similar and occur in complementary distribution (combinatory variants,
ibid.: 38-46). Different phones are thus grouped together into functional units
which are reflected by contextual or facultative variants (allophones). A pho-
netic (or narrow) transcription, on the other hand, reflects the phonetic prop-
erties of the sound segments of a given language in greater detail, regardless
of their contrastive function (IPA Handbook 1999: 28-30).
Based on the division of speech into discrete units, the structure of the sign

form can be described as a linear combination of segments, i.e. as a sequence
of sounds. Here, two different perspectives can be employed to describe the
structure of the sign form in more detail: the algebraic and the substantial per-
spective. According to the algebraic perspective, segments are defined nega-
tively and relatively, i.e. the comparison of segments in a given phonological
system results in a binary decision, where two segments are either judged to
be identical or different.8 The substantial perspective, on the other hand, de-
fines sound segments on the basis of additional properties, such as articulatory
or acoustic features, and the comparison of segments results in different de-
grees of similarity, based on the features being employed to characterize the
segments.
In historical linguistics, the algebraic perspective on sound sequences is es-

pecially important for the proof of genetic relationship and linguistic recon-
struction. It finds a direct reflection in the strictly algebraic notion of regular
sound correspondences which will be dealt with in greater detail in Section
2.4.1. When trying to prove that two words of different languages go back to
a single ancestor form, the substance of the sounds plays aminor role, while the
structural similarity of the sound sequences is of crucial importance: “Der Ab-
weichung [= substantial differences in the form of cognate words, JML] sind
keine Schranken gesetzt, solange sie als regelmäßig erwiesen werden kann”
(Szemerényi 1970: 14).
In the substantial perspective, information regarding the acoustic or articu-

latory features of the sound segments is included in the structural description

8 This perspective is mainly reflected in the work of early phonologists who emphasize the
formal aspects of phonological systems while ignoring their substantial characteristics. Thus,
according to Saussure (1916: 164), “[les] phonèmes sont avant tout des entités oppositives,
relatives et négatives”, and Sechehaye (1908: 151) claims that “on peut concevoir le système
phonologique sous son aspect algébrique et remplacer les trente, cinquante ou cent éléments
qui le composent dans une langue donnée, par autant de symboles généraux qui fixent leur
individualité, mais non pas leur caractère matériel”.
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of sequences. This perspective is especially important for the explanation of
sound change processes, and as a heuristic device in the early stages of lan-
guage comparison. Thus, when investigating the High German Consonant
Shift, during which, upon other terms, the Germanic voiceless plosives turned
into fricatives in German,9 the algebraic perspective can only state that a cer-
tain sound segment in English regularly corresponds to a certain other sound
segment in German. Within the substantial perspective, on the other hand, one
can compare this specific pattern with patterns attested in other languages and
language families, and draw general conclusions regarding such processes of
lenition. These conclusions can then be used to investigate languages whose
genetic affiliation has not yet been resolved.
Apart from the role it plays in the description of sound change processes, the

substantial perspective makes it also possible to describe certain characteristics
of the structural organisation of sign forms as a result of their phonic substance,
the most important being phonotactic constraints. Languages do not allow all
possible combinations of their sound segments but only those who conform to
specific phonotactic rules which may either be strictly systematic, i.e. specific
to a given language or language family, or natural, i.e. determined by universal
rules of “pronunciability” (Hall 2000: 59-61).
In historical linguistics, the form of the linguistic sign is traditionally not

given in phonetic transcription but in the traditional orthography of the re-
spective languages (compare, e.g., the popular handbooks of Lehmann 1962
[1992], Anttila 1972, and Trask 1996). This practice is surely due to the
fact that the central languages in Indo-European studies (Sanskrit, Old Greek
and Latin) are long extinct, forcing us to rely on their written sources whose
pronunciation cannot be fully reconstructed. It might also result from the al-
gebraic perspective on the sound substance which is prevalent in certain fields
of historical linguistics, such as linguistic reconstruction. In order to underline
the importance of the substantial perspective in historical linguistics, a pho-
netic representation of words, based on the International Phonetic Alphabet
(IPA, cf. IPA Handbook 1999) will be maintained throughout this study. In
order to maintain consistency, I have tried to base the transcriptions for each
language on a single independent source. The sources for the languages used
in this study are summarized in Appendix A.1.

9 Compare, for example, the final consonant in English ship [ʃɪp] andGerman Schiff [ʃɪf] ‘ship’
which both go back to Proto-Germanic *skipa- ‘ship’ (KROONEN: 446, OREL: 340).
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MEANING

REFERENT

REFERENT

FORM REFERENT

Figure 2.5: The reference potential of the linguistic sign. The thickness of the arrows
indicates the probability that the sign is used to refer to a given referent.

2.1.4 Meanings

While – despite all problems mentioned in the previous section – the sign form
can be pretty easily described as a sequence of sound segments, the “intelligible
side” (Jakobson 1976 [1978]: 3) of the linguistic sign is less easily accessible.
This is due to the fact that meaning lacks both substance and linearity. It
lacks substance, since it is not sensually perceptible, and it lacks linearity, since
it doesn’t depend on time. The problem of accessibility comes along with
the general problem that – as a result of the arbitrariness of the connection
between sign form and sign meaning – “meaning is inherently fuzzy and non-
systematic” (Hock and Joseph 1995 [2009]: 206), and up to today there is no
semantic theory which finds basic support in the whole linguistic community.
Within the Saussurean model it is not specified how the linguistic sign is

used to refer to the “real world”. It is only emphasized that its meaning part
should not be confused with the objects it denotes (Saussure 1916: 98). Tri-
adic sign models (cf., e.g., Frege 1892, Ogden and Richards 1923 [1989]:
10-12) cope with this lack in detail by distinguishing the meaning of a word
from its reference, the former determining a category and the latter determin-
ing a potential referent (Löbner 2003: 257).
Since the reference of a linguistic sign is only unique if the sign is used in

a specific context, it is useful to make a further distinction between reference
and reference potential (Schwarz 1996: 175). The reference potential of a sign
is hereby understood as the set of all possible referents the sign can be used
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to denote (see the illustration in Figure 2.5).10 The reference potential of a
sign depends on its meaning: The more specific the meaning of a sign, the
more restricted is its number of possible referents (Löbner 2003: 306). Thus,
comparing the words German Stein [ʃtain] ‘stone’ and German Ding [dɪŋ]
‘thing’, the reference potential of Stein is more restricted compared to that
of Ding, since the former usually denotes stones or stone-like objects, while
the latter denotes all kinds of different objects. A further characteristic of the
reference potential is its heterogeneity. Often, the possible referents of a sign do
not comprise a uniform class, but may instead belong to different classes which
can differ to a great extent. Thus German Stein may likewise refer to a certain
material (aus Stein gebaut, ‘built from stone’), or an object which consists of
the material (Steine werfen, ‘throw stones’). Such cases of polysemy resulting
from different kinds of semantic shifts find a direct reflection in the structure
of the reference potential.
In linguistics, the meaning of a sign, its reference, and its reference poten-

tial are not always distinguished in a strict manner. Often, the term meaning is
used to refer to all three concepts, depending on the context. Since this study
primarily deals with the formal part of the linguistic sign, I will generally fol-
low this practice, and make use of the more exact terms only when the topic
demands it.

2.1.5 Representations

The most common way to represent a language “practically” is to use a word
list. A word list is henceforth understood as a collection of semantic glosses
(henceforth called items), usually given in English, along with their “lexical
representation” (Sankoff 1969: 2) in a given language or dialect (henceforth
called entries). One can think of a word list as a simple table or spreadsheet
where the first column contains the meaning of a word and the second column
its form. In a practical realization, a word list is nothing else. In contrast to
a dictionary, in which the form of a word in a given language serves as a key
to the dictionary entry, which usually consists of an explanation of the word’s
meaning, a word list uses concepts (meanings) as keys for the word forms of a
given language. Since the concepts are usually glossed by very simple English
words, word lists make it easy to find semantically similar or identical words
in different languages.

10 For a similar view on the matter, see Allwood (2003) who uses the term meaning potential.
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Items
Entries

German English Dutch Russian
‘hand’ hant hænd hɑnt ruka
‘tooth’ ʦaːn tʊːθ tɑnt zup
‘head’ kɔp͡f hɛd hoːft gəlɐva
... ... ... ... ...

Table 2.2: Multilingual word list for German, English, Dutch, and Russian

A word list does not necessarily have to be used to represent only one lan-
guage (monolingual word list), but it can also be used to represent two lan-
guages (bilingual word list), or even multiple languages (multilingual word
list). Whenever a word list represents more than one language, it is assumed
that the words of the different languages are semantically aligned, i.e. that all
words with an identical meaning are placed in the same row, and each lan-
guage is given a separate column, as exemplified for a multilingual word list
of German, English, Dutch, and Russian in Table 2.2.
In historical linguistics it is common to base the compilation of word lists

on specific collections of semantic glosses. These collections are sometimes
called basic vocabulary lists, but they are more often referred to as Swadesh
lists, named after Morris Swadesh (1909 – 1967), who popularized the use of
spreadsheet-like data in historical linguistics. Swadesh originally proposed a
collection of 215 semantic glosses11 whichwere intended to represent the basic
vocabulary of all languages (Swadesh 1950). In theory, basic vocabulary refers
to those concepts that are so general that they find simple expressions in all
languages, independent of time and space (Sankoff 1969: 2). In practice, basic
vocabulary is represented by a list of (English) glosses, such as, e.g. ‘hand’,
‘foot’, ‘stone’, etc.
Although the idea to design a list of cross-cultural basic meanings sounded

well in theory, it turned out to be difficult to be realized in practice. Despite
the fact that Swadesh himself (Swadesh 1952, Swadesh 1955) and other schol-

11 In his first text from 1950, Swadesh mentions as many as 225 semantic glosses on page 161,
but this is probably a typo: when counting all items listed on the page, there are exactly 215
items in the original list of English glosses.
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ars (Alpher and Nash 1999, Bennet 1976, Dolgopolsky 1964, Geoffrey et al.
1969, Holman et al. 2008, Lees 1953) repeatedly revised the collection of
basic glosses by reducing the number of items or modifying the glosses, no
basic vocabulary list could be devised so far that would meet the requirement
of cultural and temporal independence.
The term Swadesh list is often used ambiguously in historical linguistics,

referring either to a concrete word list in which basic vocabulary items of a
given Swadesh list are translated into a given language (Holman et al. 2011:
842), or a list of basic vocabulary items (Trask 2000: 331). In order to avoid
this confusion, the term basic vocabulary list will be used to refer to lists of
glosses that are supposed to reflect basic vocabulary items. The term Swa-
desh list, on the other hand, will exclusively be used to refer to word lists (in
the sense defined above) which contain semantic glosses that correspond to a
given basic vocabulary list. Thus, a German Swadesh list refers to a word list
containing basic vocabulary items such as ‘hand’, ‘foot’, etc., and their transla-
tional equivalents in the German language, such asHand, Fuß, etc. A Swadesh
list for two or more languages is a simple bi- or multilingual word list whose
items cover the range of a certain basic vocabulary list.
As I just mentioned, several authors have proposed different basic vocabu-

lary lists, which differ in length and content. Among these, the most common
lists are two lists proposed by Morris Swadesh himself, the first one contain-
ing 200 items (Swadesh 1952), the second one containing 100 items (Swadesh
1955). Since these lists are often used in the literature, I will call the first one
the Swadesh-200 basic vocabulary list, and the second one the Swadesh-100
basic vocabulary list. When pointing to actual Swadesh lists that are based on
these basic vocabulary lists, I will use the terms Swadesh-200 word list, and
Swadesh-100 word list, respectively.

2.2 Change

The detection that languages change was not a necessary one to be made by
scholars in the history of science. This is especially true for less obviously
changing domains of language like the sound system. Table 2.3 gives an ex-
ample for the effects of sound change: The Chinese poem, taken from the
Book of Odes (ca. 1050–600 BC, Shījīng: 28.3), which is given in modern
Pīnyīn transliteration along with a translation by Karlgren (1950), does not
rhyme consistently throughout all rhyme words. Given the fact that we know
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燕 燕 於 飛， 下 上 其 音。 The swallows go flying, falling and rising
are their voices;yān yān yú fēi xià shàng qí yīn

之 子 於 歸， 遠 送 於 南。 This young lady goes to her new home, far
I accompany her to the south.zhī zǐ yú guī, yuǎn sòng yú nán

瞻 望 弗 及， 實 勞 我 心。 I gaze after her, can no longer see her,
truly it grieves my heart.zhān wàng fú jí, shí láo wǒ xīn

Table 2.3: Strange rhymes in the Book of Odes. This is but one stanza of Ode 28,
taken from the Book of Odes, an archaic collection of songs and poems created between
1050 and 600 BC. When the poem is read in the modern pronunciation (given here
in Pīnyīn transliteration) the rhyme words (originally rhyming words shaded in the
same color) do not necessarily rhyme, since the pronunciation of Old Chinese changed
heavily compared to Modern Chinese.

that the sound systems of languages change over time, this is not surprising
when considering the great amount of time which elapsed between the cre-
ation of the poem (ca. 600 BC) and its modern reading.
Nevertheless, it took Chinese scholars almost one millenium of research

to come to the conclusion that inconsistencies in the rhyme system of their
sacred poems were indeed a result of language change rather than the result of
lax rhyming conventions of their ancestors. Since the Chinese writing system
denotes the form of the linguistic sign not on a phonemic, but on a morphemic
basis (Chao 1968: 102), they simply had no clue – apart from the rhymes
in their poems – that their language had changed greatly over the centuries.
Starting from some early attempts in the middle of the first millennium to
explain the strange rhymes as a result of “sound harmonization” practiced by
their ancestors (xiéyīn葉音, Baxter 1992: 153-157), it was the Chinese scholar
Chén Dì陳第 (1541 – 1606) who first explicitly stated that languages change
over time:

The writings of scholars must be made of adequate sounds. Even in the rural
areas everybody orders the sounds harmonically. Can it be that the ancients solely
did not have rhymes? One can say that in the same way in which ancient times
differ from modern times, and places in the North differ from places in the South,
characters change and sounds shift. This is a natural tendency. Therefore, it is
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inevitable that reading the ancient writings with modern pronunciation will sound
improper and wrong. (Máoshī Gǔyīnkǎo: 原序)12

In contrast to the Chinese scholars who were, roughly spoken, for a long time
completely unaware of language change, Western scholars knew more or less
that languages can change over time,13 yet the way they investigated the issue
was heavily influenced by the “Hebrew paradigm” which stated that all lan-
guages were descendants of Hebrew or the mysterious “Adamic language”,
and separated after the Confusion of Tongues (Genesis 11:1-9, Klein 1999,
Klein 2004, Arens 1955: 72-80). This led to a catastrophic view on language
change which stated that languages change within a sporadic and chaotic pro-
cess lacking any observable systematics (Geisler and List 2013). Both views
– the ignorant one of the Chinese and the catastrophic one of the Western
scholars – held back one of the most important discoveries made by the first
historical linguists at the beginning of the 19th century: the discovery that
language change, or, more precisely, sound change, is a mostly regular and
systematic process.

2.2.1 Sound Change

The very fact that the sounds of languages may change over time can be eas-
ily observed when comparing written sources of ancient languages with their
descendant languages. Thus, when comparing a couple of Latin words with
their Italian descendants, such as Latin plūma [pluːma] ‘feather’ vs. Italian pi-
uma [pjuma] ‘feather’, Latin clāvis [klaːwis] ‘key’ vs. Italian chiave [kjave]
‘key’, and Latin flōs [floːs] ‘flower’ vs. Italian fiore [fjore] ‘flower’, one can
easily observe that the similarity between the words is of a somewhat system-
atic nature, in so far as in all cases where a [j] occurs in an Italian word, the
Latin ancestor word has an [l] (see Table 2.4). It is a straightforward conclu-
sion to assume that the Latin [l] became a [j] in Italian. Adding more words
to the comparison, such as Latin lingua [liŋgwa] ‘tongue’ vs. Italian lingua

12 My translation, original text: 故士人篇章，必有音節，田野俚典，亦名諧聲，豈以古
人之詩而獨無韻乎？蓋時有古今,地有南北,字有更革,音有轉移,亦埶所必至。故以
今之音讀古之作,不免乖剌而不入。

13 An awareness regarding language change is already reflected in the work of Plato (428/427
– 348/347 BC). Thus, in Krátylos (414c), Socrates says: “My friend, you do not bear in
mind that the original words have before now been completely buried by those who wished
to dress them up, for they have added and subtracted letters for the sake of euphony and have
distorted the words in every way for ornamentation or merely in the lapse of time.”
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[liŋgwa] ‘tongue’, Latin lūna [luːna] ‘moon’ vs. Italian luna [luna] ‘moon’,
or Latin lacrima [lakrima] ‘slow’ vs. Italian lacrima [lakrima] ‘tear’, it be-
comes also obvious that the change of [l] to [j] did not affect all instances of
[l], but only occurred in certain environments, namely when preceded by a
plosive, such as [p] and [k], or a fricative, such as [f]. The list of examples for
both cases, i.e. those where the [l] was preserved and those where it changed
when preceded by a plosive or a fricative, can be easily extended when looking
up the relevant entries in the literature (cf., e.g., REW).
When dealing with sound change, one can approach the phenomenon from

different perspectives which emphasize its different aspects, namely, its pro-
cedural aspects, its substantial aspects, and its systematic aspects. The pro-
cedural perspective deals with general aspects of the process and its domain
by distinguishing different mechanisms of sound change. The substantial per-
spective deals with the change in the substance of sounds by distinguishing
different types of sound change. The systematic perspective deals with the
impact of sound change on the phonological system by distinguishing differ-
ent patterns of sound change.14 The study of sound change patterns, especially
the questions of phoneme split, phoneme merger, and phoneme loss, play a cru-
cial role in linguistic reconstruction. However, since this study is not dealing

Meaning
Italian Latin

Orth. IPA Orth. IPA
‘key’ chiave kjave clāvis klaːwis
‘feather’ piuma pjuma plūma pluːma
‘flower’ fiore fjore flōs floːs
‘tear’ lacrima lakrima lacrima lakrima
‘tongue’ lingua liŋgwa lingua liŋgwa
‘moon’ luna luna lūna luːna

Table 2.4: Italian words compared to their Latin ancestor words

14 This distinction follows the terminology used in Hoenigswald (1960), or at least, the termi-
nology I infer from his work. Trask (2000) uses the terms syntagmatic sound change (ibid.:
246) and paradigmatic sound change (ibid.: 335) to distinguish between types and patterns
of sound change.
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with linguistics reconstruction, but only with its preliminary stages, only the
mechanisms and the types of sound changes will be treated in the following.

Mechanisms of Sound Change

Approaching sound change from the procedural perspective, different mech-
anisms of sound change may be identified. If the example given in Table 2.4
was representative of the general mechanism of sound change, two major con-
clusions regarding the process could be drawn, namely that
(a) sound change is a recurrent process, i.e. it normally does not affect single words

of a language sporadically but instead applies to many (if not to all) words of the
lexicon, and

(b) sound change is contextually restricted, i.e. where a certain change occurs depends
on its phonetic context.

These two observations are summarized in the traditional notion of the reg-
ularity of sound change: sound change is considered to be regular, since it
follows certain rules by which certain sound segments to which the rules ap-
ply are changed in large parts of the lexicon of a language. That sound change
may operate in this way was first detected by Rasmus Rask (1787 – 1832, cf.
Rask 1818) and then popularized by Jacob Grimm (1785 – 1863, cf. Grimm
1822). The findings were met enthusiastically by the scholars of the 19th cen-
tury and led to the even stronger notion of the sound law (Lautgesetz) which
can already be found in the work of August Schleicher (1821 – 1868, cf. e.g.
Schleicher 1861: 11). The hypothesis that sound change is a regular process
which applies to the whole lexicon of a language is also called the Neogram-
marian Hypothesis, since it found its strongest formulation in the so-called
Neogrammarian Manifesto of Karl Brugmann (1849 – 1919) and Hermann
Osthoff (1847 – 1909):

Aller lautwandel, soweit er mechanisch vor sich geht, vollzieht sich nach ausnahm-
slosen gesetzen, d.h. die richtung der lautbewegung ist bei allen angehörigen einer
sprachgenossenschaft, ausser dem Fall, dass dialektspaltung eintritt, stets dieselbe,
und alle wörter, in denen der der lautbewegung unterworfene laut unter gleichen
verhältnissen erscheint, werden ohne ausnahme von der änderung ergriffen. (Os-
thoff and Brugmann 1878: XIII)

This seemingly radical position which identified the phenomena with an ex-
ceptionless and law-like process did not find support among all scientists. Es-
pecially dialectologists who were working with empirical data of spoken lan-
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guages (as opposed to the written language data of scholars working in the
Indo-European field) disagreed with the claim and proposed the opposite the-
ory that “every word has its own history” (“chaque mot a son histoire”, a slogan
that is often attributed to Jules Gilliéron, 1854 – 1926, cf. Campbell 1999:
189). While, strictly speaking, both theories were not incompatible, since
the Neogrammarian Hypothesis did never claim that all words of a language
necessarily change in a regular manner, but merely that idiosyncratic changes
“could be accounted for [...] by certain less obvious mechanisms of borrowing
and analogy” (Kiparsky 1988: 368), the linguistic community was for a long
time split into two opposing camps, and the discussion went into a deadlock,
since none of the views could find agreement among a majority of scholars.
The situation changed in the sixties of the 20th century when new research –
mainly conducted in the field of Chinese dialectology – led to the proposal of
a different sound change mechanism which was somehow the opposite of the
Neogrammarian Hypothesis. The Neogrammarians had claimed that sound
change proceeds lexically abrupt and phonetically gradual:

Regarding the lexicon [they assumed] that a change always affects the whole lex-
icon, and can therefore be seen as an abrupt change. Regarding the sounds [they
assumed] that the change proceeded step by step, and can therefore be seen as a
gradual change. (Wang 2006b: 109) 15

The research of Chinese dialectologists, however, suggested that a certain
mechanism of sound change, which was later labeled lexical diffusion, may
operate in the opposite way, i.e. lexically gradual and phonetically abrupt:

Phonological change may be implemented in a manner that is phonetically abrupt
but lexically gradual. As the change diffuses across the lexicon, it may not reach
all the morphemes to which it is applicable. If there is another change competing
for part of the lexicon, residue may result. (Wang 1969: 9)

An example for the phenomenon of lexical diffusion is given in Table 2.5.
The table gives three Chinese character pairs with identical readings in Mid-
dle Chinese (spoken around 600 AD) contrasted with their modern reflexes in
the Shuāngfēng dialect which belongs to the Min group of Chinese dialects.16
As can be seen from the table, the Middle Chinese homonyms split into two

15 My translation, original text: “作為詞彙，要變就都變，因而是一種突變。作為語音，
變化是逐漸的，因而是一種漸變”.

16 The data is taken from the electronic version of the Hànyǔ Fāngyīn Zìhuì (ZIHUI). Middle
Chinese readings follow the system of Baxter (1992) with some slight changes.
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different modern readings each, one where the Middle Chinese initial was pre-
served, and one, where it was devoiced and aspirated. Within the Neogram-
marian Hypothesis, such splits of homonyms are difficult to explain, since,
assuming regularity of change, all instances of a sound which occur in the
same phonetic context should change in an identical way.
Such examples for the irregularity of change, however, do not necessarily

contradict the Neogrammarian Hypothesis. As long as there are only a few of
them, they can be explained by external factors, such as dialect borrowing or
analogy. Chen (1972) presented a thorough statistical analysis of 616 char-
acter readings in Shuāngfēng which had a voiced initial in Middle Chinese.
His findings show that there are many examples for the process of devoicing
and aspiration of voiced initials, yet that there are also many cases where the
voiced initials are preserved. This suggests that there is no strict law for de-
voicing and aspiration of Middle Chinese initials in Shuāngfēng, but rather
a strong tendency. Such a tendency can best be explained by assuming that
sound change does not necessarily affect the whole lexicon at once, but rather
spreads from word to word at different paces:

When a phonological innovation enters a language it begins as a minor rule, af-
fecting a small number of words [...]. As the phonological innovation gradually
spreads across the lexicon, however, there comes a point when the minor rule
gathers momentum and begins to serve as a basis for extrapolation. At this crit-
ical cross-over point, the minor rule becomes a major rule, and we would expect

Character Pīnyīn Meaning Middle Chinese Shuāngfēng
步 bù ‘to walk’ bo³ bu³³
捕 bǔ ‘to grasp’ bo³ pʰu²¹
刨 páo ‘to dig’ bæw¹ bə³³
跑 páo ‘to scrape’ bæw¹ pʰə²¹
盜 dào ‘to rob’ daw³ də³³
導 dǎo ‘to lead’ daw³ tʰə³⁵

Table 2.5: Split of Middle Chinese homophones in the Shuāngfēng dialect. Assuming
that sound change affects all instances of a sound, regardless of the meaning of a word,
the modern readings should be identical.
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diffusion to be much more rapid. The change may, however, reach a second point
of inflection and eventually taper off before it completes its course, leaving behind
a handful of words unaltered. (ibid.: 474f)

When these phenomena were first presented, many researchers stated that
lexical diffusion was the general mechanism of sound change and that the
Neogrammarian Hypothesis was proven wrong. Yet, sociolinguistic research
on ongoing sound change later gave strong support for the alternative ex-
planation that there actually are two different mechanisms of sound change:
Neogrammarian sound change, which was phonetically gradual and lexically
abrupt, and lexical diffusion, which was phonetically abrupt and lexically grad-
ual:

There is no basis for contending that lexical diffusion is somehow more funda-
mental than regular, phonetically motivated sound change. On the contrary, if we
were to decide the issue by counting cases there appear to be far more substan-
tially documented cases of Neogrammarian sound change than of lexical diffusion.
(Labov 1994: 471)

Including those cases where the sounds of the sign form change in a sporadic
manner, due to such various reasons as language contact, analogy, or taboo,
three different mechanisms of sound change can be distinguished:
(a) Neogrammarian sound change which is recurrent, phonetically conditioned, pho-

netically gradual, and affects the whole lexicon at once,
(b) lexical diffusion which is recurrent, not phonetically conditioned, phonetically

abrupt, and spreads through the lexicon in different paces, and
(c) sporadic sound change which is not recurrent, neither phonetically conditioned,

nor phonetically gradual, and does only sporadically affect the lexicon.

Types of Sound Change

The long tradition of research in historical linguistics has lead to the postula-
tion of many different types of sound change. Unfortunately, the terminology
which is used to address these types in the literature is rather “unsteady”, rang-
ing from very concrete terms covering very concrete sound changes to very
general terms that refer to the change of abstract classes of sounds. Thus, what
is labelled as type of sound change may cover the phenomenon of rhotacism
(Trask 2000: 288), which, simply speaking, refers to the change of [s] to [r],
as well as the process of lenition, which refers to any kind of change “in which
a segment becomes less consonant-like than previously” (ibid.: 190). Many
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of the broad terms which cover a large range of distinct processes are “ex-
planatory” rather than descriptive, since they also offer an explanation why
the respective changes happened or happen. Thus, in common text book def-
initions of assimilation, this sound change type is not only described as “[a]
change in which one sound becomes more similar to another”, but it is also
emphasized that this happens “through the influence of a neighboring, usually
adjacent, sound” (Campbell and Mixco 2007: 16). Giving the explanation
along with the description is problematic for a typology, since the latter builds
on the former. As a result of this heterogeneous terminology which partially
describes, partially explains, and partially classifies, it is difficult, if not im-
possible, to find a homogeneous and neutral classification of sound change
types in the literature. Most authors confine themselves to giving examples
which cover the most general and most frequently attested processes (cf., e.g.,
Anttila 1972: 57-83, Hock and Joseph 1995 [2009]: 113-149, Lehmann 1962
[1992]: 183-118).
A very broad classification of sound change types which is not in conflict

with the linguistic literature, but would probably be regarded as rather trivial,
can be derived when comparing the input and the output of sound change pro-
cesses. Sound change can be thought of as a function which receives one or
more sounds as input and yields one or more sounds as output. Since sound
change may be contextually restricted, such a function may also require ad-
ditional parameters, such as the sounds preceding or following, the syllabic
environment, or suprasegmental aspects, such as stress or tone. When treating
sound change in this way, one can assign concrete sound change events to one
of five basic types, depending on the relation between the input and the output
of the function, namely
(a) continuation,
(b) substitution,
(c) insertion,
(d) deletion, and
(e) metathesis.

Continuation does actually not refer to a sound change, but to its absence. As
an example, compare Old High German hant [hant] ‘hand’ and its unchanged
reflex German Hand [hant]. Substitution refers to all sound-change types in
which a sound segment is replaced by another one. As an example, compare
the initial consonant in Old High German snēo [sneːo] ‘snow’ with the initial
consonant in its reflex German Schnee [ʃneː]. Insertion (Campbell and Mixco
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Type Description Representation
continuation absence of change x > x

substitution replacement of a sound x > y

insertion gain of a sound ∅ > y

deletion loss of a sound x > ∅
metathesis change in the order of sounds xy > yx

Table 2.6: Five basic types of sound change

2007: 85) refers to all sound-change types in which a sound is inserted at a
given position of a word, such as the [t] in German jemand [jeːmant] ‘some-
body’ which was not present in Old High German ioman [joman]. In the
literature, the term epenthesis is also used to refer to this type (Trask 2000:
107). Deletion (Campbell and Mixco 2007: 110f) refers to all sound-change
types in which a sound is completely deleted, such as it happened with the
[u] in Old High German angust [aŋust] ‘fear’ compared to German Angst
[aŋst]. In the literature, the terms loss and elision are also used to refer to
this type (Trask 2000: 202). In contrast to the previously discussed sound-
change types, metathesis (Campbell and Mixco 2007: 122, Trask 2000: 211)
does not involve a change in the substance of sounds, but merely the order of
segments, although it is often also accompanied by additional types of sound
change. Thus, comparing Proto-Slavic *žьltъ ‘yellow’ with its reflexes Rus-
sian жёлтый [ʒoltɨj] and Czech žlutý [ʒlʊtiː] (DERKSEN: 565), one can
see that the Czech word swapped the [l] with the vowel originally preceding
it. In Table 2.6 the five types are summarized.
From a formal perspective, this classification can be further modified. Not

all distinctions are important. Thus, continuation and substitution can be as-
signed to one simple type which covers both processes. Metathesis can also
be described in terms of deletion and insertion events, and often, this may
even reflect the actual processes better. Thus, the metathesis by which Proto-
Slavic *golvà ‘head’ became Bulgarian глава [gləva] (DERKSEN: 176) may
be more realistically understood as a process during which, in a first stage,
a (weak) vowel was inserted after the liquid *golvà > *goləvà. In a second
stage, the preceding vowel was lost: *goləvà > [gləva]. The intermediate
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state of this process is still reflected in Russian голова [gəlɐva] (Leskien 1871
[2002]: 35f). One further modification of this classification, which one might
think of, is to add two further types of sound change, namely split and fusion,
which refer to those cases in which one sound split into two or more sounds,
or two or more sounds were fused into one sound. For the sake of simplicity,
however, I prefer, to treat these changes as insertions and deletions which are
eventually accompanied by additional substitutions.

2.2.2 Semantic Change

While in historical linguistics the change of the formal part of the linguistic
sign is usually dealt with under the premise of “regularity”, change in meaning,
is traditionally considered to be notoriously irregular and unpredictable, and
“there is [...] little in semantic change which bears any relationship to regu-
larity in phonological change” (Fox 1995: 111). The reason for the problems
one faces when dealing with semantic change can be found in the structural
differences between sign form and sign meaning and the resulting processes
by which both entities change. While the formal part of the linguistic sign
is characterized by its sequential structure and sound change is characterized
by the alternation of segments, the meaning part is better described as some
kind of conceptual network, and semantic change is not based on an alterna-
tion but on the accumulation and reduction of potential referents, i.e. by a
reorganization of the sign’s reference potential (see Section 2.1.4).
This can be illustrated by taking the word German Kopf [kɔp͡f] ‘head’ as

an example. Tracing the history of this word back in time, it probably goes
back to Proto-Germanic *kuppa- ‘vessel’ (KLUGE: 528, OREL: 224f, see
Figure 2.6).17 While the difference in meaning between the two words might
seem implausible on the first sight (consider the English descendent cup [kʌp],
whose meaning did not change greatly), the semantic change from ‘vessel’ to
‘head’ becomes less surprising when considering the fact that in many lan-
guages it is quite common to use a large bunch of words with different origi-
nal meanings to denote ‘head’. Thus, in German, one can use words like Birne
[bɪrnə] ‘peach’, Schädel [ʃɛːdəl] ‘skull’, Rübe [ryːbə] ‘weet’, or Dach [dax]
‘roof’ in order to refer to the round upper part of the human body, and in En-
glish one can find similar types of denotation, such as, e.g., melon [mɛlən],

17 This is a simplifying description of the etymology of the word. See page 43 for a more
detailed account.
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German “head”

Kopf .

k ɔ p͡f

Pre-German “head”

*kop –

k ɔ p “vessel”

Proto-
Germanic

*kuppa-

k u pː a “vessel”

Figure 2.6: Change in form and meaning: From Proto-Germanic *kuppa- ‘vessel’ to
German Kopf ‘head’.

or skull [skʌl]. Keeping these examples in mind, the change from ‘vessel’ to
‘head’ can be easily explained as an initially sporadic use of the word [kɔp͡f]
(commonly used to refer to ‘cup’) when referring to a ‘head’ in early German
which later became its main use. Such a change basically goes through three
phases: The initial phase where no change happened so far, the polysemic
phase where the sign accumulates new meanings, and the final stage where
the polysemy of the sign is reduced in favor of the meaning which was newly
acquired in the polysemic phase (Wilkins 1996: 269). An intermediate stage
of this change is attested in Dutch, where the word kop [kɔp] has both mean-
ings ‘head’ and ‘cup’.
Taking the aforementioned notion of the reference potential, and concen-

trating only on the most common referents of English cup, Dutch kop, and
German Kopf (see Figure 2.7), one can find a certain continuum regarding
the common referents of the words. This continuum does not only reflect the
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“cup”

CONTEST

TROPHY

[kʌp] CUP

(a) English

“head, cup”

CUP

HEAD

[kɔp] TOP

(b) Dutch

“head”

HEAD

TOP

[kɔp͡f] CHIEF

(c) German

Figure 2.7:Comparing the reference potentials of reflexes of Proto-Germanic *kuppa-
‘head’ in English (a), Dutch (b), and German (c), as reflected by the most common
meanings of the words. The thickness of the arrows indicates the most common referents
of the words.
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former processes of semantic change, but it may also point to future changes
or general trends. For example, the shift from HEAD to CHIEF, probably
via an intermediate stage TOP is also reflected in Chinese shǒu 首 [ʂou²¹⁴]
‘chief, first’ which originally meant ‘head’ (SCHUESSLER: 470). The original
meaning is still reflected in the character of the word, which originally was a
pictogram of an animal’s head, as can be easily seen from the Oracle Bone ver-
sion of the character: 首. However, whether it is possible to generalize such
trends remains an open question. Most linguists would probably subscribe to
the claim that certain types of semantic change are more probable than other
types. Many would probably also agree that there are universal processes of
semantic change. However, so far, no universal processes could be identified,
and it remains unproven whether they can be identified at all. The problem
of semantic change remains unsolved as long as no data on actually attested
semantic changes in a large number of different languages is available. In the
meantime, historical linguists have to rely on their intuition when comparing
languages and searching them for probably related words.

2.2.3 Lexical Change

If there was no semantic change, the lexicon of languages would remain stable
during all times. Words might change their forms, but there would always be
an unbroken tradition of identical patterns of denotation. Since this is not the
case, the lexicon of all languages is constantly changing. Words are lost, when
the speakers cease to use them, or new words enter the lexicon when new
concepts arise, be it that they are borrowed from other languages, or created
from native material via different morphological processes. Such processes
of word loss and word gain are quite frequent and can sometimes even be
observed directly by the speakers of a language when they compare their own
speech with the speech of an elder or a younger generation.
An even more important process of lexical change, especially in quantitative

historical linguistics, is the process of lexical replacement. Lexical replacement
refers to the process by which a given word A which is commonly used to ex-
press a certain meaning x ceases to express this meaning, while at the same
time another word B which was formerly used to express a meaning y is now
used to express the meaning x. The notion of lexical replacement is thus noth-
ing else than a shift in the perspective on semantic change. While semantic
change is usually described from an semasiological perspective, i.e. from the
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Items
Entries

German English Dutch Russian
‘hand’ hant 1 hænd 1 hɑnt 1 ruka 2
‘tooth’ ʦaːn 3 tʊːθ 3 tɑnt 3 zup 4
‘head’ kɔp͡f 5 hɛd 6 hoːft 6 gəlɐva 7
... ... ... ... ...

Table 2.7: A lexicostatistical word list of German, English, Dutch, and Russian. The
number to the right of each entry indicates assigns it to a specific cognate set. If two
entries have the same number, they go back to a common ancestor word.

perspective of the form, lexical replacement describes semantic change from
an onomasiological perspective, i.e. the perspective of the meaning.
Lexical replacement plays a very important role in lexicostatistics (Lees

1953, Swadesh 1950, Swadesh 1952, Swadesh 1955) and its modern deriva-
tions (Gray and Atkinson 2003, Starostin 1989) where rates or concrete pro-
cesses of lexical replacement are first inferred from multilingual word lists and
then stochastically evaluated in order to reconstruct language phylogenies. Ta-
ble 2.7 illustrates how processes of lexical replacement can be inferred from
lexicostatistical word lists. A lexicostatistical word list is a word list which
assigns words that go back to a common ancestor to cognate sets, i.e. sets
of words that are cognate (see Section 2.3.1). Practically, this can be real-
ized by giving each entry a specific cognate ID. If two entries have the same
cognate ID, they are assumed to be cognate. From such a word list, lexical re-
placement can be inferred by comparing the entries of the different languages
in a given meaning slot. If the languages that are represented by the word
list share a common origin, one may assume that the distribution of cognate
sets corresponding to a given item is the result of specific replacement events
that took place in the past. For example, the distribution of cognate sets over
the entries for ‘head’ points to a replacement event in the history of German,
since German Kopf [kɔp͡f] ‘head’ is not cognate with Dutch hoofd [hoːft] and
English head [hɛd]. The original word for ‘head’ in German was German
Haupt [haupt] ‘head, main’. It was replaced by Kopf during the 16th century
(PFEIFER).
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2.3 Relations

In order to describe how languages change, it is important to define certain
relations which hold for such entities as words (in the sense of “form-meaning
pairs”) or languages (understood as “collections of words”). In contrast to
evolutionary biology, where a rich terminological framework to describe the
fundamental historical relations between genes and species has been estab-
lished as a result of still ongoing discussions on theory and methodology (cf.
the overview in Koonin 2005), linguists have rarely addressed these ques-
tions directly, but rather assumed that such relations as cognacy, or genetic
relationship are more or less self-evident. The few examples where scholars
explicitly tried to deal with these relations (cf., e.g., Arapov and Xerc 1974,
Holzer 1996, Katičić 1966) have been largely ignored in the literature. As a
result, the traditional terminology which is used to describe the fundamental
relations between words and languages lacks precision and has led to a con-
siderable amount of confusion in scholarly discussions.
In order to illustrate what I mean by this “lack of precision”, consider the

fundamental concept of homology in evolutionary biology. This term “desig-
nates a relationship of common descent between any entities, without further
specification of the evolutionary scenario” (Koonin 2005: 311). In order to
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Table 2.8: Basic relations between genes (biology) and words (linguistics)
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address more specific relations, the terms orthology, paralogy, and xenology
are further used in biology. Orthology refers to “genes related via speciation”
(Koonin 2005: 311), i.e., genes related via direct descent. Paralogy refers
to “genes related via duplication” (ibid.), i.e. genes related via indirect de-
scent. Xenology, a notion which was introduced by Gray and Fitch (1983),
refers to genes “whose history, since their common ancestor, involves an in-
terspecies (horizontal) transfer of the genetic material for at least one of those
characters” (Fitch 2000: 229), i.e. to genes related via descent due to lateral
transfer. In historical linguistics, only one relation is explicitly defined, namely
the cognacy relation (also called cognation), which usually refers to words re-
lated via “descent from a common ancestor” (Trask 2000: 63). Cognacy is
strictly distinguished from descent due to lateral transfer (borrowing), but the
term covers both direct and indirect descent. Indirect descent is sometimes
labelled as oblique cognacy (ibid.: 234), but this term is rarely used, and in
most cases, no further distinction between different kinds of cognate relations
is being made.
In Table 2.8, the four basic relations between genes and words are con-

trasted with the terminology used in biology and linguistics. One might of
course argue that the notion of xenology is not unknown to linguists, since the
borrowing of words is a very common phenomenon in language history. How-
ever, the specific relation which is termed xenology in biology has no direct
counterpart in historical linguistics, since the term borrowing refers to a dis-
tinct process, not to a relation. There is no common term in historical linguis-
tics which addresses the specific relation between such words as German kurz
[kʊrʦ] ‘short’ and English short [ʃɔːt]. These words are not cognate, since
the German word has been borrowed from Latin cǔrtus [kurtus] ‘mutilated’
(KLUGE, PFEIFER), yet they share a common history, since Latin curtus and
English short both (may) go back to Proto-Indo-European *(s)sker- ‘cut off’
(LIV: 556f, VAAN: 158, PFEIFER).18
A specific advantage of the biological notion of homology as a basic relation

covering any kind of historical relatedness compared to the linguistic notion
of cognacy as a basic relation covering direct and indirect common descent is
that the former is much more realistic regarding the epistemological limits of
historical research. Up to a certain point, it can be fairly reliably proven that the
basic entities in the respective disciplines (words and genes) share a common

18 The cognacy of English short and Latin cǔrtus is rather presumed than considered to be
definitely proven.
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history. Proving that more detailed relations hold for the entities, however,
is often much harder. The strict notion of cognacy has forced linguists to set
goals for their discipline which might be far too ambitious to achieve. In the
following, I will try to bring these goals into balance with the epistomological
limits of our discipline by redefining the basic relations between words and
languages.

2.3.1 Relations between Words

Given words from different languages one can define various kinds of relations
between them. From a historical viewpoint, the most interesting question re-
garding relations between words is whether they are historically related, or,
to put it in other words, whether they share a common descent. Common de-
scent is the broadest way to describe historical relations between words, since
no distinction is drawn to further characterize how the words are historically
related. In order to address this form of relation, one may adopt the biologi-
cal term homology, but I prefer to use the term etymological relation instead,
since in historical linguistics this term is often used in a sense similar to the
term homology in biology. From a formal viewpoint, the etymological rela-
tion is symmetric and transitive, i.e. if a word A is etymologically related to
a word B, the word B is also etymologically related to the word A, and if a
word A is etymologically related to a word B and word B is etymologicallly
related to a word C, the same relation also holds for A and C.
One can define more specific relations between words. An important one is

the relation between two words where one is the ancestor of the latter, i.e., one
has evolved from the other via a gradual process of change. Such an ancestor-
descendant relation is transitive and antisymmetric, i.e. if a word A is the
ancestor of a word B, B cannot be the ancestor of word A, and if A is the
ancestor of the word B which itself is the ancestor of the word C, A is also
the ancestor of the word C. Such a relation holds, for example, for Old High
German swīn [swiːn] ‘pig’ and German Schwein [ʃvain] ‘pig’, where the Old
High German word is the ancestor of the German word, and, accordingly, the
German word is the descendant of the Old High German word.
Given the ancestor-descendant relation, one can define another relation be-

tween words, namely the cognate relation (also termed cognacy, see above). If
two words are cognate, they both are the descendants of a common ancestor,
i.e., there is another word which is in an ancestor-descendant relation to both
words. Following this notion, English cup [kʌp] and German Kopf [kɔp͡f]
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Figure 2.8: Cognacy and ancestor-descendant relation

‘head’ are cognate, since both are descendants of Proto-Germanic *kuppa-
‘vessel’ (OREL: 224f), as illustrated in Figure 2.8. Similar to the etymological
relation, cognacy is a also transitive, symmetric relation. It is useful to make
a further distinction between a direct cognate relation and an oblique cognate
relation. English cup and German Kopf are direct cognates, since the word
forms have not been modified by morphological processes since the split of
their ancestor language. As an example for an oblique cognate relation, com-
pare Russian птица [ptiʦa] ‘bird’ and Polish ptak [ptak] ‘bird’. Both words
are usually assumed to be cognate (VASMER: 3,398), but they are descen-
dants of slightly different words in Proto-Slavic. While Polish word goes back
to the masculine noun Proto-Slavic *pъtákъ ‘bird (male bird)’, the Russian
word goes back to the feminine noun *pъtìca ‘bird (female bird)’ (DERK-
SEN: 424f). Both Proto-Slavic words are surely derived from a common root
*pъt- via morphological processes, but they the Russian and the Polish word
are not directly, but only obliquely cognate.
The ancestor-descendant relation has to be distinguished from the donor-

recipient relation, where one word is transferred from one language to another
one. While the ancestor-descendant relation between two words is the re-
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Figure 2.9: Ancestor relations vs. etymological relations

sult of a gradual process of change, whereby the ancestor word changes into
the descendent word (i.e. both words are actually snapshots of the same
word in different times), the donor-recipient relation is the result of a dis-
crete process, where no continuous change is involved. Some linguists as-
sume that Proto-Germanic *kuppa- ‘vessel’ has been borrowed from Latin
cūpa [kuːpa] ‘vessel’ (KLUGE: 528), which has a descendant in French coupe
[kup] ‘cup’.19 Following the above stated, Latin cūpa is the donor of Proto-
Germanic *kuppa-, and French coupe and German Kopf are etymologically
related, but not cognate, as illustrated in Figure 2.9. In order to address this
specific symmetric and transitive relation, which is comparable to xenology in
biology, I propose the term oblique etymological relation. The basic relations
between words which were discussed in this section are summarized in Table
2.9.

19 Not all scholars agree with this explanation, OREL classifies Proto-Germanic *kuppa- as an
inherited word, relating it to Latvian gubt ‘to bend’ (OREL: 224f).
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2.3.2 Relations between Languages

Given the usual problems one always has with definitions in disciplines dealing
on the borderline between social sciences and science such as linguistics, the
description of relations between words can be carried out in a quite straight-
forward way. Describing relations between languages, however, is a bit more
complicated, since, once we reduce languages to sets of words, relations be-
tween languages have to be derived from the relations between the words they
contain. Words, however, may easily get lost during language history. In the-
ory, this can lead to a situation in which a language once exhibited a certain
relation with another language, but has lost all traces. This may be problematic
– not only from an epistemological, but also from an ontological perspective.
Nevertheless, since this study does not deal with the reconstruction of Proto-
World, I will ignore these issues in the following.
Starting from two languages, spoken at different times, one can say that the

former is the ancestor of the latter, if it is “an earlier language from which the
later one is directly descended by the ordinary processes of language change”
(Trask 2000: 21). As for words, we can also call this relation an ancestor-
descendant relation. If the time span between ancestor and descendant lan-
guage is not too large, one can assume that there is also a certain amount
of words in the ancestor and the descendant language for which an ancestor-
descendant relation holds. Figure 2.10 illustrates this relation: given the com-
mon processes as word loss and word gain (see Section 2.2.3), it is not neces-
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sary that the ancestor-descendant relation holds for all words of the ancestor
and the descendant language. There will always be a certain amount of words
present in the ancestor language which are no longer present in the descendant
language, and there are surely also words present in the descendant language
which were not present in the ancestor language.
Given two languages which are spoken at the same time or at different times,

they can exhibit two specific relations, namely a genetic relation and a contact
relation. Simply speaking, two languages are genetically related if they “share
a single common ancestor” (ibid.: 133).20 The genetic relation between the
two languages may be reflected by a certain amount of words in both lan-
guages which are in a cognate relation. The amount of cognate words in the
languages may differ from the amount of words present in the common an-
cestor language. Both languages may have gained their own new words, and
the words inherited from the ancestor language may also be different, as il-
lustrated in Figure 2.11. Two languages are in a contact relation if a certain
amount of the words of one language has been transferred to the other during
a period of contact between the speakers of the languages. As a result, the

ANCESTOR

. gained words

. inherited words

. lost words

Figure 2.10: Ancestor-descendant relation between languages

20 For a more precise definition see Ringe et al. (2002: 63).
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Figure 2.11: Genetic relation between languages

transferred words are in a donor-recipient relation. This relation is illustrated
in Figure 2.12.
In contrast to the specific relations between words, the contact and the ge-

netic relation between languages are not mutually exclusive. Two languages
may well be genetically related and share a history of contact. For most genet-
ically related languages, this is rather the rule than the exception. For example,

ANCESTOR ANCESTOR

DONOR

. gained words

. . inherited words

. lost words

. etym. rel. words

Figure 2.12: Contact relation between languages
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Relations
common history

common descent no comm. desc.
no contact contact

Terminology
historical relation

genetic relation ?
? contact relation

Table 2.10: Basic historical relations between languages

German and English are not only genetically related, but also share a still on-
going history of contact. Furthermore, since the genetic relation is stable, i.e.,
one usually assumes that a language does not loose its genetic status, contact
relations can occur repeatedly during the history of languages. As a result, the
lexicon of languages can be stratified into different layers of words reflecting
different stages of contact with other languages. Similar to the terminology for
word relations, there is no term to reflect that two languages share a common
history without further specifying whether this involves common descent or
contact. In the summary on basic relations between languages given in Table
2.10, I use the term historical relation to reflect this relation. There are like-
wise no specific terms to address that two languages are not genetically related,
or that they have never come into contact. However, since these relations are
not often addressed specifically, I leave them undefined.

2.4 Resemblances

So far, this study has dealt with the basic entities of historical linguistics (Sec-
tion 2.1) and the basic processes by which these entities change (Section 2.2).
As a consequenc of these basic change processes, basic relations between the
entities could be established (Section 2.3). In the following, I want to deal with
the resemblances between the entities which result from the basic processes of
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change. Investigating these resemblances by comparing languages represents
the core of historical linguistic research, since both the inference of change
patterns as well as the postulation of language relations directly depend on it.

2.4.1 Resemblances in Form

When discussing resemblances in the formal part of the linguistic sign, it is
important to be clear of the kind of resemblance that shall be highlighted.
The words German schlafen [ʃlaːfən] ‘sleep’ and German Flaschen [flaʃən]
‘bottles’, for example, are quite similar, both consisting of six different sound
segments, which are almost identical, apart from the length of the vowel ([aː]
vs. [a]). A similar kind of similarity holds for German Post [pɔst] ‘post’ and
German Obst [oːpst] ‘fruit’.
A different, less obvious, kind of similarity consists between GermanKerker

[kɛrkər] ‘dungeon’ and German Tanten [tantən] ‘aunts’. Here, the similarity
lies not in the substance of the sound sequences, but in their structure: both
words consist of an identical chain of distinct characters, as can be easily seen
when the words are aligned: |0

k ɛ r k ə r
t a n t ə n 0|. Every distinct segment of

one of the two words corresponds directly to a distinct segment of the other
word, and if one wants to convert one of the sound sequences into the other, all
one has to do is to define a mapping between all unique segments, such as [k]
≈ [t], [r] ≈ [n]. Such a transformation is not possible for [flaʃən] compared
to [ʃlaːfən], since these sound chains are not structurally equivalent. These
two different kinds of similarities between words can be termed substantial
similarity and structural similarity, respectively. The former emphasizes the
similarities between the segments of the sequences while disregarding their
order. The latter emphasizes the order of the sequences while disregarding the
similarity of their segments.
The distinction between substantial and structural similarity might seem to

be nothing more than an intellectual game. Similarity between two or more
objects is always defined with respect to a given criterion, and one might easily
think of other criteria, such as, e.g. the length of a word, whether it sounds
pleasing to the ear, or whether it is easy to pronounce. When dealing with the
similarities between etymologically related words, however, both the substan-
tial and the structural similarity become crucially important. In Table 2.11, I
have listed some cognate words between Italian and French. When compar-
ing these words, their most striking resemblance is not due to their similarity
in substance, but due to their similarity in structure. Although the substantial
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Meaning
Italian French

Orth. IPA Orth. IPA
‘key’ chiave kjave klé kle
‘feather’ piuma pjuma plume plym
‘flower’ fiore fjore fleur flœʀ
‘tear’ lacrima lakrima larme laʀm
‘tongue’ lingua liŋwa langue lɑ̃g
‘moon’ luna luna lune lyn

Table 2.11: Cognate words in Italian and French

similarities might seem to be more evident, it is not difficult to observe that
in all cases, where a [j] occurs in an Italian word, there is an [l] in the French
word. It is further not difficult to observe that this is only the case when the [l]
in French is preceded by a plosive, such as [p] or [k], or a fricative, such as [f],
and the very fact that the sounds which are similar regarding their substance
also occur in similar positions of the words reflects their structural similarity
in a similar manner.
These structural similarities are a direct consequence of sound change. When

the speakers of a language separate, the languages keep changing indepen-
dently of each other. Since metathesis is rather rare, the order of the segments
of the word forms is rarely affected by the processes of sound change. As a
result, genetically related languages usually exhibit a striking amount of struc-
tural similarities between certain words. A specific characteristic of these sim-
ilarities is their systematic nature, i.e. the structural similarity holds not only
for a few words, but is reflected throughout the whole system of the languages.
Lass (1997) calls this specific kind of similarity, which goes “beyond the stage
of superficial comparison of individual words” (Hock and Joseph 1995 [2009]:
38), genotypic as opposed to phenotypic similarity (Lass 1997: 130). Geno-
typic similarity is reflected in regular sound correspondences (also called sys-
tematic correspondences, cf. Trask 2000: 336) which can be found between
the sound segments of etymologically related words. Thus, for the examples
in Table 2.11, one can find regular sound correspondences such as French [p]
≈ Italian [p], French [l] ≈ Italian [j] (befor labial plosive), and French [l] ≈
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Meaning
English German Russian

Orth. IPA Orth. IPA Orth. IPA
‘fact’ fact fækt Fakt fakt факт fakt
‘function’ function fʌŋkʃn̩ Funktion fʊŋkʦioːn функция funkʦɨjə
‘form’ form foːm Form fɔrm форма formə

Table 2.12: Systematic similarities resulting from contact relations

Italian [l] (otherwise). The most crucial aspect of this correspondence-based,
or genotypic similarity is that it is language-specific as opposed to language-
independent. Phenotypic similarity is both substantial and structural, but it
lacks the systematic aspect, since the resemblances are so spurious that they
do not allow to derive regular correspondence patterns. As an example, con-
sider Modern Greek θεός [θɛɔs] ‘god’ and Spanish dios [diɔs] ‘god’, which
are only phonetically very similar, but not assumed to be cognate, since no
further correspondence patterns can be found in the languages to support such
a claim. Comparing the oldest ancestor forms of the words which are re-
flected in written sources, namely Old Latin deivos, and Mycenaean Greek
tʰehós (Meier-Brügger 2002: 57f), it becomes further evident that the words
originally were not that similar as they are now.
It is important to keep inmind that regular sound correspondenceswhich can

be established between languages do not necessarily result from their common
descent but may also result from a period of contact. This can be can be seen
from the examples of English, German, and Russian words given in Table 2.12,
which all reflect striking recurrent structural similarities. These similarities,
however, are not due to the common origin of the words, since in all languages
the words have been directly or indirectly borrowed from Latin.

2.4.2 Resemblances in Meaning

The semantic aspects of linguistics are always notoriously problematic. The
same holds for resemblances in meaning. In Section 2.2.2 I gave one exam-
ple for the semantic shift from Proto-Germanic *kuppa- ‘vessel’ to German
Kopf ‘head’ which is reflected in its ancestral state in English cup, and as an
intermediate state in Dutch kop ‘head, cup’. To my knowledge, however, such
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cases are rather rare, and no empirical data which would make it possible to
carry out statistical investigations on the frequency of certain patterns of se-
mantic change is available at the moment. Therefore, no “deep” conclusions
regarding the semantic resemblances between etymologically related words
can be made at the moment. When searching for cognates in languages that
have not yet been studied so far, the most reliable heuristic seems to start with
semantic identity or near-identity. Other approaches have been discussed in
the literature (List et al. 2013, Steiner et al. 2011), yet they have to be applied
to more languages and tested on a larger amount of data in order to make it
possible to draw valid conclusions.

2.5 Proof

In some branches of science, especially in the historical and social sciences,
the object of investigation is not directly accessible to the researcher but can
only be inferred by tests and theories. In historiography, for example, the
events that took place at certain times (the res gestae) cannot be empirically
testified. They have to be reconstructed by sifting the evidence as it is given
in the sources (Schmitter 1982: 55f). In psychology, such attributes of peo-
ple as “intelligence” cannot be directly observed but have to be inferred by
measuring what they provoke or how they are “reflected in test performance”
(Cronbach and Meehl 1955: 178). The same applies to historical linguistics.
Once we assume that two languages are genetically related without having a
complete written documentation of their common ancestor language, all we
can say about the ancestor is what we can infer from the comparison of the
descendant languages. When building and rejecting theories about the ances-
tor language, its sound system, its lexicon, or even its syntax, we never directly
address the ancestor language as an ontological fact but only as an epistemo-
logical reality (Kormišin 1988: 92). We address the construct, i.e. the “fiction
or story put forward by a theorist to make sense of a phenomenon” (Statt 1981
[1998]: 67), not the “real” object.21
Due to the fact that in historical linguistics we can investigate our research

objects only via constructs, we are forced to rely on logical reasoning based
on abduction (Anttila 1972: 196f). The term abduction, which was origi-

21 This view was already emphasized by Johannes Schmidt (1843 – 1901) who characterized
the reconstruction system of Proto-Indo-European as a “wissenschaftliche fiction” which
cannot be treated as a “historisches individuum” (Schmidt 1872: 31).
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nally coined by Charles Sanders Peirce (1839 – 1914), refers, as opposed to
induction and deduction, to a “mode of reasoning [...] in which rather than
progressing “logically” [...], one infers an antecedent condition by heuristic
guessing from a present case” (Lass 1997: 334). Peirce himself explained the
concept in the following way:

Accepting the conclusion that an explanation is neededwhen facts contrary to what
we should expect emerge, it follows that the explanation must be such a propo-
sition as would lead to the prediction of the observed facts, either as necessary
consequences or at least as very probable under the circumstances. A hypothesis
then, has to be adopted, which is likely in itself, and renders the facts likely. This
step of adopting a hypothesis as being suggested by the facts, is what I call ab-
duction. I reckon it as a form of inference, however problematical the hypothesis
may be held. (Peirce 1931/1958: 7.202)

Yet why should abduction be the only mode of reasoning available in his-
torical linguistics? Contrasting the traditional kinds of logical reasoning (in-
duction and deduction) may make this point clear: According to Peirce (ibid.:
2.623), all of them “involve the triad of ‘rule’, ‘case’ and ‘result’, but inference
moves in different directions” (Lass 1997: 334). Given the rule “All bunnies
have long ears”, the case “The thing that brings the Easter eggs is a bunny”,
and the result “The thing that brings the Easter eggs has long ears”, deduction
infers the result from the rule and the case:

(2.1) “All bunnies have long ears, and the thing that brings the Easter eggs
is a bunny. Therefore, the thing that brings the Easter eggs has long
ears.”

Induction infers the rule from the case and the result:

(2.2) “The thing that brings the Easter eggs is a bunny, and the thing that
brings the Easter eggs has long ears. Therefore, all bunnies have long
ears.”

But abduction will infer the case from the rule and the result:

(2.3) “All bunnies have long ears, and the thing that brings the Easter eggs
has long ears. Therefore, the thing that brings the Easter eggs is a
bunny.”

Given the fact that in historical linguistics we only have the rule and the result,
abduction is the only kind of reasoning which can be applied:



2.5 Proof 53

(2.4) “The sounds of languages change in a regular manner, and the languages
A and B show recurrent structural similarities in their lexical material.
Therefore A and B share a common history.”

According to Schurz (2008), different patterns of abduction can be distin-
guished, depending on (1) “the kind of hypothesis which is abduced”, (2) “the
kind of evidence which the abduction intends to explain”, and (3) “the beliefs
or cognitive mechanisms which drive the abduction” (ibid.: 205). The kind
of abduction which is commonly used in historical linguistics belongs to the
family of factual abductions, i.e. abductions in which “both the evidence to be
explained and the abduced hypothesis are singular facts” (ibid.: 206). Since
historical linguistics mainly deals with unobservable facts (constructs), we can
further characterize it as historical-fact abduction (ibid.: 209).
In order to protect one’s self from being stuck in the forest of wild specula-

tions, historical-fact abduction has to be based on (1) unique hypotheses, i.e.
“individual” cases in the terminology of Peirce, and (2) cumulative evidence,
i.e. multiple results which can all be explained by the same hypothesis. The
first point is already implied by the very nature of the problem: Seeking for an
explanation for a specific result, the explanation has to be an “individual”, i.e.
a unique case which solely explains the results, as opposed to a type of case or a
class of cases whose several instances all explain the result equally well. Other-
wise, the explanation won’t have any persuasive force. This view is reflected
in Nichols (1996: 48) who claims that historical linguists tend to base their
theories about genetic relationship on “individual-identifying evidence”, i.e.
“on evidence that identifies a unique individual protolanguage rather than on
evidence that identifies a set of languages or a type of language”. The second
point results from the nature of the rules or general laws which are available in
historical linguistics. In order to justify that there is only one singular hypoth-
esis which explains a given result best, one needs either “strong” rules which –
when applied to a specific case – will yield only one specific result, or multiple
“pieces” of evidence which might “[fall] short of proof [when taking] each
item separately” but become convincing when “all the items [are] combined”
(Sturtevant 1920: 11).22

22 Sturtevant emphasizes the importance of cumulative evidence in the context of the re-
construction of Old Greek and Latin pronunciation, yet this “multitude of decisions”
(“множественность решений”, cf. Makaev 1977: 88) is representative for almost all as-
pects of historical linguistics.
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Being forced to rely on multiple pieces of evidence which – only when taken
together – allow one to draw a rather convincing picture of the past, is not a
unique problem of historical linguistics, but also of historiography – or crime
investigations, as it has been already pointed out by Georg von der Gabelentz
(1840 – 1893, cf. Gabelentz 1891: 154), and in later work on semiotics (cf.
the papers in Eco and Sebeok 1983). The fact that in historical linguistics
theories are built about cases (events, unique objects) as opposed to theories
about general laws may also be the reason for the philological “style” prevalent
in historical linguistic studies. Due to the complex nature of the inference pro-
cess, a systematization of the comparative method (see Section 2.6) has never
been carried out efficiently and intuition still plays a major role in the field,
while statistical methods are rarely applied and often deemed with suspicion
(Baxter and Manaster Ramer 2000: 169-172). This distrusting attitude of his-
torical linguistics towards probability issues is surprising, since “probabilistic
evaluation of causes and elimination of implausible causes plays a central role
in factual abductions” (Schurz 2008: 207), since it reduces the search space
when seeking an explanation for a given phenomenon (ibid.: 210f).
Given the fact that, as discussed above, historical linguistics has to make use

of abduction as a primary inference pattern, it is important to distinguish the
evidence (or the results in terms of Peirce) from the general laws (rules) when
trying to prove that two words are cognate or that two languages are genetically
related. In the following, I shall therefore discuss the evidence and the laws on
which our hypotheses are normally based separately.

2.5.1 Laws

Strictly speaking, the laws or rules upon which historical linguists base their
hypotheses are hypotheses themselves. The most important of these “laws” is
the Neogrammarian Hypothesis regarding the regularity of sound change (see
Section 2.2.1). Without this hypothesis, no (valid) conclusions regarding any
historical relations between languages could be made. As I have pointed out
in Section 2.2.1, the Neogrammarian Hypothesis has been directly questioned
by the theory of lexical diffusion, yet later research in the field of sociolinguis-
tics has provided evidence that both Neogrammarian sound change and sound
change via lexical diffusion reflect basic mechanisms of sound change. It is
important to note that the fact that lexical diffusion lacks the strict regularity
of the Neogrammarian sound change mechanism does not invalidate it as a
“law” for abductive reasoning. Although not being absolutely regular, lexical
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diffusion usually manifests itself in strong tendencies. Since, as I have pointed
out before, probabilistic evaluation is crucial in factual abductions, it does not
make a huge difference whether one bases an abductive hypothesis on univer-
sal laws or strong tendencies. Hence, the regularity hypothesis does not loose
its significance as the basic “law” of historical linguistics.

2.5.2 Evidence

When historical records are lacking for a given set of languages, the only way
to shed light on their history is to infer historical events from a comparison of
the synchronic systems of these languages. Based on the regularity hypothe-
sis which serves as the background law in historical-fact abduction, historical
language relations are inferred from resemblances which can be found in their
“form material”, i.e. in words and grammatical morphemes.
Many scholars make a distinction between two kinds of evidence, namely

grammatical and lexical evidence (Dybo and Starostin 2008). In the notion
of systematic form resemblances, which I prefer, this distinction is suspended.
Strictly speaking, all kind of evidence is “lexical”, in so far as “grammatical
evidence” usually points to unique grammatical markers which are denoted
by distinct morphemes, i.e. “forms”, rather than abstract categories. Hence,
“sound chains”, be they grammatical morphemes or lexemes, provide themain
evidence for the proof of historical language relations.
Resemblances in the form material of languages can be roughly divided into

three classes, depending on their causes. They can be
(a) coincidental, i.e. they are simply due to chance,
(b) natural, i.e. they are due to general patterns of denotation observable in all human

languages, and
(c) non-natural, or – in a stronger notion – historical, i.e. they are due to a shared

history of the languages under observation.

The latter kind of resemblance can be further divided into genetic and contact-
induced resemblances, i.e. resemblances due to common descent and resem-
blances due to a shared history of contact (cf. Figure 2.13, see also Section
2.3.2). Since the former two kinds of resemblances are not caused by histor-
ical events, they cannot serve as evidence and have to be discarded from the
comparison. Fortunately, coincidental and natural similarities are not very fre-
quent, and they can easily be detected. The latter two kinds of resemblances re-
flect language history and serve as the basic evidence. Unfortunately, both ge-
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netic and contact-induced resemblances can show up in form of regular sound
correspondences between the languages under comparison (see Section 2.4.1).
Thus, while regular sound correspondences which can be established between
two or more languages provide direct evidence for their historical relatedness,
they do not necessarily provide evidence for genetic relatedness.
In order to distinguish between sound correspondences resulting from donor-

recipient and cognate relations, specific methods have to be applied. Thus,
when dealing with multiple incompatible sound correspondences, one may
stratify the correspondences and separate layers of inheritance and contact as
Hübschmann (1877) did when proving that Armenian is an Indo-European
language. For the process of stratification itself, it seems useful to turn to se-
mantic criteria and to split the “basic lexicon” into separate parts which are
more or less prone to borrowing (Chén 1996, Wang 2006a). Nevertheless, so

similarities

coincidental

Grk. θεός
Spa. dios
“god”

non-coincidental

natural

Chi. māma
Ger. Mama
“mother”

non-natural

genetic

Eng. tooth
Ger. Zahn
“tooth”

contact-induced

Eng. mountain
Fre. montagne
“mountain”

Figure 2.13: Common causes for resemblances in the form material of languages:
Both kinds of non-natural resemblances are “historical” and constitute one of the key
objectives of historical linguistics.
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far, historical linguistics does not offer a straightforward method to distinguish
between sound correspondences resulting from genetic and sound correspon-
dences resulting from contact relations.

2.6 Methods

Almost all problems of historical linguistics, including those which were out-
lined so far, such as the proof of genetic relationship, or the identification of
regular sound correspondences, and those which have only briefly been ad-
dressed, such as the genetic classification of languages, are addressed within
the framework of the so-called comparative method. Although termed a me-
thod, the comparative method does not constitute a formal procedure which
may be directly expressed in algorithmic terms, but rather covers a bunch of
techniques that historical linguists commonly use to reconstruct the history of
languages and language families. Following the descriptions in Durie (1996:
6f) and Trask (2000: 64-67), one may characterize the comparative method
as a procedure roughly consisting of the following five stages: (1) proof of
relationship, (2) identification of cognates, (3) identification of sound corre-
spondences, (4) reconstruction of proto-forms, (5) internal classification. Note
that all of these stages are intimately intertwined, and the order offers only a
broad orientation. Thus, the ultimate proof of relationship should be based
on the identification of cognates sets, but the identification of cognate sets it-
self should be based on the identification of regular sound correspondences
which themselves can not only be found in cognate but also in obliquely ety-
mologically related words. The reconstruction of proto-forms usually requires
the internal classification of the language family to be known, but the internal
classification of a language family traditionally requires that phonological or
lexical innovations are known, which can only be identified after the recon-
struction of proto-forms.
In order to circumvent this problem of circularity, historical linguists usually

employ an iterative procedure in which all steps are constantly repeated and
all conclusions are constantly revised (see Figure 2.14). In this context, the
specific procedure for the identification of cognates constitutes the core of the
method: First an initial list of putative cognate sets is created by comparing
semantically and phonetically similar words from the languages to be inves-
tigated. In most of the literature dealing with the comparative method, the
question of which words are most suitable for the initial compilation of cog-
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proof of
relationship

identification
of cognates

identification of
sound correspondences

reconstruction
of proto-forms

internal
classification

revise

revise

revise

revise

Figure 2.14: The iterative character of the comparative method

nate lists is not explicitly addressed, yet it seems obvious that the comparanda
should belong to the basic vocabulary of the languages. Based on this cognate
list, an initial list of putative sound correspondences (correspondence list) is
created. Sound correspondences are determined by aligning the cognate words
and searching for sound pairs which repeatedly occur in similar positions of
the presumed cognate words.23 After these initial steps have been carried out,
the cognate list and the correspondence list are modified by
(a) adding and deleting cognate sets from the cognate list depending on whether or

not they are consistent with the correspondence list, and

23 The procedure of alignment will be dealt with in detail in Chapter 3.
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(b) adding and deleting sound correspondences from the correspondence list, de-
pending on whether or not they find support in the cognate list.

These steps are repeated until the results seem satisfying enough such that no
further modifications, neither of the cognate list, nor of the correspondence
list, seem to be necessary.24
The specific strength of the comparative method lies in the similarity mea-

sure which is applied for the identification of cognates: Sequence similarity is
determined on the basis of regular sound correspondences as opposed to simi-
larity based on surface resemblances of phonetic segments (see Section 2.4.1).
Thus, comparing English token [təʊkən] and German Zeichen [ʦaɪçən] ‘sign’,
the words may not sound very similar, yet their cognacy is strongly suggested
by the comparative method, since their phonetic segments can be shown to
correspond regularly within other cognates of both languages.25 The most
crucial aspect of correspondence-based similarity is that it is language-specific:
Genotypic similarity is never defined in general terms but always with respect
to the language systems which are being compared (see Section 2.4). Corre-
spondence relations can therefore only be established for individual languages,
they can never be taken as general statements. This may seem to be a weak-
ness, yet it turns out that the genotypic similarity notion is one of the most
crucial strengths of the comparative method: It allow us to dive deeper in the
history of languages in cases where phonetic change has corrupted the former
identity of cognates to such an extent that no sufficient surface similarity is
left.

24 Note that in the comparative method it is tacitly assumed that a distinction between cognates
and obliquely etymologically related words can be made, although, as has been mentioned
earlier, no generally accepted method for this distinction has been proposed so far.

25 Compare, for example, English weak [wiːk] vs. German weich [vaɪç] ‘soft’ for the corre-
spondence of [k] with [ç], and English tongue [tʌŋ] vs. German Zunge [ʦʊŋə] ‘tongue’ for
the correspondence of [t] with [ʦ].
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Sequence Comparison

The basic problem with sequence alignment is that it seems to be more
an art than a science. For a science, the techniques are scarcely rigid
enough, whereas for an art the results are usually rather prosaic. Perhaps,
it is most justly treated as a sport, one for which no universal rules are
presently formulated.

Morrison (2010: 369)

In Chapter 2, I have outlined some of the most important theoretical and prac-
tical aspects of research in the field of historical linguistics. In the discussion
of the form part of the linguistic sign (see Section 2.1.3), I have pointed to the
sequential character of the sign form. Since language comparison in histor-
ical linguistics is mainly based on a comparison of sign forms (words, mor-
phemes), language comparison can be seen as a very specific kind of sequence
comparison.
Sequence comparison is an important topic in many different disciplines,

especially in biology and computer science. Many solutions to common prob-
lems of sequence comparison have been developed in these scientific branches.
When trying to develop automatic approaches to sequence comparison in his-
torical linguistics, it seems therefore reasonable to start by reviewing those
methods which have been already developed. In the following, I will therefore
give an overview on general aspects of sequences and sequence comparison.
I intentionally avoid to draw parallels to linguistics here, although many par-
allels are very striking. I think, however, that it is important to approach the
topic from a maximally unbiased perspective in order to avoid to be led astray
by the desire to find parallels in each and every detail, and – in the end – to
construct them instead of finding them.
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3.1 Sequences

Many structures we are dealing with – be it in daily life or in science – can
be represented as sequences. The bird songs which awake us in the morning
are sequences of sound waves, the movies we watch are sequences of pictures,
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Music engraving by LilyPond 2.12.3—www.lilypond.org
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1

Baked Rabbit 1 rabbit
1 1/2 tsp. salt
1 1/8 1/8 tsp. pepper
1 1/2 c. onion slices
• Rub salt and pepper on

rabbit pieces.
• Place on large sheet of

aluminium foil.
• Place onion slices on

rabbit.
• Bake at 350 degrees.
• Eat when done and

tender.

1

Figure 3.1: Sequences in our daily life: music, movies, recipes
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and the meals we cook are created by a sequence of instructions received from
a recipe book.
What recipes, movies, and music have in common, or – to put it in other

terms – what allows us to view them as sequences, is that they all can be seen
as ordered chains of objects whose identity is a product of both their order and
their content. In the following, I shall point to some general aspects which are
important when investigating and comparing sequences. After discussing the
problem of discreteness and continuity, I shall point to the differences between
sequences and sets. In the end, a formal definition of sequences will be given.

3.1.1 Discrete and Continuous Entities

Many objects which we traditionally model as sequences are not discrete but
rather appear as functions of a continuous variable (space, time, etc., cf. Krus-
kal and Liberman 1983 [1999]: 130). This holds for the music we listen as
well as the words we speak. Treating these entities as sequences presupposes
that they have been made discrete in a first instance.
In linguistics the act of making the continuous discrete has a long tradition.

Since the way we look at language is traditionally influenced by “alphabetic
thinking”, it is often ignored that the continuum is the natural appearance of
speech and that segmentation is the result of an explicit analysis applied to
it: “Neither the movements of the speech organs nor the acoustic signal of-
fers a clear division of speech into successive phonetic units” (IPA Handbook
1999: 5). This can be easily illustrated by having a look at the spectrogram
of Shanghainese tàiyáng太陽 [tʰa³³ɦia⁴̃⁴] ‘sun’ in Figure 3.2 1. There is no
way to identify the five sound segments [tʰ], [a], [ɦ], [i], and [a]̃ directly in
the spectrogram. Furthermore, the phonetic representation of the word comes
along with information regarding the tonal patterns of the two syllables, which
are transcribed by superscript letters as if they were segments, but which are
in fact suprasegmental in their nature, “involving the entire syllable rather than
a single phone” (Sun 2006: 39).
Nevertheless, segmentation of speech into discrete units is one of the most

common tasks in linguistics: “Phonetic analysis is based on the crucial premise
that it is possible to describe speech in terms of a sequence of segments” (IPA
Handbook 1999: 6). We should, however, always keep in mind that the seem-
ingly discrete entities we are working with do not necessarily have to be dis-

1 Sound data and phonetic data are taken from YINKU.
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Figure 3.2: Spectrogram of Shànghǎinese tàiyáng ‘sun’. Phonetic and sound data are
taken from YINKU.

crete by their nature, and that discrete approaches may therefore reach certain
limits under certain circumstances.

3.1.2 Sequences and Sets

Sequences have to be distinguished from sets. While sets are unordered col-
lections of unique objects, sequences are ordered lists of non-unique objects.
This difference regarding uniqueness and orderedness is of crucial importance
for the comparison of sets and sequences: While the objects of sets are easily
distinguished because of their uniqueness, the objects of sequences receive a
distinctive function only because of their order. Therefore, a comparison of
different sets can be simply carried out by comparing the objects of the sets. A
comparison of sequences, however, has to be based on a comparison of both
the objects and the structure of the sequences.

3.1.3 A Formal Definition of Sequences

From a formal point of view, sequences can be roughly defined as follows:
Definition 3.1 Given an alphabet (a non-empty finite set, whose elements are
called characters), a sequence is an ordered list of characters drawn from the al-
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Figure 3.3: Sequences as strings of colored beads. Only if the beads are lined up on
the string, they are unique, in so far, as they can be defined by both their position in
the sequence, and their color.

phabet. The elements of sequences are called segments. The length of a sequence
is the number of its segments, and the cardinality of a sequence is the number its
unique segments. (cf. Böckenbauer and Bongartz 2003: 30f)

One can imagine a sequence as a string of colored beads. If we take the beads
separately from the string, it is impossible to distinguish those beads which
have the same color from each other. Yet having them lined up on a string,
every bead is individual, since it has a position different from all the other
beads on the string (see Figure 3.3).
Given Definition 3.1, it is useful to define some further common terms and

notations which will be used again in this study.
Definition 3.2 Given two sequences s and t.

(a) t is a subsequence of s, if t can be derived from s by deleting some of the
segments of s without changing the order of the remaining segments,
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(b) t is a substring of s, if t is a subsequence of s and the derivation of t from s
can be carried out by deleting only elements from the beginning and the end
of s,

(c) t is a prefix of s, if t is a substring of s and the derivation of t from s can be
carried out by deleting only elements from the end of s,

(d) t is a suffix of s, if t is a substring of s and the derivation of t from s can be
carried out by deleting only elements from the beginning of s.

While the notion of prefixes and suffixes is intuitively clear, especially for a
linguist, the distinction between subsequences and substrings is important not
only for the formal definition of prefixes and suffixes, but also for the com-
putational aspects of sequence comparison which will be dealt with in the
remainder of this chapter.

3.2 Sequence Comparison

Comparing sequences may turn out to be a rather simple task. This is espe-
cially the case when it is known in advance, which segments of the sequences
correspond to each other. Consider, e.g., two strings of colored beads which
are of the same length: Comparing these sequences, we simply have to line
them up and check whether the same colors appear in the same positions, as
illustrated in Figure 3.4. It is also very easy to quantify the difference be-
tween the two strings by simply counting the number of positions in which
both strings differ, which yields 2 for the two strings in the example, since
the strings differ in positions three and four. The result of such a count is a

0 H H H H H 0

0 H H H H H 0

Figure 3.4: Comparing sequences of equal length. If it is known in advance which
segments of two sequences correspond to each other, the Hamming distance can be
used to compare two sequences. It is defined as the number of positions in which two
sequences differ.
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distance in the strict mathematical sense, also known as Hamming distance,
which was first introduced by R. W. Hamming (1915 – 1998) in a paper from
1950 (Hamming 1950).
While it is easy to compare sequences if the corresponding segments have

already been identified, sequence comparison often has to deal “with the more
difficult comparisons which arise when the correspondence is not known in
advance” (Kruskal 1983: 201). In the following, I will introduce some main
aspects regarding differences between sequences and general questions of se-
quence comparison. I will try to generalize the ways in which sequences may
differ, I will discuss, how differences between sequences can be visualized,
and I will introduce alignments as one of the most common ways to model
differences between sequences.

3.2.1 Differences between Sequences

For the comparison of two sequences, of which we assume that they are in
a certain relationship, it is important to determine how or if the segments of
the sequences correspond to each other. When dealing with segment corre-
spondences we should first distinguish whether the segments correspond at all.
If one segment in a given sequence corresponds to a segment of another se-
quence, this is called a proper match. If one segment in a given sequence does
not correspond to any segment of another sequence, I shall call this an empty
match. Among the proper matches, we can further distinguish those cases
where corresponding segments are identical (uniform matches) from those
cases, where corresponding segments aren’t identical (divergent matches or
mismatches). 2 Figure 3.5 illustrates these different cases of correspondence
and non-correspondence: Comparing both strings of colored beads, there are
three uniform matches, one divergent match and one empty match.
Sequence comparison does not necessarily have to be based on the corre-

spondence perspective. Another perspective which is very common in the lit-
erature on sequence comparison is the edit perspective. According to this per-
spective, differences between sequences are stated in terms of edit operations,
i.e. the basic operations one needs in order to transform one sequence into the
other. The most basic edit operations are substitution and indels (insertions
and deletions). They were first introduced by the Russian scholar V. I. Lev-

2 In the terminology commonly used in biology, the terms match vs. mismatch are often used
instead of the terms uniform and divergent match.
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enshtein. Compared to the above-mentioned correspondence types, substitu-
tions correspond to divergent matches, since transforming one sequence into
another presupposes that non-identical segments are transformed into identi-
cal ones, and indels correspond to empty matches, since missing or additional
segments require either the insertion or the deletion of a segment. Figure 3.6
illustrates how the first string of Figure 3.5 can be transformed into the second
string by means of the basic edit operations.
Some less basic but, nevertheless, common edit operations are transposi-

tions (first introduced by F. J. Damerau, cf. Damerau 1964), and compressions
and expansions (cf. Kruskal and Liberman 1983 [1999]). Transpositions al-
low to swap two adjacent segments when transforming the source sequence
into the target sequence. From the correspondence perspective, these may be
called crossed matches (see Figure 3.7a). Compressions and expansions allow
to merge two or more adjacent segments into one or to split one segment into
two or more adjacent segments, respectively. From the viewpoint of segment
correspondence, these may be called complex matches (see Figure 3.7b).
The two perspectives regarding sequence similarities, namely the corre-

spondence perspective and the edit perspective, are often treated as inter-
changeable in the literature. While it is true that both models are equiva-
lent in many applications of sequence analyses, there is one great difference
between them, in so far as the edit perspective emphasizes “putative muta-
tional events that transform one [sequence] into another, whereas [the corre-
spondence perspective] only displays a relationship between two [sequences]”
(Gusfield 1997: 217). Furthermore, while the correspondence perspective
treats all matchings of segments as being equal, the edit perspective allows to
put all operations into a specific order and give them a certain direction. The

0 H H H H H 0

0 H H H H 0
uniform match
divergent match
empty match

Figure 3.5: The basic types of segment correspondences
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0 H H H H H 0

0 H H H H H 0

0 H H H H 0

substitute

delete

Figure 3.6: Transforming one sequence into the other

edit perspective is therefore more explicit than the correspondence perspec-
tive, since it allows to describe differences between sequences as a chain of
events with a certain direction. This becomes obvious when summarizing the
terms which were used so far in order to describe the different matching types
(types of segment correspondences) and their corresponding edit operations
as displayed in Table 3.1.

3.2.2 Modelling Sequence Differences

Regarding the visualization and modelling of sequence differences (be they in
terms of the correspondence perspective or the edit perspective) three modes
are distinguished in Kruskal (1983): traces, alignments and listings.

Trace: A trace is a relation which links all proper matches in two strings s and
t, while empty matches are left unrelated (ibid.: 209-211).

0 H H H H H 0

0 H H H H H 0

(a) Crossed matches

0 H H H H H 0

0 H H H 0

(b) Complex matches

Figure 3.7: Crossed (a) and complex matches (b) between sequences
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Perspective
Correspondence Edit
uniform match continuation
divergent match substitution

empty match insertion
deletion

crossed match transposition

complex match compression
expansion

Table 3.1: Correspondence vs. edit perspective

Alignment: An alignment is a matrix with two rows in which two sequences
s and t are ordered in such a way that all proper matches appear in the same
column. Empty matches are filled with gap symbols (Kruskal 1983: 211).
Listing: A listing is a sequence of edit instructions by which a source sequence s
is successively transformed into a target sequence t. Every edit instruction consists
of at least one edit operation, yet more than one edit operation is also possible
(ibid.: 211-215).

Figure 3.8 illustrates the differences between the three presentation modes by
taking the two sequences "GBWLG" and "GLWG" as examples. The three
modes differ not only regarding the way they visualize sequence differences
but also regarding the information displayed by them. Listings differ from
traces and alignments in so far as they explicitly emphasize the edit perspec-
tive, while alignments and traces represent the information within the corre-
spondence perspective. The difference between alignments and traces lies in
the capability of alignments to distinguish the order of adjacent empty matches
(ibid.: 211).
It becomes obvious that the information displayed by the three modes suc-

cessively increases from traces via alignments to listings: The advantage of
alignments over traces is their capability to display adjacent empty matches,
which are simply ignored within the trace mode. Alignments, on the other
hand, are indifferent regarding the order of edit operations (or the order of
correspondences), in contrast to listings. Furthermore, listings “permit many
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Trace

Alignment

Listing

G B W L G

G L W G

G B - W L G

G - L W - G

G B W L G

G B W L G

G L W L G

G L W L G
O deletion

O insertion

Figure 3.8: Traces, alignments, and listings

successive changes to be made in a single position and alignments permit only
one” (ibid.: 214). Therefore, one alignment may have more than one corre-
sponding listing, and one trace may have more than one corresponding align-
ment, as exemplified in Figure 3.9, where one trace corresponds to two align-
ments and to six different listings (not allowing successive changes for the
construction of the listings).
Compared to traces and listings, alignments offer many advantages: They

are more informative than traces, and they are indifferent regarding the per-
spective of sequence comparison one choses, be it the correspondence or the
edit perspective. The last point is especially important when comparing align-
ment analyses to listings, since in most kinds of sequence analyses the infor-
mation regarding the order of edit operations is either not needed, since the
sequences which are compared are not in an ancestor-descendant relation, or
simply impossible to retrieve (ibid.: 16-18). Furthermore, the computational
realization for alignment analyses is much more straightforward than that for
listings (ibid.: 12). One further advantage of alignments over both traces
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Trace

Alignment

Listing

G B W L G

G L W G

G - B W L G

G L - W - G

G B - W L G

G - L W - G

G B W L G

G B W L G

G W L G

G L W G

G B W L G

G B W L G

G B W G

G L W G

G B W L G

G B W L G

G L W L G

G L W L G ...

Figure 3.9: Comparing traces, alignments, and listings. Taking the trace of the strings
"GBWLG" and "GLWG" as a basic, there are two equivalent alignments, and six equiv-
alent listings of which only three examples are shown in the figure.

and listings lies in their capability to display resemblances between more than
just two sequences: While traces of multiple sequences will result in complex
networks, which are difficult to visualize, the directional structure of listings
requires that ancestor-descendant relations among the sequences being com-
pared are already reconstructed which is often not the case, because sequence
comparison usually serves as the basis of the reconstruction of ancestor states.

3.2.3 Alignment Analyses

With the help of alignment analyses3 all different kinds of sequences can be
compared, regardless of where they occur or what the purpose of the compar-
ison is. Thus, when trying to detect plagiarism in scientific work, alignment
analyses can throw light on the differences between the original text and the
plagiary (see Example (1) in Figure 3.10). In molecular biology, the align-
ment of protein and DNA sequences is a very common method and the basis
of phylogenetic reconstruction (see Example (2) in Figure 3.10), and in type
3 In the literature, the term alignment is often used interchangeably to refer either to the specific
kind of analysis by which two or more sequences are aligned, or to the result of such an
analysis. I try to maintain a strict distinction by using the term alignment only to refer to the
result of the analysis, and the term alignment analysis, in order to address the specific process
which yields an alignment.
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Taxon N. Sequence

PLAGIARY 1 die Zurueckhaltung die im Umgang mit dem Foederalismusbegriff
ORIGINAL 1 die Zurueckhaltung die im Umgang mit dem Foederalismusbegriff

PLAGIARY 2 zu beobachten ist mag zu einem gewissen ..Teil. darauf zuruec
ORIGINAL 2 zu beobachten ist mag ..........n.ich.t zuletzt darauf zuruec

PLAGIARY 3 kzufuehren sein dass sich ...waehre.nd. des 19 Jahrhunderts e
ORIGINAL 3 kzufuehren sein dass sich im v.e.r.lauf des 19 Jahrhunderts e

HTL2 1 LDTAPCLFSDGS‑‑‑‑‑‑PQKAAYVLWDQTIL‑‑‑QQDITPLPSHETHSA QKGELLALIC
MMLV 1 PDADHTWYTDGSSLLQEGQRKAGAAVTTETEVIWAKALDAG‑‑‑T‑‑‑SAQRAELIALTQA

HTL2 2 GLRAAKPWPSLNIFLDSKYLIKYLHSLAIGAFLGTSAH‑‑‑‑‑‑‑‑‑QT‑LQAALPPLLQG
MMLV 2 LKMAEGKK‑LNVYTDSRYAFATAHIHGEIYRRRGLLTSEGKEIKNKDE‑ILALLKALFLPK

HTL2 3 KTIYLHHVRSHT‑NLPDPISTFNEYTDSLILAPL‑‑‑‑‑‑‑‑‑‑
MMLV 3 RLSIIHCPGHQ‑KGHSAEARGNRMADQAARKAAITETPDTSTLL

WRONG 1 two b‑ or not two b‑ that is the question
CORRECT 1 t‑o be or not t‑o be that is the question

WRONG 2 Leavins‑t‑ine distance is the addict distance betwean strings
CORRECT 2 Le‑venshtein‑ distance is the ed‑i‑t distance between strings

WRONG 3 ”ad‑ress” ”concensus” and ”dependance” are of‑en misspelled
CORRECT 3 ”address” ”consensus” and ”dependence” are often misspelled

Type

(1)

(2)

(3)

Figure 3.10: Alignment analyses in different applications: text comparison (1), protein
analysis (2), and spelling correction (3). Source and plagiary in example (1) are taken
with modifications from Kommission “Selbstkontrolle” (Appendix 3), example (2) is
taken from DIALIGN (Manual).

setting programs and search engines, sequence alignments can be used to de-
tect spelling errors (see Example (3) in Figure 3.10).
Given the basic types of segment correspondences (uniform, divergent, and

empty matches) as they were introduced in Section 3.2, an alignment of two
or more sequences can be roughly defined as follows:

Definition 3.3 An alignment of n (n > 1) sequences is an n-row matrix in which
all sequences are aranged in such a way that all matching segments occur in the
same column, while empty cells, resulting from empty matches, are filled with
gap symbols. The number of columns of an alignment is called its length or its
width, and the number of rows is called its height. (cf. Gusfield 1997: 216)

This definition is very general in so far as no difference is being made between
the number of sequences that constitute an alignment. In many applications,



74 3 Sequence Comparison

however, it is useful to make a further distinction between pairwise sequence
alignments (alignments of two sequences, PSA) and multiple sequence align-
ments (alignments of more than two sequences, MSA). This distinction be-
tween ‘two’ and ‘many’ is not arbitrary, since – for reasons of computational
complexity – many algorithms and measures are only defined for pairwise
alignments. As a consequence, the multiple perspective is often broken down
to a pairwise perspective, when dealing with multiple alignments. In evolu-
tionary biology, for example, a common measure to estimate the similarity be-
tween aligned sequence pairs is the so-called percentage identity (PID) which
is defined as:

(3.1) PID = 100
u

u+ d+ i
,

where u is the number of uniform matches in a given alignment, d is the num-
ber of divergent matches, and i is the number of internal empty matches.4 For
the pairwise alignment |0

G B W L G
G L W - G0|, for example the percentage identity is

60, since there are 3 uniform matches in the alignment, 1 divergent, and 1
empty match. While this score can be easily defined and computed for pair-
wise alignments, it is not possible to define it directly for multiple alignments.
Therefore, the percentage identity of multiple alignments of height n is usu-
ally defined as the average of the pairwise percentage identities of all possible
n2−n

2 sequence pairs xi and xj :

(3.2) PID =
2

(n2 − n)
·

n∑
j=1

j∑
i=1

pid(xi, xj)

When dealing with alignment analyses it is of great importance to be aware
of their potentials and limits. One limitation follows directly from Definition
3.3: since alignments are based on a linear representation of segment corre-
spondences between sequences, they are not capable of displaying crossed and
complex matches directly. Instead of a two-dimensional matrix, in which all
columns are taken as independent from each other, a nested structure which al-
lows to display relations between different columns has to be used. A further
4 This definition of PID corresponds to PID1 in Raghava and Barton (2006). In biology there
are a couple of different ways tomeasure percentage identity (see the overview in the Raghava
and Barton 2006). They may – depending on the sequences being compared – yield quite
different results . The PID measure applied in this study was chosen because of its simplicity
compared to the other ones reported by Raghava and Barton.
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limitation follows from the fact that alignments mainly serve as an illustra-
tion of the correspondence perspective of sequence comparison (see Section
3.2.1). Alignments give an account on proper matches (uniform matches and
mismatches) and empty matches (gaps). Therefore, alignment analyses, as
mentioned above, are less rich regarding their information content than list-
ings. We can take the information present in alignments in order to draw a
scenario in which a source sequence is transformed into a target sequence,
yet the decision which sequence is to be taken as the source and which as the
target remains arbitrary as long as we lack further information.
Fortunately, in many applications (especially in historical linguistics and

evolutionary biology), we do not need the edit perspective (see Section 3.2.1)
to model sequence differences. The edit perspective may even be misleading,
since in many cases neither of the sequences being compared is the source
of the other one, but all sequences are the targets of an unknown source se-
quence such as the ancestor word in historical linguistics, or the ancestor gene
in evolutionary biology. In these cases, any approach that models the differ-
ences between two or more sequences in an edit perspective is inappropriate.
Approaches, such as alignment analyses, which model sequence differences
within a correspondence perspective, however, can be used to infer the ances-
tor sequence.
Using alignments for inference and reconstruction, it is important to be

aware of their ahistoric character: Given a divergent match between two seg-
ments, alignments do not tell us which of the segments has to be taken as
the archaic one that was present in the common ancestor sequence. Given an
empty match, alignments do not tell us whether the segment was present in the
ancestor sequence and deleted, or whether it was missing and inserted. There-
fore, I do not fully agree with the view that ‘an alignment of two sequences
poses a hypothesis on how the sequences evolved from their closest common
ancestor’ (Chao and Zhang 2009: 3). An evolutionary scenario which illus-
trates how sequences evolved from their common ancestor presupposes that
we reconstruct the common ancestor sequence. The reconstruction, however,
is not present in alignment analyses. It has to be inferred in a further step of
investigation.5
Nevertheless, it would go too far to state that alignments are completely

‘ahistorical’, giving no clue for evolutionary events. Since alignments display

5 This confusion between the results of a process and the process itself is, as I have pointed
out in the beginning of Chapter 2, also present in historical linguistics.
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corresponding segments of related sequences, certain conclusions regarding
the descent of the sequences from a common ancestor can be drawn directly
from the given matching type (Chao and Zhang 2009: 3):

Uniform Matches: If two segments that are matched are identical, one can
conclude that they were also present in the ancestor sequence.
Divergent Matches: If two segments that arematched differ, one of themwas
supposedly present in the ancestor sequence, while the other one was substituted.6
Empty Matches: If one segment does not match with any segment, it was
either present in the ancestor sequence, or not.

An alignment may thus tell us which segments of related sequences were af-
fected by certain types of change. Therefore, alignments can serve as a basis
for reconstructive enterprises.

3.3 Pairwise Alignment Analyses

If one wants to align the two sequences "HEART" and "HERZ" (English
heart and GermanHerz), a very simple automatic solution would be to start by
building all possible alignments between them, such as |0

H E A R T - - - -
- - - - - H E R Z0|,

|0
H E A R T -
H E - R - Z0|, |0

H - E - A R T
- H - E - R Z0|, etc. In a second step, all alignments could

then be checked for their goodness by calculating their alignment score. This
can easily be done by applying some scoring scheme which determines the
similarity between the different types of correspondences (see Section 3.2.1) of
the segment pairs. The score for all individual segment pairs of an alignment is
then simply summed up to retrieve the general score. One such scoring scheme
is the so-called Levenshtein distance (also called edit distance), named after
V. I. Levenshtein’s aforementioned proposal to model differences between
sequences in terms of edit operations (Levenshtein 1965).
According to this scoring scheme, all divergent matches (mismatches) and

empty matches (gaps) are penalized with 1 and uniform matches are penal-
ized with 0 (see Table 3.2). As a result, differences between sequences are
expressed by means of a distance: the more different two sequences are, the
higher is the score. For the three alignments of the sequences "HEART" and
"HERZ", which were given as examples above, the edit distance would re-
6 Note that this assumption is unrealistic for applications in historical linguistics, since there
is no reason to assume that an ancestral sound could not have changed in all descendant
languages. This is also reflected in the standard reconstruction practice of most, if not all,
etymological dictionaries.
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Matching Type Score Example
uniform match 0 A / A

divergent match 1 A / B

empty match 1 A / -, - / A

Table 3.2: The scoring scheme of the edit distance

spectively be 9, 3, and 6. The optimal alignment (i.e. the alignment which
minimizes the edit distance) of the two sequences is |0

H E A R T
H E - R Z0|, and the

edit distance of this alignment is 2, since we need two edit operations in order
to convert one string into the other: the indel |0

A
-0| and the substitution |0

T
Z0|.

Although such an approach would certainly yield the best alignment of two
sequences in dependence of the scoring scheme being applied, the cost for the
computation would be very high, given the large amount of possible ways in
which two sequences can be aligned. The number N of possible alignments
of two sequences with lengthsm and n can be calculated with the formula of
Torres et al. (2003):

(3.3) N =

min(m,n)∑
k=0

2k ·
(
m

k

)
·
(
n

k

)
.

For the alignment of the strings "HEART" and "HERZ", which are of length
5 and 4, there are therefore 681 possible alignments which might still easily
be computed, but for two sequences of length 10 and 10, there are already
8 097 453 possible alignments, which makes it practically impossible to com-
pute optimal alignments with this brute-force approach (cf. Rosenberg 2009b:
4). Fortunately, there is a rather simple algorithm for the computation of op-
timal alignments which circumvents the problem of computing and checking
all alignments in a very elegant way.

3.3.1 The Basic Algorithm for Pairwise Alignment

The basic algorithm for the computation of an optimal alignment of two se-
quences was independently developed by different scholars from different sci-
entific disciplines. In biological applications this algorithm is usually called
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Needleman-Wunsch algorithm (NW), named after S. B. Needleman and C.
D. Wunsch who published their algorithm as a solution for the sequence align-
ment problem in biology in 1970 (Needleman and Wunsch 1970). In general
applications of computer science it is also common to refer to the algorithm as
Wagner-Fischer algorithm, named after R. A. Wagner and M. J. Fischer’s al-
gorithm for the computation of the edit distance between two strings (Wagner
and Fischer 1974). Both algorithms and their various extensions belong to the
family of dynamic programming algorithms (DPA, cf. Eddy 2004, Gusfield
1997: 217f). The main idea of dynamic programming is to find an approach
for the solution of complicated problems “that essentially works the problem
backwards” (Rosenberg 2009b: 4). Thus, instead of checking all possible
alignments between two sequences and looking for the best one in order to
find an optimal alignment, an alignment is built up “using previous solutions
for optimal alignments of smaller subsequences” (Durbin et al. 1998 [2002]:
19).
For the following description of the basic algorithm, I shall assume, that

there are two sequences x and y of lengths m and n, where xi denotes the
i-th element of x, and yj denotes the j-th element of y. In order to score
the alignment, a scoring scheme which penalizes the basic matching types is
needed. In this scoring scheme, the matching of segments is expressed by
means of the scoring function score(A,B)which returns –1, if the segmentsA
and B are different, and 1, if they are identical. Empty matches are expressed
by means of the gap penalty g which is set to –1 (see Table 3.3). Note, that
this scoring scheme is different from the aforementioned edit distance (see
3.2), since it expresses differences between sequences in terms of similarity:
the more similar two sequences are, the higher the score.

Matching Type Score Example
uniform match 1 A / A

divergent match −1 A / B

empty match −1 A / -, - / A

Table 3.3: A simple scoring scheme for the NW algorithm
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(s↘)
xi 1/-1

- yj
(s↓)

xi -1

- yj
(s→)

xi -1

- yj

Figure 3.11: The three states of each cell of the alignment matrix

The algorithm which aligns x and y globally consists of four steps: (1) ma-
trix construction, (2) matrix initialization, (3) recursion, and (4) traceback. In
the first step, an (m+1)×(n+1)matrix is constructed. In this matrix, all seg-
ments of the two sequences are virtually confronted, either with each other, or
with an additional gap symbol. Each cell of the matrix therefore covers three
states (see also Figure 3.11):

(s↘) both segments are matched (xi / yj),
(s↓) the first segment is gapped (xi / -), and
(s→) the second segment is gapped (- / yj).

Since the first row and the first column of the matrix correspond to empty
segments of x and y, and the matching of an empty segment with a non-empty
segment is equivalent to an emptymatch between the segments, the three states
in the cells in the first row and the first column of the matrix can be reduced
to a single state (s↓ for the first row, and s→ for the first column).
In the second step the cell in the first row and the first column of the matrix

is set to 0, since this cell corresponds to an alignment of two empty sequences.
The first row and the first column of the matrix are “filled with increasing
multiples of the gap cost” (Rosenberg 2009b: 8), reflecting the fact that an
alignment of a sequence of lengthmwith an empty sequence will always yield
a score which ism times the gap cost.
In the third step the algorithm recursively calculates the total scores for the

alignment of all substrings by filling the matrix from top to bottom and from
left to right. In each step of filling the matrix, the current cell (M [i][j]) is
set to one of the three possible states. Which state is chosen by the algorithm
depends on both the individual score of the current cell and the alignment
scores which have been already calculated for the closest smaller substrings.
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Given the three states of each cell, there are three possible alignments, of which
the best-scoring one has to be chosen:
(a) If the alignment ends with a proper match (s↘), the total score will be the score

of the alignment which ends in the cell to the upper left plus the score returned by
the scoring function for the matching of the segments represented by the current
cell: M [i− 1][j − 1] + score(xi−1, yj−1).7

(b) If the alignment ends with a gap in y (s↓), the total score will be the score of the
alignment ending in the cell directly above plus the gap penalty: M [i− 1][j]+ g.

(c) If the alignment ends with a gap in x (s→), the total score will be the score of the
alignment ending in the cell to the left plus the gap penalty: M [i][j − 1] + g.

The score of the best alignment up to this point, which is themaximumvalue of
the three possible scores, is then assigned to the current cell. Once the matrix
is filled in this way, the total score of the global alignment of both sequences
can be found in cell M [m][n], i.e. the last row and the last column of the
matrix.
While the matrix is being filled, it is important to keep track of the individual

decisions which have been made. These decisions, which are usually stored
in a separate traceback matrix, are then used in the last step of the algorithm.
The traceback starts from the cell in the last row and the last column of the
matrix and follows the “arrows” until the first cell of the matrix is reached.
Figure 3.12 illustrates the different steps of the algorithm for the sequences

"HEART" and "HERZ": In 1⃝ the matrix has just been constructed, and the
states of all cells are undefined, as the example for the state of the cell in the
third row of the third column shows. In 2⃝ the matrix has been initialized
and the first row and the first column are filled with multiples of the gap cost.
3⃝ shows the recursion step at a certain point of the calculation along with the
decision which is being made for the next cell. 4⃝ gives the recursion step after
all cells of the matrix have been filled, the last cell containing the alignment
score, and 5⃝ and 6⃝ illustrate how the alignment is retrieved by backtracing
from the last to the first cell of the matrix. For an alignment of the sequences
"HEART" and"HERZ", the algorithm yields a similarity score of 1. Using the
scoring scheme of the edit distance with distance scores instead of similarity
scores, the resulting distance score is 2. The PID score (see Equation 3.1 on
page 74) which is only defined for alignments and can therefore not be used
for the computation of alignments themselves is 3

3+1+1 = 0.6.
7 In these demonstrations, I follow the practice of most programming languages by starting
the indices for arrays and strings from 0.
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Figure 3.12: The dynamic programming algorithm. 1⃝ shows the construction of the
matrix with all cells corresponding to one of the three states. 2⃝ illustrates how the first
cell and the first column of the matrix are filled. 3⃝ gives an example on how the rest
of the cells are successively filled from top to bottom and from left to right. 4⃝ shows
the filled matrix after the recursion. 5⃝ and 6⃝ illustrate the traceback procedure.
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Algorithm 3.1: Global(x, y, g, score)

/* matrix construction */

M ← matrix(length(x) + 1, length(y) + 1)
M [0][0]← 0

/* matrix initialization */

for i← 1 to length(x)
doM [i][0]←M [i][0] + g

for i← 1 to length(y)
doM [0][i]←M [0][i] + g

/* main loop */

for i← 1 to length(x)

do


for j ← 1 to length(y)

doM [i][j]← max

M [i− 1][j − 1] + score(xi−1, yj−1)
M [i− 1][j] + g
M [i][j − 1] + g

The essential part of the NW algorithm, i.e. the construction, the initial-
ization, and the filling of the matrix, is given in pseudocode in Algorithm 3.1.
The function requires four input parameters: the two sequences x and y, the
gap cost gap and the scoring function score(A,B).

3.3.2 Structural Extensions of the Basic Algorithm

The basic algorithmwhich was presented in the previous section aligns two se-
quences in a global way, i.e. all segments of the sequences are treated equally
in the calculation of the alignment, possible prefixes, infixes and postfixes con-
tribute equally to the alignment score. A global alignment may, however, not
be what one wants to achieve with an alignment analysis. Often, specific sites
of two sequences are comparable, while others are not. Therefore, a couple of
extensions have been proposed, which deal with the problem of comparability
in different ways. I call these extensions of the basic algorithm structural ex-
tensions as opposed to substantial extensions, since they merely deal with the
overall structure of the sequences, while the substantial part of the sequences,
i.e. the segments, are not addressed by them.
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Semi-global Alignment

If we align the sequences "CATFISH" and "FATCAT" globally, applying
the scoring scheme given in Table 3.3, the algorithm for global pairwise align-
ment will yield |0

C A T F I S H
F A T C A T -0| and the global score –3, which is equal to

an edit distance of 5. This alignment is apparently not a good one, since what
both strings have in common is the substring "CAT", yet the similarity be-
tween the substrings "CAT" and "FAT" forces the algorithm to accept a mis-
match in the first position of the alignment. A good alignment would surely
be |0

- - - C A T F I S H
F A T C A T - - - -0|, but the similarity score of this alignment would

be –4 (seven empty plus 3 uniform matches), and the edit distance 7, which
is surely not the optimal score. The most convincing alignment would prob-
ably be an alignment which simply ignores the prefix "FAT" and the postfix
"FISH", and only aligns the two identical substrings: ---

FAT |0
C A T
C A T0| FISH

--- . In
order to find the right alignment in this case, one has to force the algorithm to
exclude possible prefixes and postfixes from the alignment. This can be easily
done by applying two slight modifications of Algorithm 3.1:
(a) Instead of initializing the matrix with increasing multiples of the gap cost, the gap

cost is set to 0 in the first row and the first column of the matrix.
(b) When the main loop reaches the last row or the rightmost column of the matrix,

the gap cost is likewise set to 0.8

This kind of alignment analysis is usually called semi-global alignment, or
alignment with overlap matches (Durbin et al. 1998 [2002]: 26f), since the
globality of the alignment is maintained inside the alignment, while the bor-
ders are set to a local mode. These modifications are displayed in Algorithm
3.2. Figure 3.13 contrasts the two resulting alignment matrices for global
and semi-global alignment analyses applied to the strings "FATCAT" and
"CATFISH".

Local Alignment

The semi-global alignment procedure maintains globality inside the sequences
and ignores only their borders. This may yield some unwanted results. For
example, the global alignment of the sequences "FATCAT" and "REDCAT",
8 This procedure is not applied in the standard descriptions of the algorithm (cf. Durbin et al.
1998 [2002]: 26f, Böckenbauer and Bongartz 2003: 87-91), where, instead of setting the
gap cost to 0, the traceback starts from themaximum value in the right and the bottom border
of the matrix.
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applying the scoring scheme from Table 3.3, will yield |0
F A T C A T
R E D C A T0| as

alignment with a score of 0 and an edit distance of 3. The semi-global align-
ment, however, will yield the alignment ----

REDC |0
F A T
- A T0| CAT

--- with a score of 1 and
an edit distance of 1 for the aligned sites. This seemingly strange behaviour re-
sults from the fact that the algorithm for semi-global alignment can only strip
off prefixes and suffixes from the calculation, if the other sequence doesn’t
contain them, hence it cannot calculate an alignment like FAT

RED |0
C A T
C A T0| which

would surely be one of the best ways to align both strings. In order to get an
alignment in which prefixes may be completely ignored, the algorithm has to
be modified in such a way that only the most similar sites of two sequences
are aligned, while the rest is simply ignored. This kind of alignment analysis
is called local alignment (Durbin et al. 1998 [2002]: 22-24).
The algorithm which computes local alignments of two sequences is tradi-

tionally called the Smith-Waterman algorithm (SW), named after T. F. Smith
and M. S. Waterman, who published the algorithm in a paper from 1981
(Smith and Waterman 1981). The algorithm for local alignment is essentially
based on three modifications of the Needleman-Wunsch algorithm:
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Algorithm 3.2: SemiGlobal(x, y, g, score)

/* matrix construction (see Algorithm 3.1) */

. . .

/* matrix initialization */

for i← 1 to length(x)
doM [i][0]← 0

for i← 1 to length(y)
doM [0][i]← 0

/* main loop */

for i← 1 to length(x)

do



for j ← 1 to length(y)

doM [i][j]← max



M [i− 1][j − 1] + score(xi−1, yj−1)
if j = length(y)
thenM [i− 1][j]
elseM [i− 1][j] + g

if i = length(x)
thenM [i][j − 1]
elseM [i][j − 1] + g

(a) As in the algorithm for semi-global alignment, the first row and the first column
of the matrix are initialized with 0, i.e. the gap cost is set to 0 for gaps introduced
before the beginning of a sequence.

(b) In addition to the three scores, of which the maximum is chosen during the main
loop, a zero-score is introduced.

(c) The traceback starts at the maximum value of the matrix and ends when it reaches
a cell with the value 0.

Introducing a fourth possibility for the individual score of each cell prevents
that the scores in the matrix can add up to negative values and “corresponds to
starting a new alignment” (Durbin et al. 1998 [2002]: 23), whenever the algo-
rithm reaches a site of low similarity. The modification of the traceback func-
tion results in an alignment in which only parts of the sequences are aligned,
while the rest of them is left unaligned. Algorithm 3.3 shows, how the align-
ment matrix is computed according to the Smith-Waterman algorithm. Figure
3.14 contrasts the alignment matrices of semi-global and local alignments of
the strings "FATCAT" and "REDCAT".
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Figure 3.14: Semiglobal vs. local alignment
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Algorithm 3.3: Local(x, y, g, score)

/* matrix construction and initialization (see Algorithm 3.2) */

. . .

/* main loop */

for i← 1 to length(x)

do


for j ← 1 to length(y)

doM [i][j]← max


M [i− 1][j − 1] + score(xi−1, yj−1)
M [i− 1][j] + g
M [i][j − 1] + g
0

Diagonal Alignment (DIALIGN)

A local alignment of two sequences x and y in terms of the Smith-Waterman
algorithm is defined as “the best alignment between subsequences of x and
y” (Durbin et al. 1998 [2002]: 22). Thus, given the two sequences "GREEN
CATFISH HUNTER" and "A FAT CAT HUNTER", the Smith-Waterman
algorithm, given the scoring scheme from Table 3.3, will only extract the best
scoring subsequence, which is "HUNTER". Global alignment, on the other
hand, aligns the substrings "GREEN" and "A FAT", and semi-global align-
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ment matches the substrings "CAT" and "FAT". While none of these align-
ments is specifically “bad”, it would be desirable to have a method which
works globally, but nevertheless aligns only the most similar subsequences of
two sequences, leaving the rest of the sequences unaligned.
Such a method is available with the DIALIGN algorithm (Morgenstern et

al. 1996). While the scoring function of all previously discussed extensions
of the Needleman-Wunsch algorithm is solely based on segment-to-segment
comparison, DIALIGN employs an extended scoring function which searches
for the best diagonal in each recursion step. A diagonal is an ungapped align-
ment of two subsequences, i.e. the alignment of two substrings of two se-
quences (see Definition 3.2). It describes a diagonal path through the align-
ment matrix.9 Thus, instead of comparing only the segments in a given cell,
the DIALIGN scoring function evaluates all possible diagonals up to that cell
at each recursion step and selects the best one, i.e. the one which maximizes
the overall score of the alignment.
In order to score diagonals, DIALIGN employs a specific scoring function

(Morgenstern et al. 1998), yet, since diagonals are ungapped alignments, di-
agonal scores can likewise be calculated by summing up all scores for proper
matches retrieved by the scoring scheme given in Table 3.3. Since only di-
agonals contribute to the overall alignment score, gap penalties are set to 0.
Algorithm 3.4 shows how the basic algorithm has to be extended in order
to conduct diagonal alignment analyses. Table 3.4 contrasts the output of

Mode Alignment

global
G R E E N C A T F I S H H U N T E R
A F A T C A T - - - - H U N T E R

semi-global
G R E E N - C A T F I S H H U N T E R
- - - - - A F A T C A T H U N T E R

local
GREEN CATFISH H U N T E R

A FAT CAT H U N T E R

diagonal
- - - - - G R E E N C A T F I S H H U N T E R
A F A T - - - - - C A T - - - - H U N T E R

Table 3.4: Comparison of the results of different alignment modes

9 Note that the terminology used here slightly differs from the terminology applied in Morgen-
stern et al. (1996): Morgenstern et al. use the term segment in order to refer to a subsequence.
Segments in the sense used in this work are the smallest units of sequences, as described in
Definition 3.1.
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the different alignment modes for the alignment of the sequences "GREEN
CATFISH HUNTER" and "A FAT CAT HUNTER".�
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Algorithm 3.4: Diagonal(x, y, score)

/* matrix construction and initialization (see Algorithm 3.2) */

. . .

/* main loop */

for i← 1 to length(x)

do



for j ← 1 to length(y)

do



/* loop over all diagonals */

smax = 0 /* maximum score */

for k ← 0 to min(i, j)

do


snew ←M [i− k − 1][j − k − 1] /* current score */

for l← k to 0
do

{
snew ← snew + score(xi−l, yj−l)

if snew > smax

then smax ← snew

/* determine the maximum for the current cell */

M [i][j]← max

smax

M [i− 1][j]
M [i][j − 1]

Secondary Alignment

So far, we have looked at sequences with regard to their primary structure
only. The term primary structure refers to the order of segments. Segments
are hereby understood in the sense of Definition 3.1, i.e. segments are the
smallest units of a sequence which directly correspond to the characters of the
alphabet from which the sequence is drawn. Apart from the primary struc-
ture, sequences can, however, also have a secondary structure, i.e. apart from
segmentizing them into their primary units, they can further be segmentized
into larger units of substrings consisting of one or more primary segments.
In the following, these units shall be called secondary segments (as opposed
to segments or primary segments). The criteria for the secondary segmenta-
tion of sequences may vary, depending on the objects one is dealing with, or
the specific goal of the secondary segmentation. Thus, given the sequence
"ABCEFGIJK", one may segmentize it into the three substrings "ABC",
"EFG", and"IJK", since each of these substrings is also a substring of the se-
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quence"ABCDEFGHIJK". The sequence"THECATFISHHUNTER" can be
segmentized into three substrings ("THE", "CATFISH", and "HUNTER"),
since each of them corresponds to a word of the English language. Given the
sequence "KARAOKE", a possible meaningful secondary segmentation might
be "KA", "RA", "O", "KE", since this reflects the different syllables of the
word karaoke.
All alignment modes discussed so far compare sequences only with re-

spect to their primary structure. Thus, given the sequences "THE CATFISH
HUNTS" and "THE CAT FISHES", they will all yield an alignment in
which the substring "CATFISH" of the first sequence is matched with the
substring "CAT FISH" of the second sequence, yielding the partial align-
ment |0

C A T - F I S H
C A T F I S H0| (see Table 3.5). While none of these alignments is

particularly “bad”, they all have the shortcoming that they only reflect the sim-
ilarities of the primary sequence structure (the order of the letters) while disre-
garding the secondary sequence structure (the order of the words). Thus, the
word "CATFISH" is aligned with the two words "CAT" and "FISHES".
In contrast to these primary alignments, a secondary alignment displays the
similarities of sequences with regard to both their primary and their secondary
structure, aligning letters which belong to the same word in one sequence only
with those letters in the other sequence which also belong to a single word
(see the last row in Table 3.5). I shall call the problem of finding an alignment
which reflects both the primary and the secondary structure of sequences the
secondary alignment problem:

Secondary Alignment Problem: Given two sequences s and t of lengthsm
andn, the primary structures s0, ..., sm and t0, ..., tn, and the secondary structures
s0→i, ..., sj→m and t0→k, ..., tl→n, find an alignment of maximal global score in
which segments belonging to the same secondary segment in s only correspond
to segments belonging to the same secondary segment in t, and vice versa.

The primary alignment modes (global, semi-global, local, and diagonal
alignment) can be made sensitive for secondary sequence structures by means
of some slight modifications of the main loop of the basic algorithm. The
main idea behind this secondary alignment algorithm that I want to propose
in the following is to modify the scores for gaps and proper matches of the
boundary segments of secondary segments in such a way that the algorithm
is forced to go a path through the matrix in which primary segments can only
be aligned within the boundaries of secondary segments.
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Mode Alignment

global
T H E - C A T - F I S H - H U N T S
T H E - C A T - F I S H - E - - - S

semiglobal
T H E - C A T - F I S H - - - H U N T S
T H E - C A T - F I S H E S - - - - - -

local
T H E - C A T - F I S H HUNTS
T H E - C A T - F I S H ES

diagonal
T H E - C A T - F I S H - - H U N T S
T H E - C A T - F I S H E - - - - - S

secondary
T H E - C A T F I S H - H U N T - S
T H E - C A T - - - - - F I S H E S

Table 3.5: Primary vs. secondary alignment

For the sake of simplicity, I shall assume in the following, that the sec-
ondary sequence structure of sequences is marked by some boundary marker
r, which is introduced as a separator between all secondary segments. When
dealing with sentences, this boundary marker will usually be a space charac-
ter, yet it can be any character which does not occur as a segment of sec-
ondary segments in a given sequence. Given the sequences "AABCDE.E"
and "A.BC.DE", where "." is the boundary character, a primary global
alignment analysis based on the scoring scheme of Table 3.3 will yield the
alignment |0

A A B C - D E . E
A . B C . D E - -0|. The corresponding secondary alignment

would be |0
- - A A B C D E . - E
A . - - B C - - . D E0|. As becomes obvious from the compar-

ison of the primary with the secondary alignment, two restrictions are needed
in order to force the Needleman-Wunsch algorithm to carry out a secondary
alignment analysis. These restrictions are:
(a) the matching of the boundary marker with all other segments, and
(b) the matching of the boundary marker with a gap which is introduced inside a

secondary segment.

In the secondary alignment algorithm, these restrictions can be simply im-
plemented by setting the relevant scores to−∞. In order to check whether the
first condition holds for a certain cell in the matrix, the scoring function can be
modified in such a way, that it yields 0 for the matching of boundary markers
with themselves, and −∞ for the matching of the boundary marker with any
other character. The check for the second condition can be implemented with
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Figure 3.15: Primary vs. secondary alignment

help of an if-statement, as illustrated in Algorithm 3.5. Note that this algo-
rithm yields results identical to the standard NW algorithm if the boundary
marker r does not occur in the input sequences. Figure 3.15 shows the differ-
ent alignment matrices of primary and secondary alignment analyses of the
sequences "AABCDE.E" and "A.BC.DE".

3.3.3 Substantial Extensions of the Basic Algorithm

The extensions of the basic algorithm that were discussed in the previous sec-
tion almost exclusively deal with the way sequences are compared with respect
to their overall structure. These structural extensions may drastically change
the results of automatic alignment analyses. Another way to modify the ba-
sic algorithm is to change the way the segments are being compared. In the
basic algorithm segment-comparison is carried out with help of two functions
which constitute the scoring scheme of pairwise alignment analyses: the scor-
ing function, which returns scores for the proper matching of segments, and
the gap function, which returns scores for the gapping of segments. Modifying
these two functions may also have a great impact on the results of alignment
analyses.



92 3 Sequence Comparison

�

�

�



Algorithm 3.5: Secondary(x, y, g, r, score)

/* matrix construction and initialization (see Algorithm 3.1) */

. . .

/* main loop */

for i← 1 to length(x)

do



for j ← 1 to length(y)

do


M [i][j]← max



M [i− 1][j − 1] + score(xi−1, yj−1)

/* check for restriction 2 */

if xi−1 = r and yj−1 ̸= r and j ̸= length(y)
then −∞
elseM [i− 1][j] + g

if yj−1 = r and xi−1 ̸= r and i ̸= length(x)
then −∞
elseM [i][j − 1] + g

The Scoring Function

In the illustrations of pairwise alignment analyses presented so far, a very
simple scoring scheme was used (see Table 3.3), which only distinguishes
between uniform and divergent matches (mismatches). It is, however, easy
to think of many situations in which it would be useful to have an extended
scoring scheme which makes more fine-graded distinctions when matching
segments. Consider, e.g., the alignment of the sequences "catwalk" and
"CATWALK". According to the simple scoring scheme, these sequences are
maximally unrelated with a score of −6, although they only differ regarding
the case of their characters. Similarly, an alignment analysis of the sequences
"catFAT" and "CATfat" will result in an unsatisfying alignment, such as
|0

c a t F A T - - -
- - - C A T f a t0|. An extended scoring functionmay cope with the prob-

lem of case by assigning specific costs to divergent matches which only differ in
case. Such a scoring function may be expressed in an extended scoring scheme
like the one shown in Table 3.6, where uniform matches are scored with 1,
uniform matches with case difference with 0.5, and divergent and empty mat-
ches with –1. Using this scoring scheme, both alignments of "catwalk"
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Matching Type Score Example
uniform match 1 A / A

uniform match (case difference) 0.5 A / a

divergent match –1 A / B

empty match –1 A / -, - / A

Table 3.6: An extended, case-sensitive scoring scheme for the NW algorithm.

with "CATWALK" and "catfat" with "CATfat" will yield an alignment
score of 3.
The extended scoring function in the scoring scheme in Table 3.6 is only

one example for the various different ways in which the scoring of segments
can be modified. In order to design an efficient spell-checker, for example,
one might consider to design a scoring function which yields individual scores
for the matching of all characters in the alphabet. Based on the assumption
that a miss-spelled word often contains wrong characters that are topologically
close to the right characters on the computer keyboard, one might use this

7 8 9
4 5 6
1 2 3

0

1 2 3 4 5 6 7 8 9 0
1 3 2 1 2 1 0 1 0 -1 2
2 2 3 2 1 2 1 0 1 0 2
3 1 2 3 0 1 2 -1 0 1 1
4 2 1 0 3 2 1 2 1 0 1
5 1 2 1 2 3 2 1 2 1 1
6 0 1 2 1 2 3 0 1 2 0
7 1 0 -1 2 1 0 3 2 1 0
8 0 1 0 1 2 1 2 3 2 0
9 -1 0 1 0 1 2 1 2 3 -1
0 2 2 1 1 1 0 0 0 -1 3

1

Figure 3.16: Scoring matrix for a numerical keybord. The scores are derived in such
a way that they reflect distances between the keys as similarity scores. The higher a
score, the closer the two keys are located to each other.
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information in order to derive a weighted scheme in which, for example, the
miss-spelled word "gand" is judged to be closer to the word "hand" than
the alternative word "sand", since "h" can be found next to "g" on the
keyboard, making it a more probable source character than "s".
In order to express such an extended scoring function which assigns in-

dividual matching scores for all characters in the alphabet, it is common to
make use of a scoring matrix which contain scores for all possible charac-
ter matchings. As an example, Figure 3.16 illustrates how a scoring matrix
may be designed for a numerical keyboard. Defining the identity scores of all
numerical keys, i.e. the matching of a character with itself, as 3, the scores
for all (N2 −N)/2 = 45 mismatches are derived from the identity scores by
subtracting the distance between each pair of keys from the identity score. Dis-
tances between keys are defined as the length of the shortest path in a network
where all keys are connected with the keys to the right and left, and to the top
and bottom, but no diagonal edges are allowed. The distance between 1 and
2 , for example, is 1, and the resulting similarity is 3 − 1 = 2. Accordingly,
the distance between 1 and 9 is 4 (since getting from 1 to 9 requires
to follow a path which crosses three other keys, such as, e.g. 2 - 3 - 6 ),
and the similarity score is 3− 4 = −1. Using this scoring function, numeric
strings can be compared for topological similarities on a numerical keyboard.
Thus, a traditional alignment of the sequences "1234" and "6789" yields
the alignment |0

1 2 3 4
6 7 8 90| and the score −4. An analysis with the extended

scoring function, however, yields the alignment |0
- 1 2 3 4
6 7 8 9 -0|with the score 1.

This alignment correctly matches the most similar substrings of the sequences
("123" and "789"), both reflecting a continuous movement from the left to
the right of the keyboard. Figure 3.17 shows the different alignment matrices
resulting from a traditional alignment analysis and an alignment analysis with
an extended scoring function.
While the example with the numerical keyboard will hardly be used in

real-world applications, the use of scoring matrices is a very common strat-
egy in pairwise alignment analyses in evolutionary biology, where they are
commonly used to improve the analyses when searching for homologous se-
quences. Given the protein alphabet consisting of 20 amino acids, a popular
way to derive scoring matrices for protein alignment is to calculate the log-
odds scores from empirical data of known homologous sequences. A log-odds
score is “the logarithm of the ratio of the likelihoods of [...] two hypotheses”
(Eddy 2004: 1035). In the case of protein alignment the two hypotheses being
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Figure 3.17: Traditional alignment vs. alignment with extended scoring function.

compared are “whether two sequences are homologous (evolutionary related)
or not” (ibid.). Given a set of aligned, homologous protein sequences, the log-
odds score s(a, b) for each amino acid pair a and b can be calculated with the
formula

(3.4) s(a, b) = 1

λ
log pab

qaqb
,

where pab is the attested frequency, i.e. “the probability that we expect to ob-
serve residues a and b aligned in homologous sequence alignments” (ibid.), qa
and qb are background frequencies, i.e. the “probabilities that we expect to
observe amino acids a and b on average in any protein sequence” (ibid.), and
λ serves as a scaling factor. Multiplying qa and qb yields the probability of the
null hypothesis, i.e. the expected frequency of amino acid matches in evolution-
ary unrelated sequences. The resulting scores range from negative values for
segment matchings that are very unlikely to occur, and positive scores for seg-
ment matchings that are very likely to occur in the alignments of homologous
sequences. These matrices which are derived from aligned blocks of homol-
ogous sequences (Henikoff and Henikoff 1991) are called BLOSUM (blocks
substitution matrix) matrices in evolutionary biology (Henikoff and Henikoff
1992). Based on specific clustering procedures by which the block databases
are selected (ibid.), BLOSUM matrices are defined for different degrees of
presumed evolutionary distances.
Extending scoring functions by designing specific scoring matrices may sig-

nificantly improve alignment analyses. The drawback of scoring matrices lies
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in the loss in transparency when comparing them to simple, identity-based
scoring schemes: Segment similarity can no longer be stated as a simple yes-
no decision but is instead determined by a complex network of transition prob-
abilities that quickly exceeds our intuitive capacities.

The Gap Function

In the previous illustrations of the Needleman-Wunsch algorithm the insertion
of gaps was managed by defining a specific gap penalty for the insertion and
the deletion of segments. Such a gap penalty is also called a linear gap penalty,
since “the cost of introducing a new gap in a sequence is the same as the cost
of extending an existing gap” (McGuffin 2009: 36). Instead of describing the
gap penalty as a variable with a fixed value, as it was done in the previous
sections, it can be useful to define it as a function. For the insertion of a gap
of length l in an alignment, a linear gap function gap(l) returns the score

(3.5) gap(l) = −l·g,

where g is the general gap cost defined by the scoring scheme (Durbin et al.
1998 [2002]: 16f). Such a function treats all gaps equally, no matter where
they were introduced. As a result, whether three gaps occur separately in dif-
ferent parts in a sequence, or whether one gap of length 3 is introduced at
once, won’t make a difference in a linear gap function.
In contrast to linear gap penalties, affine gap penalties “[differentiate] be-

tween the opening of a gap and extension of a gap” (McGuffin 2009: 36).
Usually, the cost for the opening of a gap, the gap opening penalty (GOP),
is given a higher cost than the extension of a gap, the gap extension penalty

Matching Type Score Example
uniform match 2 A / A

divergent match −2 A / B

empty match (opening) −2 A / -, - / A

empty match (extended) −1 AB / --, -- / AB

Table 3.7: Scoring scheme with affine gap penalties



3.3 Pairwise Alignment Analyses 97

1 0 0
0 0 A B B A B A

0 0
0 0

0 0
0 0

0 -2
- A

0 -4
- B

0 -6
- B

0 -8
- A

0 -10
- B

0 -12
- A

A 6 -2
- 0

A 2
0 A

A 0
- B

A -2
- B

A -4
- A

A -6
- B

A -3
- A

B 7 -4
- 0

B 0
- A

B 4
0 B

B 2
- B

B 0
- A

B -2
- B

B -3
- A

A 8 -6
- 0

A -2
- A

A 2
- B

A 2
0 B

A 4
0 A

A 2
- B

A -3
- A

2 0 0
0 0 A B B A B A

0 0
0 0

0 0
0 0

0 -2
- A

0 -3
- B

0 -4
- B

0 -5
- A

0 -6
- B

0 -7
- A

A 6 -2
- 0

A 2
0 A

A 0
- B

A -1
- B

A -2
- A

A -3
- B

A -4
- A

B 7 -3
- 0

B 0
- A

B 4
0 B

B 2
- B

B 1
- A

B 0
- B

B -1
- A

A 8 -4
- 0

A -1
- A

A 2
- B

A 2
0 B

A 4
0 A

A 2
- B

A 2
0 A

Figure 3.18: Linear vs. affine gap penalties

(GEP). This guarantees that “long insertions and deletions [are] penalised less
than they would be by the linear gap cost” (Durbin et al. 1998 [2002]: 16).
Given a gap of length l, an affine gap function gap(l) returns the score

(3.6) gap(l) = −g − (l − 1) · e,

where g is the gap opening penalty, and e is the gap extension penalty. As
an example for the differences between alignment analyses with linear gap
penalties and alignment analyses with affine gap penalties, compare the dif-
ferent outputs for the alignment of the sequences "ABBABA" and "ABA".
A traditional analysis may yield the alignment |0

A B B A B A
A B - A - -0| as one opti-

mal alignment among others. An analysis with a scoring scheme containing
affine gap penalties (such as the one given in Table 3.7), however, yields only
the alignments |0

A B B A B A
A B - - - A0| and |0

A B B A B A
- - - A B A0| since these are the only

alignments, that not only optimize the alignment score, but also minimize the
number of consecutively gapped regions.
Algorithm 3.6 shows how the traditional Needleman-Wunsch algorithm can

be modified to be sensitive to affine gap penalties. In contrast to the modifi-
cations of the basic algorithm introduced earlier, the modification for affine
gap penalties makes use of the traceback matrix T which stores the individual
decisions made for each cell. The traceback is filled with the three integers 0,
1, and 2, serving as pointers. 0 points to the cell to the upper left, 1 points to
the cell above, and 2 points to the cell to the left. During the main loop, the
introduction of gaps is evaluated by checking the pointer in the traceback. If
it indicates, that a gap has been already opened, the GEP is used instead of the
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GOP, otherwise, the GOP is chosen.10 Figure 3.18 shows the resulting align-
ment matrices for the alignment of the sequences "ABBABA" and "ABA"
using linear and affine gap penalties.�

�

�



Algorithm 3.6: AffineGaps(x, y, g, e, score)

/* matrix construction */

M ← matrix(length(x) + 1, length(y) + 1)
M [0][0]← 0;M [1][0]← g;M [0][1]← g

/* traceback construction */

T ← traceback(length(x) + 1, length(y) + 1)
T [0][0]← 0;T [1][0]← 2;T [0][1]← 1

/* matrix and traceback initialization */

for i← 2 to length(x)
do

{
M [i][0]←M [i− 1][0] + e
T [i][0]← 1

for i← 2 to length(y)
do

{
M [0][i]←M [0][i− 1] + e
T [0][i]← 2

/* main loop */

for i← 1 to length(x)

do



for j ← 1 to length(y)

doM [i][j]← max



M [i− 1][j − 1] + score(xi−1, yj−1)
if T [i− 1][j] = 1
thenM [i− 1][j] + e
elseM [i− 1][j] + e

if T [i][j − 1] = 2
thenM [i][j − 1] + e
elseM [i][j − 1] + e

/* fill the traceback */

ifM [i− 1][j − 1] + score(xi−1, yj−1) = M [i][j]
then T [i][j]← 0
else ifM [i− 1][j] + g = M [i][j] orM [i− 1][j] + e = M [i][j]
then T [i− 1][j]← 1
else T [i][j − 1]← 2

Using affine gap penalties is not the only way to enhance the gap function of
alignment analyses. Given the relevant information regarding the probability
of gaps to occur in specific positions of a sequence, one may define a gap
function gap(xi) that returns individual gap penalties for each position i of an

10 This solution differs from the one by Gotoh (1982) which is traditionally quoted. To my
knowledge, the solution presented here works equally well compared with the one by Gotoh.
At the same time, it has the advantage of being easier to implement, involving less matrices.
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input sequence x. When defining these position-specific gap penalties as gap
opening penalties, both approaches can be easily combined.

3.3.4 Summary on Pairwise Alignment Analyses

In this section, the basic algorithms for the computation of pairwise align-
ment analyses were introduced. Based on a detailed discussion of the basic
algorithm for global alignment, two major ways to modify this algorithm were
discussed: Structural extensions (semi-global, local, diagonal, and secondary
alignment) modify the way the overall comparison of two sequences is handled
by the algorithm. Substantial extensions (extended scoring and gap functions),
on the other hand, modify the proper matching and gapping of segments in
a first instance. Both extensions are often applied simultaneously in current
alignment algorithms in evolutionary biology.

3.4 Multiple Alignment Analyses

In Section 3.2.2, it has been pointed out that one major advantage of align-
ments compared to traces and listings lies in their straightforwardness and sim-
plicity. This is especially important when dealing with differences between
more than two sequences. While the differences between the four strings
"VOLDEMORT", "WALDEMAR", "VLADIMIR", and "VOLODYMYR" can
be easily rendered in a multiple alignment matrix (Figure 3.19b), a trace would
result in a network of 33 nodes and 46 edges which is hard to visualize, even
when using three dimensions (Figure 3.19a). A listing, on the other hand,
would require that the source sequence from which the sequences are de-
rived is known, since listings explicitly model the edit perspective (see Section
3.2.1). If an explicit source-target scenario is – as in many cases – not given
and not required, listings are simply too “rich” to deal with multiple sequence
comparison.
The simplicity and straightforwardness of alignments compared to other

models of sequence comparison has, however, an unwanted side effect: Be-
ing visually appealing, simple, and transparent, it is often not entirely clear
how they should be interpreted. In the following description of some basic
algorithmic aspects of multiple sequence alignment, this question will be ig-
nored. I will deal with it in greater detail when discussing the application of
automatic alignment analyses in historical linguistics.



100 3 Sequence Comparison

3.4.1 Progressive Alignment

While an optimal solution for the pairwise alignment problem can relatively
easy be achieved with the help of dynamic programming, the problem of find-
ing an optimal multiple alignment, i.e. an alignment that maximizes the pair-
wise alignment scores between all sequences, is NP complete (Wang and Jiang
1994). Extending the traditional Needleman-Wunsch algorithm to three and
more sequences will yield computation times that grow exponentially with the
number of sequences being analyzed (Bilu et al. 2006). It is therefore common
to employ certain heuristics which can only guarantee to find a near-optimal
solution for multiple sequence alignments. The most popular algorithms ap-
plied in multiple sequence analyses are the so-called progressive alignment
techniques (Feng and Doolittle 1987, Higgins and Sharp 1988, Hogeweg and
Hesper 1984, Taylor 1987, Thompson et al. 1994). These approaches consist
of two major stages: In the first stage, a guide tree is constructed to represent
the relations between all sequences. In the second stage, this guide tree is used
to align all sequences successively with each other, moving from its branches
down to its root.

Guide Tree Construction

In order to construct the guide tree, most progressive strategies start by com-
puting pairwise alignments of all possible sequence pairs. The pairwise dis-
tances that can be extracted from these alignments are stored in a distance ma-
trix, and a traditional hierarchical cluster algorithm, such as UPGMA (Sokal
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(b) Multiple alignment

Figure 3.19: Traces vs. alignments of multiple sequences
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1⃝ ”VOLDEMORT”
2⃝ ”WALDEMAR”
3⃝ ”VLADIMIR”
4⃝ ”VOLODYMYR”

1⃝ V O L D E M O R T
2⃝ W A L D E M A R -

1⃝ V O L - D E M O R T
3⃝ V - L A D I M I R -

1⃝ V O L - D E M O R T
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2⃝ W A L - D E M A R
3⃝ - V L A D I M I R

2⃝ W A L - D E M A R
4⃝ V O L O D Y M Y R

3⃝ V - L A D I M I R
4⃝ V O L O D Y M Y R

. .
1⃝ 2⃝ 3⃝ 4⃝

1⃝ 0 4 5 4

2⃝ 4 0 5 5

3⃝ 5 5 0 4

4⃝ 4 5 4 0

1⃝
2⃝
3⃝
4⃝

Figure 3.20: Constructing the guide tree from pairwise distances

and Michener 1958) or Neighbor-Joining (Saitou and Nei 1987), is used to
calculate a tree from the distance matrix. As an example, consider the illus-
tration in Figure 3.20: First, pairwise alignment analyses are carried out for
all (42 − 4)/2 = 6 possible combinations of the sequences "VOLDEMORT",
"WALDEMAR", "VLADIMIR", and "VOLODYMYR". Afterwards, the re-
sulting edit distances are stored in a matrix, and the guide tree is constructed
from the matrix with help of the UPGMA cluster algorithm.
Both the UPGMA algorithm and the Neighbor-Joining algorithm produce

evolutionary trees from distance data and their original purpose is to explain
observed distances between a set of taxonomic units (species, genomes) as
an evolutionary process of split and divergence. The amount of divergence is
displayed by the branch lengths of the evolutionary tree. Conceptually, both
algorithms are quite different. UPGMA assumes that the distances are ul-
trametric. This means that evolutionary change should be constant along all
branches of the tree. Divergence (as represented by the branch lengths) re-
ceives a direct temporal interpretation: UPGMA trees have a definite root,
and all leaves (terminal nodes) have the same distance to it (Peer 2009: 144).
If the observed distances between the taxonomic units can be interpreted in
such a way, UPGMA will produce a tree which directly reflects the distance
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A B C D E
A 0.0 3.5 5.5 8.0 9.0
B 3.5 0.0 3.0 5.5 6.5
C 5.5 3.0 0.0 3.5 6.5
D 8.0 5.5 3.5 0.0 9.0
E 9.0 6.5 6.5 9.0 0.0

1.0

3.0

A

0.5

B

1.0

3.0
D0.5

C
5.0

E

1.0

(b) additive distances and corresponding unrooted tree

A B C D E
A 0.0 5.0 5.0 7.0 9.0
B 5.0 0.0 3.0 7.0 9.0
C 5.0 3.0 0.0 7.0 9.0
D 7.0 7.0 7.0 0.0 9.0
E 9.0 9.0 9.0 9.0 0.0

1.0

1.0

1.0

1.5 B

1.5 C

2.5 A

3.5 D

4.5 E

1.0

(a) ultrametric distances and corresponding rooted tree

Figure 3.21: Ultrametric and additive distances. The distances in (a) are ultramet-
ric and can be represented as a rooted tree in which the distance of all leaves to the
root is the same. The distances in (b) are not ultrametric, but additive. They can be
represented with help of an unrooted tree.

matrix: The sum of the branch lengths connecting any two taxa will be the
same as their pairwise distance in the distance matrix. Neighbor-Joining, on
the other hand, allows for varying divergence rates. A direct temporal inter-
pretation of the results is therefore not possible. Branch lengths only indicate
the degree to which a node has diverged from its ancestral node. Neighbor-
Joining assumes that the observed pairwise distances between the taxonomic
units are additive. In simple terms, a distance matrix is additive, if there is
an unrooted tree which directly reflects the pairwise distances between all tax-
onomic units (Peer 2009: 148). The differences between ultrametricity and
additivity are illustrated in Figure 3.21 where an ultrametric and an additive
distance matrix for five taxonomic units A, B, C, D, and E are given along
with their corresponding rooted, ultrametric and unrooted, additive tree.
Computationally, the UGMA algorithm is much simpler than the Neighbor-

Joining algorithm. An example for its basic working procedure is given in
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4.5 E

1.0

3.5 D

1.0

1.0

1.5 C

1.5 B

2.5 A

1.0

E

3.5 D

1.0

1.0

1.5 C

1.5 B

2.5 A

1.0

E

D

1.0

1.5 C

1.5 B

2.5 A

1.0

E

D

1.5 C

1.5 B

A

1.0

E

D

C

B

A

1.0

(e)

(d)

(c)

(b)

(a)

A B C D E
A

0.0
B
C
D
E

A B C D E
A

0.0B
C
D

9.0

E 9.0 0.0

A B C D E
A

0.0 9.0B
C

7.0

D 7.0 0.0 9.0
E 9.0 9.0 0.0

A B C D E
A 0.0 5.0 7.0 9.0
B 0.0 7.0 9.0C 5.0
D 7.0 7.0 0.0 9.0
E 9.0 9.0 9.0 0.0

A B C D E
A 0.0 5.0 5.0 7.0 9.0
B 5.0 0.0 3.0 7.0 9.0
C 5.0 3.0 0.0 7.0 9.0
D 7.0 7.0 7.0 0.0 9.0
E 9.0 9.0 9.0 9.0 0.0

Figure 3.22: Demonstration of the UPGMA algorithm for the five taxonomic units
A, B, C, D, and E. In each iteration step, the closest units (gray-shaded cells in the
distance matrices) are merged and the distance matrix is revised by calculating the
average distances between the merged clusters and the remaining taxonomic units. If
the ultrametric condition is met, the distances between all taxonomic units on the rooted
tree directly reflect the observed distances in the initial distance matrix.
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Figure 3.22: Starting from the distance matrix, the taxonomic units with a
minimal distance are successively merged into clusters and the distances of
the new unit to the remaining units are recalculated by taking the average.
This procedure is repeated until only one big cluster is left. Neighbor-Joining
proceeds in a similar way, but instead of the initial distances, a rate-corrected
distance matrix is calculated during each iteration step. This matrix takes the
general distance of each taxonomic unit to all other taxonomic units into ac-
count (Peer 2009: 150-153). Given the initial distance dAB between a pair of
taxonomic units A and B, the rate-corrected distance RAB is calculated with
help of the formula

(3.7) RAB = dAB − rA + rB
N − 2

,

where rA and rB are the sum of the distances of A and B to all other taxo-
nomic units, and N is the number of taxonomic units present in the respec-
tive iteration step. The benefit of this transformation is illustrated in Table
3.8, where the distance matrix from Figure 3.21b is given in its initial and
in its rate-corrected form. In the initial form the taxonomic units B and C
have the lowest distance from each other. In the rate-corrected form, the dis-
tance between A and B is minimal. Since UPGMA takes the matrix in Table
3.8a as input, the algorithm will erroneously join B and C into one cluster,

A B C D E
A 0.0 3.5 5.5 8.0 9.0

B 3.5 0.0 3.0 5.5 6.5

C 5.5 3.0 0.0 3.5 6.5

D 8.0 5.5 3.5 0.0 9.0

E 9.0 6.5 6.5 9.0 0.0

(a) general

A B C D E
A 0.0 -11.3 -9.3 -9.3 -10.0

B -11.3 0.0 -9.3 -9.3 -10.0

C -9.3 -9.3 0.0 -11.3 -10.0

D -9.3 -9.3 -11.3 0.0 -10.0

E -10.0 -10.0 -10.0 -10.0 0.0

(b) rate-corrected

Table 3.8: General and rate-corrected distances in the Neighbor-Joining algorithm.



3.4 Multiple Alignment Analyses 105

while Neighbor-Joining finds the correct evolutionary tree underlying the dis-
tances.11
From an evolutionary viewpoint, the basic assumptions underlying Neigh-

bor-Joining are more realistic than those underlying UPGMA. For this rea-
son, most multiple sequence alignment algorithms employ Neighbor-Joining
rather than UPGMA for the task of guide tree reconstruction. Nevertheless,
one should not overestimate the importance of the underlying evolutionary
model. The guide tree is a tool that helps to reduce computation time when
constructing multiple alignments. Its sole purpose is to sort the sequences in
such a way that they can be successfully aligned. Whether it reflects “true”
evolutionary history, or not, is of secondary importance, as long as it helps
to find the best alignments. For this reason, the use of UPGMA instead of
Neighbor-Joining may be equally justified in multiple alignment analyses, and
it may even slightly improve the results (Edgar 2004: 1792).

Sequence Alignment

Once the guide tree is constructed, the sequences are aligned stepwise, fol-
lowing its branching structure (see Figure 3.23). While two sequences are
naturally joined by traditional pairwise alignment algorithms, the joining of
more than two sequences requires a different strategy. In one of the first pro-
posals for guide-tree-based multiple sequence alignment, the Feng-Doolittle
algorithm (Feng and Doolittle 1987), the adding of a sequence to a group or
the joining of two already aligned groups of sequences is done by selecting the
highest scoring pairwise alignment of all possible sequence pairs and align-
ing all sequences accordingly. Gaps that are introduced once in this phase
remain fixed in order to guarantee that all alignments are consistent with pre-
viously joined ones (Durbin et al. 1998 [2002]: 146). As an example, con-
sider the two alignments |0

V O L D E M O R T
W A L D E M A R - 0| and |0

V - L A D I M I R
V O L O D Y M Y R0|.

In order to align these alignments, the Feng-Doolittle algorithm selects the
most similar sequences of both alignments, such as, e.g., "VOLDEMORT"
and "VOLODYMYR", and aligns them pairwise. In a second step, the gaps
that were newly introduced in the alignment |0

V O L - D E M O R T
V O L O D Y M Y R - 0| are also

introduced in the remaining sequences whereby the gaps that these sequences

11 This is a very simplified description of the Neighbor-Joining algorithm. For a complete
illustration of the algorithm, see Durbin et al. (1998 [2002]: 169-172) and Peer (2009:
150-153).
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already contain remain fixed. As a result, the sequence "WALDEMAR-" be-
comes "WAL-DEMAR-" and "V-LADYMYR" becomes "V-LADYMYR-".
The apparent drawback of this procedure is that the information upon which

an alignment is built only depends on pairwise sequence comparison through-
out all stages of the algorithm. When a sequence is joined with a group of
already aligned sequences, it would surely be “advantageous to use position-
specific information from the group’s multiple alignment to align a new se-
quence to it” (Durbin et al. 1998 [2002]: 146). A common strategy to cope
with this problem is model an alignment as a sequence itself where the co-
lumns of the alignment matrix serve as segments. This sequence representa-
tion of alignments is called a profile (Gusfield 1997: 337, Durbin et al. 1998
[2002]: 146f). Profiles are often modeled as sequences of vectors in which
each vector represents the relative frequency of the segments in all positions of
the original alignment (see Figure 3.24), but since the vector representation is
inherent in the alignment itself, it is sufficient to think of profiles as of interme-
diate alignments which are modeled as sequences during multiple alignment
analyses. In profile-based approaches, once two sequences are aligned, they
are further represented as profiles. When aligning already joined sequences,
the traditional dynamic programming algorithm is used to align profiles with
profiles, or profiles with sequences.
When conducting pairwise alignments of profiles, a score for the matching

of the profile columns (the columns of the intermediate alignments) has to be
determined. The most common approach taken in biology is to calculate the
so-called sum-of-pairs score (SP). The SP score of an alignment of height n
is defined as the sum of the pairwise alignment scores pw(xi, xj) between all

“VOLDEMORT” “WALDEMAR” “VLADIMIR” “VOLODYMYR”

V O L D E M O R T
W A L D E M A R -

V - L A D I M I R
V O L O D Y M Y R

V O L - D E M O R T
W A L - D E M A R -
V - L A D I M I R -
V O L O D Y M Y R -

Figure 3.23: Aligning sequences along the guide tree
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C₁ C₂ C₃ C₄ C₅ C₆ C₇ C₈ C₉ C₁₀
V O L - D E M O R T
W A L - D E M A R -
V - L A D I M I R -
V O L O D Y M Y R -

C₁ C₂ C₃ C₄ C₅ C₆ C₇ C₈ C₉ C₁₀
V .75

W .25

O .50 .25 .25

A .25 .25 .25

L 1.0

D 1.0

E .50

I .25 .25

Y .25 .25

M 1.0

R .1.0

T .25

- .25 .50 .75

Figure 3.24: Profile representation of an alignment

(n2 − n)/2 sequences xi and xj :

(3.8) SP =

n∑
i<j

pw(xi, xj).

When dealing with only one column c of anMSA, this formula can bemodified
as:

(3.9) SP =

n∑
i<j

score(ci, cj),

where ci and cj are the ith and the jth segments of column c, and score is the
scoring function (ibid.: 140). In profile-profile alignment, only the crossed
segment pairs of the SP score for one column have to be calculated (ibid.:
146f), and the formula for the calculation of the SP score in profile-profile
alignment can thus be defined as:

(3.10) SP =
1

m · n
·

m∑
i=1

n∑
j=1

score(ai, bj),

where a is a column of the first alignment of height m, and b is a column of
the second alignment of height n. Figure 3.25 illustrates how the SP score
is calculated for columns C₇ and C₄ of the alignments |0

V O L D E M O R T
W A L D E M A R -0|

and |0
V - L A D I M I R
V O L O D Y M Y R0|. When comparing these two columns, there are
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1© V O L D E M O R T
2© W A L D E M A R -

3© V - L A D I M I R
4© V O L O D Y M Y R

SP = ( s(O,A)
+ s(O,O)
+ s(A,A)
+ S(A,O))
) ·1/4

= ( -1
+ 1
+ 1
+ -1
) ·1/4

= 0.0

Figure 3.25: Calculation of the sum-of-pairs score

2× 2 = 4 possible matches between the segments of both alignments. Based
on the scoring function in Table 3.3, the sum of all scores is 0, since there are
two uniform and two divergent matches, and the average score of the columns
is therefore also 0.

3.4.2 Enhancements for Progressive Alignment

The main drawback of progressive Alignment is the greediness of the algo-
rithm: “[A]ny mistakes that are made in early steps of the procedure cannot
be corrected by later steps” (Rosenberg 2009b: 19). In order to cope with
this shortcoming, a couple of different modifications for the algorithm have
been proposed. Among these modifications one can roughly distinguish two
different kinds of methods: preprocessing methods and postprocessing meth-
ods. Preprocessing methods apply before the progressive alignment analysis
has been carried out. Postprocessing methods apply after a first (preliminary)
progressive alignment has been constructed.

Preprocessing Methods

Among the most popular preprocessing methods are those that make use of
so-called consistency-based (as opposed tomatrix-based) scoring schemes (Do
et al. 2005, Notredame et al. 2000). The basic principle of these approaches
is to “compile a collection of pairwise global and local alignments [...] and
to use this collection as a position-specific substitution matrix during a reg-
ular progressive alignment” (Notredame 2007: 1405). The underlying idea
is that a “good” multiple alignment of a set of sequences should be consistent
with optimal alignments of its subsets (Notredame et al. 1998). The collection
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of pairwise alignments is called a library (ibid.: 409), and an optimal multi-
ple alignment is defined as an alignment that is maximally consistent with all
alignments in the library.
Traditional, matrix-based approaches rely on a fixed, general scoring scheme

throughout all alignment stages (including sequence and profile alignment). As
a result, they maximize the global alignment score within the limits of progres-
sive heuristics. Maximally scoring alignments, however, are not necessarily
maximally consistent with the alignments of subsets of the data. As an exam-
ple, consider the two alignments of the sequences "REDCAT", "FATCAT",
"CATFISH", and "CATFISHFAT", given in Figure 3.26: Alignment (a)
is the output of a traditional progressive alignment analysis; alignment (b)
is the output of a consistency-based alignment analysis with the substitution
scores derived from a primary library of global and local pairwise alignment
analyses.12 While alignment (a) doubtlessly displays important similarities
between all sequences, most people would probably agree that alignment (b)
displays the similarities between all sequences in a much more consistent way.
This is because the matrix-based analysis displays the similarities between the
sequences in a global way, trying “to align the full lengths of the sequences
with each other” (Notredame et al. 2000: 206), whereas the consistency-based
analysis emphasizes global similarities and local similarities, i.e. similari-

1⃝ R E D - - - - C A T
2⃝ F A T - - - - C A T
3⃝ C A T F I S H - - -
4⃝ C A T F I S H F A T

(a) Matrix-based

1⃝ R E D C A T - - - - - - -
2⃝ F A T C A T - - - - - - -
3⃝ - - - C A T F I S H - - -
4⃝ - - - C A T F I S H F A T

(b) Consistency-based

Figure 3.26: Matrix- vs. consistency-based MSA

12 Both analyses are based on the scoring scheme described in Table 3.3.
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ties which hold only for certain parts of the sequences. The differences re-
garding global and local consistency between matrix-based and consistency-
based approaches are further illustrated in Figure 3.27, where the consistency
of matrix-based and consistency-based multiple alignments with the optimal
global and local alignments of all sequence pairs is compared. Whenever a
segment pair that matches in a given pairwise alignment also matches in the
corresponding multiple alignment, the respective cell is colored gray. As can
be seen from the figure, the consistency-based alignment reflects the pairwise
local similarities much better than the matrix-based one.
Apart from being superior with respect to local consistency, alignment (b)

is also superior regarding the general similarity of the sequences. Using the
average percentage identity of all sequence pairs as a measure of alignment
quality (cf. Equation 3.1 on page 74), the matrix-based alignment yields a
score of 53, whereas the consistency-based one yields a score of 92. The rea-
son for the better performance of consistency-based alignment analyses lies in
the specific scoring schemes employed by the approaches. In contrast to the
predefined, general scoring schemes of traditional progressive alignment ana-
lyses, consistency-based scoring schemes are directly derived from global and
local alignment analyses of all sequence pairs. As a result, the scoring schemes
are position-specific, i.e. identical “residues [segments, JML] will have poten-
tially different scores if the indices of the residues are different” (Notredame
et al. 1998: 410). As an example, consider the segment "A" which occurs
twice in the sequence "FATCAT" and once in the sequence "REDCAT". In a
general scoring scheme, the matching of either of the two instances of "A" in
"FATCAT" will yield identical scores when being matched with the "A" in
"REDCAT". In a position-specific scoring scheme, however, the second "A"
may receive a higher score, since it aligns with the "A" in "REDCAT" in both
the global analysis |0

R E D C A T
F A T C A T0| and the local analysis RED

FAT |0
C A T
C A T0| .

There are many different ways to convert the information present in a given
library of pairwise alignments into a position-specific scoring scheme. In order
to define a score for the matching of two segments xi and yj occurring at po-
sitions i and j in the sequences x and y, one might, for example, simply count
the number of times both segments match in the library. If the library only
contains global and local alignments, this would result in a maximal score of
2, if xi and yj are matched in both the global and the local alignment analysis,
and a minimal score of 0. The disadvantage of this approach is, however, that
all alignments in the library contribute equally to the creation of the scoring



3.4 Multiple Alignment Analyses 111

No. global local

1©
2©

R E D C A T
F A T C A T

RED C A T
FAT C A T

1©
3©

R E D C A T - - - -
- - - C A T F I S H

RED C A T
C A T FISH

1©
4©

- - - - R E D C A T
C A T F I S H F A T

RED C A T
C A T FISHFAT

2©
3©

F A T - C A T
C A T F I S H

FAT C A T
C A T FISH

2©
4©

F A T - - - - C A T
C A T F I S H F A T

F A T CAT
CATFISH F A T

3©
4©

C A T F I S H - - -
C A T F I S H F A T

C A T F I S H
C A T F I S H FAT

(a) Matrix-based

No. global local

1©
2©

R E D C A T
F A T C A T

RED C A T
FAT C A T

1©
3©

R E D C A T - - - -
- - - C A T F I S H

RED C A T
C A T FISH

1©
4©

- - - - R E D C A T
C A T F I S H F A T

RED C A T
C A T FISHFAT

2©
3©

F A T - C A T
C A T F I S H

FAT C A T
C A T FISH

2©
4©

F A T - - - - C A T
C A T F I S H F A T

F A T CAT
CATFISH F A T

3©
4©

C A T F I S H - - -
C A T F I S H F A T

C A T F I S H
C A T F I S H FAT

(b) Consistency-based

Figure 3.27: Consistency with global and local libraries of pairwise alignments. Com-
paring the consistency of the pairwise alignments in (a) and (b) with the multiple align-
ments in Figure 3.26.
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global
1©
2©

R E D C A T
F A T C A T

PID: 50

local
1©
2©

RED C A T
FAT C A T

PID: 100

1©R1 1©E2 1©D3 1©C4 1©A5 1©T6

2©F1 50 0 0 0 0 0

2©A2 0 50 0 0 0 0

2©T3 0 0 50 0 0 0

2©C4 0 0 0 150 0 0

2©A5 0 0 0 0 150 0

2©T6 0 0 0 0 0 150

Figure 3.28: Deriving scoring schemes from a primary library

scheme, although not all of them are equally good. A method for scoring-
scheme creation should also take the quality of the alignments in the library
into account.
A rather simple, but nonetheless effective, procedure for the creation of

the scoring scheme is employed by the T-Coffee algorithm (Notredame et al.
2000), one of the first approaches to consistency-based alignment analyses.
It starts from a (position-specific) scoring matrix in which all cells are set to
zero. In the first stage, a primary library is constructed by computing global
and local alignments of all sequence pairs and determining specific weights for
each sequence pair by calculating its percentage identity (cf. Equation 3.1).
The scoring matrix is then filled by adding the sequence weights to each cell
corresponding to a match in the primary library. In the second stage, an ex-
tended library is created. This library consists of pairwise alignments between
all sequences x and y in the dataset which are extracted from the pairwise
alignments of x and y with a remaining sequence z. The weights for these
alignments are derived by taking the minimum of the primary weights for
the alignment of x with z and y with z. The first stage is illustrated in Fig-
ure 3.28, where the global and local alignments of the strings "REDCAT" and
"FATCAT" contribute initial values to the scoring scheme. Note the high val-
ues of 150 for the segment pairs 1⃝C₄/ 2⃝C₄, 1⃝A₅/ 2⃝A₅, and 1⃝T₆/ 2⃝T₆.
These are due to the fact that the respective segments match in both the global
and the pairwise alignment. Figure 3.29 illustrates the second stage of library
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1© / 2© via 3©
1©

3©

2©

R E D C A T
| | |
C A T F I S H
| | | | | |
F A T C A T

PID: min(100,33) = 33

1© / 2© via 4©
1©

4©

2©

R E D C A T
| | | | | |

C A T F I S H F A T
| | | | | |
F A T C A T

PID: min(66,33) = 33

1©R1 1©E2 1©D3 1©C4 1©A5 1©T6

2©F1 50 0 0 33 0 0

2©A2 0 50 0 0 33 0

2©T3 0 0 50 0 0 33

2©C4 0 0 0 183 0 0

2©A5 0 0 0 0 183 0

2©T6 0 0 0 0 0 183

Figure 3.29: Deriving scoring schemes from an extended library

extension, where "REDCAT" and "FATCAT" are aligned through their align-
ment with the remaining sequences "CATFISH" and "CATFISHFAT".
Using consistency-based scoring schemes as a preprocessing method has

many advantages. The scoring schemes derived from libraries are sensitive to
both global and local similarities. The computational complexity of the ap-
proaches is relatively low, and the procedure is transparent and easy to imple-
ment. One further advantage is that the library of pairwise alignments does
not necessarily have to consist of global and local alignment analyses only
(Notredame et al. 1998: 409). Virtually all kinds of information extracted
from all kinds of different analyses can be used to construct the library. As a
result, consistency-based alignment approaches are very flexible and can easily
be adapted for specific purposes.

Postprocessing Methods

Among the common methods for postprocessing, iterative refinement meth-
ods (Durbin et al. 1998 [2002]: 148f) are probably the most popular ones
(Notredame 2009: 58). While iterative approaches have been proposed as
an independent heuristic strategy for multiple alignment analyses (Barton and
Sternberg 1987), they are more often used to refine a given multiple alignment
(Gotoh 1996), or to cope for typical errors resulting from the greediness of the
progressive alignment strategy (Do et al. 2005, Edgar 2004). The basic princi-
ple of all iterative refinement approaches is to partition an initially given MSA
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and to realign the parts. If the score of the new alignment (usually a variant of
the sum-of-pairs score, cf. Equation 3.10) is better than the previous one, the
new alignment is given the preference over the previous alignment, otherwise
the previous alignment is retained. This procedure is repeated several times,
until the alignment score reaches convergence (Rosenberg 2009a: 58).
Since the realignment itself follows the traditional paradigm of profile align-

ment as described in Section 3.4.1, the most crucial aspect of iterative refine-
ment approaches lies in the heuristic strategy that is used to partition a given
multiple alignment. Many different strategies for alignment partitioning can
be found in the literature (see the descriptions in Hirosawa et al. 1995 and
Wallace et al. 2005). They can be roughly divided into two subsets, namely
into single-type and multi-type partitioning strategies. Single-type partition-
ing strategies split an alignment of height N into one subalignment of N − 1
sequences and one subalignment consisting only of one sequence (Hirosawa
et al. 1995: 14f), i.e. during each iteration step, only one sequence is removed
from the alignment and then realigned. Multi-type partitioning strategies split
the alignment into subalignments of arbitrary length, depending on the specific
criterion which is used to partition the alignment. The specific criteria which
are used to partition the alignment vary widely. In single-type iterative refine-
ments, for example, the simplest way is to remove and realign single sequences
in a round-robin manner (ibid.: 14), i.e. the first sequence of a given MSA is
removed and realigned, followed by the second sequence, and the third, until
all sequences have been removed and realigned once (this procedure is used in
Barton and Sternberg 1987). In multi-type iterative refinements random and
tree-dependent partitioning strategies are the most popular ones. Random par-
titioning strategies split a given MSA into two randomly chosen subalignments
(Do et al. 2005). In tree-dependent partitioning, the splitting of an alignment
is “restriced to the ways indicated by branches of a guided tree” (Hirosawa
et al. 1995: 15).
The basic stages of iterative refinements are illustrated in Figure 3.30, where

the alignment in Figure 3.26a is enhanced using multi-type partitioning and re-
alignment: The basic alignment is first partitioned into the two subalignments
|0

R E D C A T
F A T C A T0| and

|0
C A T F I S H - - -
C A T F I S H F A T0|, the subalignments are then realigned, and the new

alignment is retained, since it has both better SP and PID scores. Note that in
the new partitions all columns which consist of gaps only are deleted, resulting
in the partition |0

R E D C A T
F A T C A T0| as opposed to |0

R E D - - - - C A T
F A T - - - - C A T0|. Oth-
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(1) Multiple Alignment (2) Partitioning (3) Realignment

1© R E D C A T
2© F A T C A T

1© R E D - - - - C A T
2© F A T - - - - C A T
3© C A T F I S H - - -
4© C A T F I S H F A T

1© R E D C A T - - - - - - -
2© F A T C A T - - - - - - -
3© - - - C A T F I S H - - -
4© - - - C A T F I S H F A T

SP: 0.24
PID: 53

3© C A T F I S H - - -
4© C A T F I S H F A T

SP: 0.32
PID: 92

Figure 3.30: Partitioning and realignment during iterative refinement

erwise, new results could barely be achieved with this procedure. The result-
ing alignment is identical with the alignment in Figure 3.26b, i.e. the align-
ment achieved by consistency-based preprocessing. Both, the consistency-
based scoring functions as a preprocessing method, and iterative refinements
as a postprocessing method, can significantly improve traditional progressive
alignment analyses. Taken together, even better results can be achieved.

3.4.3 Summary on Multiple Alignment Analyses

In this section, the basic algorithms for the computation of multiple alignment
analyses were introduced. In contrast to pairwise alignment methods, most
multiple alignment methods do not seek an optimal solution but instead rely on
heuristics. Among the most common heuristics are the progressive techniques
in which multiple sequences are successively aligned along a previously con-
structed guide tree. These methods can be further enhanced by various tech-
niques for pre- and postprocessing. Among the preprocessing techniques, the
most common representatives are consistency-based scoring schemes. Among
the postprocessing techniques, the most common representatives are iterative
refinement analyses.





4

Sequence Comparison in
Historical Linguistics

Die Beobachtung ist in Beziehung auf Entstehung neuer Formen aus
früheren auf sprachlichem Gebiete leichter und in grösserem Maassstabe
anzustellen, als auf dem der pflanzlichen und thierischen Organismen.
Ausnahmsweise sind wir Sprachforscher hier einmal im Vortheile gegen
die übrigen Naturforscher.

Die Darwinsche Theorie und die Sprachwissenschaft, 17
Schleicher (1863)

That there are many seemingly striking parallels between biological evolution
and language change has long since been noted by linguists as well as biolo-
gists. Starting from the rise of language studies as a scientific discipline in the
early 19th century up to today scholars from both disciplines have repeatedly
pointed to similarities between the respective research objects and models in
biology and linguistics. It is therefore not surprising that these parallels have
also lead to the transfer of methods between both disciplines. Thus, start-
ing from the 1980s, biologists began to employ transformational grammars
(Chomsky 1959), originally designed to model the syntax of natural languages,
to address certain sequence analysis problems in biology (Searls 2002, Durbin
et al. 1998 [2002]: 233). Some 20 years later, scholars began to employ bio-
logical methods for phylogenetic reconstruction to solve questions of genetic
language classification (Gray and Atkinson 2003, Ringe et al. 2002), eventu-
ally triggering a ‘quantitative turn’ which lead to the establishment of a whole
new branch of ‘quantitative historical linguistics’. The key assumption of these
new approaches is that the characteristic processes of language change and bi-
ological evolution are so similar that the methods designed for one discipline
may also be used in the other one, despite the fact that the domains differ
(Croft 2008: 225).
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Aspects Species Languages
unit of heredity gene word
replication (asexual and sexual) reproduction learning
origination cladogenesis language splitting
forces of change natural selection and genetic drift social selection and trends
differentiation treelike treelike (?)

Table 4.1: Some apparent parallels between species and languages

The majority of the new methods in quantitative historical linguistics as-
sumes a direct mapping of linguistic and biological entities. Table 4.1 lists
some of the most common parallels between linguistics and biology which
are often proposed in the literature. Thus, regarding the unit of heredity, the
biological gene is usually set in analogy with the linguistic word, both being
‘discrete heritable units’ (Pagel 2009: 406). Replication of the heritable units is
achieved via concrete mechanisms of reproduction in biological evolution and
via learning in language history. From the perspective of origination, clado-
genesis in biology is identified with language splitting in linguistics (ibid.).
From the perspective of change, the driving forces of biological evolution,
such as natural selection and genetic drift are compared with social selection
and trends, eventually leading to language change (ibid.). Last not least, dif-
ferentiation is usually assumed to be treelike, and the impact of ‘horizontal
forces’ on evolution is considered to be rather low in both cases.
Assuming that these parallels hold, it seems perfectly plausible to use the

methods developed for the application in one discipline in the other. However,
it is important to be aware not only of the parallels but also of the differences
between the research objects of both disciplines. The most striking differ-
ence between languages and genomes is that biological evolution manifests it-
self substantially while language history does not. In terms of Popper (1978),
genome evolution and language evolution take place in different worlds: While
biological organisms are part of world 1, the ‘world that consists of physical
bodies’ (ibid.: 143), languages belong to world 3, the ‘world of the products
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of the human mind, such as languages; tales and stories and religious myths’
(ibid.: 144).1
The new automatic methods are usually thought to have a greater degree of

objectivity and reliability compared to the traditional framework of the com-
parative method (McMahon and McMahon 2005: 26-29), which is a rather
intuitive enterprise (Schwink 1994: 29), suffering from a lack of probabilis-
tic thinking (Baxter and Manaster Ramer 2000: 169-172). However, it is
interesting to note that the most crucial part of the analysis, namely the identi-
fication of sound correspondences and cognates (steps 2 and 3 of the working
procedure outlined in Section 2.6), is still almost exclusively carried out manu-
ally. That this may be problematic was recently shown in a comparison of two
large lexicostatistical word lists produced by different scholarly teams where
differences in item translation and cognate judgments led to topological dif-
ferences of more than 30% in the automatically calculated phylogenetic trees
(Geisler and List forthcoming). Thus, new automatic approaches do not nec-
essarily lead to an overall increase in objectivity and reliability, as long as they
are applied to datasets produced by the intuitive, qualitative methods they are
supposed to overcome.
The goal of this study is to cope with this gap by developing a new frame-

work for automatic sequence comparison in historical linguistics. Based on
novel approaches to sequence modelling (Section 4.1) and phonetic alignment
(Section 4.2) a new method for automatic cognate detection has been devel-
oped (Section 4.3), which automatically performs the relevant steps 2 and 3
of the traditional comparative method (see Section 2.6).

4.1 Sequence Modelling

When dealing with automatic sequence comparison in historical linguistics, it
is important to be clear about the underlying sequence model. Phonetic se-
quences differ crucially from biological sequences in several respects. The
segmentation of sequences into phonetic segments (see Section 3.1.1), for ex-
ample, poses a problem of itself which is addressed in the fields of phonology
and phonetics. The processes dominating in biological evolution and language
history may also differ quite significantly. Thus, the unit of heredity in biol-
ogy, the gene, is built from a set of universal characters which can be found
1 For a more detailed account on language as part of Popper’s world 3, see Keller (1990:
164-174).
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(a) Genes (b)Words

Figure 4.1: Discrete heritable units: genes and words. While the biological alphabet
manifest itself substantially and can be retrieved by means of gel electrophoresis (a),
the sounds of languages are physically only present as acoustic waves (b).

in all organisms. The unit of heredity in linguistics, the word, however, is
built from a set of sounds which are distinct only with respect to the language
they belong to (see Section 2.1.3). Unlike genes, words are not drawn from a
universal alphabet, but from alphabets which themselves are subject to change
(see Section 2.2.1). As a result, the problem of sequence alignment in histori-
cal linguistics differs fundamentally from the problem of sequence alignment
in biology: While the latter requires only to find the best arrangement of two
sequences in dependence of a scoring scheme that – once inferred – holds for
all biological taxa,2 the former requires to find both the best arrangement of
two words and the best scoring scheme which matches the sounds of the two
languages from which the words are taken.3
In order to address these specific characteristics of linguistic sequences,

new models for the representation of sequences were developed for this study.
These new models cover both paradigmatic and syntagmatic aspects of sound
sequences and play a crucial role in the algorithms for phonetic alignment and
automatic cognate detection that are presented in this study. Paradigmatic
aspects of sequence modelling focus on the comparison of sequences on the
segment level. Syntagmatic aspects of sequence modelling, on the other hand,
2 In biology, different scoring schemes are used for different evolutionary distances, yet it is
generally assumed that these scoring schemes apply globally to all biological taxa.

3 In the literature this problem is sometimes stated as a cryptanalytic problem where neither
the mapping between source and target texts nor the mapping between source and target
alphabets is known (Hoenigswald 1959).
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focus on the comparison of sequences with respect to their structure. All mod-
els are part of a specific framework for sequence modelling which is imple-
mented as part of the LingPy Python library which was written for this study
(see Supplementary Material).

4.1.1 Paradigmatic Aspects

Sound Classes

A strict notion of genotypic similarity (see Section 2.4.1) is prevalent in his-
torical linguistics. Genotypic similarity is defined in absolute terms. Only
if two segments are judged to correspond systematically, they are judged to
be similar. As an example, consider the two words English mouth [maʊð]
and GermanMund [mʊnt] ‘mouth’. From a genotypic perspective, these two
words are maximally similar, since all correspondences, which are reflected in
the alignment |0

m aʊ - ð
m ʊ n t 0|, occur regularly, even the null-correspondence

German [n] ≈ English [-] (Starostin 2010: 95).4 Once the language-specific
genotypic similarities are identified for a pair of languages, it is not difficult to
design an alignment algorithm that optimally aligns all genotypically similar
words of these two languages, thereby rejecting all phonetically more similar
candidates, such as, e.g., English mount [maʊnt], or German Maus [maus]
‘mouse’. All one has to do is to design a specific scoring function which reflects
the regular sound correspondences in a given language pair.
However, in the first stages of language comparison, neither the cognate

words nor the sound correspondences are known. In order to find cognates
and correspondences, we need a heuristic which helps us to find probably cor-
responding segments rather than absolutely corresponding ones. Many au-
thors (Holzer 1996: 174f, Szemerényi 1970: 14f) emphasize that phenotypic
similarity can be neglected when establishing correspondence patterns, since,
“[...] given a long enough time span, almost any sound can change into any
other sound” (Arlotto 1972: 77). While it is true that there are good exam-
ples for sound change which are difficult to explain on pure phonetic terms,
most scholars, however, would probably also agree that sound change often
does follow certain patters, that “[...] even the most divergent languages show
examples of phonetic change which are remarkably similar” (ibid.), and that
“[not] all changes are [...] equiprobable” (Lass 1997: 136). The difference
4 Compare, for example English other [ʌðər] ≈ German anders [andərs] ‘different’ and the
alignment of the words: |0

ʌ - ð ə r -
a n d ə r s 0|.
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regarding the probability of certain sound changes to occur will also show up
in the patterns of sound correspondences which can be observed in geneti-
cally related languages, with certain patterns occurring more often and other
ones being quite rare. Stating segment similarity in terms of correspondence
probability will differ from a pure phenotypic notion of similarity, yet it will,
nevertheless, come closer to it than the strict notion of genotypic similarity,
which is ignorant of phonetic realization.
The first attempt to derive an empirical model for the probability of sound

correspondences that is known to me is an approach by A. B. Dolgopolsky
(Dolgopolsky 1964). Based on partially empirical observations of sound-
correspondence frequencies in the languages of the world, which are – un-
fortunately – not further specified by the author, he divided speech sounds
into ten types (see Table 4.2), and “[...] thereby distinguished [them] in such a
way that phonetic correspondences inside a ‘type’ are more regular than those
between different ‘types”’ (ibid.: 35). In a recent study, Dolgopolsky’s sound-
class model has been used as a heuristic device for automatic cognate detec-
tion (Turchin et al. 2010). According to this method, semantically identical
basic words are judged to be cognate if their first two consonant sound classes
match, otherwise, no cognacy is assumed. The advantage of this approach is
that the number of false positives is usually considerably low (see the evalua-
tion of the method in Section 4.3), the apparent disadvantage lies in the fact
that many true positives are missed, since no true alignment analysis is carried
out. Thus the cognate words German Tochter [tɔxtər] ‘daughter’ and English
daughter [dɔːtər] do not match in their first two consonant classes ("TKTR"
vs. "TTR"). An alignment analysis of the sound class strings, however, can
easily show that three of four consonant classes match perfectly: |0

T K T R
T - T R0|.

The advantage of sound class representations of phonetic segments com-
pared to pure phonetic representations lies in the specific probabilistic no-
tion of segment similarity inherent in the sound class approach. Offering a
stochastically based intermediate solution between the two extreme positions
of genotypic and phenotypic similarity, sound classes seem especially suit-
able for automatic sequence comparison. Choosing strings of sound classes
as internal representation format has many advantages: While, as has been
mentioned before, sequence comparison in disciplines such as evolutionary
biology always deals with the same fixed set of characters, such as the protein
or DNA alphabets, the sound systems of the world’s languages differ to a great
degree (compare the overview given in Maddieson 2011), and the number of
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characters (including diacritics) of phonetic transcription systems such as the
IPA will force the algorithms to handle a large bunch of phonetic values which
will be meaningless in most applications. This is due to the fact that, on the
one hand, there is a lot of variation regarding the way linguists transcribe lan-
guages: Apart from the difference between narrow and broad phonetic tran-
scriptions, there are many cases in which linguists simply slightly differ in their
judgments, especially in poorly studied languages. On the other hand, there
are many correspondence patterns which occur so frequently, that it seems
justified to give the respective sounds an identical value from the beginning.
Thus, while probably no one would doubt that the velar unvoiced plosive [k]
should be kept distinct from the labial unvoiced plosive [p], the distinction
between the velar nasal [ŋ] and the uvular nasal [ɴ] is far less obvious and it
does not seem likely that the performance of any algorithm will suffer if both
sounds will be merged into one.
In List (2012c), I proposed a revised version of Dolgopolsky’s original

sound-class model that was developed within a trial-and-error process when
testing the suitability of different sound-class models for phonetic alignment.
TheSoundClass-Based PhoneticAlignment (SCA)model consists of 28 sound
classes. In contrast to the model by Dolgopolsky (henceforth called DOLGO
model), the SCA model is more fine-graded, distinguishing 16 consonant, six
vowel, and six tone qualities (see Table 4.3). Among the consonant classes in

No. Cl. Description Examples
1 "P" labial obstruents p, b, f
2 "T" dental obstruents d, t, θ, ð
3 "S" sibilants s, z, ʃ, ʒ
4 "K" velar obstruents, dental and alveolar affricates k, g, ʦ, ʧ
5 "M" labial nasal m
6 "N" remaining nasals n, ɲ, ŋ
7 "R" liquids r, l
8 "W" voiced labial fricative and initial rounded vowels v, u
9 "J" palatal approximant j
10 "Ø" laryngeals and initial velar nasal h, ɦ, ŋ

Table 4.2: Dolgopolsky’s original sound class model
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No. Cl. Description Examples
1 "A" unrounded back vowels a, ɑ
2 "B" labial fricatives f, β
3 "C" dental / alveolar affricates ʦ, ʣ, ʧ, ʤ
4 "D" dental fricatives θ, ð
5 "E" unrounded mid vowels e, ɛ
6 "G" velar and uvual fricatives ɣ , x
7 "H" laryngeals h, ʔ
8 "I" unrounded close vowels i, ɪ
9 "J" palatal approxoimant j
10 "K" velar and uvular plosives k, g
11 "L" lateral approximants l
12 "M" labial nasal m
13 "N" nasals n, ŋ
14 "O" rounded back vowels Œ, ɒ
15 "P" labial plosives p, b
16 "R" trills, taps, flaps r
17 "S" sibilant fricatives s, z, ʃ, ʒ
18 "T" dental / alveolar plosives t, d
19 "U" rounded mid vowels ɔ , o
20 "W" labial approx. / fricative v, w
21 "Y" rounded front vowels u, ʊ, y
22 "0" low even tones ₁₁, ₂₂
23 "1" rising tones ₁₃, ₃₅
24 "2" falling tones ₅₁, ₅₃
25 "3" mid even tones ₃₃
26 "4" high even tones ₄₄, ₅₅
27 "5" short tones ₁, ₂
28 "6" complex tones ₂₁₄

Table 4.3: The SCA sound class model

the SCAmodel, the basic difference to the DOLGOmodel is the strict separa-
tion of the general sonority classes. Thus, affricates, plosives, and fricatives are
now generally separated. The voicing distinction is still ignored, since voice
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is generally quite prone to assimilation and weakening, and many languages
lack this distinction completely.
While sound classes in the original sense of Dolgopolsky are seldom ap-

plied in historical linguistics, the use of specific alphabets which reduce the
large number of phonetic values attested in the languages of the world to
smaller samples is quite common. The Automatic Similarity Judgment Pro-
gram (ASJP), for example, uses a specific alphabet of 41 symbols (34 conso-
nants, 7 vowels), called ASJP code (Brown et al. 2008), for its large collection
of small word lists from more than 6000 languages of the world (Wichmann
et al. 2010). In contrast to the DOLGO model, which was specifically de-
signed for the purpose of historical comparison, the primary goal of the ASJP
code was to ease the pain-staking labor of transcription, while at the same time
reflecting the majority of most of the commonly occurring sounds of the lan-
guages of the world (Brown et al. 2008: 289). Nevertheless, since the ASJP
code is also based on the idea to reduce the variation inherent in phonetic
transcription in order to guarantee comparability, it fulfills the criterion of a
sound-class model in the sense in which the term is used in this study. All
three sound-class models (DOLGO, SCA, ASJP) that were discussed so far
are implemented as basic models of sequence representation in the LingPy li-
brary. In order to guarantee the full applicability of the model, 6 tonal classes,
originally not present, were added to the ASJP model, and the DOLGOmodel
was extended by one class covering all vowels and one class covering all tones.

Scoring Functions

Dolgopolsky’s original sound-class approach defined sound classes as absolute
entities. Transitions between sound classes were not allowed, although they
are surely desirable, since transitions between classes are well-known to every
historical linguist. Transition probabilities between sound classes can be easily
modeled in the scoring functions of alignment algorithms. Scoring functions
can be based on empirical or theoretical approaches. Within empirical ap-
proaches, scoring functions are derived from studies on sound correspondence
frequencies in the languages of the world. This approach has been applied in
List (2012b) where a specific substitution matrix for the ASJP sound-class
model was derived from a study on sound correspondence frequencies in the
languages of the world as they are reflected in the ASJP database (Brown et al.
2013).
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x, ɣ

k, g h, ħ, ʔ

ʦ, ʣ, ʧ, ʤ

t, d ʃ, ʒ, s, z

θ, ð

1
Figure 4.2: Directionality of sound change patterns

When deriving scoring functions from a theoretical basis, it is important to
find a way to model the nature of sound change and sound correspondences.
One crucial characteristic of certain well-known sound change types is their
directionality, i.e. if certain sounds change, this change will go into a certain
direction and the reverse change can rarely be attested. Other types of sound
change are bidirectional and it cannot be decided which direction occurs more
frequently. Thus, regarding velar plosives ([k, g]), we know that they can be
easily palatalized, and that palatalization consists of certain steps, where the
velars first become affricates and then turn into sibilants (e.g. [k, g] > [ʧ, ʦ,
ʤ, ʣ] > [ʃ, ʒ, z, s]). The same process of palatalization may happen with
dental plosives (e.g. [t, d] > [ʧ, ʦ, ʤ, ʣ] > [ʃ, ʒ, z, s]). The opposite
direction of these changes, however, is rarely attested. Another directional
type of sound change which also occurs quite frequently is lenition whereby
velar plosives become velar fricatives ([k, g] > [x, ɣ]), and dental plosives
become dental fricatives ([t, d] > [θ, ð]).
A direct consequence of the directionality of certain sound change types is

that certain sound classes are very unlikely to occur in regular correspondence
relations. This can be easily illustrated when displaying the possible transi-
tions between sound classes resulting from common sound change types in a
directed graph as it is done in Figure 4.2. As a rule, correspondence relations
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can only be assumed for those sound classes which either share a common
ancestor, or are connected via a possible path through the graph. Hence, the
correspondence [x, ɣ]≈ [ʦ, ʣ, ʧ, ʤ] is possible, as is the correspondence [ʦ,
ʣ, ʧ, ʤ] ≈ [θ, ð]. The correspondence [θ, ð] ≈ [x, ɣ], however is not pos-
sible (if the assumption of directionality holds), since there is no path which
connects both sound classes. A scoring function which models the probability
of sound classes to occur in correspondence relations should assign similarity
scores which reflect the directionality of sound change types.
In order to define such a scoring function from a theoretical model, the fol-

lowing approach is applied: The scoring function is derived from a directed
weighted graph. All sound classes which are known to be in very close connec-
tion to each other are connected by directed edges which reflect the direction of
the respective sound changes. The assumed probability of the sound changes
is defined by the edge weights. The higher the assumed probability of sound
change, the smaller the weight. If sound change processes are not directional,
both directions are reflected in the graph. This may, for example, be important
for the scoring of vowels for which directional patterns of change are difficult
to establish. The similarity score for two segments in the directed graph is
calculated by subtracting the similarity score of one segment to itself from the
length of the shortest path connecting two segments. In this context, the length
of an edge in the directed graph is directly identified with the weight assigned
to the edge. Figure 4.3 gives an example on how the similarity scores can be
calculated for the above-mentioned cases of palatalization of dentals and ve-

dentals

affricates fricatives

velars

2

2

2

1

(a) Directed graph

dentals

affricates fricatives

velars

8

8 6

8 6

0

1

(b) Scoring scheme

Figure 4.3:Modelling the directionality of sound change in scoring functions. See the
text for a detailed description.
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lars: The resulting similarity score for dentals and fricatives is calculated by
subtracting the length of the shortest path (4) from the similarity score for a
segment to itself (10). If no shortest path can be found, the similarity score is
automatically set to 0.
Based on the above stated, LingPy defines three different scoring functions

for each of the basic sound-class models (DOLGO, SCA, and ASJP). The
scoring function of the DOLGO model is the simplest one. It prohibits the
matching of the vowel class with the consonant classes, and otherwise assigns
high scores for identical sound classes. The SCA scoring function is based
on the weighted-graph method. The underlying transition graph incorporates
palatalization and lenition as exemplified above. Furthermore, some classes,
such as the nasals and the glides, were given high similarity scores among
each other, since transitions among these classes are quite likely as a result
of assimilation. The ASJP scoring function is based on the empirical scoring
function derived from the above-mentioned study on sound correspondence
frequencies (Brown et al. 2013).5
The differences between the three sound-class models and their respective

scoring functions can be illustrated by comparing the consonants in the sound
system of English as it was defined by Chomsky and Halle (1968: 177). Figure
4.4 shows the results of a multidimensional scaling analysis for the different
models. In this analysis, all sounds belonging to the same sound class in a
given model were automatically clustered into one set. Furthermore, the dis-
tances between all sound sequences were calculated by converting the scoring
functions (which reflect similarities) into distance scores. The distances in the
model of Chomsky and Halle are derived by calculating the Hamming dis-
tances (see Section 3.1) of their feature vectors (ibid.). As can be seen from
the figure, the Chomsky-Halle model of feature-based distances is not a good
candidate for historical comparison. The DOLGO model receives its “histori-
cal strength” from the rough lumping of sound classes, but no further patterns
are recognizable, since no explicit further transition probabilities between the
sound classes are defined. Comparing the empirically derived ASJP model
with the theoretically derived SCA model, one can find a lot of similarities,
but even more striking differences. Thus, the voicing distinction, which was
discarded in the SCAmodel, is only partially reflected in the ASJP model, and
the closeness of nasals to their non-nasal counterparts in the ASJP model is
completely absent in the SCA model.
5 Matrix representations of all three scoring functions are given in Appendix B.
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Figure 4.4: Multidimensional scaling analysis illustrating the distances between the
sounds of English in different similarity models.

The differences between the different models are further visualized with the
help of heat maps in Figure 4.5. Here, the fuzzy character of the Hamming
distances derived from the features by Chomsky and Halle becomes especially
evident. Of the larger clusters, only the velar group in the lower left of the
matrices ([xʷ, kʷ, gʷ, x, g, w]) finds a reflection in the other models. That
the SCA model was derived from the DOLGO model can be easily spotted
from a comparison of the respective matrices. Comparing the SCA with the
ASJP model, the difference between empirical and theoretical models become
quite obvious: While the ASJP matrix exhibits a broad range of partially very
weak similarities between many different sound segments, the SCA model is
much more restrictive.
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4.1.2 Syntagmatic Aspects

Prosodic Context

In biological sequence analyses it is common to treat specific positions of
certain sequences differently by modifying the scores for the introduction of
gaps (Thompson et al. 1994). In the approach presented here, the idea of
position-specific scoring is adopted to incorporate syntagmatic information in
the sound-class representation of phonetic sequences. The main idea behind
this modification is to account for the well-known fact that certain types of
sound change are more likely to occur in specific prosodic contexts. For ex-
ample, vowels are more likely to get modified or lost than consonants, and
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Figure 4.5: Distances between the sounds of English in different similarity models.
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consonants are more likely to get modified or lost in syllable-final than in
syllable-initial position. It therefore seems fruitful to include this position-
specific information in the general representation of phonetic sequences. The
information itself can then be used in different parts of sequence analyses.
In alignment analyses, for example, it can be used to derive position-specific
gap penalties (see Section 4.2). When searching for regular sound correspon-
dences, the position-specific information offers an alternative to traditional
n-gram representations of sequences (see Section 4.3).
The LingPy framework of sequence representation employs a very simple

method to model prosodic context: A phonetic sequence is not only repre-
sented by its sound-class sequence, but also by a prosodic string, which itself
is derived from the sequence’s sonority profile. The sonority profile is repre-
sented as a vector of integer weights representing the relative sonority of all
segments in a sonority hierarchy, going from lower weights for less sonorous
segments to higher weights for more sonorous segments. LingPy currently
employs the sonority hierarchy given in Example 4.1, which follows Geisler
(1992: 30) with an additional sonority class for affricates:

(4.1) plosives affricates fricatives nasals liquids glides vowels

1 2 3 4 5 6 7

Once the sonority profile of a sequence is calculated, all segments can be
assigned to different prosodic contexts according to their position in the pro-
file. Given the fact that syllabification is often language-specific (Hall 2000:
226f), and that a given syllabification can become meaningless when multi-
ple sequences are being compared, the framework for sequence modelling in
LingPy employs a simplified strategy for the determination of prosodic context
which is not based on syllabification. Given a sonority profile of a linguistic se-
quence, it is easy to determine peaks of maximum sonority, which will usually
be represented by vowels. It is further possible to determine whether a given
segment (which does not appear in a maximum peak position) is in a position
of descending or ascending sonority. The derivation of these different proso-
dic contexts from a sonority profile is illustrated in Figure 4.6 for the sequence
Bulgarian ябълка [jabəlka] ‘apple’. Apart from the positions of ascending,
descending, and maximum sonority, the word-initial and the word-final po-
sitions are treated as separate prosodic context, whereby a further distinction
between vowels and consonants is being made. As a result, seven different
prosodic contexts can be defined for phonetic segments, namely (1) "#" –
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sonority
increases

j a b ə l k a

1
(a) Sonority profile

j a b ə l k a

↑ 4 ↑ 4 ↓ ↑ 4

↑ ascending
4 maximum
↓ descending

1
(b) Prosodic string

Figure 4.6: Deriving prosodic strings from sonority profiles. See the text for a detailed
description.

word-initial6 consonants, (2) "V" – word-initial7 vowel, (3) "C" – ascending
sonority, (4) "V" – sonority peak, (5) "C" – descending sonority, (6) "$" –
word-final consonant, and (7) ">" – word-final vowel.
In order to derive position-specific weights, LingPy builds on an idea of

Geisler (1992: 31-34) in assigning these contexts specific weights. These
weights are defined in such a way that it is easier to introduce gaps in weak
positions than in strong ones. The weights are represented as floating point
numbers by which the GOP is multiplied. For example, a weight of 2.0 as-
signed to a specific environment will double the GOP for all segments oc-
curring in this environment. The current default weights (see Table 4.4) have
been determined by testing the performance of the SCA method for phone-
tic alignment (see Section 4.2) on a small representative sample of pairwise
alignments. Two default sets are used: one for the alignment of South-East
Asian tone languages, and one for all other languages. Using specific weights
for tone languages is justified by the specific syllable structure of these lan-
guages that makes it necessary to assign high weights for vowels, and lower

6 This refers to all syllable-initial consonants in the first syllable of a word.
7 This refers to the first vowel in a word, regardless of whether it is preceded by a consonant
or not.
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Set of Weights
Prosodic Context

# V C c v $ >

Tone L. 1.6 3.0 1.2 1.1 3.0 0.5 0.7
Non-Tone L. 2.0 1.5 1.5 1.1 1.3 0.8 0.7

Table 4.4: The sets of default weights for tone and non-tone languages

weights for the position of descending sonority, since this position is seldom
occupied.
The information regarding prosodic context is further used to modify the

substitution scores slightly. They are increased if two segments belong to the
same prosodic context. The amount by which the score is increased is also
defined by a scaling factor, the default being 0.3. Thus, if two segments match
regarding their scaling factor, the resulting score is increased by 30%. Table
4.5 summarizes the different representations of phonetic sequences applied by
LingPy for Bulgarian ябълка [jabəlka] ‘apple’.

Secondary Sequence Structures

The idea of secondary sequence structures has been proposed in Section 3.3.3,
and it is straightforward to apply this idea in an extended model for the rep-

Phonetic Sequence j a b ə l k a
SCA Model J A P E L K A

ASJP Model y a b I l k a

DOLGOModel J V P V R K V

Sonority Profile 6 7 1 7 5 1 7
Prosodic String # V C v c C >

Relative Weight 2.0 1.5 1.5 1.3 1.1 1.5 0.7

Table 4.5: The LingPy framework of sequence modelling: Bulgarian ябълка ‘apple’
given in different representations.
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resentation of phonetic sequences. However, so far, the LingPy framework
of sequence modelling is not capable to detect secondary sequence structures
automatically. Therefore, only secondary structures which are explicitly mar-
ked as such by the user can be employed in the analyses. Thus, if a morpheme
segmentation is included in the data, the alignment algorithm described in the
next section, can carry out alignment analyses which are sensitive to secondary
sequence structures. This is generally the case when dealing with South-East
Asian tone languages, since the tone characters (which are represented by spe-
cific sound classes and are also assigned to a specific prosodic environment),
automatically mark the syllable boundaries. Secondary alignment is especially
useful in these cases, since the syllable in South-East Asian languages nor-
mally also reflects the morphemes. When aligning data containing sentences
or phrases, the secondary structures (in form of white space characters) are
usually also directly given along with the data. In all other cases, the data has
to be manually or automatically preprocessed.

4.2 Phonetic Alignment

Although alignment analyses are the most general way to compare sequences
manually and automatically, their application is still in its infancy in historical
linguistics. Generally speaking, historical linguists have always aligned words.
Without alignments, i.e. without the explicit matching of sounds, neither can
regular sound correspondences be detected nor can cognacy between words
or genetic relationship between languages be proven. However, although lan-
guage comparison was always based on an implicit alignment of words, it was

Language Alignment
Choctaw f a n i

Cree - i l ̥ u
(a) Pairwise alignment.

Language Alignment
Choctaw - f a n i
Koasati i p - l ̥ u
Cree i - - l ̥ u

(b) Multiple alignment.

Table 4.6: The importance of multiple phonetic alignment (b) in comparison to pair-
wise phonetic alignment (a) illustrated for words meaning ‘squirrel’ in Muskogean (Fox
1995: 68, Haas 1969: 41).
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Language Alignment
Russian s - ɔ n ʦ ə -
Polish s w ɔ nʲ ʦ ɛ -
French s - ɔ l - ɛ j
Italian s - o l - e -
German s - ɔ n - ə -
Swedish s - uː l - - -

(a) Global alignment.

Language Alignment
Russian s ɔ - - n ʦ ə
Polish s - w ɔ nʲ ʦ ɛ
French s ɔ l - - - - ɛj
Italian s o l - - - e
German s ɔ - - - - nə
Swedish s uː l - - - -

(b) Local alignment.

Table 4.7: Two different alignments of reflexes of Proto-Indo-European *séh₂u̯el-
‘sun’. In (a) all segments are globally aligned, resulting in an unrealistic scenario not
reflecting known intermediate stages. In (b) all segments are locally aligned, whereby
some elements are left unaligned, and the core block is shaded in gray. Segments con-
nected via metathesis are displayed using a white font.

rarely explicitly visualized or termed as such, and in the rare cases where schol-
ars explicitly used alignments to visualize correspondence patterns in words,
it merely served illustrational purposes (Anttila 1972: 229-263, Lass 1997:
128).
That alignment analyses, and especially multiple alignment analyses, are

important, is nicely illustrated by Fox (1995: 67f) in an example taken from
Haas (1969: 41), where a pairwise comparison of Choctaw [fani] ‘squirrel’
and Cree [il]̥ ‘squirrel’ leads to an incorrect matching of sound segments (see
Table 4.6a), unless Koasati [iplu̥] ‘squirrel’ is added to the comparison (see
Table 4.6b). It is, however, indicative that Fox does not use the term “align-
ment” but instead speaks of the problem of matching the correct “position in
the string of phonemes” (Fox 1995: 67). This illustrates that linguists up to re-
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cently were unaware of the fact that the specific kind of sequence comparison
they were carrying out had a close counterpart in other branches of science.
Another reason for this reluctance of linguists to make a broader use of

alignment analyses may be that the representation of sequence differences with
the help of alignments is not always apt to display the differences between pho-
netic sequences properly. Alignment analyses suggest a “holistic” picture of
sequence differences where sequences are put into the matrix as a whole. As a
result, it is difficult to display local similarities between sequences, especially
when conducting multiple alignment analyses. As an example, consider Proto-
Indo-European *séh₂u̯el- ‘sun’ and its reflexes Russian солнце [sɔnʦə], Pol-
ish słońce [swɔnʲʦɛ], French soleil [sɔlɛj], Italian sole [sole], German Sonne
[sɔnə], Swedish sol [suːl] (NIL: 606f). A seemingly obvious global align-
ment of these words is given in Table 4.7a. This alignment, however, does
only partially reflect the real correspondences between the words as they are
proposed by the comparative method. The problem is that not all words are
fully cognate, but have been derived indirectly via different morphological pro-
cesses. Thus, French soleil goes back to Vulgar Latin *sōlǐculus ‘small sun’
(REW: § 8067), but Italian sole goes back to Latin sōlis ‘sun’ (REW: §8059).
Similarly, German Sonne and Swedish sol are usually assumed to be cognate,
but their Proto-Germanic ancestor had a complex, stem-alternating paradigm.
The Swedish word is a reflex of the nominative stem Proto-Germanic *sōel-
‘sun’, and the German word goes back to the oblique stem Proto-Germanic
*sunnōn- (KROONEN: 463f). Russian солнце and Polish słońce both go
back to Proto-Slavic *sъ̏lnьce ‘sun’ (DERKSEN: 479f), but the Proto-Slavic
form cannot directly be traced back to Proto-Indo-European *séh₂u̯el-, but
rather goes back to an early derivation *suh₂l˗n- (NIL: 606). What further
complicates an alignment of the words is the fact that the Polish word form
results from a metathesis (Polish [w]< Proto-Slavic *l) which cannot directly
be displayed in an alignment analysis. The primary purpose of alignment ana-
lyses in historical linguistics, but also in evolutionary biology, is to showwhich
segments of different sequences are homologous. If we take this purpose seri-
ously, the whole arrangement has to be rearranged drastically. In Table 4.7b, I
have attempted to draw a more realistic scenario for the six words, leaving cer-
tain parts of the sequences unaligned, while at the same time using additional
markup to display more specific relations.
Given the complexities and the problems to align remotely distant words

realistically, it is surely not surprising that linguists so far have been reluctant
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to conduct such analyses. Nevertheless, even if it might not be possible at the
moment to design algorithms which are accurate enough to yield an alignment
as the one displayed in Table 4.7b, a careful adaptation of themethods that have
been recently developed in evolutionary biology may yield alignments which
come closer to the ideal than any linguist would probably have imagined 20
years ago.

4.2.1 Previous Work

When discussing previous work, one should distinguish implicit alignment al-
gorithms, i.e. those approaches where alignment analyses have been used to
calculate distances between phonetic sequences, and explicit alignment algo-
rithms, i.e. those approaches where alignment analyses have been used as an
explicit tool for the visualization of segment correspondences. The former
studies, which started with an application by Kessler (1995) and since then
have been followed up in many different applications, mostly in dialectology
(see the overview in Nerbonne and Heeringa 2010), but also in large-scale ge-
netic language comparison (Holman et al. 2011), are of less interest here, since
the alignment method that I propose in the following is explicitly intended to
serve the latter purpose.
When discussing explicit alignment algorithms, it is further important to

distinguish between applications for pairwise phonetic alignment (PPA) and
applications for multiple phonetic alignment. The first one to propose an ex-
plicit pairwise phonetic alignment algorithm was Covington (1996). The basic
characteristics of this algorithm are a rough weighting scheme which espe-
cially prohibits the matching of vowels and consonants, and the use of affine
gap costs. In contrast to later approaches proposed by other scholars, the
algorithm is not based on dynamic programming, but on an extensive, par-
tially guided, tree search of the whole space of possible alignments. In 1999,
Somers reported an algorithm which was developed in the end of the 1970s
and was originally intended to align narrow phonetic transcriptions of chil-
dren’s speech with a corresponding adult model in order to test the articulation
of children. In contrast to the exhaustive tree search conducted by the algo-
rithm of Covington, Somers’s algorithm employed a greedy strategy which is
not guaranteed to find the optimal pairwise alignment. The first PPA algo-
rithm that employed dynamic programming was proposed by Oakes (2000).
This algorithm was part of a larger framework (JAKARTA) that was intended
to identify regular sound correspondences between language pairs. The align-
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ment algorithm in JAKARTA defines a considerably complex scoring scheme
which reflects many different types of sound changes that are modeled by char-
acterizing each sound segment with the help of three phonetic features (place,
manner, voicing). Although JAKARTA defines a great number of different
sound change types, the resulting distance function is rather rough, since the
edit costs for divergent matches resulting from thesound change types are all
set to 1. Among the most sophisticated algorithms for PPA analyses is the
ALINE algorithm (Kondrak 2000). Similar to JAKARTA, ALINE is also
based on dynamic programming. Apart from the basic matching types, the al-
gorithm has been extended to account for complex matches (compressions and
expansions, see Section 3.2). Among the different alignment modes, global,
local and semi-global alignment are supported. The most remarkable feature
of ALINE, however, is the scoring function which is based on a multi-valued
feature representation of phonetic segments and specific salience values for
the features. The advantage of this approach is that the impact of features on
similarity scores can be weighted according to their relevance for PPA ana-
lyses. Kondrak’s ALINE algorithm was a milestone in phonetic alignment.
Largely outperforming previously proposed algorithms (see the comparison
of ALINE with other algorithms in Kondrak 2002: 64, also given in Table
4.12), it introduced many new concepts in phonetic alignment analyses, such
as local and semi-global alignment. The only drawback of the algorithm is its
restriction to pairwise alignment analyses.
Covington was also the first one to propose an explicit algorithm for multiple

phonetic alignment (Covington 1998). Similar to his PPA algorithm, the MPA
algorithm is based on a tree search instead of using dynamic programming.
While this strategy may still work for PPA analyses, it is surely unsuitable for
MPA analyses, as can be also seen from the fact that the author only gives
examples for a maximum of three aligned sequences. More than 10 years
later, Prokić et al. (2009) employed the ALPHAMALIG algorithm (Alonso
et al. 2004) to carry out MPA analyses of a dataset containing the translational
equivalents of 152 glosses in 192 Bulgarian dialects (Buldialect). Although
the algorithm was not specifically designed for the task of phonetic alignment,
Prokić et al. (2009) report a high accuracy of the performance of the algorithm
in comparison with their manually edited gold standard.
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INPUT
tɔxtər
dɔːtər

TOKENIZATION
t, ɔ, x, t, ə, r
d, ɔː, t, ə, r

CONVERSION
t ɔ x … → T O G …
d ɔː t … → T O T …

ALIGNMENT
T O G T E R
T O - T E R

CONVERSION
T O G … → t ɔ x …
T O - … → d oː - …

OUTPUT
t ɔ x t ə r
d ɔː - t ə r

1
Figure 4.7: The basic working procedure of SCA analyses

4.2.2 SCA — Sound-Class Based Phonetic Alignment

The Sound-Class-Based Phonetic Alignment (SCA) method for pairwise and
multiple phonetic alignment analyses was first introduced in List (2010), and
successively revised in (List 2012b) and List (2012c). In the following, the
most recent version of the method shall be introduced in detail. The SCA me-
thod combines both the current state of the art in general sequence alignment
as it was outlined in Chapter 3 and the new approaches to sequence modelling
that were presented in Section 4.1. The method is also implemented as part
of the LingPy library (see Supplementary Material).
The main idea of the current version of SCA and all its predecessors is to

distinguish between an external and an internal representation of phonetic se-
quences. The transition between the two representations is managed within a
specific module which manages the conversion from external to internal for-
mat and vice versa. While the difference between external and internal format
was merely a result of the conversion of IPA characters into capital letters re-
flecting sound-class models in the first version of SCA (List 2010), the current
internal representation is a bit more complex, involving not only sound classes
(see Section 4.1.1), but also prosodic strings (see Section 4.1.2). Distinguish-
ing the external and internal representation of phonetic sequences has several
advantages. Not only are the computational aspects easier to handle when
working with a unified internal representation, the program is also much more
flexible regarding the models that can be chosen for a given analysis. Since
– from a technical viewpoint – sound classes merely constitute a substitution
framework that accounts for the conversion of sequences drawn from one al-
phabet into sequences drawn from another one, there is no limitation regarding
detail or roughness. One can conduct analyses where sounds are lumped into
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just a few general classes as proposed by Dolgopolsky (1964), as well as ana-
lyses which are virtually identical with narrow phonetic transcriptions.
Given that the IPA is chosen as the basic external representation format

for phonetic sequences, a module in which IPA sequences are tokenized into
meaningful phonetic segments precedes the first conversion stage. Hence, the
basic working procedure of SCA consists of four stages: (1) tokenization, (2)
class conversion, (3) alignment analysis, and (4) IPA conversion. In stage
(1) the input sequences are tokenized into phonetic segments. In stage (2) the
segments are converted into their internal representation format, whereas each
sequence is further represented by its corresponding sound class sequence and
its prosodic profile. The pairwise or multiple alignment analysis is carried out
in stage (3). After the alignment analysis has been carried out, the aligned se-
quences are converted back to their original format in stage (4). This procedure
is illustrated in Figure 4.7 for the words German Tochter [tɔxtər] ‘daughter’
and English daughter [dɔːtər].

Pairwise Alignment

The SCA method supports all structural extensions to the basic algorithm for
pairwise sequence alignment mentioned in Section 3.3.2, including the ex-
tension for secondary alignment. When carrying out secondary alignment
analyses, the boundary marker has to be defined by the user. By default,
there are two different boundary markers: (1) tone letters as they are used in
the system of phonetic transcriptions of Sinitic languages proposed by Chao
(1930 [2006]), and (2) a marker for word boundaries, such as, e.g. the char-
acter "#". Substitution scores are based on the respective sound-class model
which is being used. All three models mentioned in Section 4.1.1 are available
(DOLGO, SCA, ASJP), but more models can be easily defined by the user.
The respective substitution matrices are derived as described in the same sec-
tion. All analyses also support the use of position-specific gap and substitution
scores derived from prosodic strings as described in Section 4.1.2. The rel-
ative weights for the different prosodic contexts can be defined by the user.

Multiple Alignment

The SCA algorithm for multiple phonetic alignment is based on the progres-
sive alignment paradigm. In order to cope for the known problems of progres-
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_ INPUT SEQUEN-
CES _

jablk̩o
jabəlka
jabləkə
japkɔ

stage 1 SOUND-CLASS
CONVERSION

jablk̩o → JAPLKU
jabəlka → JAPELKA
jabləkə → JAPLEKE
japkɔ → JAPKU

stage 2 LIBRARY CREATI-
ON

JAP-LKU
JAPELKA

JAPL-KU
JAPLEKE

JAPLKU
JAP-KU

JAPEL-KA
JAP-LEKE

... ...

stage 3 DISTANCE CAL-
CULATION

JAPLKU 0.00 0.14 0.34 0.12
JAPELKA 0.14 0.00 0.46 0.28
JAPLEKE 0.34 0.46 0.00 0.44
JAPKO 0.12 0.28 0.44 0.00

stage 4 CLUSTER ANALY-
SIS ...JAPLKU

JAPELKA
.JAPLEKE

..JAPKU

stage 5 PROGRESSIVE
ALIGNMENT

J A P - L K U
J A P E L K A
JAPLEKE
JAPKU

MORE
SEQUENCES?

stage 6 ITERATIVE REFI-
NEMENT

J A P - L - K U
J A P E L - K A
J A P - L E K E
JAPKU

stage 7 SWAP CHECK
J A P - L - K U
J A P E L - K A
J A P - L E K E
J A P - - - K U

stage 8 IPA CONVERSION
J A P … → j a b …
J A P … → j a b …
J A P … → j a b …
J A P … → j a p …

OUTPUT MSA
j a b - l ̩ - k o
j a b ə l - k a
j a b - l ə k ə
j a p - - - k ɔ

yes

no

Figure 4.8:Working procedure of the SCAmethod. See the text for a further description
of each of the eight stages.

sive algorithms, SCA makes use of pre- and postprocessing methods. For the
preprocessing, SCA employs consistency-based scoring schemes. The post-
processing is based on iterative refinement (see Section 3.4.2). The working
procedure of SCA consists of 8 stages as illustrated in Figure 4.8. In the figure,
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every stage is accompanied by an example which shows the current progress
of the alignment of the four words Czech jablko [jablk̩o], Bulgarian ябълка
[jabəlka], Russian яблоко [jabləkə] and Polish jabłko [japko] ‘apple’.
In stage 1, the input sequences which are converted to sound classes, e.g. the

word Czech jablko is converted to "JAPLKU" according to the SCA model.
In stage 2, the library of pairwise alignments is created. As a default, global,
local, and diagonal alignment analyses (see Section 3.3.2) are carried out of
all possible word pairs. In stage 3, the distance matrix is computed from the
pairwise similarity scores of all sound class sequences. The conversion of
similarity into distance scores is carried out with the formula of Downey et al.
(2008):

(4.2) D = 1− 2 · SAB

SA + SB
,

where SA and SB are the similarity scores of the sequences aligned with them-
selves, and SAB is the similarity score of the alignment of both sequences. In
stage 4, the sound-class strings are clustered with help of the Neighbor-Joining
algorithm (Saitou and Nei 1987). The clustering procedure yields the guide
tree that is used for the progressive alignment in stage 5, where all sequences
are stepwise aligned with each other, following the branching order of the
guide tree. In stage 6, iterative refinement methods are applied to the already
aligned sequences in order to account for possible errors resulting from mis-
aligned sequences. In stage 7, a method for swap detection (described in detail
in Section 4.2.3) is applied. As can be seen from the example, the algorithm
correctly identifies a swap for the alignment of the four input sequences. In
stage 8, all sequences are converted from their internal representation back to
their original IPA format.

4.2.3 Specific Features

Iterative Refinement

The basic principle of iterative refinement methods was described in Section
3.4.2. Since alignments in linguistics are much shorter than in biology, the
heuristics for the partitioning of alignments in biology are not particularly apt
for phonetic alignment. Therefore, three new strategies for alignment par-
titioning were developed for the SCA method, one single-type partitioning
strategy, and two multi-type partitioning strategies. They may be called the
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orphan partitioning, flat-cluster partitioning, and similar-gap-sites partitioning
strategy, respectively.
The (single-type) orphan partitioning strategy,8 splits and realigns the most

divergent sequences from the MSA, whereas divergence is measured by taking
the average distance of each sequence to all other sequences in the distance
matrix. The flat-cluster partitioning strategy is based on a flat-cluster analysis
of the data, using a flat-cluster variant of the UPGMA algorithm (Sokal and
Michener 1958). In contrast to a traditional cluster analysis, the flat-cluster
analysis stops to separate sequences when a certain threshold is reached. As a
result, the set of input sequences in an alignment may be divided into a couple
of subsets. The flat-cluster partitioning strategy for iterative refinement contin-
uously splits off all sequences belonging to one of the flat clusters and realigns
them, until all clusters have been split off and realigned once. The similar-
gap-sites partitioning strategy also clusters the data into subsets, but not on the
basis of sequence similarity, but on the basis of the current alignment. In an
alignment, all rows can be assigned to a certain gap profile, depending on the
positions at which they contain gaps. The similar-gap-sites partitioning strat-
egy simply assigns all sequences to the same cluster, depending on whether
they share an identical gap profile or not. Once the clusters are determined,
the clusters are treated in the same way as in the flat-cluster partitioning strat-
egy, i.e. each cluster is split off and realigned, until all clusters have been split
off and realigned once.

Consistency-Based Scoring

Apart from traditional, matrix-based progressive alignment analyses, the SCA
method also allows to carry out consistency-based alignment analyses as de-
scribed in section 3.4.2. As mentioned before, the basic idea of consistency-
based alignment is to use the information given in pairwise alignment analyses
of the data to derive an alignment-specific scoring matrix. In the initial stage,
the substitution scores for all residue pairs in the scoring matrix are set to
0. After the pairwise alignments have been carried out, the scoring matrix
is extended by increasing the score for each residue pair which occurs in the
primary library by a certain weight. While in consistency-based methods in
biology, such as, e.g. the T-Coffee algorithm (Notredame et al. 2000), the

8 In evolutionary biology, the term orphan is used to refer to “distant members of a [protein]
family” (Thompson et al. 1999: 2684).
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weights for the substitution matrix are derived from percentage identity (see
Equation 3.1 on page 74), the SCAmethod employs a different strategy, since,
in contrast to biology, sequence identity is not a reliable measure in linguistics.
Given the sequences A and B, the weightWxy for the residues x and y being
matched in an alignment of A and B is derived by the formula:

(4.3) Wxy =
1

2
·
(
SAB

LAB
+Mxy

)
,

where SAB is the similarity score of the alignment of A and B, LAB is the
length of the alignment, and Mxy is the original substitution score for the
residues. This equation combines both the general similarity of the aligned
sequences and the individual similarity of the residue pair as defined by the
scoring function. Apart from this modified weight formula, the consistency-
based alignment of the SCAmethod does not differ from the description given
in Section 3.4.2.

Detection of Swapped Sites

Swaps (crossed matches, see Section 3.2.1) are ignored in most approaches
to phonetic alignment that have been proposed so far (Heeringa et al. 2006,
Kessler 1995, Kondrak 2002, Prokić et al. 2009). Authors usually justify this
ignorance for crossed matches by emphasizing the rareness of sound changes
involving metathesis (Kondrak 2002: 50). A further problem is that it is quite
difficult to extend the Needleman-Wunsch algorithm to account for transposi-
tions, especially when dealing with specific scoring matrices instead of simple
edit operations (Nerbonne and Heeringa 2010: 557). It may, however, never-
theless be useful to have a procedure that deals with swaps, since metathesis is
not so rare as it is often claimed and it even regularly occurs in some languages
(Hock 1991: 110).
The SCA strategy to deal with swaps differs from previous, formal solu-

tions to the problem (Lowrance and Wagner 1975, Oommen and Loke 1997,
Wagner 1975), in so far as it is not part of the basic alignment algorithm but
a posterior procedure that is applied to already conducted multiple and pair-
wise alignment analyses. The basic idea of the method is to make use of the
fact that the alignment of swaps in phonetic sequences often follows a similar
pattern.
Given two hypothetical sequences "FORMA" and "FROMA", we may align

and score them in different ways. When allowing for swaps, the Damerau-
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(a)
F O R M A
F R O M A
0 1 1 0 0

(b)
F O R - M A
F - R O M A
0 1 0 1 0 0

(c)
F - O R M A
F R O - M A
0 1 0 1 0 0

Figure 4.9: Different representations of swaps in alignment analyses

Levenshtein distance (named after the work of F. J. Damerau and V. I. Lev-
enshtein, cf. Damerau 1964 and Levenshtein 1965) can be used. It builds
on the edit distance (cf. Table 3.2), but it provides an additional penalty of
1 for crossed matches. A gap-free alignment of "FORMA" with "FROMA"
will therefore yield a total score of 1, since the sequences only differ by one
transposition (see Figure 4.9a). Once we exclude transpositions in the scoring
scheme, we arrive at a score of 2. With a different scoring scheme where gaps
are scored as 1, but mismatches are scored as 2, we can force the algorithm to
avoid mismatches by spreading the swapped region over three columns instead
of two (see Figure 4.9b and c).
This is exactly the situation we find in most phonetic alignments, where

swapped regions in sequences are aligned over three columns instead of be-
ing crushed into one. The usual alignment of Russian яблоко [jabləkə] and
Bulgarian ябълка [jabəlka] ‘apple’ is |0

j a b - l ə k ə
j a b ə l - k a 0|, rather than

|0
j a b l ə k ə
j a b ə l k a 0|. This is due to the fact that most phonetic alignment

approaches, including the one presented in this study, disfavor the matching of
consonants and vowels. Since most cases of metathesis involve the transposi-
tion of vowels and consonants, the natural representation of swaps in phonetic
alignment analyses is the one that spreads them over three columns.
Detecting complementary columns in a given alignment is not difficult, and

the computational effort is also rather low, since phonetic alignments are usu-
ally very short. Regions containing complementary columns, however, do not
necessarily contain swaps. The easiest way to test whether complementary
regions really point to swaps in an alignment is to calculate a swap score (an
alignment score that allows for swaps), and to compare it with the original
score: if the swap-score is better (higher in case of similarities, lower in case
of distances), the swap is confirmed, if not, it is rejected.
There are surely many different ways to calculate an alignment score which

allows for swaps. Within the SCA approach, the calculation of swap-scores
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F O R - M A
F - R O M A
0 1 0 1 0 0

F + R O M A
F - R O M A
0 1 0 0 0 0

F - O R M A
F R O - M A
0 1 0 1 0 0

F - O R M A
F + O R M A
0 1 0 0 0 0

Figure 4.10: Calculating the swap-score with help of a trace character

is done by introducing a trace character ("+") into the sound class alphabet.
This character scores only when it is matched with a gap, the score being the
swap penalty. When matched with itself the trace character scores 0, and it
scores ∞ (or −∞ when dealing with similarities) when being matched with
any other character. The character is introduced into the gapped columns of
a complementary site instead of all non-gap characters. The characters them-
selves are moved to the position where they would appear, if there was no
swap in the alignment. The trace character "+" thus moves the original char-
acter by inducing a swap penalty at the same time. When transforming a given
alignment in this way, the resulting score is identical with the Damerau-Le-
venshtein distance (if the swap penalty is set to 1), yielding 1 for two similar
sequences which only differ by one transposition (see Figure 4.10).
One specific advantage of this procedure compared to the formal approaches

to swap detection is that it works for pairwise as well as multiple alignments.
Being a posterior method, it has the further advantage that it does not influence
the computational complexity of the basic algorithm. It is left to the user to
decide whether a search for swapped regions should be carried out in addition
to the basic alignment analysis, or not.
Themethod for swap detection is illustrated in Figure 4.11 for the alignment

of the four cognate words Czech žlutý [ʒlʊtiː], Russian жёлтый [ʒoltɨj],
Polish żółty [ʒoltɨj], and Bulgarianжълт [ʒɤlt] ‘yellow’ (DERKSEN: 565).
In stage 1⃝, the alignment is searched for complementary sites and the sum-of-
pairs score is calculated. In stage 2⃝, two copies of the alignment are created,
onewhich is identical with the original one, and one inwhich the three columns
of the probably swapped region are shifted in such a way that the outer columns
appear as the inner column and the inner column is split into two outer ones.
In stage 3⃝, the trace character is inserted in the rightmost column and the
rightmost non-gap characters are inserted in the first column. In stage 4⃝, the
sum-of-pairs scores for both new alignments are calculated. The comparison
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Czech ʒ - l ʊ t iː -
Russian ʒ o l - t ɨ j
Polish ʒ u w - t ɨ -
Bulgarian ʒ ɤ l - t - -

Czech ʒ - l ʊ t iː -
Russian ʒ o l - t ɨ j
Polish ʒ u w - t ɨ -
Bulgarian ʒ ɤ l - t - -

SP: 4.5

Czech ʒ - l ʊ t iː -
Russian ʒ o l - t ɨ j
Polish ʒ u w - t ɨ -
Bulgarian ʒ ɤ l - t - -

Czech ʒ l ʊ - t iː -
Russian ʒ - o l t ɨ j
Polish ʒ - u w t ɨ -
Bulgarian ʒ - ɤ l t - -

Czech ʒ ʊ l + t iː -
Russian ʒ o l - t ɨ j
Polish ʒ u w - t ɨ -
Bulgarian ʒ ɤ l - t - -

(4.8 + 4.8) / 2 > 4.5 ?

Czech ʒ l ʊ - t iː -
Russian ʒ l o + t ɨ j
Polish ʒ w u + t ɨ -
Bulgarian ʒ l ɤ + t - -

SP: 4.8 SWAP! SP: 4.8

2 2

3 4

4 4
5 56

1

Figure 4.11: SCA method for the detection of swapped sites

of the average of the new scores with the original score in stage 5⃝ yields the
final decision in stage 6⃝.

4.2.4 Evaluation

Gold Standard

Since automatic sequence comparison in historical linguistics is still in its in-
fancy, the number of benchmark databases which are available is very limited.
Covington (1996) tested his algorithm for pairwise phonetic alignment on a
small dataset consisting of 82 sequence pairs (henceforth called the Covington
Benchmark). Unfortunately, he only presented the results, without providing
a gold standard. The test set has nevertheless been used as a benchmark for
pairwise phonetic alignment algorithms in a couple of studies (Kondrak 2000,
Somers 1999), and the results for the comparison of the algorithms by Cov-
ington (1996), Oakes (2000), and Somers (1999), and Kondrak (2000) are
given in Kondrak (2002), which makes it very convenient to compare theim
with the current proposal.
For multiple phonetic alignments, Prokić et al. (2009) compiled a bench-

mark database (henceforth called the BulDial Benchmark) consisting of 152
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Dataset Languages PSA MSA Words Taxa PID Source
Andean Andean dialects (Aymara, Quechua) 619 76 883 20 55 SAL
Bai Bai dialects 889 90 1416 17 32 BDS, Wang 2006a
Bulgarian Bulgarian dialects 1515 152 32418 197 48 Prokić et al. 2009
Dutch Dutch dialects 500 50 3024 62 44 MAND
French French dialects 712 76 3810 62 41 TPPSR
Germanic Germanic languages and dialects 1110 111 4775 45 32 LOE
Japanese Japanese dialects 219 26 224 10 40 Shirō 1973
Norwegian Norwegian dialects 501 51 2183 51 46 NORDAVINDEN
Ob-Ugrian Uralic languages 444 48 689 21 45 GLD
Romance Romance languages 297 30 240 8 37 LOE
Sinitic Chinese dialects 200 20 20 40 35 YINKU
Slavic Slavic languages 120 20 81 5 38 DERKSEN

Table 4.8: Data sources of the gold standard for phonetic alignment

manually edited MSAs covering 197 taxa and more than 30 000 words taken
from Bulgarian dialect data (Buldialect). Prokić et al. (2009) also reported
the results of the ALPHAMALIG algorithm for multiple sequence alignment
(Alonso et al. 2004) on the BulDial Benchmark. These results were directly
compared with those obtained by an early version of SCA (List 2012b). In List
(2012c) a new manually edited benchmark dataset was presented. Including
the BulDial Benchmark, kindly provided by the authors of Prokić et al. (2009),
it consists of 600 MSAs covering six different language families, 435 differ-
ent taxa, and a total of 45 947 words. The extended benchmark database also
included a pairwise partition which was directly extracted from the MSAs by
taking the 5 506 most divergent, unique word pairs.
For this study, an extended version of the previously used benchmark da-

tabases was compiled. The new phonetic alignment benchmark consists of
manually edited pairwise and multiple alignment analyses.9 The MSA par-
tition of the phonetic alignment benchmark consists of 750 manually edited
MSAs, covering eight language families, 528 different taxa (language vari-
eties), and 50 089 words (14 217 of them unique). The database consists of
12 partitions which either correspond to a language family, or to the dialects
of a single language variety. The dataset is further divided into four subsets,
covering different regions of diversity, whereas diversity is measured as the
average percentage identity of an alignment (see Equation 3.2 on page 74).
9 The full data is available as part of the supporting online material accompanying this study
(see Supplementary Material I).
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The subsets and their range are listed in Table 4.9. The PSA benchmark,
consisting of 7 126 sequence pairs, was extracted automatically by selecting
the most divergent sequence pairs from each partition of the benchmark for
multiple phonetic alignments, using percentage identity as a measure of diver-
gence. The alignments were edited manually by different contributors. Table
4.8 gives an overview over the different partitions of the data, along with the
number of files, words and taxa, the average percentage identity (PID) of the
respective partition, and the data sources. In Figure 4.12 the similarity of
alignments in the pairwise and the multiple partition of the benchmark is plot-
ted in histograms.
Thompson (2009: 154f) lists four requirements for benchmark databases

for computational tasks in biology: (1) relevance, (2) solvability, (3) accessi-
bility, and (4) evolution. Relevance refers to the tests in the benchmark which
should be “representative of the problems that the system is reasonably ex-
pected to handle in a natural [...] setting” (ibid.: 154). Solvability refers to the
tasks presented by the benchmark. They should not be “too difficult for all or
most tools” (ibid.: 154f), in order to allow for comparisons between different
algorithms and methods. Accessibility refers to both the easiness to obtain and
to use the data. Evolution refers to the requirement that benchmarks change
constantly in order to avoid that programs are being optimized with respect
to the benchmark instead of the general task the benchmark was designed to
represent. The current version of the phonetic alignment benchmark was de-
signed to fulfil these requirements as good as possible: The number of datasets
from different languages was drastically increased, both in comparison to the
Covington Benchmark and the BulDial Benchmark. In order to guarantee
solvability, only cognate sets with little morphological variation are included.

Subset Range MSAs PID Ø
PID_100 100 – 70 15 76
PID_70 70 – 50 207 57
PID_50 50 – 30 438 38
PID_30 30 – 0 90 19

Table 4.9: Four subsets of the benchmark for multiple phonetic alignment
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Figure 4.12: Percentage Identity (PID) of the alignments in the gold standard for pair-
wise (a) and multiple alignments (b).

In order to guarantee consistency and applicability, all words are encoded in
IPA. Only the last of the four requirements cannot be addressed at the moment.
Since – in contrast to biology – phonetic alignment at the moment still plays
a minor role in historical linguistics, it is not clear whether it will be possible
to find the resources to change the current benchmark regularly.

Evaluation Measures

Given a reference set (a gold standard) and a test set (the output of an algo-
rithm), the simplest way to test howwell an alignment algorithm performs is to
calculate the perfect alignments score (PAS), i.e. the proportion of alignments
which are identical in test set and gold standard. Since this score only reveals
very strong tendencies, a couple of different methods have been proposed to
test how well alignment algorithms perform in comparison with benchmark
datasets (Prokić et al. 2009, Thompson et al. 1999). The comparison of align-
ments produced by automatic methods with alignment benchmarks, however,
is a complicated task, and all these methods bear certain shortcomings.
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When comparing two alignments, there are two basic perspectives that can
be taken, namely (1) the row perspective, and (2) the column perspective. The
former focuses on the rows in both the reference and the test alignment, and
the latter focuses on the columns. A simple way to compare a reference with a
test alignment is to base the comparison solely on one of the two perspectives.
For the row perspective, such a comparison is very straightforward, since both
the reference and the test alignment have always the same number of sequences
(rows). One may therefore simply calculate a row score (RS) by applying the
formula:

(4.4) RS = 100 · |Rt ∩Rr|
|Rt|

,

whereRt is the set of rows in the test alignment andRr is the set of rows in the
reference alignment. The RS is not used in biological applications. This may
be due to the fact that the score may yield some intuitively strange results,
especially when only two sequences are aligned. Thus, in case of pairwise
alignments, one may encounter the strange situation that one of the rows is
identical in test and reference set, while the other row is not. The resulting
score of 0.5 seems to be meaningless in such a case, since nothing is said
about the degree of difference between test and reference alignment.
For the column perspective, the comparison becomes a little bit more com-

plicated, since the number of columns in test and reference alignment may
differ. In applications of information retrieval it is common to evaluate algo-
rithms by calculating their precision and recall. Precision refers to the propor-
tion of items in the test set that also occur in the reference set. Recall refers
to the proportion of items in the reference set that also occur in the test set
(Witten and Frank 2005: 171). Transferring this to the column perspective,
one can define the column precision (CP) as:

(4.5) CP = 100 · |Ct ∩ Cr|
|Ct|

,

where Ct is the set of columns in the test alignment and Cr is the set of co-
lumns in the reference alignment. Accordingly, the column recall (CR) may
be defined by modifying Equation 4.5 into:

(4.6) CR = 100 · |Ct ∩ Cr|
|Cr|

.
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No. Reference Test (columns) Test (rows)

(a)
A B C D
A B - D
A - C -

A B C - D
A B - D -
A - C - -

A B C - D
A B - D -
A - C - -

(b)
A B C D
A B - D
A - C -

A B C D
A B - D
- A - C

A B C D
A B - D
- A - C

Table 4.10: Row and column score bias resulting from small errors in single sequences.
Shaded regions indicate rows and columns which differ from the reference alignment.

Since both CP and CR measure different aspects of alignment similarities
(Rosenberg and Ogden 2009: 198), it is useful to define a more general score
that combines both of them. Following the suggestion of Lassmann and Sonn-
hammer (2002) and Rosenberg and Ogden (2009: 186), a general column
score (CS) can be defined by taking the average of |Ct| and |Cr| (which is
equivalent with calculating the harmonic mean of both scores):

(4.7) CS = 100 · |Ct ∩ Cr|
1
2 · (|Cr|+ |Ct|)

= 100 · 2 · |Ct ∩ Cr|
|Cr|+ |Ct|

.

In contrast to the RS, the CS is often used in biology (Lassmann and Sonn-
hammer 2002, Thompson et al. 1999). The definition for the CS, however,
varies in the literature. In most approaches, it corresponds to the column pre-
cision as it was defined in Equation 4.5, but in practice it seldom differs from
the average of column precision and recall. For reasons of consistency and
simplicity, I will therefore only use the general CS as defined in Equation 4.7
in this study.
Both measures, the row score and the column score, have specific draw-

backs. Since neither of them distinguishes degrees of similarity between co-
lumns and rows, errors resulting from small differences in test and reference
alignment may yield large differences in the scores. Table 4.10 illustrates this
bias, by giving examples where (a) one misaligned sequence results in the dif-
ference of all rows, and (b) one misaligned sequence results in the difference
of all columns. As a result, the RS of (a) and the CS of (b) is 0, suggesting that
there is no similarity at all between reference and test alignment. Nevertheless,
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both scores are useful to give a rough estimation of alignment accuracy. Being
very conservative, they are especially capable to point to large differences and
strong tendencies when comparing the performance of several algorithms.
More fine-graded measures for the evaluation of alignment accuracy in biol-

ogy are based on the comparison of reference and test alignment on a pairwise
basis. This can easily be done by comparing the aligned residue pairs (segment
pairs) in reference and test alignment. Similar to the calculation of columns
scores, the pair precision (PP) can be defined as:

(4.8) PP = 100 · |Pt ∩ Pr|
|Pt|

,

where Pt is the set of all aligned residue pairs in the test alignment and Pr is
the set of all aligned residue pairs in the reference alignment. Accordingly, the
pair recall (PR) can be defined as:

(4.9) PR = 100 · |Pt ∩ Pr|
|Pr|

,

and a general pair score (PS) can be defined by taking the harmonic mean of
pair precision and pair recall:

(4.10) PS = 100 · 2 · |Pt ∩ Pr|
|Pr|+ |Pt|

.

PR is the most widely used pair score in biology, where it is usually termed
sum-of-pairs score (SPS, cf. Thompson et al. 1999). Using only the PR, and
not the more general PS, however, has certain drawbacks. Since gaps are
ignored, in all pair scores, a situation may arise where pair precision or pair
recall yield a score of 1, indicating full identity of reference and test alignment,
although they are in fact different. Thus, the PR (or SPS) for reference and
test alignment in Table 4.11a is 1 since all pairs which occur in the reference
alignment also occur in the test alignment. That the test alignment itself has
two more pairs which do not occur in the reference alignment, is ignored by
this measure. The same holds for the PP when comparing reference and test
alignment in Table 4.11b. Using the more general PS instead, these problems
can be easily avoided. Instead of 1, the PS for 4.11a is 100 · 2 · 7

16 = 87.5 and
for 4.11b it is 100 · 2 · 4

11 = 72.0.
Prokić et al. (2009) propose two additional scores as a measure of alignment

accuracy: the column dependent evaluation (CDE) and the modified rand in-
dex (MRI). The CDE is similar to the CS, but it takes the similarity instead of
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No. Reference Test Pairs (Reference) Pairs (Test)

(a)
A - C D
A B - D
A - C -

A C D
A B D
A C -

AA , -B , CC , DD ,
AA , -- , C- , DD ,
AA , -B , -C , DD

AA , CC , DD ,
AA , CB , DD ,
AA , BC , DD

(b)
A - C D
A B - D
A - C -

A - C D -
A B - - D
A - C - -

AA , B- , C- , DD ,
AA , -- , CC , DD ,
AA , -B , -C , DD

AA , B- , C- , D- , -D
AA , -- , CC , -- , --
AA , -B , -C , -D , D-

Table 4.11: Bias in pair precision (a) and pair recall (b). Pairs shaded in light gray
indicate gaps and are ignored when calculating the scores. Pairs shaded in dark gray
are ignored in the calculation.

the identity of the columns into account. TheMRI is similar to the pair scores,
since it ignores the placement of gaps, and compares reference and test align-
ment from a pairwise perspective. Both the CDE and the MRI generally yield
similar tendencies as either the column score or the pair score. For this reason
and because of the broad use of column and pair scores in biology, only RS,
CS, and PS will be taken as evaluation measures in the following.

Results

All results which are reported in the following were achieved by using the most
recent version the SCA method along with identical parameters for the differ-
ent parts of the analysis. All parameters correspond to the default settings of
the SCA method as they are implemented in LingPy. In all alignment analy-
ses, the GOP was set to –2. The relative weights for the modification of gap
penalties follow the default parameters of LingPy (see Table 4.4). Instead of a
fixed gap extension penalty, SCA employs a gap extension scale, by which an
extended gap is modified. This value was set to 0.5. Thus, in extended gaps
the gap scores were halved by the algorithm. These settings were used in both
PPA and MPA analyses. In all MPA analyses, the guide tree was calculated
using the Neighbor-Joining algorithm (Saitou and Nei 1987). In consistency-
based MPA analyses, the GOP for global alignments was set to –2, and for
local alignments it was set to –1. All results of the analyses which are dis-
cussed in the following are available as part of the supporting online material
accompanying this study (see Supplementary Material II).
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Subset PSA
Score

Covington Somers Oakes Kondrak
SCA

DOLGO SCA ASJP
Spanish-French 20 19.0 17.0 15.0 20.0 18.0 20.0 20.0
English-German 20 18.0 18.0 16.0 18.5 20.0 20.0 19.0
English-Latin 25 18.1 19.5 9.0 24.0 24.0 24.0 24.0
Fox-Menomini 10 9.0 9.0 9.0 9.5 9.0 9.0 10.0
Other 7 4.7 3.0 4.0 6.0 5.0 7.0 7.0
Total 82 68.8 66.5 53.0 78.0 76.0 80.0 80.0

Table 4.12: Performance of different alignment algorithms on the Covington bench-
mark.

Pairwise Phonetic Alignment Kondrak (2002) uses the Covington Bench-
mark in order to compare the performance of the algorithms of Covington
(1996) and Somers (1999), and Oakes (2000) with his ALINE algorithm
(Kondrak 2000). The evaluation measure is roughly identical with the above-
mentioned PAS score, i.e. the number of identically aligned sequence pairs in
reference and test set is counted. If an algorithm yields more than one output
for a given pair, the results are averaged. In order to get a first impression
regarding the general quality of SCA alignments in comparison with other
methods for pairwise sequence comparison, the Covington Benchmark was
analyzed using the three standard models of LingPy (DOLGO, SCA, ASJP)
with their respective default parameters and the semi-global extension to the
Needleman-Wunsch algorithm. The results for the three models along with
the scores achieved by the other algorithms (taken from Kondrak 2002: 64)
are listed in Table 4.12. As can be seen from the table, both the SCA and
the ASJP model perform slightly better than Kondrak’s ALINE, whereas the
DOLGO model performs slightly worse, although it still outperforms all the
other algorithms.10
Although often used for the assessment of alignment quality, the Covington

Benchmark is clearly no good benchmark for pairwise sequence alignments.
Apart from being too small, both regarding the number of sequence pairs and
the number of languages being covered, many of the alignments simply fail
to be a real challenge for an alignment algorithm (ibid.: 61). This is also

10 The items where the three models differ from the gold standard are given in Appendix C.1.
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reflected in the average PID of 37, which is rather high for a pairwise alignment
benchmark. The pairwise gold standard of the phonetic alignment benchmark
consists of 7 126 aligned word pairs with an average PID of 20. It should
therefore be much more challenging than the Covington Benchmark.
The PSA gold standard was analyzed using the three different sound-class

models provided by LingPy and the traditional Needleman-Wunsch algorithm
for global pairwise alignment. In order to test to what degree the new ap-
proaches to sequence modelling discussed in Section 4.1 would influence the
results of pairwise alignment analyses, four different analyses for each of the
three different modes were carried out: (1) a simple global alignment analy-
sis (Basic), (2) a global alignment analysis in which gap costs and substitution
scores were scaled in dependence of prosodic environments (Scale), (3) a sim-
ple global alignment analysis which was sensitive to secondary sequence struc-
tures as extracted from tone markers in South-East Asian languages and word
boundaries in the Dutch partition of the pairwise phonetic alignment bench-
mark (Secondary), and (4) a global alignment analysis which was sensitive to
both prosodic environments and secondary sequence structures (Sec-Scale).

Model Measure
Mode

Basic Scale Secondary Sec-Scale

DOLGO

PAS 80.52 83.23 81.74 84.87
RS 84.47 85.86 85.39 87.01
CS 88.31 90.55 89.26 91.31
PS 92.70 94.21 93.33 94.70

ASJP

PAS 83.64 84.62 85.00 86.09
RS 86.48 86.82 87.49 87.89
CS 91.00 91.63 91.88 92.47
PS 94.53 94.97 95.09 95.50

SCA

PAS 84.98 86.57 86.29 88.18
RS 87.59 88.33 88.61 89.54
CS 91.69 92.83 92.68 93.74
PS 94.90 95.67 95.54 96.24

Table 4.13: Results of the PSA Analysis
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Figure 4.13: Results of the PSA analysis

As can be seen from the results shown in Table 4.13 and Figure 4.13, all
three complex modes (Scale, Secondary and Sec-Scale) improve the accuracy
of the pairwise alignment analyses compared to the Basic mode independent
of the evaluation measure. The improvement is significant in all cases with
p < 0.01, using the Wilcoxon signed rank test as suggested by Notredame et
al. (2000). The combination of both the Scale and the Secondary mode shows
the greatest improvement, yielding the highest scores regardless of measure or
model. In all analyses, the SCA model performs best, followed by the ASJP
model and the DOLGO model, the differences being significant between all
models (p < 0.01, using the Wilcoxon test). Apparently, both prosodic con-
text and secondary alignment are very useful extensions for automatic align-
ment analyses.
Secondary alignment is, of course, only useful, if secondary sequence struc-

tures are relevant for an alignment analysis, as it is the case for tone languages.
However, of the 7 126 alignments in the pairwise benchmark, only 1 089, i.e.
15%, come from South-East-Asian languages like Chinese or Bai. Given the
fact that only 15% of the data apparently account for a significant improve-
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Model Measure
Mode

Basic Scale Secondary Sec-Scale

DOLGO

PAS 75.30 75.76 83.65 84.94
RS 81.31 82.05 87.60 88.80
CS 81.43 84.58 87.51 88.85
PS 87.80 89.85 91.90 92.62

ASJP

PAS 79.06 79.89 87.60 88.98
RS 83.79 84.62 90.08 91.14
CS 87.11 88.60 92.32 93.36
PS 91.83 92.73 95.27 95.85

SCA

PAS 79.43 79.71 87.88 89.44
RS 83.43 83.98 89.94 91.23
CS 85.19 87.76 91.33 92.81
PS 90.52 92.22 94.64 95.50

Table 4.14: Results of the PSA analysis (tone language partition)

ment in alignment accuracy, a further analysis was carried out. This time, only
the 1 089 alignments belonging to tone languages were analyzed. As can be
seen from the results given in Table 4.14 and Figure 4.14, the improvement
resulting from the new sequence models becomes even more apparent. Com-
paring only the PAS, reflecting the number of perfectly aligned word pairs, the
Sec-Scale analyses are all between 9 and 10% better than the Basic analyses
in all models. The improvement of the complex modes compared to the Basic
mode is again significant in all cases (p < 0.01) As in the previous analyses,
the DOLGOmodel performs worse than ASJP and SCA. This time, however,
the ASJP model performs better than SCA in all modes.
So far, all tests were based on global alignment analyses only. Hence, as a

final part of the evaluation of pairwise sound-class-based phonetic alignments,
the performance of the four different alignment modes (global, semi-global,
local, and diagonal, see Section 3.3.2) on pairwise benchmark was tested.
Since the output of pairwise local alignment analyses differs from the output
of the other modes, the evaluation of the local alignments was only based on
the core part of the alignments, i.e. the part which remains when all con-
secutive gaps in the beginning and the end of an alignment are stripped of.
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Figure 4.14: Results of the PSA analysis (tone language partition)

For this analysis, only the Sec-Scale mode was used, since it showed the best
performance in the previous analyses.

Model Measure
Mode

Global Semi-Global Local Diagonal

DOLGO

PAS 84.87 85.22 85.56 84.23
RS 87.01 87.17 85.76 86.32
CS 91.31 91.35 92.72 91.30
PS 94.70 94.68 95.03 94.84

ASJP

PAS 86.09 85.87 85.52 83.53
RS 87.89 87.83 86.05 84.75
CS 92.47 92.23 92.89 91.93
PS 95.50 95.35 95.15 95.17

SCA

PAS 88.18 88.25 84.51 76.76
RS 89.54 89.42 84.87 76.70
CS 93.74 93.61 93.78 90.18
PS 96.24 96.12 95.79 94.39

Table 4.15: Results of the PSA analysis for different alignment modes
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Figure 4.15: Results of the PSA analysis for different alignment modes

The results given in Table 4.15 and Figure 4.15 might come as a surprise,
since – in contrast to the previous analyses, which all showed a more or less
general tendency throughout all sound-class models – the different alignment
modes seem to perform quite differently in dependence of the respective sound-
class model being used. Thus, for the SCA model, a more or less clear hier-
archy ranging from global via semi-global and local to diagonal mode can be
determined.11 The ASJP model seems to have a similar tendency, yet the dif-
ferences between the diagonal mode and the other modes are much smaller.
For the DOLGO model, the column and pair scores of the Diagonal mode are
equal or even better than for the Global and Semi-Global mode, and the best
results in terms of pair and column scores are achieved with the Local mode.
Hence, while it seems to be the best choice to align in global mode when using
the SCA model, it is much more difficult to find the right mode for the ASJP

11 The high column scores in the local modes for all sound-class models are probably due to the
fact that only the core blocks of the gold standard alignments were used for the evaluation
of alignments produced by the local mode. The general tendency is therefore much more
reliably reflected in the row and pair scores.
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Model Measure
Mode

Basic Library Iteration Lib-Iter

DOLGO

PAS 70.13 73.07 74.13 75.60
RS 81.35 81.46 83.69 83.77
CS 85.80 87.36 87.75 88.49
PS 97.19 97.82 97.85 98.12

ASJP

PAS 74.00 76.53 78.93 79.33
RS 82.98 84.46 86.04 87.05
CS 88.05 89.52 90.53 90.87
PS 97.69 98.58 98.46 98.87

SCA

PAS 76.40 77.87 79.60 81.33
RS 85.27 85.59 88.58 89.02
CS 89.02 90.26 91.18 91.96
PS 97.98 98.64 98.63 98.96

Table 4.16: Results of the MSA analysis

and the DOLGO model. Therefore, no final conclusion regarding the relia-
bility of the four alignment modes can be made. When carrying out phonetic
alignment analyses, it is important to find the right balance between models
and modes.

Multiple Sequence Alignment As for the analysis of the pairwise bench-
mark, the multiple benchmark was analyzed using the three different sound-
class models provided by LingPy. Again, analyses in four different modes
were carried out for each model: (1) a progressive alignment analysis (Basic),
(2) a progressive alignment analysis with iterative refinement (Iterate), (3) a
consistency-based alignment analysis (Library), and (4) a consistency-based
alignment analysis in combination with iterative refinement (Lib-Iterate). The
iterative refinement analysis was based on the three heuristics described in
Section 4.2.3. The library was created from pairwise global, local, and di-
agonal alignment analyses of all sequence pairs, and the scoring matrix was
created from the library as described in Section 4.2.3. Having confirmed that
both prosodic context and secondary alignment may significantly improve
alignment analyses, the leading question of this analysis was now to clarify
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Figure 4.16: Results of the MSA analysis

to which degree the modifications to traditional progressive alignment influ-
ence the results of multiple alignment analyses.
Looking at the results given in Table 4.16 and Figure 4.16, it becomes ob-

vious that pre- and postprocessing using consistency-based scoring functions
and iterative refinement significantly improves the results of multiple align-
ment analyses (p < 0.01 for CS and PS using the Wilcoxon test). The best re-
sults are achieved when combining both modes. Similar to the pairwise align-
ment analyses, the SCAmodel performs best, followed by ASJP and DOLGO,
the difference between all models being significant (p < 0.01 for CS and PS).
In order to get some clearer insights into the strengths and weaknesses of

the different sound-class models, the performance of the Lib-Iterate analyses
on the four subsets of the multiple alignment benchmark was calculated. As
can be seen from the results given in Table 4.17 and Figure 4.17, the SCA
model again achieves the highest scores in all analyses, followed by ASJP and
DOLGO. As onemay expect, all models loose accuracy themore divergent the
sequences become. The differences between ASJP and SCA, on the one hand,
and DOLGO on the other hand, however, are not very great in the PID_70 and
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Model Measure
Mode

PID_100 PID_70 PID_50 PID_30

DOLGO

PAS 93.33 85.99 71.47 69.93
RS 93.33 90.35 82.43 77.23
CS 98.25 95.00 87.03 82.30
PS 99.92 99.44 98.30 95.71

ASJP

PAS 93.33 88.89 76.27 72.55
RS 93.33 92.71 85.48 82.63
CS 98.25 96.16 89.53 86.29
PS 99.92 99.63 98.81 97.87

SCA

PAS 93.33 90.34 78.40 75.16
RS 93.33 94.56 87.72 84.26
CS 98.25 96.78 90.66 88.03
PS 99.92 99.74 98.88 98.01

Table 4.17: Results on different gold standard partitions
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Figure 4.17: Results on different gold standard partitions
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the PID_50 subset, while they increase drastically in the PID_30 partition. In
List (2012c), a similar increase in the differences could be found betweenASJP
and SCA. For the most recent version of the SCA approach, this difference
can no longer be confirmed. Both model show a comparable accuracy in very
divergent sequences.12

Swap Detection Of the 750 MSAs in the benchmark, 69 are marked as con-
taining swapped sites. In order to test, how well the method for swap detec-
tion described in Section 4.2.3 works, all files were analyzed using the three
standard sound-class models of LingPy along with consistency-based scoring
functions and iterative refinement (the Lib-Iterate mode). In order to evaluate
the accuracy of swap detection, the common distinction between true posi-
tives, false positives, and false negatives can be used. True positives, however,
can be further divided into those which match the respective columns correctly
(true site) and those which do not (wrong site). The results for the analysis are
given in Table 4.18. Judging from these results, it is difficult to decide which
model really performs best: the DOLGO model with its high recall, or the
ASJP model with its high precision. The detection of swapped sites crucially
depends on the swap penalty, which was set to –2 for all models. Lowering
this penalty will increase the recall, yet it will also decrease the precision, and
more testing is needed to find the right balance between false positives and
false negatives.

Category DOLGO ASJP SCA

True Positive True Site 58 51 51
Wrong Site 2 2 1

False Positive 7 2 2
False Negative 9 16 17

Table 4.18: Results of the swap-identification task

12 This may be due to the fact that in the new analyses the weights for prosodic context were
further refined, resulting in a generally enhanced performance of phonetic alignment analyses
using the ASJP model.
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4.2.5 Examples

Pairwise Phonetic Alignment In Figure 4.18 two different alignment ana-
lyses of dialect variants of Dutch berg [bɛrx] ‘mountain’ are given. The first
one is the typical output of a traditional alignment analysis with an extended
scoring scheme (SCA-Basic). The second one is based on the same scoring
scheme extended by prosodic weights (SCA-Scale). While the Basic analysis
wrongly matches the phonetically similar sounds [ɣ] and [x], the Scale analy-
sis correctly matches [ɣ] with the less similar [ʀ]. The reason can be found in
the modified gap penalties and substitution scores of the Scale analysis. While
the Basic analysis treats all positions identically, the Scale analysis assigns a
lower gap penalty to the insertion of gaps in the end of a word, i.e. [x] in
[bɛːʀex] can be more easily gapped than [ʀ]. Furthermore, the Scale analysis
gives increased substitution scores for segments appearing in the same sonor-
ity context, such as [ɣ] and [ʀ] which both appear in a position of ascending
sonority. This also forces the algorithm to prefer the matching of [ɣ] with
[ʀ] over the matching of [ɣ] with [x]. This is but one example, how position-
specific weights can enhance traditional pairwise alignment analyses.
In the tests on the tone language partition of the benchmark for pairwise

alignment analyses, it became especially evident how drastically secondary
alignment analyses may increase the accuracy of global alignment analyses.
A prototypical example for the difference between primary and secondary
alignment analyses is given in Figure 4.19 where two cognates of Chinese

Taxon Alignment
Ter Apel (Gn) b - - aː ɣ ə
Zutendaal (BeLb) b ɛː ʀ e x -

XXX XXX XXX XXX XXX XXX
(a) Basic analysis

.
Taxon Alignment
Ter Apel (Gn) b aː ɣ ə -
Zutendaal (BeLb) b ɛː ʀ e x

XXX XXX XXX XXX XXX
(b) Scale analysis

Figure 4.18: The alignment of dialect variants of Dutch berg ‘mountain’ in the Basic
(a) and the Scale analysis (b). The data is taken from MAND.
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rìtóu 日頭 [ʐʅ⁵¹tʰou³⁵] ‘sun’ are aligned. The primary analysis wrongly mat-
ches the final [t] of Hǎikǒu rì日 [zit³] ‘sun’, a reflex of Middle Chinese *ȵit⁴
日 ‘sun’, with the initial of Yínchuān tóu 頭 [tʰəu] ‘head’, a reflex of Middle
Chinese *duw¹ 頭 ‘head’, thereby aligning elements from one syllable in one
word with elements from two syllables in the other. Since such a behaviour is
prohibited in secondary alignment, the secondary mode correctly matches the
corresponding elements of both words with each other.
Analyses using the diagonal alignment mode improved when the DOLGO

sound-class model was used, but became worse when using the other models.
One reason for this behaviour can be found in the very nature of diagonal align-
ment. In contrast to global and local alignment, diagonal alignment is based
on a very specific scoring function which seeks to maximize the overall align-
ment score by finding the longest and highest-scoring diagonals (ungapped
subalignments). As a result, the method is very conservative regarding diverse
sequences and matches only those sounds whose similarity (as assigned by
the scoring matrix) is greater than 0. As a result, many divergent matches that
global or local algorithms tolerate for the sake of a maximized global score are
not accepted in diagonal alignments. In the SCA model and the ASJP model,
this leads to a decrease in alignment accuracy, since the models are consid-
erably fine-graded. The DOLGO model, on the other hand, is very broad, in
so far as many phonetically quite different sounds are lumped together. As a
result, the conservative behaviour of diagonal alignment is weakened by the
sound-class model. Although the conservatism seems to be a disadvantage

Taxon Alignment
Hǎikǒu z i - t ³ h au ³¹
Yínchuān ʐ ʅ ¹³ tʰ - - əu -

XXX XXX XXX XXX XXX XXX XXX XXX
(a) Primary analysis

.
Taxon Alignment
Hǎikǒu z i t ³ h au ³¹
Yínchuān ʐ ʅ - ¹³ tʰ əu -

XXX XXX XXX XXX XXX XXX XXX
(b) Secondary analysis

Figure 4.19: The alignment of dialect variants of Chinese rìtóu ‘sun’ in the Primary
(a) and the Secondary analysis (b). The data is taken from YINKU.
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Taxon Alignment
Dutch (Antwerp) oː ɾ ə n
West Frisian (Grou) - h õə̃ n

XXX XXX XXX XXX
(a) Global mode

.
Taxon Alignment
Dutch (Antwerp) - oː ɾ ə n
West Frisian (Grou) h õə̃ - - n

XXX XXX XXX XXX XXX
(b) Diagonal mode

Figure 4.20: The alignment of reflexes of Proto-Germanic *xurnan ‘horn’ in Dutch
and West Frisian dialects in the Global (a) and the Diagonal mode (b). The data is
taken from LOE.

in general, it may turn out to be an advantage in very specific cases. As an
example, consider the alignment of Dutch and West Frisian reflexes of Proto-
Germanic *hurna- ‘horn’ (KROONEN: 259, based on the SCAmodel. While
the global analysis “accepts” the incorrect matching of [ɾ] and [h], even despite
the fact that both occur in different prosodic environments, the diagonal ana-
lysis rejects it, correctly aligning only the phonetically most similar segments.
The conservative character of diagonal alignments is especially helpful in mul-
tiple consistency-based alignments, where diagonal alignments can be used to
fill the primary library as a corrective for the less conservative global and local
alignment analyses.

Multiple Sequence Alignment The first alignment in Figure 4.21 (MSA
125 in the multiple alignment benchmark) is the typical output of a traditional
matrix-based progressive alignment algorithm on a rather tough test alignment,
taken from the Bai partition of the phonetic alignment benchmark. Appar-
ently, the phonetic sequences are very diverse, and it is difficult to detect strong
similarities when dealing with such an alignment. This is a typical output of
traditional matrix-based progressive alignment algorithms. If global similari-
ties cannot be detected, the resulting alignments are mere collections of sound
segments in a matrix that are seemingly unreasonably lumped together.
The second alignment in Figure 4.21, on the other hand, is the output of

the new consistency-based algorithm that was further improved by iterative

https://sequencecomparison.github.io?msa=evobench_125.msa
https://sequencecomparison.github.io?msa=evobench_125.msa
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Taxon Alignment
Dàshí tʂ͡ - ɯ - ²¹ p e ²¹
Ěryuán p - i - ³¹ ʂ e ⁴²
Gòngxīng dʐ͡ - i - ¹² b i ²¹
Hèqìng p - i - ³¹ sʰ e ⁴⁴
Jiànchuàn p - i - ³¹ - - -
Jīnxīng ʦ - ɯ - ³¹ p e ²¹
Luòběnzhuō ʥ - ỹ - ⁴² - - -
Lánpíng p - i ̃ - ⁴² s e ⁴⁴
Mǎzhělóng ɕ - e n ⁵⁵ p e ²¹
Qīlǐqiáo p - i - ³¹ s e ⁴⁴
Tuōluō d j ɯ - ²¹ b i ³⁵
Yúnlóng b j ɯ - ²¹ s ɛ ⁵⁵
Zhōuchéng ʦ - ɯ - ⁰ p e ²¹

XXX XXX XXX XXX XXX XXX XXX XXX
(a) Matrix-based analysis

.
Taxon Alignment
Dàshí tʂ͡ - ɯ - ²¹ p - e ²¹ - - -
Ěryuán - - - - - p - i ³¹ ʂ e ⁴²
Gòngxīng dʐ͡ - i - ¹² b - i ²¹ - - -
Hèqìng - - - - - p - i ³¹ sʰ e ⁴⁴
Jiànchuàn - - - - - p - i ³¹ - - -
Jīnxīng ʦ - ɯ - ³¹ p - e ²¹ - - -
Lánpíng - - - - - p - i ̃ ⁴² s e ⁴⁴
Luòběnzhuō ʥ - ỹ - ⁴² - - - - - - -
Mǎzhělóng ɕ - e n ⁵⁵ p - e ²¹ - - -
Qīlǐqiáo - - - - - p - i ³¹ s e ⁴⁴
Tuōluō d j ɯ - ²¹ b - i ³⁵ - - -
Yúnlóng - - - - - b j ɯ ²¹ s ɛ ⁵⁵
Zhōuchéng ʦ - ɯ - ⁰ p - e ²¹ - - -

XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
(b) Consistency-based analysis

Figure 4.21: Alignment of Bai dialect words for ‘bark’ and ‘rain cape’ in matrix- (a)
and consistency-based alignment analyses (b).

refinement. The method correctly detects the specific local similarities be-
tween the words: All words (with the exception of Luòběnzhuō [ʥy⁴̃²] ‘rain
cape’, which might not even be cognate with the other words) have a reflex
of Proto-Bai *be¹ ‘skin’ (Wang 2006a), probably cognate with Chinese pǐ
皮 [pʰi²¹⁴] ‘skin’ (< Middle Chinese *bje¹ 皮 < Old Chinese *m-paj 皮,
OCBS). Apart from this common morpheme, the dialects can be divided into
two classes which actually correspond to two different compounds which are
only partially cognate. The first class shows a compound of reflexes of Proto-
Bai *drɯ³ ‘tree’ with reflexes of the aforementioned Proto-Bai *be¹ ‘skin’,
as in Jīnxīng [ʦɯ³¹pe²¹], with the meaning ‘bark’ < ‘tree’ + ‘skin’ (Wang
2006a). The second class shows a compound of reflexes of Proto-Bai *be¹
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‘skin’ with reflexes of Proto-Bai *sʰɛ⁴ ‘cloth’ (ibid.), as in Ěryuán [pi³¹ʂe⁴²],
with the meaning ‘rain cape’< ‘cape made from (palm) bark (< skin)’, (BDS).
Both classes are correctly detected by the algorithm, and the different re-

flexes are separately aligned. As can be seen from the example, consistency-
based methods do not only enhance multiple sequence alignment in biology,
but also in linguistics. The specific strength of consistency-based algorithms to
be sensitive to both global and local similarities between sequences becomes
very apparent in the alignments yielded by the new enhancements of the SCA
method.

Swap Detection In order to correctly detect swapped sites in an alignment,
it is of great importance that the previous alignment analysis allows the swap
to be detected. In Figure 4.22 this is illustrated by contrasting two different
alignments (MSA 673 in the multiple alignment benchmark) for reflexes of
Proto-Slavic *žьltъ ‘yellow’ in Bulgarian, Czech, Polish, and Russian (DERK-
SEN: 565f). The first alignment is based on the ASJP model, using the tra-
ditional progressive alignment (Basic mode), the second one is based on the
same model but it uses consistency-based progressive alignment with itera-
tive refinement (Lib-Iter). In the output of the Basic mode, the [w] in Polish
is misaligned. As a result, no complementary structures can be detected in
the alignment, and the method for swap detection fails. In the Lib-Iter mode,
the [w] in Polish is correctly aligned with the laterals in the other languages,
and the method for swap detection easily identifies the columns 2, 3, and 4
as a swapped site. In the output, this is marked by the white font color of the
sounds which appear in swapped columns.

4.3 Automatic Cognate Detection

So far this study focused on alignment analyses as a specific way to compare
sequences. In Section 4.1, new approaches to sequence modelling were in-
troduced, and these new sequence models were then used to derive the new
method for phonetic alignment presented in Section 4.2. While automatic
alignment analyses may surely be useful as a stand-alone tool in historical lin-
guistic and dialectological endeavors, they do not constitute an end in itself.
Instead, they are one of the basic tools that can help us approaching one of the
“holy grails” of quantitative historical linguistic: the task of automatic cognate
detection (ACD). Given the basic practice of historical linguistics to base lan-

https://sequencecomparison.github.io?msa=evobench_673.msa
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Taxon Alignment
Bulgarian ʒ ɤ l - t - -
Czech ʒ - l ʊ t iː -
Polish ʒ u - w t ɨ -
Russian ʒ o l - t ɨ j

XXX XXX XXX XXX XXX XXX XXX

1
(a) Missed swap (ASJP-Basic)

.
Taxon Alignment
Bulgarian ʒ ɤ l - t - -
Czech ʒ - l ʊ t iː -
Polish ʒ u w - t ɨ -
Russian ʒ o l - t ɨ j

XXX XXX XXX XXX XXX XXX XXX
(b) Detected swap (ASJP-Lib-Iter)

Figure 4.22: Missed (a) and detected swaps (b) in the alignment of descendant words
of Proto-Slavic *žьltъ ‘yellow’.

guage comparison on lexical comparison we can state the cognate detection
problem as follows:

Cognate Detection Problem: Given a multilingual word list covering a set
of arbitrarily selected languages, find all words that are cognate.

In historical linguistics, this problem is usually approached within the frame-
work of the comparative method, as it was outlined in Section 2.6. The
most important aspects of the traditional method for cognate detection are the
language-specific notion of word similarity, derived from previously identi-
fied regular sound correspondences, and the iterative character of the method,
by which proposed list of cognates and sound correspondences are constantly
refined and updated. Note that the general cognate detection problem was
stated as being indifferent regarding a couple of parameters. It is not speci-
fied, how many languages are being compared, or whether the genetical relat-
edness between these languages should be already proven. It is also left open
whether the cognate sets to be identified should be restricted to semantically
similar words or whether words that greatly diverged semantically should also
be included. Furthermore, the size of the word lists is not specified. For the
comparative method, only the last point matters. The method is indifferent
regarding the number of languages being compared, it has its own procedure
to determine genetical relatedness between languages, and semantically dif-
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ferent but formally similar words have seldom posed a problem for historical
linguists. The size of the word lists, however, is of crucial importance for the
method, although nobody has so far been able to determine how many items
a word lists should at least contain in order to be applicable. That the pop-
ular Swadesh-200 word lists (see Section 2.1.5) are surely not enough when
questions of remote relationship have to be solved can be easily demonstrated
when considering the amount of cognate words in these word lists for some
genetically related languages such as as Armenian, English, French, and Ger-
man: Given that there are maximally 20 cognates between Armenian and the
other three languages, it is hardly possible that these cognates are enough to
set up a satisfying set of sound correspondences between these languages.
There is a further aspect of the general cognate detection problem that can-

not be solved by the comparative method in its strict form: the distinction
between common descent due to borrowing and common descent due to in-
heritance. As it has been discussed earlier in Sections 2.4.1 and 2.5.2, reg-
ular sound correspondences do not necessarily point to common descent but
may also result from lexical borrowing. The comparative method thus actu-
ally doesn’t solve the general cognate detection problem, but rather (merely)
solves the homologue detection problem:

Homologue Detection Problem: Given a multilingual word list covering a
set of arbitrarily selected languages, find all words that are etymologically related.

So far, both the problem of cognate detection and the problem of homologue
detection have been stated in general terms. No further preprocessing of the

Albanian English French German
Albanian 0.07 0.10 0.10
English 14 0.23 0.56
French 20 46 0.23
German 20 111 46

Table 4.19: Number and proportion of cognates within Swadesh-200 word lists of four
Indo-European languages. The lower triangle of the table indicates the concrete number
of shared cognates. The upper triangle gives the percentage of shared cognates. The
cognate counts are based on the data given in Kessler (2001).
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data is required by algorithms or methods that solve such a problem, and no re-
strictions regarding the character of cognates or etymologically related words
are being made. Most algorithms for automatic cognate detection which have
been proposed so far do not directly deal with this general homologue detec-
tion problem, but rather state the problem more specifically. Among the most
common specifications of the problem, is to require that etymologically re-
lated words should have the same meaning. This problem can be called the
specific cognate detection problem:

Specific Homologue Detection Problem: Given amultilingual word list,
covering a set of arbitrarily selected languages, find all words that are etymolog-
ically related (homologous) and have the same meaning.

While semantic identity has never been a requirement for the determination of
cognacy in historical linguistics, and it is often explicitly stated, that cognacy
can often be determined for semantically quite different words (Szemerényi
1970: 15f), it reflects the heuristic practice of many historical linguists to start
the search for cognates by comparing semantically similar words, and to pro-
ceed to the comparison of semantically more distant words in later stages.13 It
therefore seems useful to start with the specific homologue detection problem
when developing automatic approaches.

4.3.1 Previous Work

Although up to today quite a fewmethods for automatic cognate detection have
been proposed, there are only four recent approaches known to me which ex-
plicitly deal with the specific homologue detection problem, as it was defined
above. The other methods either restrict cognate detection to pairwise word
lists (Mackay and Kondrak 2005), or they require specific parameters, such as
a guide tree of the languages, to be known in advance (Hall and Klein 2010).
Bergsma and Kondrak (2007) first calculate the longest common subsequence
ratio between all word pairs in the input data and then use an integer linear pro-
gramming approach to cluster the words into cognate sets. Unfortunately, their
method is only tested on a dataset containing alphabetic transcriptions; hence,
no direct comparison with methods that require phonetic transcriptions as in-
put data is possible. Turchin et al. (2010) determine cognacy in multilingual
13 This practice is already reported in Gabelentz (1891: 177-179), who presents his own “basic
vocabulary lists”, which he calls “Collectaneen zum Sprachvergleiche”, as a heuristic tool for
the initial stages of language comparison.
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word lists with help of a simple matching criterion: whenever the first two con-
sonants of two words are identical regarding their Dolgopolsky sound-class,
the words are judged to be cognate. Hauer and Kondrak (2011) combine spe-
cific language-pair features with common metrics for word similarity (longest
common subsequence, etc.) to cluster semantically aligned words into cognate
sets. Their method doesn”t employ phonetic similarities, since the authors
want to keep it applicable to word lists in orthographical encoding. Steiner
et al. (2011) propose an iterative approach which starts by clustering words
into tentative cognate sets based on their alignment scores. These prelimi-
nary results are then refined by filtering words according to similar meanings,
computing multiple alignments, and determining recurrent sound correspon-
dences. The authors test their method on two large datasets. Since no gold
standard for their test set is available, they only report intermediate results,
and their method cannot be directly compared with other methods.

4.3.2 LexStat —Multilingual Cognate Detection

The LexStat method for automatic cognate detection in multilingual word lists
was first proposed in List (2012a). In the following, the most recent version of
the method will be introduced in detail. LexStat combines the most important
aspects of the comparative method with recent approaches to sequence com-
parison in historical linguistics and evolutionary biology. The method em-
ploys automatically extracted language-specific scoring schemes and computes
distance scores from pairwise alignments of the input data. These language-
specific scoring schemes come close to the notion of regular sound correspon-
dences in traditional historical linguistics. Similar to the SCA method for
phonetic alignment presented in Section 4.2, LexStat is also implemented as
a part of the LingPy library. It can either be used in Python scripts or directly
be called from the Python prompt.
The basic working procedure of LexStat consists of five stages: (1) sequence

conversion, (2) preprocessing, (3) scoring-scheme creation, (4) distance cal-
culation, and (5) sequence clustering. In stage (1), the input sequences are
converted into tuples consisting of sound classes and prosodic strings. In stage
(2), a simple language-independent ACDmethod is used to derive preliminary
cognate sets. In stage (3), a Monte-Carlo permutation test is used to create
language-specific log-odds scoring schemes for all language pairs. In stage (4)
the pairwise distances between all word pairs, based on the language-specific
scoring schemes, are computed. In stage (5), the sequences are clustered into
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INPUT
word lists (semantically ali-
gned)

CONVERSION
convert words into sound clas-
ses and prosodic strings

PREPROCESSING
calculate preliminary cognates
using a simple distancemethod

ATTESTED
align all preliminary co-
gnates using global and
local alignment analyses

EXPECTED
shuffle word lists, align
word pairs, and count
correspondences

LOG-ODDS
merge the distributions
by calculating the log-
odds scores

DISTANCE
calculate pairwise distances
between all language pairs

CLUSTERING
cluster all words into cognate
sets whose distance is beyond
the threshold

OUTPUT
write the cluster decisions and
the alignments to text file

repeat
1000
times
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Figure 4.23:Working procedure of the LexStat method for automatic cognate detection.
See the text for a detailed description.
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cognate sets whose average distance is beyond a certain threshold. Addition-
ally to these five stages, all cognate sets detected by the method are aligned,
using the SCA method for multiple phonetic alignment described in Section
4.2. The aligned output is not directly related to the ACD problem, but merely
serves as a tool to display the decisions made by the algorithm in a visually
appealing way. The different stages of the working procedure of LexStat are
illustrated in Figure 4.23.

4.3.3 Specific Features

Input and Output

The basic input format of LexStat is a tab-delimited text file in which the first
line indicates the values of the columns and all words are listed in a separate
line. The format is pretty flexible. No specific order of columns or rows is
required. Whatever additional data the user wants to include can be included,
as long as it is in a separate column. Each word has to be characterized by at
least four values given in separate columns: (1) ID, an integer that is used to
uniquely identify the word during the calculation, (2) Taxa, the name of the
language in which the word occurs, (3) GlossID, an identifier which indicates
the meaning of the word and which is used to align the words semantically,
and (4) IPA, the phonetic transcription of the word given in IPA. The output
format is essentially the same as the input format with one additional cognate
ID column (CogID) that indicates the clustering decision of the method: All
words that are given the same CogID in the output have been identified as
cognates by the method (see Table 4.20).14
In addition to the simple output, LexStat offers also the possibility to output

the data in aligned form. These multiple alignment analyses that are carried
out in the last stage of the LexStat method are no direct requirement for an
ACD algorithm, since the main task, the identification of cognate sets, is al-
ready accomplished after the clustering stage. However, the specific MSA
output format provided by LexStat is very convenient for manual checking
and editing of automatically detected cognate sets. If the method is used to
aid comparative linguists working on less well-studied language families, it
may come in handy to have an aligned representation of all cognate sets pro-
posed by the algorithm. Furthermore, since the language-dependent log-odds
14 I am very thankful to StevenMoran for pointing me to the advantages of such a flexible input
structure.
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scores are also used for the calculation of the alignments, weak positions in
the cognate sets will be left unaligned by the algorithm, which may turn out to
be a big help when refining ACD analyses manually. Table 4.21 illustrates the
basic idea of the aligned output, taking the translations of the basic concept
‘woman’ in six Germanic languages as an example.

Sequence Conversion

In the stage of sequence conversion, all input sequences are converted to tu-
ples consisting of sound classes and prosodic strings. Thus, German Sand
[zant] ‘sand’ has the sound-class representation "SANT" and the prosodic
string "#VC$>", and is internally represented as [('S', '#'), ('A',
'V'), ('N', 'c'), ('T', '$')], and German heiß [haɪs] ‘hot’
is internally represented as [('H', '#'), ('A', 'V'), ('S',

ID Taxa Word Gloss GlossID IPA .....
... ... ... ... ... ... ...
21 German Frau woman 20 frau ...
22 Dutch vrouw woman 20 vrɑu ...
23 English woman woman 20 wʊmən ...
24 Danish kvinde woman 20 kvenə ...
25 Swedish kvinna woman 20 kviːna ...
26 Norwegian kvine woman 20 kʋinə ...
... ... ... ... ... ... ...

(a) Input

ID Taxa Word Gloss GlossID IPA CogID
... ... ... ... ... ... ...
21 German Frau woman 20 frau 1
22 Dutch vrouw woman 20 vrɑu 1
23 English woman woman 20 wʊmən 2
24 Danish kvinde woman 20 kvenə 3
25 Swedish kvinna woman 20 kviːna 3
26 Norwegian kvine woman 20 kʋinə 3
... ... ... ... ... ... ...

(b) Output

Table 4.20: Input (a) and output format (b) of LexStat. Four columns are required in
the input: ID, Taxa, GlossID, and IPA. An additional column is added in the output.
Each word is assigned a specific cognate ID (CogID). All words that have the same
CogID have been identified as cognates by the algorithm.
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ID Language Word Gloss Alignments

1 German Frau ‘woman’ f r au
1 Dutch vrouw ‘woman’ v r ɑu
2 English woman ‘woman’ wʊmən
3 Danish kvinde ‘woman’ k v e n ə
3 Swedish kvinna ‘woman’ k v iː n a
3 Norwegian kvine ‘woman’ k ʋ i n ə

Table 4.21: Aligned output of three cognate sets identified by the LexStat method.

'$')].15 Identical segments in one language which differ regarding their po-
sition in the word are now treated as different segments. As a result, the initial
of Sand and the final of heiß, which are represented by identical sound classes,
are still kept separate, because their tuple representations differ (('S', '#')
vs. ('S', '$')). This representation constitutes a novel approach to model
phonetic context. It has the advantage of being more “abstract” than bi- or n-
gram approaches which are usually used to incorporate context sensitivity in
alignment analyses (Heeringa et al. 2006).

Scoring-Scheme Creation

The idea to compute language-specific similarities by trying to detect regu-
lar sound correspondences automatically is definitely not new, and there are
many different methods described in the literature (Guy 1994, Kondrak 2003,
Oakes 2000, Starostin 2008a). Unfortunately, the applicability and availabil-
ity of most of these approaches is rather limited. Some are only described in
the literature (Guy 1994, Starostin 2008a), some cover only a limited range of
sounds (Oakes 2000), and some require specific codings instead of the gen-
eral IPA standard (Kondrak 2003). The general strategy that all approaches
usually follow is to create an attested distribution by calculating the (possible)
links (segment correspondences, residue pairs in biology) between all word
pairs in a bilingual word list, and to compare this distribution with an expected
distribution, i.e. with a distribution of residue pairs one would get if the lan-

15 In this description of the LexStat method, I generally use the SCA model for the examples.
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guages were not related. This idea is similar to the way the BLOSUM sub-
stitution matrices are calculated in evolutionary biology (see Section 3.3.3).
The main difference in the approaches lies in the way these two distributions
are calculated. Here, the LexStat method follows Kondrak (2003) in deriving
the attested distribution from pairwise alignments. The pairwise alignments
are calculated for all possible language pairs in a multilingual word list. In
contrast to Kondrak (ibid.), however, LexStat adopts the idea of consistency-
based sequence alignment (see Section 3.4.2) in creating a library of pairwise
alignments. Instead of computing only global or only local pairwise align-
ments to derive the attested distribution, both global and local alignments are
computed, and the resulting distribution is averaged. The advantage of this
approach is that more information can be taken into account, especially when
words exhibit rather “local” similarities, i.e., if they, for example, contain pre-
fixes or suffixes.
The problem all approaches have to deal with is how to handle the noise in

the data. Regular sound correspondences can only be determined for cognate
words, but not all words in the data are cognate. When linguists determine
regular sound correspondences manually, they only count the number of cor-
respondences in those words which they assume to be cognate. Other words
are discarded from the count. It is useful to model this behaviour by prepro-
cessing the data for probably fruitful matches. In the first version of LexStat
(List 2012a), I employed a very simple strategy to account for this: instead
of taking all aligned word pairs of each language pair to calculate an attested
distribution of correspondence frequencies in pairwise alignments, only those
alignments whose SCA distance was beyond a certain threshold were taken
into account. The SCA distance (SCAD) was calculated by applying the afore-
mentioned formula of Downey et al. (2008) to the similarity scores produced
by the SCA method (see Equation 4.2 on page 142):

(4.11) SCAD = 1− 2 · SAB

SA + SB
,

where SAB is the similarity score of an alignment of two words A andB pro-
duced by the SCA method, and SA and SB are the similarity scores produced
by the alignment of A and B with themselves. That SCA distances are not a
bad heuristic for the preprocessing of word lists, is illustrated in Table 4.22,
where the capability of the three variants of SCA distances to discriminate
between cognate words is contrasted with the discriminative force of the nor-
malized edit distance (NED), which is calculated by dividing the edit distance
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by the length of the smaller sequence. The discriminative force of the different
distance scores was measured by calculating the n-point average precision (cf.
the description in Kondrak 2002: 118f) on a small dataset of Swadesh-200
word lists containing manually edited cognate judgments from the literature
for Albanian, English, French, and German (Kessler 2001). As can be see
from the table, all SCA distances largely outperform the normalized edit dis-
tance.
In the most recent version of the LexStat method, a new strategy for the

preprocessing of word lists is employed. The main idea is to take multilin-
gual instead of bilingual information into account. Given that LexStat is but
one of four different ACDmethods implemented in LingPy, the preprocessing
can also be based on one of the three other methods, i.e. the algorithm can
first use a simplified language-independent method to search for cognates in
a multilingual word list, and than use these preliminary cognate judgments to
calculate an attested distribution of correspondence frequencies. The apparent
advantage of this approach is that a multilingual ACDmethod will usually find
more cognates than a bilingual one, since false negatives resulting from high
distance scores in one language pair may be levelled by the average distances
over multiple languages. It is, for example, difficult – if not impossible – to
prove the cognacy of German Zahn [ʦaːn] ‘tooth’ and English tooth [tʊːθ]

Taxa
Cogn.

NED
SCA distance

Prop. DOLGO ASJP SCA
German / Albanian 0.12 30.62 32.60 38.78 44.58
German / French 0.26 45.97 55.83 54.87 59.84
German / English 0.59 89.16 94.65 93.92 94.45
Albanian / French 0.17 62.74 50.32 61.73 64.12
Albanian / English 0.10 15.74 32.29 31.10 39.86
French / English 0.28 61.92 67.34 70.85 64.65

Average 0.25 51.03 55.50 58.54 61.25

Table 4.22: n-Point Average Precision of NED and the three variants of SCA dis-
tances on Swadesh-200 word lists of four genetically related languages (data taken
from Kessler 2001).
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on the basis of Swadesh-200 word lists alone, since there are two gaps in the
alignment: |0

ʦ aː n -
t ʊː - θ 0|. Although at least the gap in the English word is

regular (see the examples in Section 4.1.1) and might be detected as such in
a Swadesh-200 word list of English and German, the missing dental in the
German word has no further counterpart in the list, and aggravates the task
of finding a correct scenario for an alignment algorithm. This changes when
adding Dutch tand [tɑnt] ‘tooth’ to the comparison. This word serves as a
missing link. It aligning well with both German: |0

ʦ aː n -
t ɑ n t 0|), and En-

glish: (|0
t ʊː - θ
t ɑ n t 0|. In the current version of LexStat, the SCA method,

by which sequences are clustered into cognate sets whose average SCA dis-
tance is beyond a certain threshold, is used for this purpose, since it performed
better than the other two methods compared in List (2012a). For this prelimi-
nary stage of cognate detection, it is not important that the algorithm finds only
true cognates. What is important, is that the recall is considerably high, i.e.
that the algorithm finds many of the cognate pairs in the word lists. Therefore,
the threshold for this preprocessing stage is set to 0.6 by default.
In contrast to the creation of the attested distribution of matching residue

pairs, the creation of the expected distribution is more complicated. In biol-
ogy, the expected frequencies of matching residue pairs are usually inferred
mathematically, under the assumption that all aligned residue pairs are sta-
tistically independent of each other. Unfortunately, this is not possible in the
LexStat approach, since the attested frequencies are derived from an alignment
algorithm which automatically favors and disfavors certain matches. Thus, no
matter whether or not two languages are related, there will always be a large
amount of vowel-vowel matches in the attested distribution, vowels will never
match with consonants, and certain consonant matchings will always be fa-
vored while others are disfavored. In order to derive an unbiased expected
distribution, I follow the approach by Kessler (2001: 48-50) in using aMonte
Carlo permutation test (see also Baxter and Manaster Ramer 2000). Thus, in
order to create the expected distribution of matching residue pairs, the words
in the word lists for a given language pair are repeatedly resampled by shuf-
fling one of the entry columns. In each resampling step, pairwise alignments
of the newword pairs are carried out, using the samemethods that are used for
the creation of the attested distribution. The average of the frequencies of the
residue pairs in all samples is then taken to reflect the expected frequencies.
In the default settings, the number of repetitions is set to 1000, yet many tests
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showed that even the number of 100 repetitions is sufficient to yield satisfying
results that do not vary greatly.
In contrast to most other approaches proposed so far, LexStat does not try to

extract the true correspondences in a given dataset, but instead uses the attested
and the expected distribution directly to compute log-odds scores which serve
as a language-specific scoring matrix for an alignment algorithm. In order to
calculate the similarity score sx,y for each residue pair x and y in the dataset,
LexStat uses the the formula:

(4.12) sx,y =
1

r1 + r2

(
r1 log2

(
a2x,y
e2x,y

)
+ r2dx,y

)
,

where ax,y is the attested frequency of the segment pair, ex,y is the expected
frequency, r1 and r2 are scaling factors, and dx,y is the similarity score of the
original scoring function which was used to retrieve the attested and the ex-
pected distributions. This formula combines different approaches from the lit-
erature on sequence comparison in historical linguistics and biology. The idea
of squaring the frequencies of attested and expected frequencies was adopted
fromKessler (2001: 150), reflecting “the general intuition among linguists that
the evidence of phoneme recurrence grows faster than linearly”. Asmentioned
above, the calculation of log-odds scores follows the practice in biology to re-
trieve similarity scores which are apt for the computation of alignment analy-
ses (Henikoff and Henikoff 1992). The incorporation of the alignment score
dx,y of the original language-independent scoring-scheme copes with possible
problems resulting from small word lists: If the dataset is too small to allow
the identification of recurrent sound correspondences, the language-indepen-
dent alignment scores prevent the method from treating generally probable
and generally improbable matchings alike. The ratio of language-specific to
language-independent alignment scores is determined by the scaling factors
r1 and r2. In the default settings of LexStat, it is set to 3:2.
As an example of the computation of language-specific scoring schemes,

Table 4.23 shows attested and expected frequencies along with the resulting
similarity scores for the matching of word-initial and word-final sound classes
in the aforementioned test set of Kessler (2001). The word-initial and word-
final classes T = [t, d], C = [ʦ], S = [ʃ, s, z] in German are contrasted with
the word-initial and word-final sound classes T = [t, d] and D = [θ, ð] in
English. As can be seen from the table, the scoring scheme correctly reflects
the basic sound correspondences between English and German resulting from
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English German
Att. Exp. Score

IPA Cl. IPA Cl.

t, d T
t, d T 3.00 1.24 5.50
ʦ C 3.00 0.38 5.10
ʃ, s, z S 1.00 1.87 -2.20

θ, ð D
t, d T 7.00 0.69 5.83
ʦ C 0.00 0.21 -2.20
s, z S 1.00 1.64 -0.60

(a) Word-initial

English German
Att. Exp. Score

IPA Cl. IPA Cl.

t, d T
t, d T 22.00 9.03 4.78
ʦ C 3.00 1.69 -0.60
ʃ, s, z S 7.50 4.93 1.11

θ, ð D
t, d T 4.00 1.17 4.02
ʦ C 0.00 0.23 -2.20
s, z S 0.00 0.79 -0.60

(b)Word-final

Table 4.23: Attested versus expected frequencies of residue pairs and the resulting log-
odds scores in (a) word-initial and (b) word-final position for German and English
in the dataset of Kessler (2001). The attested distribution reflects the average of one
global and one local alignment analysis. For the expected distribution, a Monte-Carlo
permutation test of 1000 runs was carried out.

the High German Consonant Shift (Trask 2000: 300-302), which is reflected
in such cognate pairs as English town [taʊn] vs. German Zaun [ʦaun] ‘fence’,
English thorn [θɔːn] vs. German Dorn [dɔrn] ‘thorn’, English dale [deɪl] vs.
German Tal [taːl] ‘valley’, and English hot [hɔt] vs. German heiß [haɪs] ‘hot’.
The specific benefit of representing the phonetic segments as tuples consisting
of their respective sound class along with their prosodic context also becomes
evident: The correspondence of English [t] with German [s] is only attested in
word-final position, correctly reflecting the complex change of former [t] to [s]
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in non-initial position in German. If it were not for the specific representation
of the phonetic segments by both their sound class and their prosodic context,
the evidence would be blurred.16

Distance Calculation

Once the language-specific scoring scheme is computed, the distances between
all word pairs are calculated. Here, LexStat uses the semi-global alignment al-
gorithm. This modification is useful when words contain prefixes or suffixes
which might distort the calculation. The alignment analysis requires no fur-
ther parameters such as gap penalties, since they have already been calculated
in the previous stage. The similarity scores for pairwise alignments are con-
verted to distance scores using the same formula which is used to calculate the
language-independent SCA distances (see Equation 4.11 on page 178). This
formula does not only require the similarity score between two different se-
quences as input, but also the similarity score of the sequences compared with
themselves. The similarity of one sequence compared with itself is calculated
by applying the same Monte Carlo permutation test to all languages compared
with themselves and calculating the respective log-odds scores.
The benefits of language-specific in comparison to language-independent

sequence distances are illustrated in Figure 4.24. The figure shows the cross-
product of 100 cognates which were randomly chosen from a larger sample of
658 cognate pairs between English and German, extracted from KLUGE. In
the figures, four different distance scores are compared: percentage identity
(PID, see Equation 3.1 on page 74), converted to a distance score, normalized
edit distance (NED), the SCA distance (SCA model), and the LexStat dis-
tances, which were computed for the two language pairs. In each plot, the real
cognates are given in the diagonal cells from bottom left to top right. All other
cells of the matrices reflect unrelated word pairs. A certain “cognate signal”
can be detected in all plots. However, the signal is quite weak in the PID and
the NED plots. In the SCA plot, the signal is stronger, but blurred by gener-
ally low distances between non-cognate word pairs. In the LexStat plot, the
signal is the strongest: Most of the cognates receive a distance score around or
beyond 0.3, while most non-cognates receive a considerably higher distance

16 The alignments alongwith the distance scores for all word pairs betweenGerman and English
are given in Appendix C.2.
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score. This clearly illustrates the superiority of language-specific distances for
the task of distinguishing cognates from non-cognates.17

Sequence Clustering

Distance scores do not directly reflect cognate judgments, since they only in-
dicate the similarity between sequence pairs, but not between whole groups
of sequences. Applying a threshold beyond which cognacy is assumed for a
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Figure 4.24: Percentage identities (PID), normalized edit distances (NED), SCA dis-
tances, and LexStat distances for the cross product of a sample of 100 cognates between
English and German.

17 All distance scores for the 100 cognate pairs are given in Appendix D.1.
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given word pair does not solve the problem, since the resulting cognate de-
cision may create intransitive relations (Hauer and Kondrak 2011: 868f). In
order to retrieve transitive cognate judgments, a cluster method has to be ap-
plied. LexStat uses a flat cluster variant of the UPGMA algorithm (Sokal and
Michener 1958) to cluster all words occurring in the same semantic slot into
cognate sets. This flat cluster algorithm was written by the author. In contrast
to traditional UPGMA clustering, it terminates when a user-defined thresh-
old of average pairwise distances is reached. The threshold itself reflects the
maximally allowed average distance between all word pairs in a given cluster.
Figure 4.25 shows how pairwise distances of German, English, Danish,

Swedish, Dutch!Standard Dutch, and Norwegian translations of the basic con-
cept ‘woman’, taken from the GER dataset (see Table 4.25), are merged into
cognate sets by the flat cluster algorithm.

4.3.4 Evaluation

Gold Standard

What was said about benchmark datasets for phonetic alignment in Section
4.2.4 also holds for automatic cognate detection: The number of available
gold standards is very limited. Kessler (2001) compiled a dataset in which
the 200 basic vocabulary items of Swadesh (1952) are translated into eight
languages. Apparently, this dataset has only rarely been used as a gold stan-
dard for cognate detection before, and the only approach known to me is only
based on the comparison of language pairs (Mackay and Kondrak 2005). The
advantage of this dataset is the quality of the material: All words are given
in orthography and IPA transcription, the cognate judgments are all substan-
tiated by numerous references taken from the literature, and borrowings are
especially marked by the author. The drawback of this dataset is its limited
size and the languages chosen by the author. The dataset contains Latin and
French, which – taken together – are of little use for the evaluation of ACD
methods, since the former is the ancestor of the latter. Because the author
also deliberately selected genetically unrelated languages, the number of ac-
tual cognate sets in the dataset is considerably low. Thus, although the dataset
by Kessler (2001) should surely be considered when testing ACD methods, it
is not enough to base the evaluation on this dataset alone.
There are a couple of publicly available lexicostatistical databases which

offer manually edited cognate judgments that are supposed to reflect the com-
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German English Danish Swedish Dutch Norwegian
Frau woman kvinde kvinna vrouw kvine

German
[frau] 0.00 0.95 0.81 0.70 0.34 1.00
English

[wʊmən] 0.95 0.00 0.78 0.90 0.80 0.80
Danish
[kvenə] 0.81 0.78 0.00 0.17 0.96 0.13
Swedish
[kvinːa] 0.70 0.90 0.17 0.00 0.86 0.10
Dutch
[vrɑu] 0.34 0.80 0.96 0.86 0.00 0.89
Norwegia
[kʋinə] 1.00 0.80 0.13 0.10 0.89 0.00

German Frau [frau]

Dutch vrouw [vrɑu]

English woman [wʊmən]

Danish kvinde [kvenə]

Swedish kvinna [kvinːa]

Norwegian kvine [kʋinə]

Figure 4.25: The flat clustering variant of the UPGMA algorithm applied to the basic
vocabulary item ‘woman’ in a couple of Germanic languages. The algorithm succes-
sively merges words into larger clusters until a user-defined threshold indicating the
maximum of the average distances between all word pairs in a cluster is reached.
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munis opinio for a given language family. Among these are theDyen-Kruskal-
Black database (DKBD, Dyen et al. 1992) which covers almost 100 Indo-
European languages, the Indo-European Lexical Cognacy Database (IELex),
an improved version of the DKBD, the Tower of Babel database (ToB) and
its successor, the Global Lexicostatistical Database (GLD), which cover many
different language families, and the Austronesian Basic Vocabulary Database
(ABVD, Greenhill et al. 2008). Of all these databases, the DKBD has been
most frequently used as a benchmark for various applications (Bergsma and
Kondrak 2007, Delmestri and Cristianini 2010, Hall and Klein 2010, Hauer
and Kondrak 2011, Mackay and Kondrak 2005). Unfortunately, of all these
databases, only parts of the IELex can be directly used as a gold standard for
the kind of ACD evaluation that is proposed in this study, since none of the
other databases offers true phonetic transcriptions. They are either based on
orthography, or employ inconsistent idiosyncratic transcription systems which
cannot be directly converted into IPA format. While these databases can be
used for methods which do not directly depend on IPA transcriptions as in-

Dataset Languages I W CS D T Source

BAI Bai dialects 110 1028 205 0.10 9 Wang 2006a
IEL Indo-European

Languages
207 4393 1778 0.38 20 IELex

JAP Japanese dialects 200 1985 458 0.14 10 Shirō 1973
OUG Uralic languages 110 2055 239 0.07 21 GLD
PAN Austronesian lan-

guages
210 4358 2730 0.61 20 ABVD

SIN Chinese dialects 140 2789 1025 0.33 15 YINKU

Table 4.24: The general partition of the gold standard for the evaluation of methods
for automatic cognate detection. Columns I,W, CS, and T show the numbers of items,
words, cognate-sets, and taxa. The diversity index D is calculated by dividing the
difference between the number of cognate sets and items by the difference between the
number of words and items. The lower the value the less diverse are all languages in
the respective subset on average.
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put format (Bergsma and Kondrak 2007, Hauer and Kondrak 2011), they are
surely not apt for the method proposed in this study.
For the evaluation of an earlier version of the algorithm presented in this

study (List 2012a) a specific benchmark dataset was compiled by taking pub-
licly available datasets with authoritative cognate judgments and converting
the orthographical entries into IPA. For this study the former benchmark was
extended and updated. The new benchmark database for cognate detection can
be downloaded from the supporting online material accompanying this study
(see Supplementary Material III). In contrast to the benchmark used in List
(ibid.), three new subsets were included: The first one (IDS) consists of 550
items translated into four languages (German, English, Dutch, and French)
which were taken from the Intercontinental Dictionary Series (IDS). The or-
thographical entries were converted into IPA transcriptions by the author, and
cognate judgments were applied manually. The sources which were consid-
ered for transcriptions and cognate judgments are given in Appendix A.1. The
second one (PAN) is a small part of the ABVD which was kindly provided by
Simon Greenhill. It consists of 20 languages given in a very consistent tran-
scription system that could be easily converted to IPA by the author. The third
one (IEL) is a small part of the IELex, kindly provided byMicheal Dunn, con-
sisting of 20 languages for which full phonetic transcriptions were available.
The new benchmark divided into two partitions: one “basic” partition and

one “specific” partition. The basic partition consists of the six largest subsets,
each reflecting a different language family (see Table 4.24). The specific par-
tition consists of various subsets of different sizes which can be used to test
specific characteristics of ACD methods (see Table 4.25). It is useful to get
a rough impression regarding the diversity of a given dataset. I propose to
calculate it with help of the formula:

(4.13) D =
C − I

W − I
,

where C is the number of cognate sets, I is the number of basic vocabulary
items, andW is the number of language entries (words). This index contrasts
the number of cognate sets in a dataset with the number of possible cognate
sets. A score of 0 indicates full cognacy, i.e. all words in all semantic slots
would be cognate for such a dataset, a high score points to a large amount of
unrelated words. As can be seen from the indices for the two partitions of
the gold standard, the diversity of the subsets shows a great variation, ranging
from dataset with a very high density, such as the OUG data, up to very diverse
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Dataset Languages I W CS D T Source

GER Germanic
languages and
dialects

110 814 182 0.10 7 ToB

IDS Romance and
Germanic
languages

550 2429 1490 0.50 4 IDS

KSL Various lan-
guages (partially
unrelated)

200 1400 1179 0.82 7 Kessler 2001

PIE Indo-European
languages

110 2172 615 0.24 19 ToB

ROM Romance
language

110 589 177 0.14 5 ToB

SLV Slavic languages 110 454 165 0.16 4 ToB

Table 4.25: The specific partition of the gold standard for the evaluation of methods
for automatic cognate detection. Regarding the diversity index D, see the description
in Table 4.24.

ones, such as the PAN data. This is exactly what is needed for a representative
gold standard.

Evaluation Measures

The ACD task is essentially a clustering task. The evaluation of clustering
tasks is much more complicated than the evaluation of simple pairwise classi-
fication tasks (Hauer and Kondrak 2011). Most clustering evaluation measures
can be assigned to two different perspectives: the set perspective, or the pair
perspective. The set perspective treats clusters as indivisible wholes. The pair
perspective treats a set of clustered items as a set of pairwise decisions between
all items in the set.
Bergsma and Kondrak (2007) test the performance of their ACD method

by calculating the set precision (SP), and the set recall (SR). The set precision
is defined as the “proportion of sets proposed by [the] system which are also
sets in the gold standard” (Bergsma and Kondrak 2007: 659), and can be
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calculated with the formula:

(4.14) SP = 100 · |Cr ∩ Ct|
|Ct|

,

where Cr is the set of cognate sets in the reference and Ct is the number of
cognate sets in test set. Accordingly, the set recall is defined as the “proportion
of gold standard sets that [the] system correctly proposes” (ibid.), and can be
calculated with the formula:

(4.15) SR = 100 · |Cr ∩ Ct|
|Cr|

.

Both set precision and set recall can be combined by calculating their harmonic
mean, the set F-score (SF):

(4.16) SF = 2 · SP · SR
SP + SR

.

Words "BAUCH" "BELLY" "BUK" "MAGE"

Reference 1 2 1 3
Test 1 1 1 2

(a) Cluster decision

Pairs Ref. Test
"BAUCH" "BELLY" 0 1
"BAUCH" "BUK" 1 1
"BAUCH" "MAGE" 0 0
"BELLY" "BUK" 0 1
"BELLY" "MAGE" 0 0
"BUK" "MAGE" 0 0

(b) Pairwise perspective

Table 4.26: The pair perspective in clustering evaluation. Clusters (a) are represented
by assigning an integer ID to a given cluster. If two words have the same ID, they
are assigned to the same cluster. When comparing cluster decisions within the pair
perspective (b), all possible pairs of clustered items are considered, and cluster decisions
are displayed by 1 (in the same cluster) and 0 (in different clusters).
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The set scores are a very conservative evaluation measure, since only identi-
cal clusters in reference and test set count positively while identical tendencies
are ignored. As a result, the performance of an algorithm may be blurred, es-
pecially when the test data is considerably diverse. As an alternative one can
turn to the pair perspective which, instead of checking for identical clusters,
checks for the identity of pairwise decisions implied by a cluster, as illustrated
in Table 4.26. In List (2012a) I used the pair perspective to calculate the pro-
portion of identical decisions (ID score). Following the contingency table in
Table 4.27, this score can be calculated by dividing the number of true posi-
tives and true negatives by the total number of decisions:

(4.17) ID =
a+ d

a+ b+ c+ d
.

However, this measure suffers from the shortcoming that it is extremely
dependent on the size of the clusters in the dataset. For example, if a dataset
contains only a small amount of cognate sets, a poorly performing algorithm
which fails to identify most of the cognates may still receive a considerably
high ID score as long as it only correctly identifies the non-cognates. In order
to avoid these problems, it seems more useful to calculate the pair precision
(PP) and the pair recall, which are formally identical with pair precision and
pair recall as evaluation measures for alignment analyses introduced in Section
4.2.4. Thus, given all pairwise decisions in reference and test set, the pair
precision can be defined as:

(4.18) PP = 100 · |Pt ∩ Pr|
|Pt|

,

Cognate Non-Cognate
Reference Reference

Cognate true positives false positives
Test a b

Non-Cognate false negatives true negatives
Test c d

Table 4.27: Pairwise decisions in reference and test set
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where Pt is the set of all cognate pairs in the test set and Pr is the set of all
cognate pairs in the reference set. Note that this is equivalent to calculating:

(4.19) PP = 100 · a

a+ b
,

when applying the contingency table in Table 4.27. The pair precision gives an
account on the number of false positives produced by an algorithm: The higher
the pair precision, the lower the number of false positive decisions made by an
algorithm. Accordingly, the pair recall can be calculated with the formula:

(4.20) PR = 100 · |Pt ∩ Pr|
|Pr|

,

which is again identical to:

(4.21) PR = 100 · a

a+ c
.

The pair recall gives an account on the number of false negatives produced by
an algorithm: The higher the pair recall, the lower the number of false negative
cognate decisions made by an algorithm. Accordingly, the pair F-score (PFS)
can be calculated by the formula:

(4.22) PFS = 2 · PP · PR

PP + PR
.

Although the pair scores, as they were defined above, show a clear improve-
ment over both the set scores and the ID score, they are still intimately depen-
dent on the cluster size (Amigó et al. 2009). In order to avoid this problem,
Hauer and Kondrak (2011) test their ACD method by calculating B-Cubed
scores. B-Cubed scores were originally introduced as part of an algorithm by
Bagga and Baldwin (1998), but Amigó et al. (2009) could show that they are
especially apt as a clustering evaluation measure. In B-Cubed metrics, preci-
sion and recall are computed for each word in the dataset taken as a separate
item. The B-Cubed precision (BP) for one wordw in the dataset can be defined
as:

(4.23) BPw = 100 · |Rw ∩ Tw|
|Tw|

,



4.3 Automatic Cognate Detection 193

where Rw is the cognate set to which w is assigned by the reference set, and
Tw is the cognate set to which w is assigned in the test set. Accordingly, the
B-Cubed recall (BR) for one word w in the dataset can be defined as:

(4.24) BRw = 100 · |Rw ∩ Tw|
|Rw|

,

and the B-Cubed F-score (BF) can be calculated with help of the formula:

(4.25) BFw = 2 · BFw ·BRw

BFw +BRw
.

The B-Cubed scores for the whole dataset are calculated by taking the average
of the separate scores for each word.
The LingPy library, which I wrote for this study, offers a module which cal-

culates all above-mentioned scores for a given reference and test set (see the
documentation for details). From the literature it is not clear, how singletons
(words that are not cognate with any other word) should be treated. While in
the pair scores they are excluded per definitionem, it seems that they are usu-
ally calculated for the set and the B-Cubed scores. However, while it seems
understandable to include singletons in the set calculations, since a correctly
assigned singleton should certainly score somehow in the evaluation, this is
less true for the B-Cubed scores, because they always yield 1, and no further
discrimination between true singletons and false singletons is made. Never-
theless, since the literature remains silent regarding this point, singletons are
generally included in the calculations produced by LingPy.

Results

All results which will be reported in the following were achieved by using the
most recent version of LexStat along with the same parameters for the dif-
ferent parts of the analysis. For the creation of the language-specific scoring
function, attested and expected distributions were calculated by carrying out
global and local alignment analyses of the sequences in all language pairs, us-
ing the SCA model, and the default SCA scoring function. The GOP was set
to –2 for global and to –1 for local alignment analyses. For the creation of the
attested distribution, the threshold for the preprocessing was set to 0.6. The ra-
tio between language-specific and language-independent similarity scores was
set to 3:2.
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Along with the language-specific LexStat method, three language-indepen-
dent methods, which are all implemented as part of the LingPy library, were
tested: The method by Turchin et al. (2010) (Turchin), a simple ACD me-
thod based on the normalized edit distance (NED), and the aforementioned
ACD method based on SCA distances (SCA), which was also used for the
preprocessing. Since the cognate judgments produced by the Turchin method
are either positive or negative, no further clustering of words into cognate
sets is required. For the NED and SCA methods, the cognate judgments are
produced by applying the same clustering method which is also used for the
LexStat procedure to the distance scores produced by the methods. Using
a “good” threshold is crucial for the performance of all methods. In order
to guarantee comparability regarding specific strengths and weaknesses of the
different methods, I decided to “anchor” all thresholds to the average B-Cubed
precision received by the Turchin method for the general partition of the gold
standard, since it doesn’t require a threshold. As a result, the thresholds for
NED, SCA, and LexStat were set to 0.65, 0.2, and 0.55, respectively. All re-
sults of the analyses which are discussed in the following are available as part
of the supporting online material accompanying this study (see Supplementary
Material IV).

General Results Table 4.28 and Figure 4.26 summarize the results of the
ACD methods for the basic partition of the gold standard. As can be seen
from the table and the figure, the language-specific LexStat method largely
outperforms all language-independent methods, in all “unanchored” evalua-
tion measures apart from the Pair precision, where LexStat performs slightly
worse than the SCA method. Furthermore, the language-independent SCA
method outperforms the two remaining methods. The Turchin method shows
the worst performance. Nevertheless, the NED method is only slightly bet-
ter. The intention of the authors of this method was to derive a method which
is considerably conservative and avoids false positives, and this is certainly
guaranteed by the method, although it, unfortunately, misses many cognates.
Being conservative rather then liberal when it comes to cognate judgments is

an important requirement for ACD methods. Historical linguists usually have
the feeling that false positives are worse than false negatives. Given that the
for the three threshold-based methods, the precision was anchored to a value
which is allows only a small amount of false positives, the remaining question
is, howwell themethods identify true cognates. Judging from the results on the
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Measure Score
Method

Turchin NED SCA LexStat

Pair-Scores

ID-Score 75.26 77.31 82.13 84.46
Precision 81.39 84.09 85.96 85.91
Recall 47.71 51.51 60.85 66.61
F-Score 59.48 62.32 70.50 72.19

B-Cubed Scores
Precision 89.83 90.01 90.36 90.30
Recall 67.23 68.63 75.92 80.58
F-Score 76.81 77.11 82.45 84.83

Set-Scores
Precision 33.35 34.08 42.78 49.64
Recall 46.83 46.75 52.99 57.73
F-Score 38.60 38.72 47.16 53.07

Table 4.28: Average scores for the subsets of the gold standard

general partition of the gold standard, it seems to make a difference, whether
one compares simple phonetic sequences, as done by the NED method, or
complex ones, as done by SCA. Given that Turchin is also based on sound
classes, it further seems to make a differences whether one uses alignment
analyses, or a simplifiedmatching scheme. Last not least, the language-specific
component of LexStat helps to identify a lot more cognates than could be done
by the language-independent methods.
As a result of the adjustments of the thresholds to the high B-Cubed preci-

sion predefined by the Turchin method, all methods show a higher precision
than recall in the pair and the B-Cubed measures. For the set scores the preci-
sion is lower than the recall. This is, however, not surprising, since in contrast
to the pair and B-Cubed measures, a low set precision doesn’t directly point to
a high amount of false positives. It may instead also result from a large amount
of singletons proposed by an algorithm, since – within the set perspective –
a singleton also counts as a set. Therefore, a low set precision – i.e. a low
proportion of cognate sets proposed by an algorithm which are also reflected
in the gold standard – may also refer to a rather large amount of undetected
cognate relations, and – judging from the pair and B-Cubed measures – this
seems to be exactly the case.
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Figure 4.26: Average scores for the subsets of the gold standard

Specific Results The general results suggest the superiority of the language-
specific LexStat approach compared to the language-independent approaches.
An important question is, however, whether these results are also consistent
throughout all individual subsets of the gold standard, or whether the superi-
ority applies only to a small part of them. The F-scores for the specific results
on the subsets of the general partition of the gold standard are given in Table
4.29. As one can see, the LexStat method again performs best in almost all
subsets, the only exceptions being the pair F-scores for the IEL subset and the
set F-score for the SIN subset, where the SCA method outperforms LexStat,
and the pair F-scores for the PAN subset, where LexStat is outperformed by
NED and SCA.
The B-Cubed F-scores which are already given in Table 4.29 are also plot-

ted in Figure 4.27, clearly illustrating that LexStat performs best throughout
all subsets. What can also be seen from the figure are large differences in the
scores received by the methods in dependence of the subset. This becomes
less surprising, when taking into account that the subsets differ greatly regard-
ing the diversity of the languages and the time depth separating them. Thus,
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Subset Score
Method

Turchin NED SCA LexStat

BAI
Pair-F-Score 73.10 68.57 84.05 86.91

B-Cubed F-Score 80.04 75.43 87.16 88.72
Set-F-Score 31.10 24.48 44.18 45.02

IEL
Pair-F-Score 46.53 36.52 53.23 49.40

B-Cubed F-Score 75.31 72.81 79.10 80.62
Set-F-Score 42.74 45.12 51.64 58.60

JAP
Pair-F-Score 74.34 83.09 83.48 91.48

B-Cubed F-Score 81.26 86.78 87.20 92.50
Set-F-Score 38.51 43.33 44.84 58.55

OUG
Pair-F-Score 77.31 82.06 86.85 90.01

B-Cubed F-Score 81.80 85.58 88.80 91.59
Set-F-Score 38.46 45.11 53.02 63.34

PAN
Pair-F-Score 35.96 55.64 50.68 45.38

B-Cubed F-Score 77.52 77.12 80.09 80.74
Set-F-Score 57.63 49.09 59.45 63.31

SIN
Pair-F-Score 49.67 48.04 64.68 69.98

B-Cubed F-Score 64.90 64.94 72.32 74.78
Set-F-Score 23.19 25.21 29.83 29.57

Table 4.29: Specific results (F-scores) for the six subsets of the general partition of the
gold standard.

the BAI, the JAP, and the OUG subset all consist of languages and dialects
which separated not too long ago, while IEL an PAN represent large language
families with a considerably long history of divergence. This difference is also
reflected in the diversity index of the languages given in Table 4.24 above: The
indices of BAI (0.10), JAP (0.14), and OUG (0.07) are all very low compared
to those for IEL (0.38), and PAN (0.61). One would expect, however, that
the algorithms perform better on the SIN dataset, since the Sinitic languages
did not diverge too long ago. Nevertheless, the Sinitic data is highly diverse,
as reflected by the high diversity index (0.33), and the fact that the glosses in
the word lists of the SIN dataset do not entirely belong to the realm of basic
vocabulary but also reflect “cultural” words which are much more prone to
change. Furthermore, the data is especially challenging, since in the Chinese
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Figure 4.27: B-Cubed F-scores for the subsets of the general partition of the gold
standard.

dialects there are many compound words which are only partially cognate, i.e.
they have morphemes that are cognate, but the compound as a whole is not.
Such cases were coded as non-cognate in the data and can easily betray the
algorithms.

TimeDepth andDiversity The results on the subsets of the general partition
suggest that the accuracy of all methods somehow depends on the diversity of
the languages being investigated. Following up this question, a further analysis
was carried out. This time, the PIE dataset from the specific partition of the
gold standard, and its three subsets, GER, ROM, and SLV, were analyzed,
using the four methods and the same settings (including the thresholds) as in
the previous analyses. The three subsets are directly extracted from the PIE
dataset. Thus, their gold standard cognate assignments differ only regarding
the number of languages from the PIE data. However, since the subsets reflect
the rather “young”Germanic, Romance, and Slavic language families, the time
depth that separates the languages in the subsets is much more shallow than
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that of the whole Indo-European language family reflected in the PIE dataset.
This is also confirmed by the low diversity indices of the subsets (0.10, 0.14,
and 0.16 for GER, ROM and SLV) compared to the index of the combined
and extended dataset (0.24, see Equation 4.13 on page 188). The goal of this
analysis was to test to which degree time depth and diversity may influence the
accuracy of the methods.
The results for the analyses (B-Cubed scores) are given in Table 4.30. As

can be seen from the F-scores in the table, diversity and time depth have a
crucial impact on the results of the analyses. This is surely no great surprise,
since it is well-known that it is easier to compare genetically closely related
languages than to compare distantly related ones. However, what might be
interesting is that there is only a slight increase in precision, while recall in-
creases greatly. Thus, the majority of problems one faces when entering more
shallow time depths in language comparison is not provoked by false positives,
but by undetected remote cognate relations.
One further point which is interesting in this context is that in shallow time

depths the greatest increase in recall can be recorded for both LexStat (plus
19.9 points on average), followed by NED (15.2), SCA (14.9) and Turchin

Partition Score
Method

Turchin NED SCA LexStat

PIE
B-Cubed Precision 72.59 80.67 79.00 93.48
B-Cubed Recall 58.69 54.34 66.68 74.21
B-Cubed F-Score 64.90 64.94 72.32 82.74

GER
B-Cubed Precision 97.02 98.18 97.24 94.09
B-Cubed Recall 68.11 61.24 78.97 93.42
B-Cubed F-Score 80.04 75.43 87.16 93.75

ROM
B-Cubed Precision 88.14 95.02 91.14 96.09
B-Cubed Recall 65.75 59.02 69.87 91.66
B-Cubed F-Score 80.04 75.43 87.16 93.75

SLV
B-Cubed Precision 98.28 95.34 95.56 98.30
B-Cubed Recall 69.26 79.63 80.19 97.28
B-Cubed F-Score 80.04 75.43 87.16 93.75

Table 4.30:Comparing the B-Cubed scores achieved by the methods on the PIE dataset
with those achieved on the three less diverse subsets of PIE (GER, ROM, and SLV).



200 4 Sequence Comparison in Historical Linguistics

..

GER

.

ROM

.

SLV

.
(a) B-Cubed precision.

.

0

.

20

.

40

.

60

.

80

.

100

.

GER

.

ROM

.

SLV

.
(b) B-Cubed recall.

.

0

.

20

.

40

.

60

.

80

.

100

.

Turchin (PIE)

.

NED (PIE)

.

SCA (PIE)

.

LexStat (PIE)

.

Turchin (subs.)

.

NED (subs.)

.

SCA (subs.)

.

LexStat (subs.)

Figure 4.28: Comparing the B-Cubed precision and recall achieved by the methods on
the PIE dataset with the B-Cubed precision and recall achieved on the three less diverse
subsets of PIE (GER, ROM, and SLV).

(9.2). The reason for this increase seems to lie in the fact that genetically
closely related languages share a higher amount of cognates than genetically
distantly related languages. Thus, there is more signal available which is rel-
evant for methods that rely on language-specific, correspondence-based sim-
ilarities, such as LexStat. Since genetically closely related languages are also
phenotypically more similar, there is also more signal available which is rele-
vant for methods that rely on surface similarities, such as NED.

Sample Size It has been stated above that the sample size is of crucial im-
portance for the comparative method. One can generalize this statement and
claim that sample size is of crucial importance for all language-specific meth-
ods. In order to test this claim, an analysis of different, randomly created
partitions of the IDS dataset was carried out. With its 550 glosses translated
into four languages, the IDS is the largest dataset in the gold standard with
respect to sample size. The data for this test was created as follows: Starting
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from the basic IDS dataset containing all 550 items, 110 new subsets of the
data were created by reducing the data stepwise. In each iteration step, 5 items
were randomly deleted from the previous dataset. This process was repeated
five times, yielding 550 datasets, covering the whole range of possible sample
sizes between 5 and 550 in steps of 5. These datasets were then analysed,
using the same settings for the algorithms, as in the analyses reported before.
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Figure 4.29: Performance of the ACDmethods in dependence of the sample size (num-
ber of “basic” vocabulary items per word list). The figures show the B-Cubed recall
for the four methods.
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For each specific sample size, the average B-Cubed recall for all five subsets
was calculated.18
The results of this analysis are plotted in Figure 4.29. As can be seen from

the figure, the results of the three language-independent methods are quite
similar regarding their tendency. Only the degrees of the scores differ. The
scores themselves show only marginal variations and remain constant regard-
less of the sample size. The results for the language-specific LexStat analysis,
on the other hand, clearly depend on the sample size, growing logistically,
until converging around a sample size of 200 items. This nicely reflects the
language-specific character of the LexStat method: If the word-lists fed to the
algorithm are too small, no language-specific similarities can be inferred, and
no cognates can be detected, as reflected by the low recall for small word lists.
This changes dramatically once the sample size is increased. Comparing the
scores for a sample size of 50 items (90.88) with those of 100 items (93.89),
an increase of about 3 points can be attested, and between 100 and 200 items
(95.02), there is still an increase of more than 1 point (see Table 4.31).
One might wonder whether the fact that the scores converge at a sample size

of 200 allows to conclude that 200 words are enough for the preliminary stages

Items
B-Cubed Recall

Turchin NED SCA LexStat
50 86.10 85.55 92.44 90.88
100 86.55 85.77 92.20 93.89
200 86.88 86.61 92.68 95.02
300 87.13 86.64 92.90 95.05
400 87.14 86.81 92.89 94.94
500 87.07 86.77 92.75 94.90

Table 4.31:B-Cubed recall (BR) of the four different ACDmethods in randomly created
subsamples of varying sample size extracted from the IDS dataset.

18 In order to guarantee comparability, the thresholds were again “tuned” on the results of the
Turchin method, using the whole IDS dataset for the fine-grading, in order to achieve a
similar precision between all models. This lead to thresholds of 0.58 for LexStat, 0.18 for
SCA, and 0.65 for NED.
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of language comparison. Since, to my knowledge, the IDS dataset is the only
available gold standard covering more than 500 items, it may be questioned
whether the data is representative enough to draw general conclusions regard-
ing the necessary size of word lists for ACD methods. Nevertheless, what the
results of the analysis show is that word list size indeed has an impact on the
results. Thus, when using language-specific methods, there is no use in taking
word lists with less than 100 items, and – as the next paragraph will show –
when seeking for very remote genetic relationships, 200 words are surely not
enough.

Proof of Language Relationship So far, I have presented and discussed
the results of the new method for automatic cognate detection. Given that
the method works quite well, apparently avoiding false positives while at the
same time finding more true cognates than alternative methods, one question
that surely comes to mind is whether this method is also capable to prove
that two languages are genetically related. In order to test the capability of
the method to distinguish related from unrelated languages, the KSL dataset
(Kessler 2001) is especially apt, since the compiler of the dataset deliberately
chose to include genetically unrelated languages. Thus, apart from the four
related Indo-European languages Albanian, English, French, and German, the
author also included the three mutually unrelated languages Hawaiian, Navajo,
and Turkish.
In Table 4.32 the shared cognates between all language pairs as postulated

by the four methods (lower triangle) are contrasted with the cognates postu-
lated by the gold standard (upper triangle).19 Note that borrowings, which are
indicated by Kessler, have been included in this comparison, thus “cognates”
in this context are understood as etymologically related words. From a first
glance, one can see that all four methods “fail” in so far as they all postu-
late far more cognates or homologues between unrelated languages than there
are in the gold standard. However, the methods fail differently. The Turchin
method, which – as could be seen in the previous analyzes – is a very con-
servative method with a high precision, finds a maximum of 9 cognates in the
set of unrelated languages (between Albanian and Hawaiian), while all related
languages receive considerably higher scores. One may therefore argue that
these false positives do not necessarily invalidate the method, since they can
easily be crossed out once genetic relationship is only assumed for languages
19 The results for this test are given in detail in Appendix D.2.
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Albanian English French German Hawaiian Navajo Turkish
Albanian 20 33 25 0 0 1
English 16 56 118 1 0 0
French 23 16 51 0 0 0
German 18 82 19 0 0 0
Hawaian 9 3 4 2 0 0
Navajo 4 4 3 1 0 0
Turkish 7 3 3 1 2 5

(a) Turchin

Albanian English French German Hawaiian Navajo Turkish
Albanian 20 33 25 0 0 1
English 5 56 118 1 0 0
French 19 16 51 0 0 0
German 9 64 12 0 0 0
Hawaian 2 2 5 3 0 0
Navajo 1 1 2 2 1 0
Turkish 10 5 5 2 1 3

(b) NED

Albanian English French German Hawaiian Navajo Turkish
Albanian 20 33 25 0 0 1
English 9 56 118 1 0 0
French 19 26 51 0 0 0
German 10 103 18 0 0 0
Hawaian 5 3 10 3 0 0
Navajo 5 8 4 4 4 0
Turkish 7 8 6 4 3 7

(c) SCA

Albanian English French German Hawaiian Navajo Turkish
Albanian 20 33 25 0 0 1
English 3 56 118 1 0 0
French 11 18 51 0 0 0
German 6 99 11 0 0 0
Hawaian 1 0 0 0 0 0
Navajo 0 1 2 1 0 0
Turkish 2 0 1 0 0 1

(d) LexStat

Table 4.32: Results of the four methods on the KSL test set. The upper triangle gives
the number of shared homologues (cognates and borrowings) in the gold standard, the
lower triangle gives the number of shared homologues as determined by the methods.
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sharing more than a certain amount of “sound-class-cognates”. The NEDme-
thod, on the other hand, finds more cognates between Albanian and Turkish,
than between Albanian and English. Given the generally rather high num-
ber of matches between Turkish and the Indo-European languages produced
by NED, the method suggests that Turkish is an Indo-European language. A
similar scenario is drawn by the SCA method which postulates quite a few
cognates for the unrelated languages. LexStat postulates the lowest number
of cognates for the unrelated languages. However, the high precision of the
method comes with a cost, since the status of Albanian as an Indo-European
language is now no longer evident. However, that it is difficult – if not im-
possible – to prove that Albanian is an Indo-European language when relying
on small word lists of 200 items only, is not a specific problem of automatic
methods, but applies also to the comparative method.

4.3.5 Examples

For reasons of convenience, all examples which are given in the following are
drawn from the analysis of the KSL dataset (Kessler 2001). Since the data for
the results of all methods on this test set is also given in Appendix D.2, I won’t
dive too deep into the details here, but only point to some general tendencies
which can be easily spotted when comparing the concrete cluster decisions of
the algorithms. All examples given in the following follow the same structure.
Cognate decisions are displayed with help of integers assigned to each language
entry for an item of a multilingual Swadesh list. If the integers are the same
for two or more entries, the respective method assigns the entries to the same
cluster and therefore judges the words to be etymologically related or cognate.
Cluster decisions where the methods differ from the gold standard decisions
are especially marked by shading the cells which differ in gray.
Note that the KSL dataset gives the phonetic sequences in different formats.

The user can choose between three levels of representation: word, stem, and
root. Since the representation on the word level in the KSL data is not optimal
for automatic comparison (employing the third person singular for verbs), and
the root representation reflects deep historical knowledge of the languages, the
stem representation was used for this analysis. Since the data was not further
modified, I will use the same orthographic and phonetic representations which
can be found in the original data. Since the different representation levels are
only applied to the phonetic transcriptions, the orthographic entries in the data
represent verbs by using their third person singular form.
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“dig” (30) GLD TUR NED SCA LxS.
Albanian gërmon gərmo 1 1 1 1 1
English digs dɪg 2 2 2 2 2
French creuse krøze 3 1 3 3 3
German gräbt graːb 4 1 1 3 4
Hawaiian ‘eli ʔeli 5 5 5 5 5
Navajo hahashgééd hahageːd 6 6 6 6 6
Turkish kazıyor kaz 7 7 3 7 7

Table 4.33: Cognate judgments of the four methods for the item ‘dig’ in the KSL test
set. Entries whose orthography is in bold font have been borrowed. Cells shaded in
gray mark deviations of the respective method from the gold standard cluster decision.

False Positives Table 4.33 shows a more or less typical example for false
positive cognate judgments which may often occur when using language-in-
dependent ACD methods. The false decisions result from the specific weak-
nesses of the three language-independent methods. According to the Turchin
method, Albanian gērmon [gərmo] is related with French creuse [krøze] and
German gräbt [gra:b], since, according to the DOLGOmodel, all words have
the same first two consonant classes "K" and "R". NED identifies two false
cognate sets consisting of two entries each, namely Albanian gērmon [gərmo]
and German gräbt [graːb], and French creuse [krøze] and Turkish kazıyor
[kaz]. Both word pairs exhibit a strong phenotypic similarity. As it has been
mentioned before, the NED score is derived from the edit distance by divid-
ing the edit distance by the length of the longer word. As can be seen from,
|0

g ə r m o
g - r aː b 0|, the alignment of the Albanian and the German word, there

are two matches, one empty match, and two substitutions, summing up to an
edit distance of 3, which, divided by the length of the longer word, yields
the score 3

5 = 0.6. In |0
k r ø z e
k a - z - 0|, the alignment of the French and

the Turkish word, there are again two matches, only one mismatch, but two
empty matches, which again yields an edit distance of 3, and an NED score
of 3

5 = 0.6. Since the threshold for the NED method was set to 0.65, the
distances for both word pairs are beyond the threshold, and the words are
therefore judged to be cognate. The SCA method wrongly matches French
creuse [krøze] with German gräbt [graːb]. The low distance score of 0.17
results from the high scores for the matching sound classes "K" and "R" in



4.3 Automatic Cognate Detection 207

“mouth” (104) GLD TUR NED SCA LxS.
Albanian gojë goj 1 1 1 1 1
English mouth mauθ 2 2 2 2 2
French bouche buʃ 3 3 3 3 3
German Mund mund 2 4 4 4 2
Hawaiian waha waha 5 5 5 5 5
Navajo ’azéé’ zeːʔ 6 6 6 6 6
Turkish ağız aɣz 7 7 7 7 7

Table 4.34: Cognate judgments of the four methods for the item ‘mouth’ in the KSL test
set.

identical prosodic contexts. Since the threshold for the SCA method was set
to 0.2, this results again in a false positive decision.

False Negatives In Table 4.34, a more or less typical example for false cog-
nate judgments is given. According to the gold standard, English mouth and
German Mund are cognate, yet, except from the LexStat method, all other
methods fail to detect the cognate relation between the two words. The reason
for the failure of the Turchin method is obvious: since the method is not based
on alignment analyses, it cannot correctly match the relevant sounds. Other,
but similarly obvious reasons lead to the failure of the NED method. There
is only one identical sounds, since all calculations were applied to tokenized
items whereby diphtongs were tokenized into single tokens, the resulting edit
distance between both words is 3, and the NED score of 0.75 exceeds the
threshold. The SCA method correctly aligns both words, but since the GOP
is set to –2, the resulting SCA distance of 0.21 slightly exceeds the threshold.
The LexStat distance between the two words is 0.38, and therefore far beyond
the threshold of 0.55. An important reason for this low score lies in the low
gap penalty of –1 for the gapping of German [n] in a position of descending
sonority. Since the correspondence German [n]≈ English [-] is also reflected
in other words of the dataset, such as German anderer [andər] ‘other’ ≈ En-
glish other [əðər], and German Zahn [ʦaːn] ‘tooth’≈ English tooth [tʊθ], the
gap penalty is lowered to a considerable degree.
As can be seen from the full record of results given in Appendix D.2, not

all cases are as clearcut as the two examples discussed above. The LexStat
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methods also commits some false positive cognate judgments which a trained
historical linguist would never have made, and misses cognates which seem to
be obvious. Nevertheless, the apparent weaknesses of language-independent
ACD methods are nicely reflected, as is the great improvement resulting from
the use of language-specific scoring schemes.



5

Conclusion

[T]o say that all sound-laws are regular is rather like saying that all Rus-
sians are communists.

Allen (1953: 62)

In the begin of the 1950s, Morris Swadesh (1909 – 1967) presented a me-
thod that was supposed to measure the genetic closeness between languages
on the basis of the statistical analysis of shared cognates in bilingual word lists
(Swadesh 1950, Swadesh 1952, Swadesh 1955). At first, the method seemed
to breathe fresh wind into historical linguistics. The discipline had past its
prime since the structuralist turn in linguistics in the begin of the 1920s (Alter
2001: 1929), and apart from the decipherment of Hittite going along with the
proof that it was an Indo-European language (Hrozný 1915), no radical im-
provements, neither regarding the methods, nor regarding the reconstruction
of Proto-Indo-European had been made since the begin of the 20th century.
Soon, however, the method was heavily critized (Bergsland and Vogt 1962,
Hoijer 1956) and eventually went out of vogue.
When, in the begin of the second millenium, Gray and Atkinson (2003)

used similar data but different statistical methods to date the age of the Indo-
European language family, they caused a similar stir as Swadesh had done
almost half a century ago. But while Swadesh’s method was filed away soon
after it had been proposed, the method of Gray and Atkinson was part of a
general quantitative turn in historical linguistics, which started at the begin of
the second millenium. This quantitative turn is reflected in a large bunch of
literature on such different topics as phonetic alignment (Kondrak 2002, Prokić
et al. 2009), automatic cognate detection (Hall and Klein 2010, Steiner et al.
2011), and phylogenetic reconstruction (Atkinson and Gray 2006, Brown et
al. 2008, Nelson-Sathi et al. 2011).
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The quantitative turn is not unique to historical linguistics. Not many dis-
ciplines could resist the storm of numbers, bits, and bytes that swept over the
spires of the ivory tower during the second half of the 20th century. Today,
biologists do not need to dissect strange creatures brought home from trips
around the world in order to study biological evolution, and linguists do not
need to breath the dust of centuries-old books in order to investigate the history
of languages. Eventually, even detectives do not need to play the violine while
holding out for the spark of inspiration that saves innocent lives and brings real
murderers to justice. Statistics, computers, and new procedures which were
developed with help of statistics and computers save biologists, linguists, and
detectives a lot of time and make their lives a lot easier. If the Murder on the
Orient Express happened today, CSI Miami would probably solve the case in
less than one hour.
Despite the unfortunate fact that quantitative approaches deprive detective

fiction of its wit, I feel myself comitted to the quantitative paradigm. Given
the increasing amount of data and the well-known problems inherent in our
traditional comparative method, we cannout go on comparing words in dictio-
naries that are so large that they fill a whole shelf without the aid of computers
and database tools. However, we should never commit the fallacy to assume
that these new methods provide us with new indisputable truths. Algorithms
are only as good as their input, and as long as we lack the data to test the new
methods rigorously, all results should be treated with care.
So far, no method has been designed that could compete with a trained lin-

guist’s intuitions, and, maybe, there is even no need for such a method. There
is, however, a definite need for methods that help linguists to develop their in-
tuitions. The purpose of this study was to develop and present such methods
which can ease the life of historical linguistics. The strategy I followed was
to employ the most recent developments in evolutionary biology and com-
puter science while at the same time trying to model the traditional methods
as closely as possible.
Following this strategy, the theoretical and practical foundations of tradi-

tional historical linguistics were briefly outlined in Chapter 2. After defining
languages and words as the basic entities of historical linguistics (Section 2.1),
I pointed to the basic types of change these entities are subject to (Section 2.2)
and derived basic relations between these entities from them (Section 2.3).
The reconstruction of the specific historical relations between words and lan-
guages is based on the identification of specific kinds of resemblances (Section
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2.4) which are explained with help of historical-fact abduction (Section 2.5).
All these questions are addressed more or less explicitly within the traditional
framework of the comparative method (Section 2.6).
Given that the main aspect of the comparative method is the comparison of

sound sequences, it was important to check whether approaches to sequence
comparison in other scientific disciplines might prove useful for historical lin-
guistics. Therefore, the most important aspects of sequence comparison in
evolutionary biology and computer science were introduced in Chapter 3.
Based on the discussion of formal characteristics of sequences (Section 3.1)
and differences between sequences (Section 3.2), an introduction to the basic
algorithms for pairwise (Section 3.3) and multiple alignment analyses (Section
3.4) was given.
The new methods for sequence comparison in historical linguistics were

introduced in Chapter 4. Since there are some crucial differences between
sound sequences and sequences in evolutionary biology and computer sci-
ence, it was important to develop a new framework for sequence modelling
in historical linguistics that – one the one hand – reflects phonetic sequences
quite closely, while – on the other hand – being easy to compute (Section 4.1).
The solutions proposed in this study consist of a multi-layered representation
of phonetic sequences as sound classes for which specific scoring functions are
defined, and prosodic strings. It is further accompanied by a specific algorithm
that conducts secondary as opposed to primary alignment analyses.
Sound classes serve as a meta-alphabet that reduces phonetic and phono-

logical detail in order to guarantee the comparability of phonetic tokens be-
tween the languages of the world. For this study, three sound-class models
were employed. Two were taken from the literature, and one was compiled
by myself. In contrast to previous approaches that made use of sound classes
in their pure form, specific scoring functions were developed for each of the
three sound-class models. These scoring functions define specific transition
probabilities between sound classes and account for the fact that not all types
of sound change have the same probability to occur during language history.
Prosodic strings allow the linear representation of abstract contextual infor-

mation when dealing with phonetic sequences. They are an alternative to n-
gram approaches that are traditionally used to account for context in automatic
sequence comparison. Since they are more abstract than n-gram approaches,
prosodic strings have the advantage of being less dependent on the data size.
Furthermore, they make it possible to weight the introduction of gaps and the
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matching of segments in alignment analyses in dependence of such factors as
prosodic strength.
In addition to specific syntagmatic characteristics due to prosodic factors,

secondary sequence structures are a second major difference of phonetic se-
quences compared to sequences in biology and computer science. Apart from
sound-class models and prosodic strings, the algorithm for secondary align-
ment that was developed in Section 3.3.3 was therefore also incorporated in
the new method for pairwise and multiple phonetic alignment outlined in Sec-
tion 4.2. In order to evaluate the performance of this new method, a large
benchmark database was created that contains sequence sets that cover many
different language families and many different degrees of divergence. As the
evaluation of the newmethod on this benchmark shows, all new approaches to
sequence modelling significantly increase the accuracy of phonetic alignment
analyses.
Phonetic alignment is a very useful tool in dialectology where due to the rel-

ative closeness of the varieties the problem of cognate detection can be solved
in a rather straightforward way by relying solely on phonetic and semantic
similarity. The more divergent languages become, however, the more diffi-
cult it is to distinguish between words that are phonetically similar as a result
of non-historical or historical factors. Moreover, historically related words
may even have diverged to such a degree that phonetic similarity is almost
completely lost. The algorithm for automatic cognate detection introduced in
Section 4.3 tries to cope with this problem by deriving language-specific scor-
ing schemes from previously conducted alignment analyses. These scoring
schemes come close to the notion of genotypic similarity which is sometimes
used to address the specific kind of similarity that surfaces in form of regular
sound correspondences. As for the evaluation of the new method for phonetic
alignment, a large benchmark database was compiled in order to test the new
method for automatic cognate detection. As the results have shown, the new
method largely outperforms all language-specific methods. Nevertheless, the
new method is not error-free and can only approximate the results which have
been achieved by the traditional methods. One reason for this lies surely in the
rather small samples of data to which the method was applied. Further reasons
are the method’s ignorance for morphological information, the restriction to
semantically aligned words, and the general problem of cognate assignment in
datasets where mostly oblique cognacy can be determined. Despite all these
limitations, the method can surely ease the initial stages of linguistic recon-
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struction, and its results can be taken as a starting point for an in-depth manual
evaluation by trained historical linguists.
All methods that I presented in this study are implemented as part of LingPy

(see SupplementaryMaterial andhttp://lingpy.org), a Python library for quan-
titative endeavours in historical linguistics. The library is freely available and
will hopefully be constantly developed further, since there are still many pos-
sibilities for improvement. Apart from the theoretical work that has been done
to develop the methods, and the practical work that has been done to imple-
ment the algorithms, a great deal of time has been devoted to the compilation
of new benchmark datasets for phonetic alignment and automatic cognate de-
tection that were used to test the methods presented here. I hope that these
datsets will also be of use for other scholars who propose alternative methods
in the future. The goal of this study was not to replace the traditional methods,
but to provide a tool that can be of real help for historical linguists working on
language families that are still less well understood than Indo-European.
My work on LingPy is understood as work in progress. This study reflects

its most recent state, yet there are still many things to be done in order to make
it a really useful tool for historical linguistic research. Among the most im-
portant issues that could not be addressed in the current version of LingPy is
the problem of oblique cognacy. Oblique cognacy occurs in all cases where
only parts of the words of two genetically related languages share a common
history. This is usually the case when specific morphological changes (deriva-
tion, compounding) occured only in parts of a language family. In the in-
troduction to Section 4.2 I illustrated this issue by taking various reflexes of
Proto-Indo-European *séh₂u̯el- ‘sun’ in different branches of Indo-European
as an example. The current version of LingPy is generally unaware of these
specific relations and will necessarily yield alignments and cognate judgments
that are simply wrong compared to what we know about the history of the
Indo-European languages. One way to solve this problem in the future might
be to conduct morphological analyses of the data before comparing the se-
quences. The secondary alignment algorithm presented in Section 3.3.3 may
prove useful in this context, since morphological structures can easily be mod-
elled within the general paradigm of secondary sequence structures. At the
moment, however, it is not clear, whether the datasets used in historical lin-
guistics are sufficient to enable full automatic morphological analyses.
A second big issue that could not be addressed in this study is that of se-

mantic change and and semantic similarity. The current version of LingPy

http://lingpy.org
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requires that the lexical entries are identical regarding their meaning, seman-
tically similar but not identical entries are generally kept distinct. As a result,
only those words are judged to be cognate by the LexStat method that have an
identical meaning, and cognate words having different meanings, such as, e.g.,
German Hund [hʊnt] ‘dog’ ≈ English hound [haʊnd] cannot be detected. In
the literature there are promising proposals to handle semantic similarity when
searching for cognates (Steiner et al. 2011). The drawback of these methods
is that they require large datasets that are rigorously tagged for meaning. Fur-
thermore, large benchmark databases and training sets are required to test and
tune the methods. Since these were not available for this study, it remains
for future research to evaluate to which degree such methods can increase the
accuracy of algorithms for automatic cognate detection.
Despite the difficulties that are inherent in historical linguistic research in

particular and linguistic research in general, I am nevertheless optimistic that
the field of historical linguistics will profit from the quantitative turn and sooner
or later provide us with new and insteresting insights into language history and
the history of languages.
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Supplementary Material

The supplementary material accompanying this study contains the following
resources:

I Phonetic alignment benchmark

II Results for automatic phonetic alignment analyses

III Cognate detection benchmark

IV Results for automatic cognate detection

The supplementary material can be downloaded from:

• https://SequenceComparison.github.io

The website also offers the original source code of the LingPy library (Version
1.0). This is the code which was used for all analyses reported in this study.
The LingPy library is constantly being updated. For the most recent official
release of LingPy, please visit the project website at:

• http://lingpy.org

For recent updates, please visit the source code repository at:

• http://github.com/lingpy/lingpy/
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compression and expansion, see edit
operations

continuation, see sound change types
correspondences

of segments, see segment corre-
spondences

of sounds, see form resemblances

databases
Austronesian Basic Vocabulary

Database, 187
Dyen-Kruskal-Black database,

187
EvoBench, see ACD evaluation,

see alignment evaluation
Global Lexicostatistical Database,

187

Indo-European Lexical Cognacy
Database, 187

Intercontinental Dictionary Se-
ries, 188

Tower of Babel database, 187
deduction, see inference
deletion, see edit operations, see sound

change types
DIALIGN algorithm, see pairwise

alignment
diasystem, 13

Dachsprache, 13
dialect, 13
linguistic variety, 13
sociolect, 13
standard language, 13
variety space, 13

dynamic programming, 78, 137

edit distance
normalized, 194

edit operations, 67–69, 76, 145
compression and expansion, 68
deletion, 67
indel, 67
insertion, 67
substitution, 67
transposition, 68

elision, see sound change types
epenthesis, see sound change types
Ethnologue, 5
etymology, 15
evaluation

of ACD algorithms, see ACD
evaluation

of alignment algorithms, see
alignment evaluation

evaluation measures, see ACD evalu-
ation, see alignment evalua-
tion

evolution
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biological, see biological evolu-
tion

linguistic, see language history

form resemblances, 48–50
genotypic similarity, 49, 121, 122
language-independent, 50
language-specific, 50, 59, 170
phenotypic similarity, 49, 122
regular sound correspondences,

19, 49, 59, 134, 170, 171,
173, 177

structural similarity, 48
substantial similarity, 48
surface resemblances, 59
systematic correspondences, 49
systematic form resemblances, 55

fusion, see sound change types

gap, see segment correspondences
gap penalty, 96, 99

affine gap penalty, 96
gap function, 91, 96
GEP, 96
GOP, 96, 132, 207
linear gap penalty, 96
position-specific, 140
position-specific gap penalty, 98

gene relations
homology, 39–41
orthology, 40
paralogy, 40
xenology, 40, 43

genotypic similarity, see form resem-
blances

High German Consonant Shift, 182
homology, see gene relations

indel, see edit operations
induction, see inference
inference

abduction, 51–57

construct, 51
deduction, 52
factual abduction, 53
historical-fact abduction, 53
induction, 52

insertion, see edit operations, see sound
change types

International Phonetic Alphabet, see
IPA

IPA, 20, 123, 139, 140, 142, 150, 175,
185

language
langue, 14
parole, 14

language change, 25–38
catastrophic view on, 26
Hebrew paradigm, 26
lexical change, see lexical change
semantic change, see semantic

change
sound change, see sound change

language history, 15, 119
language relations, 44–47

ancestor-descendant relation, 44
contact relation, 45
genetic relation, 45
genetic relationship, 39, 134
historical relation, 47

language system, 14
lexicon, 15
phonological system, 15

lateral transfer, 40
lenition, see sound change types
lexical change, 37–38

lexical replacement, 37, 38
word gain, 37, 44
word loss, 37, 44

lexical diffusion, see sound change
mechanisms

lexicostatistics, 15, 38
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LingPy, 6, 121, 125, 128, 131–134,
139, 154–156, 161, 164,
173, 179, 193, 194, 213

linguistic reconstruction, see recon-
struction, 5, 15, 19

linguistic sign, 15–18, 20, 21, 48
arbitrariness, 16
form, see sign form
language of a, 16
meaning, see meaning
signified, see meaning
signifier, see sign form

loss, see sound change types

match, see segment correspondences
complex, see segment correspon-

dences
crossed, see segment correspon-

dences
direct, see segment correspon-

dences
divergent, see segment correspon-

dences
emtpy, see segment correspon-

dences
uniform, see segment correspon-

dences
matching types, see segment corre-

spondences
meaning, 21, 22

reference, 21
reference potential, 21, 34, 35

meaning resemblances, 50–51
semantic identity, 51

mismatch, see segment correspon-
dences

multiple alignment, 6, 74, 99–115,
135, 143

enhancements, 108
Feng-Doolittle algorithm, 105
flat-cluster partitioning, 143
guide tree, 100–105

iterative refinement, 113, 141
multi-type partitioning, 114
orphan partitioning, 143
postprocessing, 108, 113–115
preprocessing, 108–113
profile
profile, 106

progressive alignment, 100, 108,
140

random partitioning, 114
sequence alignment, 105–108
similar-gap-sites partitioning, 143
single-type partitioning, 114
sum-of-pairs, 106
T-Coffee algorithm, 112, 143
tree-dependent partitioning, 114

multiple alignment analysis, see multi-
ple alignment

Needle man-Wunsch algorithm, 155,
156

Needleman-Wunsch algorithm, 77–82,
100

matrix construction, 79
matrix initialization, 79
structural extensions, 82–91
substantial extensions, 91
traceback, 79

Neighbor-Joining algorithm, see cluster
algorithm

Neogrammarian Hypothesis, see sound
change mechanisms

orthology, see gene relations

pairwise alignment, 6, 74, 76–99
algorithm, see Needleman-

Wunsch algorithm
alignment score, 76
diagonal, 87
diagonal alignment, 86–88
DIALIGN algorithm, 87
global alignment, 82
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local alignment, 83–85
optimal, 77
primary alignment, 89
scoring scheme, see scoring

scheme
secondary alignment, 88–91, 140
secondary alignment algorithm,

89, 90
semi-global alignment, 83
Smith-Waterman algorithm, 84

pairwise alignment analysis, see pair-
wise alignment

paralogy, see gene relations
percentage identity, 149
phonetic alignment, 120, 132, 134–

169, 209
ALINE algorithm, 138, 155
ALPHAMALIG algorithm, 138
consistency-based scoring

scheme, 143–144
iterative refinement, 142–143
JAKARTA, 138
multiple phonetic alignment, 137,

140–142
pairwise phonetic alignment, 137,

140
SCA method, 132, 139–147
secondary alignment, 140, 157,

165
swap detection, 144–147

phylogenetic reconstruction, see recon-
struction

problem
sequence alignment problem, 120

problems
cognate detection problem, 170
homologue detection problem,

171
secondary alignment problem, 89
specific cognate detection prob-

lem, 172

specific homologue detection
problem, 172

profile, 106, 109, 114
proof, 51–57

cumulative evidence, 53
evidence, 54–57
individual-identifying evidence,

53
laws, 54–55
of language relations, 51–57
of sign relations, 51–57

reconstruction
phylogenetic reconstruction, 209

regular sound correspondences, see
form resemblances

relations, 39–47
gene relations, see gene relations
language relations, see language

relations
sign relations, see sign relations

resemblances, 47–51
between forms, see form resem-

blances
between meanings, see meaning

resemblances
rhotacism, see sound change types

scoring function, 78, 80, 82, 87, 90–96
attested distribution, 180
attested frequency, 95
BLOSUM, 95, 178
expected distribution, 180
expected frequency, 95
log-odds score, 94
log-odds scores, 181
scoring matrix, 94

scoring scheme, xiii, 76–78, 84, 86,
87, 90–93, 96, 97

con sis ten cy-based, 141
consistency-based, 108
extended library, 112
gap penalty, see gap penalty
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general, 110
library, 109
matrix-based, 108
position-specific, 110, 130, 140
primary library, 112
scoring function, see scoring

function
segment correspondences, 67–69, 73,

76, 77, 137
complex match, 68
crossed match, 68, 144
divergent match, 67, 76, 138
empty match, 67, 70, 76
gap, 76
indel, 77
matching types, 69
mismatch, 67
proper match, 67
uniform match, 67, 76

semantic change, 34, 37
accumulation, 34
reduction, 34

sequence, 62–66
alphabet, 64
characters, 64
definitions, 64–66
modelling of, see sequence mod-

elling
paradigmatic aspects, 120
prefix, 66
primary structure, 88
secondary structure, 88, 133
sequences vs. sets, 64
subsequence, 65
substring, 66
suffix, 66
syntagmatic aspects, 120

sequence comparison, 5, 6, 61, 66–145
alignment, see alignment
correspondence perspective, 67,

68

Damerau-Le ven shtein distance,
146

Damerau-Levenshtein distance,
145

edit distance, 78, 178, 207
edit operations, see edit opera-

tions
edit perspective, 67, 68
Hamming distance, 67, 128, 129
listing, 69–72, 99
models of, 69–72
normalized edit distance, 178,

183
percentage identity, 74, 148, 183
SCA distance, 178, 180, 183
SCA distances, 194

segment correspondences, see
segment correspondences

trace, 69–72, 99
sequence modelling, 119–134

ascending sonority, 131
ASJP model, 125, 128, 155, 157,

158, 160, 164, 166
ASJP scoring function, 128
Chomsky-Halle model, 128
descending sonority, 131
DOLGO model, 123–125, 128,

129, 155, 157, 158, 160,
164, 166

DOLGO scoring function, 128
maximum sonority, 131
paradigmatic aspects, 121–129
prosodic context, 130–133, 140,

157, 161
prosodic string, 131, 140, 176
SCA model, 123, 129, 142, 162,

166, 193
SCA scoring function, 128, 193
scoring function, 129
secondary structure, 133–134
sequence representation, 131
sonority profile, 131
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sound classes, 121–125, 176
syntagmatic aspects, 130–134

sign form, 18–20
algebraic perspective, 19
phonemic perspective, 18
phonetic perspective, 18
structure, 18
substance, 18
substantial perspective, 19

sign relations, 41–43
ancestor-descendant relation, 41,

42, 44
cognacy, 39–42, 134, 172, 184,

188
cognate relation, 41, 45
direct cognate relation, 42
donor-recipient relation, 42, 46
etymological relation, 41, 42
oblique cognacy, 40
oblique cognate relation, 42
oblique etymological relation, 43

singletons, 193
Smith-Waterman algorithm, see pair-

wise alignment
sonority, see sequence modelling
sound change, 26–34, 121

alternation, 34
directionality of, 126
HighGermanConsonant Shift, 20
mechanisms, see sound change

mechanisms
paradigmatic, see sound change

types
patterns, see sound change pat-

terns
procedural aspects, 27
regularity of, 28
substantial aspects, 27
syntagmatic, see sound change

patterns
systematic aspects, 27
type, 31

types, see sound change types
sound change mechanisms, 27–31

lexical diffusion, 29, 31, 54
lexical diffusion, 31

Neogrammarian Hypothesis, 28–
31, 54

Neogrammarian sound change,
31

sporadic sound change, 31
sound change patterns, 27

loss, 27
merger, 27
split, 27

sound change types, 27, 31–34, 126,
138

assimilation, 32, 128
continuation, 32
deletion, 32–34
elision, 33
epenthesis, 33
fusion, 34
insertion, 32, 34
lenition, 20, 31, 126, 128
loss, 33
metathesis, 32, 33, 49
palatalization, 126–128
rhotacism, 31
split, 34
substitution, 32

sound classes, see sequence modelling
split, see sound change types
substitution, see edit operations, see

sound change types
Swadesh list, see word list

The Northwind and the Sun, 11
transposition, see edit operations

UPGMA algorithm, see cluster algo-
rithm

word, see linguistic sign
word list, 22–24, 38, 171
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bilingual, 23
entry of a, 22
item of a, 22
lexicostatistical, 38, 119
monolingual, 23
multilingual, 23, 170–173, 178,

179, 205
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Jīnxīng, 168
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Chinese
Běijīng, 11
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Hǎikǒu, 166
Middle Chinese, 29, 30, 166, 168
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168
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Czech, 33, 142, 146, 169

Danish, 11, 12, 175, 176, 185
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165, 167, 175, 176, 180,
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38, 40–42, 47, 50, 55, 59,
76, 89, 121, 122, 128, 140,
171, 175, 176, 179, 180,
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40, 43, 50, 53, 136, 185
Old Latin, 50
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Albanian
gojë, 207
gërmon, 207
gērmon, 206

Bai
Jīnxīng
ʦɯ³¹pe²¹, 168

Luòběnzhuō
ʥy⁴̃², 168

Ěryuán
pi³¹ʂe⁴², 169

Bulgarian
глава, 33
жълт, 146, 169
ябълка, 131, 133, 142, 145

Chinese
Hǎikǒu

rìtóu 日頭, 166
rì 日, 166

Shuāngfēng
bù 步, 30
bǔ 捕, 30
dào 盜, 30
dǎo 導, 30
páo 刨, 30
páo 跑, 30

Shànghǎi
tàiyáng太陽, 63

Standard Chinese
māma 妈妈, 55
pǐ 皮, 168
rìtóu 日頭, 166
shǒu 首, 37

Yínchuān
rìtóu 日頭, 166
tóu 頭, 166

Choctaw
fani, 135

Cree
il,̥ 135

Czech
jablko, 142
žlutý, 33, 146
žlytý, 169

Danish
kvinde, 175, 176, 185

Dutch
Antwerp
oːɾən, 167

Standard Dutch
hand, 23, 38
hoofd, 23, 38
tand, 23, 38
vrouw, 175, 176, 185
berg, 165
hoofd, 38
kop, 35, 50
tand, 180

Ter Apel
baːɣə, 165

Zudendaal
bɛʀex, 165

English
cup, 16, 17, 35, 41, 42, 50
dale, 182
daughter, 122, 140
digs, 207
fact, 50
form, 50
function, 50
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hand, 23, 38
head, 23, 38
heart, 76
hot, 182
hound, 214
mountain, 55
mount, 121
mouth, 121, 207
other, 121, 207
ship, 20
short, 40
thorn, 182
token, 59
tongue, 59
tooth, 5, 23, 38, 55, 179, 207
town, 182
weak, 59
woman, 175, 176, 185
cup, 34
melon, 34
skull, 35

French
bouche, 207
clé, 49
coupe, 43
creuse, 206, 207
dent, 5
fleur, 49
langue, 49
larme, 49
lune, 49
montagne, 55
plume, 49
soleil, 136

German
Old High German

angust, 33
hant, 32
ioman, 33
snēo, 32
swīn, 41

Standard German
Fakt, 50
Form, 50
Frau, 175, 176, 185
Funktion, 50
Hand, 23, 38
Kopf, 16, 23, 38
Mama, 55
Mund, 207
Zahn, 23, 38, 55
gräbt, 207
Angst, 33
Birne, 34
Dach, 34
Ding, 22
Dorn, 182
Flaschen, 48
Hand, 32
Haupt, 38
Herz, 76
Hund, 214
Kerker, 48
Kopf, 17, 34, 35, 38, 42, 43, 50
Maus, 121
Mund, 121, 207
Obst, 48
Post, 48
Rübe, 34
Sand, 176
Schiff, 20
Schnee, 32
Schwein, 41
Schädel, 34
Sonne, 136
Stein, 22
Tal, 182
Tanten, 48
Tochter, 122, 140
Zahn, 5, 179, 207
Zaun, 182
Zeichen, 59
Zunge, 59
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anderer, 207
anders, 121
gräbt, 206
heiß, 176, 182
jemand, 33
kurz, 40
schlafen, 48
weich, 59

Greek
Modern Greek
θεός, 50, 55

Mycenaean Greek
tʰehós, 50

Old Greek
ζυγόν, 2
πατήρ, 2
φέρω, 2
φράτηρ, 2
ἀγρός, 2

Hawaiian
‘eli, 207
waha, 207

Italian
chiave, 26, 49
dente, 5
fiore, 26, 49
lacrima, 27, 49
lingua, 27, 49
luna, 27, 49
piuma, 26, 49
sole, 136

Koasati
iplu̥, 135

Latin
Classical Latin

ager, 2
fero, 2
frater, 2

iugum, 2
pater, 2
clāvis, 26
curtus, 40
cūpa, 43
cǔrtus, 40
flōs, 26
lacrima, 27
lingua, 26
lūna, 27
plūma, 26
sōlis, 136

Old Latin
deivos, 50

Latvian
gubt, 43

Navajo
’azé’, 207
hahashgééd, 207

Norwegian
kvine, 175, 176, 185

Polish
jabłko, 142
ptak, 42
słońce, 136
żółty, 146, 169

Russian
голова, 23, 34, 38
жёлтый, 33, 146, 169
зуб, 23, 38
птица, 42
рука, 23, 38
солнце, 136
факт, 50
форма, 50
функция, 50
яблоко, 142, 145
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Sanskrit
A:j"a, 2
;
a;pa;txa, 2
Ba:=+�a;ma, 2
Bra;a:txa, 2
yuaga, 2

Spanish
dios, 50, 55

Swedish
kvinna, 175, 176, 185
sol, 136

Turkish
aǧız, 207
kazıyor, 206, 207

West Frisian
Grou
hõəñ, 167
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Chinese
Middle Chinese

*bje¹ 皮, 168
*bo³ 捕, 30
*bo³ 步, 30
*bæw¹ 刨, 30
*bæw¹ 跑, 30
*daw³ 導, 30
*daw³ 盜, 30
*duw¹ 頭, 166
*ȵit⁴ 日, 166

Old Chinese
*m-paj 皮, 168

Latin
Vulgar Latin

*sōlǐculus, 136
Proto-Bai

*be¹, 168, 169
*drɯ³, 168
*sʰɛ⁴, 169

Proto-Germanic
*hurna-, 167
*kuppa-, 34, 42, 43, 50
*skipa-, 20
*sunnōn-, 136
*sōel-, 136
*tanθ, 5

Proto-Indo-European
*(s)sker-, 40
*dent, 5
*séh₂u̯el-, 136, 213

Proto-Romance
*dente, 5

Proto-Slavic
*golvà, 33
*pъt-, 42
*pъtìca, 42
*pъtákъ, 42
*sъ̏lnьce, 136
*žьltъ, 33, 169



A

Language-Specific
Resources

A.1 Phonetic Transcriptions

The following table summarizes the sources of the phonetic transcriptions
which were used in this study.1 In most cases I follow the transcriptions di-
rectly. Only in rare cases, when the transcription was not available, or when
values were obviously miscoded, I corrected the respective transcriptions us-
ing my best knowledge of the respective languages.

Language Author / Ed-
itor

Title Year Abbr.

Bai
Wang Comparison of languages in contact. The

distillation method and the case of Bai
2006 Wang 2006a

Allen Bai Dialect Survey 2007 BDS
Bulgarian Wiktionary 2012 WIKTIONARY

Chinese
Hóu Xiàndài Hànyǔ fāngyán yīnkù 2004 YINKU
Běijīng
Dàxué

Hànyǔ Fāngyīn Zìhuì 1989 ZIHUI

Czech PONS.eu Online-Wörterbuch PONS
Danish Trap-Jensen DDO DDO
Dutch Baayen et al. CELEX 1995 CELEX
English Baayen et al. CELEX 1995 CELEX
French Grundy et al. Concise Oxford Hachette French dictio-

nary
2009 HACHETTE

German Baayen et al. CELEX 1995 CELEX
Greek PONS.eu Online-Wörterbuch PONS
Italian Rubery and

Cicoira
Concise Oxford Paravia Italian dictionary 2009 PARAVIA

1 All references whose abbreviation is shaded gray in the table are available in digital form (as
an online resource or as CD-ROM).
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Latin Wiktionary 2012 WIKTIONARY
Norwegian PONS.eu Online-Wörterbuch PONS
Polish PONS.eu Online-Wörterbuch PONS
Russian The Free Dictionary FREEDICT
Spanish PONS.eu Online-Wörterbuch PONS
Swedish PONS.eu Online-Wörterbuch PONS

A.2 Etymological Sources

The following table summarizes the etymological sources for language families
and individual languages which were used in this study.2

Language Author / Ed-
itor

Title Year Abbr.

Bai Wang Comparison of languages in contact. The
distillation method and the case of Bai

2006

Chinese
Baxter and
Sagart

Baxter-Sagart Old Chinese reconstruc-
tions

2011 OCBS

Schuessler ABC Etymological dictionary of Old Chi-
nese

2006 SCHUESSLER

English Harper Online Etymology Dictionary 2011 OED

German
Kluge Etymologisches Wörterbuch der deutschen

Sprache
2002 KLUGE

Pfeifer Etymologisches Wörterbuch des
Deutschen

1993 PFEIFER

Germanic
Orel A handbook of Germanic etymology 2003 OREL
Kroonen Etymological dictionary of Latin 2013 KROONEN

Indo-Eur.
Wodtko et al. Nomina im Indogermanischen Lexikon 2008 NIL
Rix LIV. Lexikon der Indogermanischen Ver-

ben
2001 LIV

Latin Vaan Etymological dictionary of Latin 2008 VAAN
Romance Meyer-Lübke Romanisches etymologisches Wörterbuch 1911 REW
Russian Vasmer Ėtimologičeskij slovar’ russkogo jazyka 1986 VASMER
Slavic Derksen Etymological dictionary of the Slavic in-

herited lexicon
2008 DERKSEN

2 Middle Chinese readings from OCBS are rendered in IPA with superscript numbers instead
of the capital symbols used in the original.



B

Sequence Modelling

The following three tables illustrate the current state of the scoring functions
for the three default sound-class models of the LingPy library. For reasons of
space, the tone characters were excluded in the tables.

B.1 The DOLGO Scoring function

H J K M N P R S T V W

H 10 0 0 0 0 0 0 0 0 −10 0

J 0 10 0 0 0 0 0 0 0 −10 0

K 0 0 10 0 0 0 0 0 0 −10 0

M 0 0 0 10 0 0 0 0 0 −10 0

N 0 0 0 0 10 0 0 0 0 −10 0

P 0 0 0 0 0 10 0 0 0 −10 0

R 0 0 0 0 0 0 10 0 0 −10 0

S 0 0 0 0 0 0 0 10 0 −10 0

T 0 0 0 0 0 0 0 0 10 −10 0

V −10 −10 −10 −10 −10 −10 −10 −10 −10 5 −10

W 0 0 0 0 0 0 0 0 0 −10 10
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B.2 The SCA Scoring function
A

B
C

D
E

G
H

I
J

K
L

M
N

O
P

R
S

T
U

W
Y

A
5

−
1
0
−
1
0
−
1
0

4
−
1
0
−
1
0

4
−
6
−
1
0
−
1
0
−
1
0
−
1
0

4
−
1
0
−
1
0
−
1
0
−
1
0

4
−
6

4

B
−
1
0

1
0

0
0

−
1
0

0
0

−
1
0

0
0

0
0

0
−
1
0

6
0

0
0

−
1
0

6
−
9

C
−
1
0

0
1
0

2
−
1
0

2
2

−
1
0

0
6

0
0

0
−
1
0

0
0

6
6

−
1
0

0
−
1
0

D
−
1
0

0
2

1
0

−
1
0

0
2

−
1
0

0
0

0
0

0
−
1
0

0
0

6
6

−
1
0

0
−
1
0

E
4

−
1
0
−
1
0
−
1
0

5
−
1
0
−
1
0

4
−
6
−
1
0
−
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Phonetic Alignment

C.1 Covington’s Testset

The following three tables give the bad alignments yielded by the different
sound class models in comparison with the respective gold standard align-
ments on the Covington test set (Covington 1996). Since true gold standard
alignments for the Covington test set were never published, the reference align-
ments were carried out by myself, and compared with the correct alignments
yielded by the ALINE algorithm (Kondrak 2000) which are discussed in Kon-
drak (2002).

Language Word Gold Standard Test Alignment

Spanish ver b - e r - b e r

French voir v w a r v w a r

Spanish decir d e θ i r d e θ i r

French dire d - - i r - - d i r

English full f u l - - - - f - u l - -

Latin plenus p - l eː n u s p l eː n u s

Fox kiinwaawa k iː n w aː w a k iː n w aː w a -

Menomini kenuaq k e n u a ʔ - k e n - u - a ʔ

Old Grk. δίδωμι d i d oː m i d i d oː m i

Latin do - - d oː - - d oː - - - -

Latin ager a g e r - - a g - e r

Sanskrit ajras a ʥ - r a s a ʥ r a s

(a) DOLGO-Model
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Language Word Gold Standard Test Alignment

English tooth t u - θ - - - - - t u θ

Latin dentis d e n t i s d e n t i s

Fox kiinwaawa k iː n w aː w a k iː n w aː w a -

Menomini kenuaq k e n u a ʔ - k e n - u - a ʔ

(b) SCA-Model

Language Word Gold Standard Test Alignment

English this ð i s - - ð i - - s

German dieses d iː z e s d iː z e s

English tooth t u - θ - - - - - t u θ

Latin dentis d e n t i s d e n t i s

(c) ASJP-Model

C.2 Language-Specific Pairwise Alignments

The following table gives the distances scores and the alignments along with
the similarity scores between all segments for German-English word pairs
taken from Kessler (2001) as they are produced by the LexStat when calcu-
lating global alignments.1 Columns that are shaded in gray are beyond the
default threshold of 0.55, and are therefore judged to be cognate by the algo-
rithm. Items which are double-underlined indicate that the respective words
are etymologically related, following the cognate assignments of the Kessler
(2001). Words whose orthographical representation is given in bold font are
borrowings.

No. Item Score Alignment

1 “all” 0.07
Eng. all ɔ l
Ger. alle a l

1.0 7.0

2 “and” 0.57
Eng. and a n d
Ger. und u n t

0.0 1.0 5.0

3 “animal” 1.28
Eng. animal a n ə m ə l
Ger. Tier - - - t iː r

-1.0 -3.0 -1.0 -3.0 -1.0 -1.0

1 Normally, LexStat calculates semi-global alignments, but since in semi-global alignment
analyses long parts of very diverse sequences are left unaligned, I used the global mode
instead. Otherwise, many of the specific segment similarities would not be visible.
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4 “ashes” 0.40
Eng. ashes a ʃ -
Ger. Asche a ʃ ə

1.0 7.0 -0.0

5 “at” 1.16
Eng. at a t -
Ger. an a - n

1.0 -2.0 -1.0

6 “back” 1.16
Eng. back b a k - -
Ger. Rücken r y k ə n

-3.0 0.0 1.0 -1.0 -1.0

7 “bad” 0.85
Eng. bad - b a - d
Ger. schlecht ʃ l e x t

-3.0 -3.0 1.0 1.0 5.0

8 “bark” 1.12
Eng. bark b ɑ r - - k -
Ger. Rinde - - r i n d ə

-3.0 -1.0 1.0 1.0 -1.0 -3.0 -0.0

9 “because” 1.22
Eng. because b ə k ɔ z
Ger. weil v ai - - l

-1.0 0.0 0.0 -3.0 -3.0

10 “belly” 0.83
Eng. belly b ɛ l i
Ger. Bauch b au x -

7.0 0.0 -3.0 -3.0

11 “big” 1.15
Eng. big b ɪ g - - -
Ger. groß - - g r oː s

-3.0 -0.0 1.0 -2.0 -3.0 -0.0

12 “bird” 1.11
Eng. bird b ə - - r d
Ger. Vogel f oː g ə l -

-1.0 0.0 1.0 -1.0 -1.0 -2.0

13 “bite” 0.35
Eng. bites b ai t
Ger. beißt b ai s

7.0 1.0 1.0

14 “black” 1.21
Eng. black b l - a - k
Ger. schwarz - ʃ v a r ʦ

-3.0 -3.0 0.0 1.0 -3.0 -1.0

15 “blood” 0.02
Eng. blood b l ə d
Ger. Blut b l uː t

7.0 7.0 1.0 5.0

16 “blow” 0.19
Eng. blows b l o -
Ger. bläst b l aː z

7.0 7.0 1.0 -0.0

17 “bone” 0.93
Eng. bone - b o - - n
Ger. Knochen k n o x ə n

-3.0 -3.0 1.0 -3.0 -1.0 6.0

18 “breast” 0.28
Eng. breast b r ɛ s t
Ger. Brust b r u s t

7.0 8.0 1.0 1.0 5.0

19 “breathe” 1.27
Eng. breathes b r i ð -
Ger. atmet - - aː t m

-3.0 -3.0 -0.0 -1.0 -3.0

20 “burn” 0.35
Eng. burns b ə r - n
Ger. brennt b - r e n

7.0 -1.0 1.0 0.0 6.0

21 “child” 0.87
Eng. child ʧ - - ai l d
Ger. Kind k i n - - d

-1.0 1.0 -1.0 -1.0 -3.0 5.0

22 “claw” 0.11
Eng. claw k l ɔ -
Ger. Klaue k l au ə

7.0 7.0 1.0 -0.0

23 “cloud” 0.96
Eng. cloud - - k l - au d
Ger. Wolke v o - l k ə -

-3.0 -3.0 -3.0 6.0 1.0 1.0 -2.0

24 “cold” 0.01
Eng. cold k o l d
Ger. kalt k a l t

7.0 1.0 8.0 5.0

25 “come” 0.07
Eng. comes k ə m
Ger. kommt k o m

7.0 0.0 8.0

26 “count” 1.20
Eng. counts k au n t
Ger. zählt ʦ eː l -

-1.0 1.0 -3.0 -2.0

27 “cut” 0.90
Eng. cuts - k ə t
Ger. schneidet ʃ n ai d

-3.0 -3.0 0.0 5.0

28 “day” 0.46
Eng. day d e -
Ger. Tag t aː g

5.0 1.0 0.0
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29 “die” 1.22
Eng. dies - d ai - -
Ger. stirbt ʃ t e r b

-3.0 1.0 -1.0 -3.0 -3.0

30 “dig” 1.20
Eng. digs d ɪ g - - -
Ger. gräbt - - g r aː b

-3.0 -0.0 1.0 -2.0 -3.0 -3.0

31 “dirty” 1.26
Eng. dirty - d ə r t i -
Ger. schmutzig ʃ m u - ʦ i x

-3.0 -3.0 1.0 -3.0 -1.0 -1.0 -3.0

32 “dog” 1.20
Eng. dog - - - d ɑ g
Ger. Hund h u n d - -

-3.0 -3.0 -1.0 1.0 -1.0 -3.0

33 “drink” 0.09
Eng. drinks d r ɪ ŋ k
Ger. trinkt t r i ŋ k

5.0 8.0 1.0 7.0 4.0

34 “dry” 0.46
Eng. dry d r ai - - -
Ger. trocken t r o k ə n

5.0 8.0 -1.0 1.0 -1.0 -1.0

35 “dull” 1.18
Eng. dull - d ə l -
Ger. stumpf ʃ t u m p͡f

-3.0 1.0 1.0 -3.0 -3.0

36 “dust” 1.14
Eng. dust d ə s t - -
Ger. Staub - - ʃ t au b

-3.0 -1.0 1.0 1.0 -3.0 -3.0

37 “ear” 0.10
Eng. ear ɪ r
Ger. Ohr oː r

0.0 7.0

38 “earth” 0.55
Eng. earth ə r θ -
Ger. Erde eː r d ə

1.0 8.0 -1.0 -0.0

39 “eat” 0.82
Eng. eats i - t
Ger. ißt - e s

-0.0 0.0 1.0

40 “egg” 1.40
Eng. egg ɛ g
Ger. Ei ai -

0.0 -3.0

41 “eye” 0.77
Eng. eye ai - -
Ger. Auge au g ə

1.0 1.0 -0.0

42 “fall” 0.00
Eng. falls f ɔ l
Ger. fällt f a l

6.0 1.0 7.0

43 “far” 0.40
Eng. far f ɑ r -
Ger. fern f e r n

6.0 1.0 5.0 -1.0

44 “father” 0.01
Eng. father f ɑ ð ə r
Ger. Vater f aː t ə r

6.0 1.0 7.0 2.0 7.0

45 “feather” 0.03
Eng. feather f ɛ ð ə r
Ger. Feder f eː d ə r

6.0 1.0 7.0 2.0 7.0

46 “few” 0.86
Eng. few f - j u -
Ger. wenige v eː n i g

6.0 0.0 -3.0 -1.0 0.0

47 “fight” 1.21
Eng. fights - - - f ai t
Ger. kämpft k a m p͡f - -

-3.0 -3.0 -3.0 1.0 -1.0 -2.0

48 “fire” 0.32
Eng. fire f ai ə r
Ger. Feuer f oi ə r

6.0 -1.0 -1.0 7.0

49 “fish” 0.03
Eng. fish f ɪ ʃ
Ger. Fisch f i ʃ

6.0 1.0 6.0

50 “five” 0.61
Eng. five f ai - v
Ger. fünf f y n f

6.0 0.0 -1.0 1.0

51 “flow” 0.17
Eng. flows f l o -
Ger. fließt f l iː s

6.0 7.0 1.0 -0.0

52 “flower” 0.91
Eng. flower f l au ə r
Ger. Blume b l uː - m

-1.0 7.0 0.0 -3.0 -3.0

53 “fly” 0.17
Eng. flies f l ai -
Ger. fliegt f l iː g

6.0 7.0 2.0 0.0
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54 “fog” 1.24
Eng. fog - - f ɑ g
Ger. Nebel n eː b ə l

-3.0 0.0 -1.0 -1.0 -3.0

55 “foot” 0.34
Eng. foot f ʊ t
Ger. Fuß f uː s

6.0 2.0 1.0

56 “four” 0.11
Eng. four f ɔ r
Ger. vier f iː r

6.0 -1.0 7.0

57 “freeze” 0.39
Eng. freezes f r i z - -
Ger. friert f r - - iː r

6.0 8.0 -0.0 -3.0 1.0 -3.0

58 “fruit” 0.11
Eng. fruit f r u - t
Ger. Frucht f r u x t

6.0 8.0 2.0 1.0 5.0

59 “full” 0.03
Eng. full f ʊ l
Ger. voll f o l

6.0 1.0 7.0

60 “give” 0.61
Eng. gives g - ɪ v
Ger. gibt g eː - b

7.0 0.0 -0.0 -1.0

61 “go” 0.06
Eng. goes g o
Ger. geht g eː

7.0 2.0

62 “good” 0.06
Eng. good g ʊ d
Ger. gut g uː t

7.0 2.0 5.0

63 “grass” 0.00
Eng. grass g r a s
Ger. Gras g r aː z

7.0 8.0 1.0 6.0

64 “grease” 1.31
Eng. grease g r i s - -
Ger. Fett - - - f e t

-3.0 -3.0 -0.0 -3.0 0.0 -3.0

65 “green” 0.00
Eng. green g r i n
Ger. grün g r yː n

7.0 8.0 1.0 6.0

66 “guts” 1.28
Eng. guts g ə t - - -
Ger. Därme - - d a r m

-3.0 -1.0 1.0 -3.0 -3.0 -3.0

67 “hair” 0.00
Eng. hair h ɛ r
Ger. Haare h aː r

7.0 0.0 7.0

68 “hand” 0.03
Eng. hand h a n d
Ger. Hand h a n d

7.0 1.0 7.0 5.0

69 “he” 1.43
Eng. he h i -
Ger. er - eː r

-3.0 -1.0 -3.0

70 “head” 1.39
Eng. head h ɛ d
Ger. Kopf k o p͡f

-3.0 0.0 -3.0

71 “hear” 0.01
Eng. hears h ɪ r
Ger. hört h øː r

7.0 0.0 7.0

72 “heart” 0.37
Eng. heart h ɑ r t - -
Ger. Herz h e r ʦ ə n

7.0 1.0 7.0 4.0 -1.0 -1.0

73 “heavy” 1.14
Eng. heavy h ɛ v i -
Ger. schwer ʃ - v eː r

-1.0 -1.0 1.0 -1.0 -3.0

74 “here” 0.00
Eng. here h ɪ r
Ger. hier h iː r

7.0 1.0 7.0

75 “hit” 1.18
Eng. hits h - ɪ t
Ger. schlägt ʃ l aː g

-1.0 -3.0 -0.0 0.0

76 “hold” 0.00
Eng. holds h o l d
Ger. hält h a l t

7.0 1.0 8.0 5.0

77 “horn” 0.00
Eng. horn h ɔ r n
Ger. Horn h o r n

7.0 1.0 7.0 6.0

78 “hot” 0.33
Eng. hot h ɑ t
Ger. heiß h ai s

7.0 1.0 1.0



266 C Phonetic Alignment

79 “human” 0.79
Eng. human h j u m - - - ə n
Ger. Mensch - - - m e n ʃ ə n

-3.
0

-3.
0

2.0 1.0 0.0 -1.
0

-3.
0

2.0 6.0

80 “hunt” 1.27
Eng. hunts h ə n t
Ger. jagt j aː - g

-3.0 0.0 -3.0 0.0

81 “husband” 1.27
Eng. husband h ə z b ə n d -
Ger. Gatte - - g - a - t ə

-3.0 -1.0 -2.0 -3.0 -1.0 -3.0 1.0 -0.0

82 “I” 1.09
Eng. I ai - -
Ger. ich - i x

-1.0 1.0 -3.0

83 “ice” 0.13
Eng. ice ai s
Ger. Eis ai s

1.0 6.0

84 “if” 0.93
Eng. if ɪ f - -
Ger. wenn - v e n

-0.0 1.0 0.0 -1.0

85 “in” 0.05
Eng. in ɪ n
Ger. in i n

1.0 6.0

86 “kill” 1.37
Eng. kills k ɪ l
Ger. tötet t øː t

-3.0 0.0 -3.0

87 “knee” 1.06
Eng. knee - n i
Ger. Knie k n iː

-3.0 1.0 -1.0

88 “knife” 1.30
Eng. knife n ai f - -
Ger. Messer m e s ə r

-3.0 1.0 -3.0 -1.0 -3.0

89 “know” 1.18
Eng. knows n o -
Ger. weiß v i s

-3.0 1.0 -0.0

90 “lake” 1.41
Eng. lake l e k - -
Ger. See - - - z eː

-3.0 -1.0 -3.0 -3.0 -0.0

91 “laugh” 0.61
Eng. laughs l a f
Ger. lacht l a x

9.0 1.0 -3.0

92 “leaf” 1.19
Eng. leaf - l i f
Ger. Blatt b l a t

-3.0 1.0 -0.0 -3.0

93 “left” 0.67
Eng. left l ɛ f - - t
Ger. link l - - i ŋ k

9.0 -1.0 -3.0 1.0 -1.0 0.0

94 “lie” 0.24
Eng. lies l ai -
Ger. liegt l iː g

9.0 2.0 0.0

95 “liver” 0.33
Eng. liver l ɪ - v ə r
Ger. Leber l - eː b ə r

9.0 -0.0 0.0 -1.0 2.0 7.0

96 “long” 0.00
Eng. long l ɔ ŋ
Ger. lang l a ŋ

9.0 1.0 6.0

97 “louse” 0.00
Eng. louse l au s
Ger. Laus l au z

9.0 1.0 6.0

98 “man” 0.00
Eng. man m a n
Ger. Mann m a n

8.0 1.0 6.0

99 “many” 1.35
Eng. many m ɛ n - - i
Ger. viele - - f iː l -

-3.0 -1.0 -3.0 1.0 -3.0 -3.0

100 “meat” 1.15
Eng. meat - m i t
Ger. Fleisch f l ai ʃ

-3.0 -3.0 -0.0 1.0

101 “moon” 0.56
Eng. moon m u n -
Ger. Mond m oː n d

8.0 1.0 1.0 -3.0

102 “mother” 0.02
Eng. mother m ə ð ə r
Ger. Mutter m u t ə r

8.0 1.0 7.0 2.0 7.0

103 “mountain” 1.28
Eng. mountain m au n t ə n -
Ger. Berg - - - b e r g

-3.0 -1.0 -3.0 -3.0 -1.0 -3.0 0.0
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104 “mouth” 0.36
Eng. mouth m au - θ
Ger. Mund m u n d

8.0 0.0 -1.0 4.0

105 “name” 0.65
Eng. name n e m - -
Ger. Name n aː m ə n

8.0 0.0 1.0 -1.0 -1.0

106 “narrow” 1.16
Eng. narrow - n a r o
Ger. eng e ŋ - - -

0.0 1.0 -1.0 -3.0 -3.0

107 “near” 0.61
Eng. near n ɪ r
Ger. nah n aː -

8.0 -1.0 -3.0

108 “neck” 1.28
Eng. neck n ɛ k -
Ger. Hals h a l z

-3.0 0.0 -3.0 -0.0

109 “new” 0.36
Eng. new n u
Ger. neu n oi

8.0 -1.0

110 “night” 0.20
Eng. night n ai - t
Ger. Nacht n a x t

8.0 1.0 1.0 5.0

111 “nose” 0.19
Eng. nose n o z -
Ger. Nase n aː z ə

8.0 1.0 7.0 -0.0

112 “not” 0.27
Eng. not n ɑ - - t
Ger. nicht n - i x t

8.0 -1.0 1.0 1.0 5.0

113 “now” 0.47
Eng. now n au -
Ger. nun n uː n

8.0 -1.0 -1.0

114 “old” 0.01
Eng. old o l d
Ger. alt a l t

1.0 7.0 5.0

115 “one” 0.49
Eng. one w ə n
Ger. eins - ai n

-3.0 0.0 6.0

116 “other” 0.40
Eng. other ə - ð ə r
Ger. anderer a n d ə r

0.0 -3.0 7.0 1.0 7.0

117 “path” 0.69
Eng. path p a θ
Ger. Pfad p͡f aː d

-1.0 1.0 4.0

118 “play” 1.04
Eng. plays - p - l e
Ger. spielt ʃ p iː l -

-3.0 1.0 1.0 1.0 -3.0

119 “pull” 1.37
Eng. pulls p ʊ l -
Ger. zieht ʦ - - iː

-3.0 2.0 -3.0 -3.0

120 “push” 0.77
Eng. pushes - p ʊ ʃ
Ger. stößt ʃ t oː s

-3.0 -3.0 1.0 6.0

121 “rain” 0.58
Eng. rain r e - - n
Ger. Regen r eː g ə n

1.0 1.0 1.0 -1.0 6.0

122 “red” 0.58
Eng. red r ɛ d
Ger. rot r oː t

1.0 0.0 5.0

123 “right” 0.60
Eng. right r ai - t
Ger. recht r e x t

1.0 1.0 1.0 5.0

124 “river” 1.23
Eng. river r ɪ v - ə r -
Ger. Fluss - - f l u - s

-3.0 -0.0 1.0 -3.0 -1.0 -3.0 -0.0

125 “root” 0.97
Eng. root - - r u t - -
Ger. Wurzel v u r - ʦ ə l

-3.0 -3.0 1.0 2.0 4.0 -1.0 -3.0

126 “rotten” 1.38
Eng. rotten r ɑ t ə n
Ger. faul - - f au l

-3.0 -1.0 -3.0 -1.0 -3.0

127 “round” 0.39
Eng. round r au n d
Ger. rund r u n d

1.0 0.0 7.0 5.0

128 “rub” 0.87
Eng. rubs r ə b
Ger. reibt r ai b

1.0 0.0 1.0
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129 “salt” 0.32
Eng. salt s ɔ l t
Ger. Salz z a l ʦ

5.0 1.0 8.0 -1.0

130 “sand” 0.07
Eng. sand s a n d
Ger. Sand z a n d

5.0 1.0 7.0 5.0

131 “say” 0.41
Eng. says s e -
Ger. sagt z aː g

5.0 1.0 0.0

132 “scratch” 0.63
Eng. scratches s k r a ʧ
Ger. kratzt k - r a ʦ

0.0 0.0 8.0 1.0 1.0

133 “sea” 0.41
Eng. sea s i
Ger. See z eː

5.0 -1.0

134 “see” 0.41
Eng. sees s i
Ger. sieht z eː

5.0 -1.0

135 “seed” 0.91
Eng. seed s i d - -
Ger. Same z aː m ə n

5.0 -0.0 -3.0 -1.0 -1.0

136 “sew” 1.16
Eng. sews s o
Ger. näht n eː

-3.0 2.0

137 “sharp” 0.43
Eng. sharp ʃ a r p
Ger. scharf ʃ a r f

5.0 1.0 7.0 -1.0

138 “short” 0.72
Eng. short ʃ ɔ r t
Ger. kurz k u r ʦ

0.0 -1.0 7.0 -1.0

139 “sing” 0.03
Eng. sings s ɪ ŋ
Ger. singt z i ŋ

5.0 1.0 6.0

140 “sit” 0.56
Eng. sits s ɪ t
Ger. sitzt z i ʦ

5.0 1.0 -1.0

141 “skin” 1.03
Eng. skin s k i n
Ger. Haut h - au t

3.0 0.0 -0.0 -3.0

142 “sky” 1.01
Eng. sky s k - - ai -
Ger. Himmel h - i m ə l

3.0 0.0 1.0 -3.0 -1.0 -3.0

143 “sleep” 0.44
Eng. sleeps s l i p
Ger. schläft ʃ l aː f

5.0 7.0 -0.0 -1.0

144 “small” 0.91
Eng. small s m ɔ l -
Ger. klein k l ai - n

0.0 3.0 1.0 -3.0 -1.0

145 “smell” 1.24
Eng. smells - - s m e l
Ger. riecht r iː x - - -

-3.0 1.0 -1.0 -3.0 -1.0 -3.0

146 “smoke” 1.14
Eng. smoke s m o k
Ger. Rauch - r au x

-3.0 -3.0 1.0 -1.0

147 “smooth” 0.66
Eng. smooth s m u ð
Ger. glatt g l a t

0.0 3.0 0.0 4.0

148 “snake” 0.95
Eng. snake s - - n e k -
Ger. Schlange ʃ l a ŋ - - ə

5.0 -3.0 -3.0 1.0 -1.0 -3.0 -0.0

149 “snow” 0.49
Eng. snow s n o
Ger. Schnee ʃ n eː

5.0 1.0 2.0

150 “some” 1.12
Eng. some s ə m - -
Ger. einige - ai n i g

-3.0 0.0 -3.0 1.0 0.0

151 “spit” 0.29
Eng. spits s p ɪ t
Ger. spuckt ʃ p u k

5.0 9.0 1.0 0.0

152 “split” 0.20
Eng. splits s p - l ɪi t
Ger. spaltet ʃ p a l - t

5.0 9.0 -3.0 6.0 -0.0 5.0

153 “squeeze” 1.23
Eng. squeezes - s k w i - z
Ger. drückt d r - - y k -

-3.0 -3.0 0.0 -3.0 1.0 0.0 -3.0
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154 “stab” 0.58
Eng. stabs s t a b
Ger. sticht ʃ t e x

5.0 6.0 1.0 -3.0

155 “stand” 0.53
Eng. stands s t a n d
Ger. steht ʃ t eː - -

5.0 6.0 1.0 -3.0 -2.0

156 “star” 0.34
Eng. star s t ɑ r -
Ger. Stern ʃ t e r n

5.0 6.0 1.0 5.0 -1.0

157 “stick” 0.20
Eng. stick s t ɪ k
Ger. Stock ʃ t o k

5.0 6.0 0.0 4.0

158 “stone” 0.05
Eng. stone s t o n
Ger. Stein ʃ t ai n

5.0 6.0 1.0 6.0

159 “straight” 0.77
Eng. straight s t - r e t -
Ger. gerade g - ə r aː d ə

0.0 -3.0 0.0 8.0 -1.0 1.0 -0.0

160 “suck” 0.25
Eng. sucks s ə k
Ger. saugt z au g

5.0 0.0 4.0

161 “sun” 0.59
Eng. sun s ə n -
Ger. Sonne z o n ə

5.0 0.0 1.0 -0.0

162 “swell” 0.45
Eng. swells s w ɛ l
Ger. schwillt ʃ v e l

5.0 -1.0 1.0 7.0

163 “swim” 0.40
Eng. swims s w ɪ m
Ger. schwimmt ʃ v i m

5.0 -1.0 1.0 8.0

164 “tail” 1.21
Eng. tail - - - - t e l
Ger. Schwanz ʃ v a n ʦ - -

-3.0 0.0 -3.0 -1.0 -1.0 -1.0 -3.0

165 “that” 0.45
Eng. that ð a t
Ger. das d a s

6.0 1.0 1.0

166 “there” 0.75
Eng. there ð ɛ r
Ger. da d aː -

6.0 -1.0 -3.0

167 “they” 1.13
Eng. they ð e
Ger. sie z iː

-1.0 -1.0

168 “thick” 0.25
Eng. thick θ ɪ k
Ger. dick d i k

6.0 1.0 4.0

169 “thin” 0.14
Eng. thin θ ɪ n
Ger. dünn d y n

6.0 1.0 6.0

170 “think” 0.22
Eng. thinks θ ɪ - ŋ k
Ger. denkt d - e ŋ k

6.0 -0.0 0.0 7.0 4.0

171 “this” 0.14
Eng. this ð ɪ s
Ger. dieses d iː z

6.0 1.0 6.0

172 “thou” 1.31
Eng. you j u
Ger. du d uː

-3.0 -1.0

173 “three” 0.22
Eng. three θ r i
Ger. drei d r ai

6.0 8.0 -1.0

174 “throw” 1.33
Eng. throws θ - r o -
Ger. wirft v e r - f

-3.0 0.0 1.0 -3.0 -3.0

175 “tie” 1.15
Eng. ties - - - t ai
Ger. bindet b i n d -

-3.0 1.0 -1.0 1.0 -3.0

176 “tongue” 0.63
Eng. tongue t ə ŋ -
Ger. Zunge ʦ u ŋ ə

5.0 1.0 1.0 -0.0

177 “tooth” 0.82
Eng. tooth t u θ - -
Ger. Zahn ʦ - - aː n

5.0 2.0 -3.0 -3.0 -1.0

178 “tree” 1.39
Eng. tree t r i -
Ger. Baum - b au m

-3.0 -3.0 -1.0 -3.0
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179 “true” 1.40
Eng. true - - t r u
Ger. wahr v aː - r -

-3.0 -3.0 -3.0 1.0 -3.0

180 “two” 0.68
Eng. two t - u
Ger. zwei ʦ v ai

5.0 0.0 -1.0

181 “vomit” 1.11
Eng. vomits - - v ɑ m ə t
Ger. erbricht e r b - r e x

0.0 -2.0 -1.0 -1.0 2.0 -1.0 -3.0

182 “wash” 0.22
Eng. washes w ɑ ʃ
Ger. wäscht v a ʃ

4.0 1.0 6.0

183 “water” 0.50
Eng. water w ɑ t ə r
Ger. Wasser v a s ə r

4.0 1.0 -2.0 2.0 7.0

184 “we” 0.86
Eng. we w - - i
Ger. wir v iː r -

4.0 1.0 -3.0 -3.0

185 “wet” 1.12
Eng. wet w ɛ t
Ger. nass n a s

-3.0 0.0 1.0

186 “what” 0.74
Eng. what w ɑ t
Ger. was v - -

4.0 -1.0 -2.0

187 “white” 0.55
Eng. white w ai t
Ger. weiß v ai s

4.0 1.0 1.0

188 “who” 1.43
Eng. who h u
Ger. wer v eː

-3.0 -1.0

189 “wide” 0.25
Eng. wide w ai d
Ger. weit v ai t

4.0 1.0 5.0

190 “wife” 1.36
Eng. wife w ai f - -
Ger. Gattin g a t i n

-3.0 1.0 -3.0 -3.0 -1.0

191 “wind” 0.16
Eng. wind w ɪ n d
Ger. Wind v i n d

4.0 1.0 7.0 5.0

192 “wing” 1.01
Eng. wing w - ɪ - - ŋ
Ger. Flügel f l yː g ə l

4.0 -3.0 1.0 1.0 -1.0 -3.0

193 “wipe” 0.80
Eng. wipes w ai p - -
Ger. wischt v - - i ʃ

4.0 -1.0 -3.0 1.0 -0.0

194 “with” 0.86
Eng. with w ɪ θ
Ger. mit m i t

-3.0 1.0 4.0

195 “woman” 0.77
Eng. woman w ʊ m ə n
Ger. Frau f - r au -

4.0 2.0 2.0 -1.0 -3.0

196 “woods” 0.60
Eng. woods w - - ʊ d
Ger. Wald v a l - d

4.0 -3.0 -3.0 2.0 5.0

197 “worm” 0.14
Eng. worm w ə r m
Ger. Wurm v u r m

4.0 1.0 7.0 8.0

198 “year” 0.53
Eng. year j ɪ r
Ger. Jahr j aː r

1.0 -0.0 7.0

199 “yellow” 1.08
Eng. yellow j ɛ l o -
Ger. gelb g e l - b

-3.0 1.0 6.0 -3.0 -3.0

200 “you” 1.22
Eng. you j u - -
Ger. ihr - - iː r

-3.0 -3.0 1.0 -3.0
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Cognate Detection

D.1 Comparison of Phonetic Distances

The following word lists illustrate the differences in the distance scores re-
sulting from the different methods discussed in Section 4.3.3 for cognates be-
tween German and English. Cells which are shaded in gray indicate, where
these methods fail to detect cognacy when applying the standard thresholds
which have been used in the studies for automatic cognate detection. The
list was created by randomly selecting 100 cognate pairs from a larger dataset
of 658 English-German cognate pairs taken from Kluge (KLUGE). The IPA
transcriptions were added by the author of this study.

No.
German English Distance Scores

Orth. IPA Orth. IPA PID NED SCA LxS

1 saufen zaufən sup sʌp 1.00 1.00 0.61 0.25
2 Miete miːtə meed miːd 0.50 0.50 0.18 0.17
3 gebaeren ɡəbɛːrən bear bɛər 0.71 0.71 0.81 0.80
4 Zunge ʦʊŋə tongue tʌŋ 0.75 0.75 0.37 0.34
5 Seife zaifə soap səʊp 1.00 1.00 0.36 0.23
6 Volk fɔlk folk fəʊk 0.50 0.50 0.32 0.49
7 Bube buːbə boy bɔɪ 0.75 0.75 0.75 1.30
8 leben leːbən live laɪv 0.80 0.80 0.61 0.28
9 Schulter ʃʊltər shoulder ʃəʊldər 0.33 0.33 0.00 0.13
10 Nacht naxt night naɪt 0.50 0.50 0.29 0.23
11 Hilfe hɪlfə help hɛlp 0.60 0.60 0.25 0.23
12 Storch ʃtɔrx stork stɔːk 0.80 0.80 0.30 0.26
13 Knabe knaːbə nave neɪv 0.80 0.80 0.64 0.50
14 gehen ɡeːən go ɡəʊ 0.67 0.67 0.41 0.24
15 Tod toːt death dɛθ 1.00 1.00 0.14 0.33
16 Bier biːr beer bɪər 0.33 0.33 0.00 0.06
17 Heu hɔy hay heɪ 0.50 0.50 0.00 0.42
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18 bluehen blyːən blow bləʊ 0.50 0.50 0.28 0.29
19 lispeln lɪspəln lisp lɪsp 0.43 0.43 0.46 0.29
20 Sorge zɔrɡə sorrow sɔrəʊ 0.60 0.60 0.31 0.36
21 Knopf knɔpf knob nɔb 0.60 0.60 0.53 0.57
22 Distel dɪstəl thistle θɪsl ̣ 0.67 0.67 0.49 0.58
23 Wagen vaːɡən wain weɪn 0.80 0.80 0.66 0.68
24 leisten laistən last lɑːst 0.50 0.50 0.33 0.16
25 Lerche lɛrxə lark lɑːk 0.80 0.80 0.63 0.33
26 Segel zeːɡəl sail seɪl 0.80 0.80 0.50 0.20
27 Krueppel krʏpəl cripple krɪpl ̣ 0.50 0.50 0.14 0.13
28 Gewicht ɡəvɪxt weight weɪt 0.83 0.83 0.83 0.76
29 Wasser vasər water wɔːtər 0.60 0.60 0.27 0.42
30 Griff ɡrɪf grip ɡrɪp 0.25 0.25 0.05 0.18
31 schlagen ʃlaːɡən slay sleɪ 0.83 0.83 0.70 0.53
32 Galle ɡalə gall ɡɔːl 0.50 0.50 0.22 0.22
33 sehen zeːən see siː 1.00 1.00 0.46 0.46
34 Grund ɡrʊnt ground ɡraʊnd 0.40 0.40 0.00 0.14
35 speien ʃpaiən spew spjuː 0.80 0.75 0.60 0.33
36 waten vaːtən wade weɪd 1.00 1.00 0.62 0.35
37 hundert hʊndərt hundred hʌndrəd 0.50 0.57 0.26 0.26
38 Schwarte ʃvartə sward swɔːd 1.00 1.00 0.47 0.33
39 Leid lait loath ləʊθ 0.67 0.67 0.14 0.26
40 Kinn kɪn chin ʧɪn 0.33 0.33 0.10 0.32
41 Span ʃpaːn spoon spuːn 0.50 0.50 0.00 0.21
42 schleissen ʃlaisən slit slɪt 0.83 0.83 0.55 0.30
43 Zipfel ʦɪpfəl tip tɪp 0.67 0.67 0.76 0.58
44 Fisch fɪʃ fish fɪʃ 0.00 0.00 0.00 0.11
45 Hut huːt hood hʊd 0.67 0.67 0.00 0.11
46 meinen mainən mean miːn 0.60 0.60 0.49 0.25
47 Tau tau dew djuː 1.00 1.00 0.62 0.53
48 Knie kniː knee niː 0.33 0.33 0.48 0.50
49 Bug buːk bough baʊ 0.67 0.67 0.46 0.54
50 Nessel nɛsəl nettle nɛtl ̣ 0.60 0.60 0.40 0.29
51 Zwist ʦvɪst twist twɪst 0.40 0.40 0.12 0.19
52 Lamm lam lamb læm 0.33 0.33 0.00 0.07
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53 sacken zakən sag sæɡ 1.00 1.00 0.49 0.23
54 Regen reːɡən rain reɪn 0.60 0.60 0.50 0.24
55 Winter vɪntər winter wɪntər 0.17 0.17 0.01 0.15
56 Lauch laux leek liːk 0.67 0.67 0.14 0.25
57 hacken hakən hack hæk 0.60 0.60 0.49 0.21
58 reiten raitən ride raɪd 0.80 0.80 0.46 0.22
59 Foehre fɶːrə fir fɜːr 0.50 0.50 0.22 0.27
60 Zimmer ʦɪmər timber tɪmbər 0.33 0.33 0.32 0.59
61 kommen kɔmən come kʌm 0.60 0.60 0.49 0.23
62 Weizen vaiʦən wheat wiːt 1.00 1.00 0.75 0.45
63 Borste bɔrstə bristle brɪsl ̣ 0.57 0.67 0.74 0.82
64 Adel aːdəl addle ædl ̣ 0.75 0.75 0.33 0.26
65 Weib vaip wife waɪf 1.00 1.00 0.27 0.29
66 Seele zeːlə soul səʊl 0.75 0.75 0.18 0.17
67 singen zɪŋən sing sɪŋ 0.60 0.60 0.46 0.22
68 stillen ʃtɪlən still stɪl 0.50 0.50 0.33 0.17
69 Schwein ʃvain swine swaɪn 0.75 0.75 0.05 0.20
70 bruehen bryːən broth brɔθ 0.50 0.50 0.26 0.51
71 Meer meːr mere mɪər 0.33 0.33 0.00 0.12
72 duenken dʏŋkən think θɪŋk 0.67 0.67 0.46 0.26
73 Loch lɔx lock lɔk 0.33 0.33 0.10 0.21
74 Suende zʏndə sin sɪn 0.80 0.80 0.51 0.78
75 Besen beːzən besom biːzəm 0.40 0.40 0.19 0.45
76 Otter ɔtər adder ædər 0.50 0.50 0.00 0.18
77 Harm harm harm hɑːm 0.50 0.50 0.29 0.18
78 Schaf ʃaːf sheep ʃiːp 0.67 0.67 0.14 0.29
79 vier fiːr four fɔːr 0.33 0.33 0.00 0.26
80 Heide haidə heath hiːθ 0.75 0.75 0.36 0.36
81 sondern zɔndərn sunder sʌndər 0.43 0.43 0.13 0.22
82 Tor toːr door dɔːr 0.67 0.67 0.00 0.11
83 zehn ʦeːn ten tɛn 0.67 0.67 0.10 0.27
84 winken vɪŋkən wink wɪŋk 0.50 0.50 0.43 0.23
85 Jugend juːɡənt youth juːθ 0.67 0.67 0.76 0.45
86 Ohr oːr ear ɪər 0.50 0.50 0.00 0.29
87 Welt vɛlt world wɜːld 0.75 0.75 0.05 0.18
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88 wirken vɪrkən work wɜːk 0.83 0.83 0.82 0.44
89 Saat zaːt seed siːd 1.00 1.00 0.00 0.16
90 Floh floː flea fliː 0.33 0.33 0.00 0.33
91 fasten fastən fast fɑːst 0.50 0.50 0.33 0.19
92 Bad baːt bath bɑːθ 0.67 0.67 0.10 0.27
93 binden bɪndən bind baɪnd 0.50 0.50 0.36 0.22
94 Rabe raːbə raven rævṇ 0.80 0.75 0.57 0.42
95 Spaten ʃpaːtən spade speɪd 0.83 0.83 0.36 0.21
96 schauen ʃauən show ʃəʊ 0.67 0.67 0.46 0.30
97 neun nɔyn nine naɪn 0.33 0.33 0.00 0.21
98 Busen buːzən bosom bʊzəm 0.40 0.40 0.17 0.42
99 Halle halə hall hɔːl 0.50 0.50 0.22 0.21
100 Lauge lauɡə lie laɪ 0.75 0.75 0.71 0.44

D.2 Cognate Detection

The following tables give a detailed comparison of the cognate decisions made
by the four methods on the KSL testset (Kessler 2001). Of the 200 items in
the original list, only those have been included where at least one of the four
methods differs. Cluster decisions are indicated by integers assigned to each
entry. If the integers are identical in two entries, the entries are judged to
be cognate by the respective method. Cells shaded in gray indicate that the
cluster decision made by the respective method differs from the gold stan-
dard. Orthographical forms in bold font indicate that the respective entry was
borrowed.

“all” (1) GLD TUR NED SCA LxS.
Albanian gjithë ɟiθ 1 1 1 1 1
English all ɔl 2 2 2 2 2
French tous tut 3 3 3 1 3
German alle al 2 2 2 2 2
Hawaiian apau apau 5 5 5 5 5
Navajo t’áá ’áƚtso ʔayɬʦo 6 6 6 6 6
Turkish bütün bytyn 7 7 7 7 7
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“and” (2) GLD TUR NED SCA LxS.
Albanian e e 1 1 1 1 1
English and and 2 2 2 2 2
French et e 1 1 1 1 3
German und unt 2 2 4 2 4
Hawaiian ā aː 5 1 5 1 5
Navajo dóó doː 6 6 6 6 6
Turkish ve ve 7 7 1 7 7

“animal” (3) GLD TUR NED SCA LxS.
Albanian kafshë kafʃ 1 1 1 1 1
English animal anəməl 2 2 2 2 2
French animal animal 2 2 2 2 3
German Tier tiːr 4 4 4 4 4
Hawaiian holoholona holoholona 5 5 5 5 5
Navajo naaldeehii naːldeːhiː 6 6 6 6 6
Turkish hayvan hajvan 7 7 7 7 7

“at” (5) GLD TUR NED SCA LxS.
Albanian në nə 1 1 1 1 1
English at at 2 2 2 2 2
French à a 2 3 2 3 3
German an an 4 1 2 4 1
Hawaiian ma ma 5 5 5 5 5
Navajo -di di 6 2 6 6 6
Turkish -de de 7 2 6 6 6

“back” (6) GLD TUR NED SCA LxS.
Albanian shpinë ʃpin 1 1 1 1 1
English back bak 2 2 2 2 2
French dos do 3 3 3 3 3
German Rücken rykən 4 4 4 4 4
Hawaiian kua kua 5 5 5 5 5
Navajo ’anághah nayɣah 6 6 6 6 6
Turkish arka arka 7 4 7 7 7

“bad” (7) GLD TUR NED SCA LxS.
Albanian keq kec 1 1 1 1 1
English bad bad 2 2 2 2 2
French mauvais mɔvɛz 3 3 3 3 3
German schlecht ʃlext 4 4 4 4 4
Hawaiian ‘ino ʔino 5 5 5 5 5
Navajo doo yá’áshǫ́ǫ da jayʔayʃõõ 6 6 6 6 6
Turkish kötü køty 7 7 7 1 7
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“because” (9) GLD TUR NED SCA LxS.
Albanian sepse sepse 1 1 1 1 1
English because bəkɔz 2 2 2 2 2
French parce que pars 1 3 3 3 3
German weil vail 4 4 4 4 4
Hawaiian ā mea aːmea 5 5 5 5 5
Navajo háálá haːlay 6 6 6 6 6
Turkish çünkü ʧynky 7 7 7 7 7

“belly” (10) GLD TUR NED SCA LxS.
Albanian bark bark 1 1 1 1 1
English belly bɛli 2 1 2 2 2
French ventre vɑ̃tr 3 3 3 3 3
German Bauch baux 4 4 4 1 4
Hawaiian ‘ōpū ʔoːpuː 5 5 5 5 5
Navajo ’abid bid 6 6 6 6 4
Turkish karın karn 7 7 1 7 7

“big” (11) GLD TUR NED SCA LxS.
Albanian madh mað 1 1 1 1 1
English big bɪg 2 2 2 2 2
French grand grɑ̃d 3 3 3 3 3
German groß groːs 4 3 3 3 3
Hawaiian nui nui 5 5 5 5 5
Navajo ’áníƚtso ʔayniɬʦo 6 6 6 6 6
Turkish büyük byjyk 7 7 7 2 7

“bite” (13) GLD TUR NED SCA LxS.
Albanian kafshon kafʃo 1 1 1 1 1
English bites bait 2 2 2 2 2
French mord mɔr 3 3 3 3 3
German beißt bais 2 4 2 2 2
Hawaiian nahu nahu 5 5 5 5 5
Navajo ’aháshháásh ʔahayɬhaːʃ 6 6 6 6 6
Turkish ısırıyor ɯsɯr 7 7 7 7 7

“black” (14) GLD TUR NED SCA LxS.
Albanian zi zez 1 1 1 1 1
English black blak 2 2 2 2 2
French noir nwar 3 3 3 3 3
German schwarz ʃvarʦ 4 4 3 4 4
Hawaiian ‘ele‘ele ʔeleʔele 5 5 5 5 5
Navajo ƚizhin ɬiʒin 6 6 6 6 6
Turkish kara kara 7 7 7 7 7
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“blood” (15) GLD TUR NED SCA LxS.
Albanian gjak ɟakr 1 1 1 1 1
English blood bləd 2 2 2 2 2
French sang sɑ̃ 3 3 3 3 3
German Blut bluːt 2 2 2 2 2
Hawaiian koko koko 5 1 5 5 5
Navajo diƚ diɬ 6 6 6 6 6
Turkish kan kan 7 7 7 7 7

“blow” (16) GLD TUR NED SCA LxS.
Albanian fryn fry 1 1 1 1 1
English blows blo 2 1 2 2 2
French vente vɑ̃te 3 3 3 3 3
German bläst blaːz 2 1 2 2 2
Hawaiian puhi puhi 5 5 5 5 5
Navajo ních’i niʧˀi 6 6 6 6 6
Turkish esiyor es 7 7 7 7 7

“bone” (17) GLD TUR NED SCA LxS.
Albanian kockë koʦk 1 1 1 1 1
English bone bon 2 2 2 2 2
French os ɔs 3 3 3 3 3
German Knochen knoxən 4 4 4 4 4
Hawaiian iwi iwi 5 5 5 5 5
Navajo ts’in ʦˀin 6 4 6 6 6
Turkish kemik kemik 7 7 1 7 7

“breathe” (19) GLD TUR NED SCA LxS.
Albanian marr frymë frym 1 1 1 1 1
English breathes brið 2 1 2 2 2
French respire rɛspire 3 3 3 3 3
German atmet aːtm 4 4 4 4 4
Hawaiian hanu hanu 5 5 5 5 5
Navajo ńdísdzih ńdiʣih 6 6 6 6 6
Turkish nefes alıyor nefes 7 7 7 7 7

“burn” (20) GLD TUR NED SCA LxS.
Albanian digjet diɟ 1 1 1 1 1
English burns bərn 2 2 2 2 2
French brûle bryle 2 2 3 3 3
German brennt bren 2 2 2 2 2
Hawaiian ‘ā ʔaː 5 5 5 5 5
Navajo diltƚi’ diltˡiʔ 6 6 6 6 6
Turkish yanıyor jan 7 7 7 7 7
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“child” (21) GLD TUR NED SCA LxS.
Albanian fëmiljë fəmiʎ 1 1 1 1 1
English child ʧaild 2 2 2 2 2
French enfant ɑ̃fɑ̃t 3 3 3 3 3
German Kind kind 4 4 4 4 4
Hawaiian keiki keiki 5 5 4 5 5
Navajo ’ashkii ʔʃkiː 6 6 6 6 6
Turkish çocuk ʧoʤuk 7 5 7 7 7

“claw” (22) GLD TUR NED SCA LxS.
Albanian thua θon 1 1 1 1 1
English claw klɔ 2 2 2 2 2
French griffe grif 3 2 3 3 3
German Klaue klauə 2 2 2 2 2
Hawaiian miki‘ao mikiʔao 5 5 5 5 5
Navajo ’akéshgaan keʃgaː 6 6 6 6 6
Turkish tırnak tɯrnak 7 7 7 7 7

“cold” (24) GLD TUR NED SCA LxS.
Albanian ftohët ftohət 1 1 1 1 1
English cold kold 2 2 2 2 2
French froid frwad 3 3 3 3 3
German kalt kalt 2 2 2 2 2
Hawaiian anu anu 5 5 5 5 5
Navajo sik’az sikˀaz 6 6 6 6 6
Turkish soğuk soɣuk 7 6 7 6 7

“come” (25) GLD TUR NED SCA LxS.
Albanian vjen vjen 1 1 1 1 1
English comes kəm 1 2 2 2 2
French vient vjɛ ̃ 1 1 1 1 3
German kommt kom 1 2 2 2 2
Hawaiian hele mai hele 5 5 5 5 5
Navajo yíghááh jiɣaːh 6 6 6 6 6
Turkish geliyor gel 7 7 5 7 7

“count” (26) GLD TUR NED SCA LxS.
Albanian numëron numəruar 1 1 1 1 1
English counts kaunt 2 2 2 2 2
French compte kɔt̃e 2 3 3 2 2
German zählt ʦeːl 4 4 4 4 4
Hawaiian helu helu 5 5 5 5 5
Navajo ’ííníshta’ iːniɬtaʔ 6 6 6 6 6
Turkish sayıyor saj 7 7 7 7 7



D.2 Cognate Detection 279

“cut” (27) GLD TUR NED SCA LxS.
Albanian pres pres 1 1 1 1 1
English cuts kət 2 2 2 2 2
French coupe kupe 3 3 3 3 3
German schneidet ʃnaid 4 4 4 4 4
Hawaiian ‘oki ʔoki 5 5 5 5 5
Navajo ’aháshgéésh ʔahaygeːʃ 6 6 6 6 6
Turkish kesiyor kes 7 7 1 2 7

“day” (28) GLD TUR NED SCA LxS.
Albanian ditë dit 1 1 1 1 1
English day de 2 2 2 2 2
French jour ʒur 3 3 3 3 3
German Tag taːg 2 4 4 4 2
Hawaiian lā laː 5 5 5 5 5
Navajo jį́ ʤi ̃́ 6 6 6 2 6
Turkish gün gyn 7 7 7 7 7

“dig” (30) GLD TUR NED SCA LxS.
Albanian gërmon gərmo 1 1 1 1 1
English digs dɪg 2 2 2 2 2
French creuse krøze 3 1 3 3 3
German gräbt graːb 4 1 1 3 4
Hawaiian ‘eli ʔeli 5 5 5 5 5
Navajo hahashgééd hahageːd 6 6 6 6 6
Turkish kazıyor kaz 7 7 3 7 7

“dog” (32) GLD TUR NED SCA LxS.
Albanian qen cen 1 1 1 1 1
English dog dɑg 2 2 2 2 2
French chien ʃjɛn 1 3 3 1 1
German Hund hund 1 4 4 4 4
Hawaiian ‘īlio ʔiːlio 5 5 5 5 5
Navajo ƚééchąą’í ɬeːʧãː ʔi 6 6 6 6 6
Turkish köpek køpek 7 7 7 7 7

“drink” (33) GLD TUR NED SCA LxS.
Albanian pi pi 1 1 1 1 1
English drinks drɪŋk 2 2 2 2 2
French bois bwa 1 3 3 3 3
German trinkt triŋk 2 2 2 2 2
Hawaiian inu inu 5 5 5 5 5
Navajo ’adlą́ ʔadˡã́ 6 6 6 6 6
Turkish içiyor iʧ 7 7 7 7 7
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“dry” (34) GLD TUR NED SCA LxS.
Albanian thatë θat 1 1 1 1 1
English dry drai 2 2 2 2 2
French sec sɛʃ 3 3 3 3 3
German trocken trokən 2 2 4 2 2
Hawaiian malo‘o maloʔo 5 5 5 5 5
Navajo yíƚtseii jiɬʦeiː 6 6 6 6 6
Turkish kuru kuru 7 7 7 7 7

“dust” (36) GLD TUR NED SCA LxS.
Albanian pluhur pluhur 1 1 1 1 1
English dust dəst 2 2 2 2 2
French poussière pusjɛr 3 3 3 3 3
German Staub ʃtaub 4 4 4 4 4
Hawaiian ‘ehu ʔehu 5 5 5 5 5
Navajo ƚeezh ɬeːʒ 6 6 6 6 6
Turkish toz toz 7 2 7 2 7

“ear” (37) GLD TUR NED SCA LxS.
Albanian vesh veʃ 1 1 1 1 1
English ear ɪr 1 2 2 2 2
French oreille ɔrɛj 1 3 3 3 3
German Ohr oːr 1 2 2 2 2
Hawaiian pepeiao pepeiao 5 5 5 5 5
Navajo ’ajaa’ ʤaːʔ 6 6 6 6 6
Turkish kulak kulak 7 7 7 7 7

“earth” (38) GLD TUR NED SCA LxS.
Albanian dhe ðer 1 1 1 1 1
English earth ərθ 2 2 2 2 2
French terre tɛr 3 1 3 1 3
German Erde eːrdə 2 2 4 2 2
Hawaiian lepo lepo 5 5 5 5 5
Navajo ƚeezh ɬeːʒ 6 6 6 6 6
Turkish toprak toprak 7 7 7 7 7

“eat” (39) GLD TUR NED SCA LxS.
Albanian ha ha 1 1 1 1 1
English eats it 2 2 2 2 2
French mange mɑ̃ʒe 3 3 3 3 3
German ißt es 2 4 4 4 4
Hawaiian ‘ai ʔai 5 1 5 1 5
Navajo ’ayą́ ʔajã́ 6 6 5 1 6
Turkish yiyor je 7 7 7 7 7
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“egg” (40) GLD TUR NED SCA LxS.
Albanian vezë vez 1 1 1 1 1
English egg ɛg 1 2 2 2 2
French œuf œf 1 3 3 3 3
German Ei ai 1 4 4 4 4
Hawaiian hua hua 5 5 5 5 5
Navajo ’ayęęzhii jẽː ʒiː 6 6 6 6 6
Turkish yumurta jumurta 7 7 7 7 7

“eye” (41) GLD TUR NED SCA LxS.
Albanian sy syr 1 1 1 1 1
English eye ai 2 2 2 2 2
French œil œj 2 3 3 3 3
German Auge augə 2 4 4 4 4
Hawaiian maka maka 5 5 5 4 5
Navajo ’anáá’ naːʔ 6 6 6 6 6
Turkish göz gøz 7 7 7 7 7

“fall” (42) GLD TUR NED SCA LxS.
Albanian bie bie 1 1 1 1 1
English falls fɔl 2 2 2 2 2
French tombe tɔb̃e 3 3 3 3 3
German fällt fal 2 2 2 2 2
Hawaiian hina hina 5 5 5 5 5
Navajo naashtƚíísh naːtˡiːʃ 6 6 6 6 6
Turkish düşüyor dyʃ 7 7 7 6 3

“far” (43) GLD TUR NED SCA LxS.
Albanian larg larg 1 1 1 1 1
English far fɑr 2 2 2 2 2
French loin lwɛ̃ 3 3 3 3 3
German fern fern 2 2 2 2 2
Hawaiian mamao mamao 5 5 5 5 5
Navajo nízahgóó nizah 6 6 6 6 6
Turkish uzak uzak 7 7 6 7 7

“father” (44) GLD TUR NED SCA LxS.
Albanian babë babə 1 1 1 1 1
English father fɑðər 2 2 2 2 2
French père pɛr 2 3 3 3 2
German Vater faːtər 2 2 2 2 2
Hawaiian makua kāne makuakaːne 5 5 5 5 5
Navajo ’ataa’ taːʔ 6 6 6 6 6
Turkish baba baba 1 1 1 1 1
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“few” (46) GLD TUR NED SCA LxS.
Albanian pak pak 1 1 1 1 1
English few fju 1 2 2 2 2
French peu de pø 1 3 3 1 1
German wenige veːnig 4 4 4 4 4
Hawaiian kaka‘ikahi kakaʔikahi 5 5 5 5 5
Navajo t’áá díkwíí dikwiː 6 6 6 6 6
Turkish az az 7 7 7 7 7

“fight” (47) GLD TUR NED SCA LxS.
Albanian lufton lufto 1 1 1 1 1
English fights fait 2 2 2 2 2
French bat bat 3 2 3 2 2
German kämpft kamp͡f 4 4 4 4 4
Hawaiian hakakā hakakaː 5 5 5 5 5
Navajo ’ahishgą́ ʔahigã́ 6 6 6 5 6
Turkish dövüşüyor døvyʃ 7 7 7 7 7

“fish” (49) GLD TUR NED SCA LxS.
Albanian peshk peʃk 1 1 1 1 1
English fish fɪʃ 1 1 2 2 2
French poisson pwasɔ̃ 1 3 3 3 1
German Fisch fiʃ 1 1 2 2 2
Hawaiian i‘a iʔa 5 5 5 5 5
Navajo ƚóó’ ɬoːʔ 6 6 6 6 6
Turkish balık balɯk 7 7 7 7 7

“five” (50) GLD TUR NED SCA LxS.
Albanian pesë pesə 1 1 1 1 1
English five faiv 1 2 2 2 2
French cinq sɛk̃ 1 3 3 3 3
German fünf fynf 1 4 4 2 4
Hawaiian lima lima 5 5 5 5 5
Navajo ’ashdla’ ʔaʃdˡaʔ 6 6 6 6 6
Turkish beş beʃ 7 1 7 1 7

“flow” (51) GLD TUR NED SCA LxS.
Albanian rrjedh rːeð 1 1 1 1 1
English flows flo 2 2 2 2 2
French coule kule 3 3 3 3 3
German fließt fliːs 2 2 2 2 2
Hawaiian kahe kahe 5 5 3 3 5
Navajo yígeeh jigeːh 6 6 6 6 6
Turkish akıyor ak 7 7 7 7 7
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“flower” (52) GLD TUR NED SCA LxS.
Albanian lule lul 1 1 1 1 1
English flower flauər 2 2 2 2 2
French fleur flœr 2 2 2 2 2
German Blume bluːm 2 2 4 4 4
Hawaiian pua pua 5 5 5 5 5
Navajo ch’ilátah hózhóón ʧˀilaytah 6 6 6 6 6
Turkish çiçek ʧiʧek 7 7 7 7 7

“fly” (53) GLD TUR NED SCA LxS.
Albanian fluturon fluturo 1 1 1 1 1
English flies flai 2 1 2 2 2
French vole vɔle 3 3 3 2 2
German fliegt fliːg 2 1 2 2 2
Hawaiian lele lele 5 5 3 5 5
Navajo yit’ah jitˀah 6 6 6 6 6
Turkish uçuyor uʧ 7 7 7 7 7

“fog” (54) GLD TUR NED SCA LxS.
Albanian mjegull mjeguł 1 1 1 1 1
English fog fɑg 2 2 2 2 2
French brouillard brujar 3 3 3 3 3
German Nebel neːbəl 4 4 4 4 4
Hawaiian ‘ohu ʔohu 5 5 5 5 5
Navajo ’áhí ayhi 6 6 6 5 6
Turkish sis sis 7 7 7 7 7

“foot” (55) GLD TUR NED SCA LxS.
Albanian këmbë kəmb 1 1 1 1 1
English foot fʊt 2 2 2 2 2
French pied pje 2 3 3 3 3
German Fuß fuːs 2 4 4 2 2
Hawaiian wāwae waːwae 5 5 5 5 5
Navajo ’akee’ keːʔ 6 6 6 6 6
Turkish ayak ajak 7 7 7 7 7

“four” (56) GLD TUR NED SCA LxS.
Albanian katër katər 1 1 1 1 1
English four fɔr 1 2 2 2 2
French quatre katr 1 1 1 1 1
German vier fiːr 1 2 2 2 2
Hawaiian hā haː 5 5 5 5 5
Navajo dį́į́’ di ̃ː ʔ 6 6 6 6 6
Turkish dört dørt 7 7 7 7 7
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“fruit” (58) GLD TUR NED SCA LxS.
Albanian pemë pem 1 1 1 1 1
English fruit frut 2 2 2 2 2
French fruit frɥi 2 2 2 3 3
German Frucht fruxt 2 2 2 2 2
Hawaiian hua hua 5 5 5 5 5
Navajo bineest’ą’ bineːstˀaʔ̃ 6 6 6 6 6
Turkish meyva mejva 7 7 7 7 7

“full” (59) GLD TUR NED SCA LxS.
Albanian plotë plot 1 1 1 1 1
English full fʊl 1 1 2 2 2
French plein plɛn 1 1 1 1 1
German voll fol 1 1 2 2 2
Hawaiian piha piha 5 5 5 5 5
Navajo hadeezbin hadibin 6 6 6 6 6
Turkish dolu dolu 7 7 2 7 7

“give” (60) GLD TUR NED SCA LxS.
Albanian jep jep 1 1 1 1 1
English gives gɪv 2 2 2 2 2
French donne dɔne 3 3 3 3 3
German gibt geːb 2 4 4 2 4
Hawaiian hā‘awi haːʔawi 5 5 5 5 5
Navajo nish’aah niʔaːh 6 6 6 6 6
Turkish veriyor ver 7 7 7 7 7

“go” (61) GLD TUR NED SCA LxS.
Albanian shkon ʃko 1 1 1 1 1
English goes go 2 2 2 1 2
French va v 3 3 3 3 3
German geht geː 2 2 2 1 2
Hawaiian hele hele 5 5 5 5 5
Navajo yíghááh jiɣaːh 6 6 6 6 6
Turkish yürüyor jyry 7 7 7 7 7

“good” (62) GLD TUR NED SCA LxS.
Albanian mirë mir 1 1 1 1 1
English good gʊd 2 2 2 2 2
French bon bɔn 3 3 3 3 3
German gut guːt 2 2 4 2 2
Hawaiian maika‘i maikaʔi 5 5 5 5 5
Navajo yá’átˀééh jayʔaytˀeːh 6 6 6 6 6
Turkish iyi iji 7 7 7 7 7
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“grease” (64) GLD TUR NED SCA LxS.
Albanian dhjamë ðjam 1 1 1 1 1
English grease gris 2 2 2 2 2
French graisse grɛs 2 2 2 2 2
German Fett fet 4 4 4 4 4
Hawaiian ‘aila ʔaila 5 5 5 5 5
Navajo ’ak’ah kˀah 6 6 6 6 6
Turkish yağ jaɣ 7 7 1 7 7

“green” (65) GLD TUR NED SCA LxS.
Albanian gjelbër ɟelbər 1 1 1 1 1
English green grin 2 1 2 2 2
French vert vɛrt 3 3 3 3 3
German grün gryːn 2 1 2 2 2
Hawaiian ‘ōma‘oma‘o ʔoːmaʔomaʔo 5 5 5 5 5
Navajo dootƚ’izh doːtˡˀiʒ 6 6 6 6 6
Turkish yeşil jeʃil 7 7 7 7 7

“he” (69) GLD TUR NED SCA LxS.
Albanian ai ai 1 1 1 1 1
English he hi 2 2 1 2 2
French il il 3 3 3 3 3
German er eːr 4 3 4 4 4
Hawaiian ia ia 5 1 3 1 5
Navajo bí bi 6 6 1 6 6
Turkish o on 7 7 7 7 7

“head” (70) GLD TUR NED SCA LxS.
Albanian kokë kok 1 1 1 1 1
English head hɛd 2 2 2 2 2
French tête tɛt 3 3 3 3 3
German Kopf kop͡f 4 4 1 4 4
Hawaiian po‘o poʔo 5 5 5 5 5
Navajo ’atsii’ ʦiːʔ 6 6 6 6 6
Turkish baş baʃ 7 7 7 5 7

“hear” (71) GLD TUR NED SCA LxS.
Albanian dëgjon dəɟo 1 1 1 1 1
English hears hɪr 2 2 2 2 2
French entend ɑ̃tɑ̃d 3 3 3 3 3
German hört høːr 2 2 2 2 2
Hawaiian lohe lohe 5 5 5 5 5
Navajo diits’a’ diːʦˀaʔ 6 1 6 1 6
Turkish işitiyor iʃit 7 7 7 3 7
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“heart” (72) GLD TUR NED SCA LxS.
Albanian zemër zemər 1 1 1 1 1
English heart hɑrt 2 2 2 2 2
French cœur kœr 2 3 3 3 3
German Herz herʦən 2 2 4 2 2
Hawaiian pu‘uwai puʔuwai 5 5 5 5 5
Navajo ’ajéídíshjool ʤeidiʃʤoːl 6 6 6 6 6
Turkish yürek jyrek 7 7 7 7 7

“here” (74) GLD TUR NED SCA LxS.
Albanian këtu kətu 1 1 1 1 1
English here hɪr 2 2 2 2 2
French ici isi 3 3 3 3 3
German hier hiːr 2 2 2 2 2
Hawaiian nei nei 5 5 5 5 5
Navajo kwe’é kweʔe 6 6 6 1 6
Turkish burada bura 7 7 7 7 7

“hit” (75) GLD TUR NED SCA LxS.
Albanian qëllon cəło 1 1 1 1 1
English hits hɪt 2 2 2 2 2
French frappe frape 3 3 3 3 3
German schlägt ʃlaːg 4 4 4 4 1
Hawaiian ku‘i kuʔi 5 5 5 5 5
Navajo ńdiists’in ńdiːɬʦˀin 6 6 6 6 6
Turkish vuruyor vur 7 7 7 7 7

“horn” (77) GLD TUR NED SCA LxS.
Albanian bri brir 1 1 1 1 1
English horn hɔrn 2 2 2 2 2
French corne kɔrn 2 3 2 2 2
German Horn horn 2 2 2 2 2
Hawaiian kiwi kiwi 5 5 5 5 5
Navajo ’adee’ deːʔ 6 6 6 6 6
Turkish boynuz bojnuz 7 7 7 7 7

“hot” (78) GLD TUR NED SCA LxS.
Albanian nxehtë nʣeht 1 1 1 1 1
English hot hɑt 2 2 2 2 2
French chaud ʃod 3 3 3 2 2
German heiß hais 2 4 4 4 2
Hawaiian wela wela 5 5 5 5 5
Navajo sido sido 6 3 6 2 6
Turkish sıcak sɯjak 7 7 7 7 7
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“human” (79) GLD TUR NED SCA LxS.
Albanian njerí ɲeri 1 1 1 1 1
English human hjumən 2 2 2 2 2
French humain ymɛn 2 3 3 2 2
German Mensch menʃən 4 3 4 4 4
Hawaiian kanaka kanaka 5 5 5 5 5
Navajo diné dine 6 6 6 6 6
Turkish adam adam 7 7 7 7 7

“hunt” (80) GLD TUR NED SCA LxS.
Albanian gjuan ɟua 1 1 1 1 1
English hunts hənt 2 2 2 2 2
French chasse ʃase 3 3 3 3 1
German jagt jaːg 4 4 4 4 4
Hawaiian hahai hahai 5 5 5 3 5
Navajo haalzheeh haːlʒeːh 6 6 6 6 6
Turkish avlıyor avla 7 7 7 7 7

“husband” (81) GLD TUR NED SCA LxS.
Albanian burrë burː 1 1 1 1 1
English husband həzbənd 2 2 2 2 2
French mari mari 3 3 3 3 3
German Gatte gatə 4 4 4 4 4
Hawaiian kāne kaːne 5 5 5 4 5
Navajo hastiin hastiːn 6 2 6 2 6
Turkish koca koʤa 7 7 7 4 7

“I” (82) GLD TUR NED SCA LxS.
Albanian unë unə 1 1 1 1 1
English I ai 2 2 2 2 2
French je ʒə 2 3 3 3 3
German ich ix 2 4 4 4 4
Hawaiian au au 5 2 5 2 5
Navajo shí ʃi 6 3 6 3 3
Turkish ben ben 7 7 7 7 7

“ice” (83) GLD TUR NED SCA LxS.
Albanian akull akuł 1 1 1 1 1
English ice ais 2 2 2 2 2
French glace glas 3 1 3 3 3
German Eis ais 2 2 2 2 2
Hawaiian hau hau 5 5 5 5 5
Navajo tin tin 6 6 6 6 6
Turkish buz buz 7 7 7 2 7
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“in” (85) GLD TUR NED SCA LxS.
Albanian në nə 1 1 1 1 1
English in ɪn 1 1 2 2 2
French dans dɑ̃ 1 3 3 3 3
German in in 1 1 2 2 2
Hawaiian i loko loko 5 5 5 5 5
Navajo bii’ iːʔ 6 6 6 6 6
Turkish içinde iʧin 7 7 2 2 7

“knee” (87) GLD TUR NED SCA LxS.
Albanian gju ɟur 1 1 1 1 1
English knee ni 2 2 2 2 2
French genou ʒənu 2 3 3 3 3
German Knie kniː 2 4 4 2 4
Hawaiian kuli kuli 5 1 5 5 5
Navajo ’agod god 6 6 6 6 6
Turkish diz diz 7 7 7 7 7

“knife” (88) GLD TUR NED SCA LxS.
Albanian thikë θik 1 1 1 1 1
English knife naif 2 2 2 2 2
French couteau kuto 3 3 3 3 3
German Messer mesər 4 4 4 4 4
Hawaiian pahi pahi 5 5 5 5 5
Navajo béésh beːʃ 6 6 6 5 6
Turkish bıçak bɯʧak 7 7 7 7 7

“lake” (90) GLD TUR NED SCA LxS.
Albanian liqen licen 1 1 1 1 1
English lake lek 2 1 2 2 2
French lac lak 2 1 2 2 3
German See zeː 4 4 4 4 4
Hawaiian loko loko 5 1 2 2 5
Navajo tooh siyínígíí toːh 6 6 6 6 6
Turkish göl gøl 7 7 7 7 7

“laugh” (91) GLD TUR NED SCA LxS.
Albanian qesh ceʃ 1 1 1 1 1
English laughs laf 2 2 2 2 2
French rit ri 3 3 3 3 3
German lacht lax 2 4 2 4 4
Hawaiian ‘aka ʔaka 5 5 5 5 5
Navajo yidloh jidˡoh 6 6 6 6 6
Turkish gülüyor gyl 7 7 7 7 7



D.2 Cognate Detection 289

“leaf” (92) GLD TUR NED SCA LxS.
Albanian gjethe ɟeθ 1 1 1 1 1
English leaf lif 2 2 2 2 2
French feuille fœj 3 3 3 3 3
German Blatt blat 4 4 4 4 4
Hawaiian lau lau 5 5 4 5 5
Navajo ’at’ąą’ tˀãː ʔ 6 6 6 6 6
Turkish yaprak japrak 7 7 7 7 7

“lie” (94) GLD TUR NED SCA LxS.
Albanian (rri) shtrirë ʃtrir 1 1 1 1 1
English lies lai 2 2 2 2 2
French (est) allongé alɔʒ̃e 3 3 3 3 3
German liegt liːg 2 4 4 2 2
Hawaiian moe moe 5 5 5 5 5
Navajo sitį́ siti ̃́ 6 1 6 6 6
Turkish yatıyor jat 7 7 7 7 7

“liver” (95) GLD TUR NED SCA LxS.
Albanian mëlçi məlʧi 1 1 1 1 1
English liver lɪvər 2 2 2 2 2
French foie fwa 3 3 3 3 3
German Leber leːbər 2 4 2 2 2
Hawaiian ake ake 5 5 5 5 5
Navajo ’azid zid 6 6 6 6 6
Turkish ciğer ʤiɣer 7 7 7 7 7

“long” (96) GLD TUR NED SCA LxS.
Albanian gjatë ɟat 1 1 1 1 1
English long lɔŋ 1 2 2 2 2
French long lɔg̃ 1 3 3 3 3
German lang laŋ 1 2 2 2 2
Hawaiian loa loa 5 5 5 3 5
Navajo nineez nineːz 6 6 6 6 6
Turkish uzun uzun 7 7 7 7 7

“louse” (97) GLD TUR NED SCA LxS.
Albanian morr morː 1 1 1 1 1
English louse laus 2 2 2 2 2
French pou pu 3 3 3 3 3
German Laus lauz 2 2 2 2 2
Hawaiian ‘uku ʔuku 5 5 5 5 5
Navajo yaa’ jaːʔ 6 6 6 6 6
Turkish bit bit 7 7 7 3 7
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“many” (99) GLD TUR NED SCA LxS.
Albanian shumë ʃum 1 1 1 1 1
English many mɛni 2 2 2 2 2
French beaucoup de boku 3 3 3 3 3
German viele fiːl 4 4 4 4 4
Hawaiian nui nui 5 5 5 5 5
Navajo lą’í laʔ̃i 6 6 6 6 6
Turkish çok ʧok 7 7 3 7 7

“meat” (100) GLD TUR NED SCA LxS.
Albanian mish miʃ 1 1 1 1 1
English meat mit 2 2 1 2 2
French viande vjɑ̃d 3 3 3 3 3
German Fleisch flaiʃ 4 4 4 4 4
Hawaiian ‘i‘o ʔiʔo 5 5 5 5 5
Navajo ’atsį’ ʦiʔ̃ 6 6 6 6 6
Turkish et et 7 7 7 2 7

“mother” (102) GLD TUR NED SCA LxS.
Albanian nënë nən 1 1 1 1 1
English mother məðər 2 2 2 2 2
French mère mɛr 2 3 2 2 2
German Mutter mutər 2 2 2 2 2
Hawaiian makuahine makuahine 5 5 5 5 5
Navajo ’amá may 6 6 6 6 6
Turkish anne anne 7 1 7 7 7

“mountain” (103) GLD TUR NED SCA LxS.
Albanian mal mal 1 1 1 1 1
English mountain mauntən 2 2 2 2 2
French montagne mɔt̃aɲ 2 3 1 2 2
German Berg berg 4 4 4 4 4
Hawaiian mauna mauna 5 2 5 5 5
Navajo dziƚ ʣiɬ 6 6 6 6 6
Turkish dağ daɣ 7 7 7 7 7

“mouth” (104) GLD TUR NED SCA LxS.
Albanian gojë goj 1 1 1 1 1
English mouth mauθ 2 2 2 2 2
French bouche buʃ 3 3 3 3 3
German Mund mund 2 4 4 4 2
Hawaiian waha waha 5 5 5 5 5
Navajo ’azéé’ zeːʔ 6 6 6 6 6
Turkish ağız aɣz 7 7 7 7 7
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“name” (105) GLD TUR NED SCA LxS.
Albanian emër emər 1 1 1 1 1
English name nem 1 2 2 2 2
French nom nɔ̃ 1 3 3 3 2
German Name naːmən 1 2 1 2 2
Hawaiian inoa inoa 5 3 5 5 5
Navajo ’ázhi’ ʒiʔ 6 6 6 6 6
Turkish ad ad 7 7 7 7 7

“narrow” (106) GLD TUR NED SCA LxS.
Albanian ngushtë nguʃt 1 1 1 1 1
English narrow naro 2 2 2 2 2
French étroit etrwat 3 3 3 3 3
German eng eŋ 1 4 4 4 4
Hawaiian lā‘iki laːʔiki 5 5 5 5 5
Navajo ’áƚts’óózí ʔayɬʦˀoːzi 6 6 6 6 6
Turkish dar dar 7 3 2 7 7

“near” (107) GLD TUR NED SCA LxS.
Albanian afër afər 1 1 1 1 1
English near nɪr 2 2 2 2 2
French près de prɛ 3 1 3 3 3
German nah naː 2 4 4 2 2
Hawaiian kokoke kokoke 5 5 5 5 5
Navajo ’áhání ʔayhayni 6 6 6 6 6
Turkish yakın jakɯn 7 7 7 7 7

“neck” (108) GLD TUR NED SCA LxS.
Albanian qafë caf 1 1 1 1 1
English neck nɛk 2 2 2 2 2
French cou ku 3 3 3 3 3
German Hals halz 3 4 4 4 4
Hawaiian ‘ā‘ī ʔaːʔiː 5 5 5 5 5
Navajo ’ak’os kˀos 6 6 6 3 6
Turkish boyun bojn 7 7 7 7 7

“new” (109) GLD TUR NED SCA LxS.
Albanian ri ri 1 1 1 1 1
English new nu 2 2 2 2 2
French nouveau nuvɛl 2 3 3 3 3
German neu noi 2 2 2 2 2
Hawaiian hou hou 5 5 5 5 5
Navajo ’ániid niːd 6 6 6 2 6
Turkish yeni jeni 7 7 7 7 7
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“night” (110) GLD TUR NED SCA LxS.
Albanian natë nat 1 1 1 1 1
English night nait 1 1 1 1 2
French nuit nɥi 1 3 3 3 3
German Nacht naxt 1 4 1 1 2
Hawaiian pō poː 5 5 5 5 5
Navajo tl’éé’ tˡˀeːʔ 6 6 6 6 6
Turkish gece geʤe 7 7 7 7 7

“nose” (111) GLD TUR NED SCA LxS.
Albanian hundë hund 1 1 1 1 1
English nose noz 2 2 2 2 2
French nez ne 2 3 3 2 2
German Nase naːzə 2 2 2 2 2
Hawaiian ihu ihu 5 5 5 5 5
Navajo ’áchį́į́h ʧi ̃́ː h 6 6 6 6 6
Turkish burun burn 7 7 7 7 7

“not” (112) GLD TUR NED SCA LxS.
Albanian nuk nuk 1 1 1 1 1
English not nɑt 2 2 2 2 2
French ne...pas pa 3 3 3 3 3
German nicht nixt 2 1 2 2 2
Hawaiian ‘a‘ole ʔaʔole 5 5 5 5 5
Navajo doo...da doː 6 6 6 6 6
Turkish değil deɣil 7 7 7 7 7

“now” (113) GLD TUR NED SCA LxS.
Albanian tani tani 1 1 1 1 1
English now nau 2 2 2 2 2
French maintenant mɛt̃nɑ̃ 3 3 3 3 3
German nun nuːn 2 4 4 2 2
Hawaiian ‘ānō ʔaːnoː 5 5 5 1 5
Navajo k’ad kˀad 6 6 6 6 6
Turkish şimdi ʃimdi 7 7 7 7 7

“old” (114) GLD TUR NED SCA LxS.
Albanian vjetër vjetər 1 1 1 1 1
English old old 2 2 2 2 2
French vieil vjɛj 1 1 3 3 3
German alt alt 2 2 4 2 2
Hawaiian o‘o oʔo 5 5 5 5 5
Navajo sání sayni 6 6 6 6 6
Turkish ihtiyar ihtijar 7 7 7 7 7
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“one” (115) GLD TUR NED SCA LxS.
Albanian një ɲə 1 1 1 1 1
English one wən 2 2 2 2 2
French un œ̃ 2 3 3 3 3
German eins ain 2 1 4 2 2
Hawaiian ‘ekahi ʔekahi 5 5 5 5 5
Navajo ƚáa’ii ɬayʔiː 6 6 6 6 6
Turkish bir bir 7 7 7 7 7

“other” (116) GLD TUR NED SCA LxS.
Albanian tjetër tjetər 1 1 1 1 1
English other əðər 2 2 2 2 2
French autre otr 3 2 3 2 1
German anderer andər 2 4 2 2 2
Hawaiian ‘ē a‘e ʔeː 5 5 5 5 5
Navajo ƚah ɬah 6 6 6 6 6
Turkish başka baʃka 7 7 7 7 7

“path” (117) GLD TUR NED SCA LxS.
Albanian shteg ʃteg 1 1 1 1 1
English path paθ 2 2 2 2 2
French sentier sɑ̃tje 3 1 3 3 3
German Pfad p͡faːd 2 2 4 2 4
Hawaiian ala ala 5 5 5 5 5
Navajo ’atiin tiːn 6 6 6 6 6
Turkish yol jol 7 7 7 7 7

“pull” (119) GLD TUR NED SCA LxS.
Albanian tërheq tərhec 1 1 1 1 1
English pulls pʊl 2 2 2 2 2
French tire tire 3 1 1 3 3
German zieht ʦiː 4 4 4 4 4
Hawaiian huki huki 5 5 5 5 5
Navajo yisdzį́į́s jiʣi ̃́ː s 6 6 6 6 6
Turkish çekiyor ʧek 7 7 7 4 7

“push” (120) GLD TUR NED SCA LxS.
Albanian shtyn ʃty 1 1 1 1 1
English pushes pʊʃ 2 2 2 2 2
French pousse puse 2 2 3 2 2
German stößt ʃtoːs 1 1 1 1 4
Hawaiian pahu pahu 5 5 5 2 5
Navajo béshhííƚ beɣiːɬ 6 6 6 6 6
Turkish itiyor it 7 7 7 7 7
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“rain” (121) GLD TUR NED SCA LxS.
Albanian shi ʃi 1 1 1 1 1
English rain ren 2 2 2 2 2
French pluie plɥi 3 3 3 3 3
German Regen reːgən 2 4 2 2 2
Hawaiian ua ua 5 5 5 5 5
Navajo níƚtsą́ niɬʦã́ 6 6 6 6 6
Turkish yağmur jaɣmur 7 7 7 7 7

“red” (122) GLD TUR NED SCA LxS.
Albanian kuq kuc 1 1 1 1 1
English red rɛd 2 2 2 2 2
French rouge ruʒ 2 3 3 2 2
German rot roːt 2 2 4 2 2
Hawaiian ‘ula ʔula 5 5 5 5 5
Navajo ƚichííh ɬiʧiːh 6 6 6 6 6
Turkish kızıl kɯzɯl 7 7 7 7 7

“right” (123) GLD TUR NED SCA LxS.
Albanian djathtë djaθt 1 1 1 1 1
English right rait 2 2 2 2 2
French droit drwat 2 3 1 3 3
German recht rext 2 4 2 2 2
Hawaiian ‘ākau ʔaːkau 5 5 5 5 5
Navajo nish’ná niʃnay 6 6 6 6 6
Turkish sağ saɣ 7 7 7 7 7

“river” (124) GLD TUR NED SCA LxS.
Albanian lumë lum 1 1 1 1 1
English river rɪvər 2 2 2 2 2
French fleuve fløv 3 3 1 3 3
German Fluss flus 4 3 1 3 4
Hawaiian kahawai kahawai 5 5 5 5 5
Navajo tooh toːh 6 6 6 6 6
Turkish nehir nehir 7 7 7 7 7

“root” (125) GLD TUR NED SCA LxS.
Albanian rrënjë rːəɲ 1 1 1 1 1
English root rut 1 2 2 2 2
French racine rasin 1 3 3 1 1
German Wurzel vurʦəl 1 4 4 4 4
Hawaiian a‘a aʔa 5 5 5 5 5
Navajo ’akétl’óól ketˡˀoːl 6 6 6 6 6
Turkish kök køk 7 7 7 7 7
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“rotten” (126) GLD TUR NED SCA LxS.
Albanian kalbur kalbur 1 1 1 1 1
English rotten rɑtən 2 2 2 2 2
French pourri puri 3 3 3 3 3
German faul faul 3 3 4 4 4
Hawaiian pilau pilau 5 3 5 3 5
Navajo diƚdzííd diɬʣiːd 6 6 6 6 6
Turkish çürük ʧyryk 7 1 7 7 7

“round” (127) GLD TUR NED SCA LxS.
Albanian rrumbullák rːumbułak 1 1 1 1 1
English round raund 2 2 2 2 2
French rond rɔd̃ 2 3 2 2 2
German rund rund 2 2 2 2 2
Hawaiian poepoe poepoe 5 5 5 5 5
Navajo nímaz nimaz 6 6 6 6 6
Turkish yuvarlak juvarlak 7 7 1 7 7

“rub” (128) GLD TUR NED SCA LxS.
Albanian fërkon fərko 1 1 1 1 1
English rubs rəb 2 2 2 2 2
French frotte frɔte 3 1 3 3 3
German reibt raib 4 2 2 2 2
Hawaiian ‘ānai ʔaːnai 5 5 5 5 5
Navajo bídinishhish bidiniɣiʃ 6 6 6 6 6
Turkish sürtüyor syrt 7 7 7 7 7

“salt” (129) GLD TUR NED SCA LxS.
Albanian kripë krip 1 1 1 1 1
English salt sɔlt 2 2 2 2 2
French sel sɛl 2 2 2 2 3
German Salz zalʦ 2 2 4 2 2
Hawaiian pa‘akai paʔakai 5 5 5 5 5
Navajo ’áshįįh ʔayʃi ̃ː h 6 6 6 6 6
Turkish tuz tuz 7 7 7 7 7

“sand” (130) GLD TUR NED SCA LxS.
Albanian rërë rər 1 1 1 1 1
English sand sand 2 2 2 2 2
French sable sabl 3 3 2 3 3
German Sand zand 2 2 2 2 2
Hawaiian one one 5 5 5 5 5
Navajo séí sei 6 6 6 6 6
Turkish kum kum 7 7 7 7 7
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“say” (131) GLD TUR NED SCA LxS.
Albanian thotë θ 1 1 1 1 1
English says se 2 2 2 2 2
French dit di 3 1 3 3 3
German sagt zaːg 2 4 4 2 2
Hawaiian ‘ōlelo ʔoːlelo 5 5 5 5 5
Navajo ní ni 6 6 3 6 6
Turkish diyor de 7 1 2 3 1

“scratch” (132) GLD TUR NED SCA LxS.
Albanian gërvish gərviʃ 1 1 1 1 1
English scratches skraʧ 2 2 2 2 2
French gratte grat 1 1 2 2 3
German kratzt kraʦ 1 1 2 2 3
Hawaiian walu walu 5 5 5 5 5
Navajo ’ashch’id ʔaʧˀid 6 6 6 6 6
Turkish tırmalıyor tɯrmala 7 7 7 7 7

“sea” (133) GLD TUR NED SCA LxS.
Albanian det det 1 1 1 1 1
English sea si 2 2 2 2 2
French mer mɛr 3 3 3 3 3
German See zeː 2 2 4 2 2
Hawaiian kai kai 5 5 5 5 5
Navajo tónteel tonteːl 6 6 6 6 6
Turkish deniz deniz 7 6 1 7 7

“see” (134) GLD TUR NED SCA LxS.
Albanian sheh ʃ 1 1 1 1 1
English sees si 1 1 2 1 1
French voit vwa 3 3 3 3 3
German sieht zeː 1 1 4 1 1
Hawaiian ‘ike ʔike 5 5 5 5 5
Navajo yish’į́ jiʔi ̃́ 6 6 6 6 6
Turkish görüyor gør 7 7 7 7 7

“seed” (135) GLD TUR NED SCA LxS.
Albanian farë far 1 1 1 1 1
English seed sid 2 2 2 2 2
French graine grɛn 3 3 3 3 3
German Same zaːmən 2 4 4 4 4
Hawaiian ‘ano‘ano ʔanoʔano 5 5 5 5 5
Navajo k’eelyéí kˀeːljei 6 3 6 6 6
Turkish tohum tohum 7 7 7 7 7
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“sew” (136) GLD TUR NED SCA LxS.
Albanian qep cep 1 1 1 1 1
English sews so 2 2 2 2 2
French coud kuz 2 3 3 3 3
German näht neː 4 4 4 4 4
Hawaiian humu humu 5 5 5 5 5
Navajo náiƚkad nayiɬkad 6 6 6 6 6
Turkish dikiyor dik 7 7 7 7 7

“short” (138) GLD TUR NED SCA LxS.
Albanian shkurtër ʃkurtər 1 1 1 1 1
English short ʃɔrt 1 2 1 1 2
French court kurt 1 3 1 1 2
German kurz kurʦ 1 3 1 1 4
Hawaiian pōkole poːkole 5 5 5 5 5
Navajo yázhí jayʒi 6 6 6 6 6
Turkish kısa kɯsa 7 7 7 7 7

“sing” (139) GLD TUR NED SCA LxS.
Albanian këndon kəndo 1 1 1 1 1
English sings sɪŋ 2 2 2 2 2
French chante ʃɑ̃te 1 3 3 3 3
German singt ziŋ 2 2 4 2 2
Hawaiian mele mele 5 5 5 5 5
Navajo hataaƚ hataːɬ 6 6 6 3 6
Turkish şarkı söylüyor ʃarkɯ 7 7 7 7 7

“sit” (140) GLD TUR NED SCA LxS.
Albanian (rri) ndenjur ndeɲ 1 1 1 1 1
English sits sɪt 2 2 2 2 2
French (est) assis asiz 2 3 3 3 3
German sitzt ziʦ 2 4 4 2 4
Hawaiian noho noho 5 5 5 5 5
Navajo sidá siday 6 2 6 2 2
Turkish oturuyor otur 7 7 7 7 7

“sky” (142) GLD TUR NED SCA LxS.
Albanian qiell cieł 1 1 1 1 1
English sky skai 2 2 2 2 2
French ciel sjɛl 1 3 3 3 3
German Himmel himəl 4 4 4 4 4
Hawaiian lani lani 5 5 5 5 5
Navajo yá yay 6 6 6 6 6
Turkish gök gøk 7 7 7 7 7
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“sleep” (143) GLD TUR NED SCA LxS.
Albanian fle fle 1 1 1 1 1
English sleeps slip 2 2 2 2 2
French dort dɔr 3 3 3 3 3
German schläft ʃlaːf 2 2 4 2 2
Hawaiian moe moe 5 5 5 5 5
Navajo ’aƚhosh ʔaɬhoʃ 6 6 6 6 6
Turkish uyuyor uju 7 7 7 7 7

“smoke” (146) GLD TUR NED SCA LxS.
Albanian tym tym 1 1 1 1 1
English smoke smok 2 2 2 2 2
French fumée fyme 1 3 1 3 3
German Rauch raux 4 4 4 4 4
Hawaiian uahi uahi 5 5 5 5 5
Navajo ƚid ɬid 6 6 6 6 6
Turkish duman duman 7 1 7 1 7

“snake” (148) GLD TUR NED SCA LxS.
Albanian gjarpër ɟarpər 1 1 1 1 1
English snake snek 2 2 2 2 2
French serpent sɛrpɑ̃ 1 3 3 1 3
German Schlange ʃlaŋə 4 3 4 4 4
Hawaiian naheka naheka 2 5 5 5 5
Navajo tƚ’iish tˡˀiːʃ 6 6 6 6 6
Turkish yılan jɯlan 7 7 7 7 7

“snow” (149) GLD TUR NED SCA LxS.
Albanian borë bor 1 1 1 1 1
English snow sno 2 2 2 2 2
French neige nɛʒ 2 3 3 3 3
German Schnee ʃneː 2 2 4 2 2
Hawaiian hau kea hau 5 5 5 5 5
Navajo zas zas 6 6 6 6 3
Turkish kar kar 7 7 7 7 7

“some” (150) GLD TUR NED SCA LxS.
Albanian disa disa 1 1 1 1 1
English some səm 2 2 2 2 2
French quelques kɛlkə 3 3 3 3 3
German einige ainig 4 4 4 4 4
Hawaiian kekahi kekahi 5 5 5 3 5
Navajo ƚa’ ɬaʔ 6 6 6 6 6
Turkish bazı bazɯ 7 7 7 7 7
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“spit” (151) GLD TUR NED SCA LxS.
Albanian pështyn pəʃty 1 1 1 1 1
English spits spɪt 2 2 2 2 2
French crache kraʃe 3 3 3 3 3
German spuckt ʃpuk 4 2 4 2 2
Hawaiian kuha kuha 5 5 5 3 5
Navajo dishsheeh diʒeːh 6 6 6 6 6
Turkish tükürüyor tykyr 7 7 7 7 7

“squeeze” (153) GLD TUR NED SCA LxS.
Albanian shtrydh ʃtryð 1 1 1 1 1
English squeezes skwiz 2 2 2 2 2
French presse prɛse 3 3 3 3 3
German drückt dryk 4 4 1 4 4
Hawaiian ‘uwī ʔuwiː 5 5 5 5 5
Navajo yiishnih jiːnih 6 6 6 6 6
Turkish sıkıyor sɯk 7 2 7 7 7

“stab” (154) GLD TUR NED SCA LxS.
Albanian ther θer 1 1 1 1 1
English stabs stab 2 2 2 2 2
French poignarde pwaɲarde 3 3 3 3 3
German sticht ʃtex 4 2 4 2 2
Hawaiian hou hou 5 5 5 5 5
Navajo bighá’níshgééd biɣayʔniɬgeːd 6 6 6 6 6
Turkish hançerliyor hanʧerle 7 7 7 7 7

“stand” (155) GLD TUR NED SCA LxS.
Albanian (rri) më këmbë kəmb 1 1 1 1 1
English stands stand 2 2 2 2 2
French (est) debout dəbu 3 3 3 3 3
German steht ʃteː 2 2 4 2 2
Hawaiian kū kuː 5 5 5 5 5
Navajo sizį́ sizi ̃́ 6 6 6 6 6
Turkish duruyor dur 7 7 7 7 7

“star” (156) GLD TUR NED SCA LxS.
Albanian yll ył 1 1 1 1 1
English star stɑr 2 2 2 2 2
French étoile etwal 2 3 3 3 3
German Stern ʃtern 2 2 2 2 2
Hawaiian hōkū hoːkuː 5 5 5 5 5
Navajo sǫ’ sõʔ 6 6 6 6 6
Turkish yıldız jɯldɯz 7 7 7 7 7
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“stick” (157) GLD TUR NED SCA LxS.
Albanian shkop ʃkop 1 1 1 1 1
English stick stɪk 2 2 2 2 2
French bâton batɔ̃ 3 3 3 3 3
German Stock ʃtok 4 2 1 2 2
Hawaiian lā‘au laːʔau 5 5 5 5 5
Navajo tsin ʦin 6 6 6 6 6
Turkish değnek deɣnek 7 7 7 7 7

“straight” (159) GLD TUR NED SCA LxS.
Albanian drejtë drejt 1 1 1 1 1
English straight stret 2 2 2 1 2
French droit drwat 1 1 1 1 3
German gerade gəraːdə 4 4 4 4 4
Hawaiian pololei pololei 5 5 5 5 5
Navajo k’éhózdon kˀehozdon 6 6 6 6 6
Turkish doğru doɣru 7 7 7 7 7

“suck” (160) GLD TUR NED SCA LxS.
Albanian thith θiθ 1 1 1 1 1
English sucks sək 2 2 2 2 2
French suce syse 2 3 3 3 3
German saugt zaug 2 2 4 2 2
Hawaiian omo omo 5 5 5 5 5
Navajo yisht’o’ jiɬtˀoʔ 6 6 6 6 6
Turkish emiyor em 7 5 7 5 7

“sun” (161) GLD TUR NED SCA LxS.
Albanian diell dieł 1 1 1 1 1
English sun sən 2 2 2 2 2
French soleil sɔlɛj 2 3 3 3 3
German Sonne zonə 2 2 4 2 2
Hawaiian lā laː 5 5 5 5 5
Navajo shá ʃay 6 6 6 2 6
Turkish güneş gyneʃ 7 7 7 7 7

“swell” (162) GLD TUR NED SCA LxS.
Albanian ënj əɲ 1 1 1 1 1
English swells swɛl 2 2 2 2 2
French enfle ɑ̃fle 3 3 3 3 3
German schwillt ʃvel 2 2 4 2 2
Hawaiian ho‘opehu hoʔopehu 5 5 5 5 5
Navajo niishchaad niːʧaːd 6 6 6 6 6
Turkish şişiyor ʃiʃ 7 7 7 7 7
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“swim” (163) GLD TUR NED SCA LxS.
Albanian noton noto 1 1 1 1 1
English swims swɪm 2 2 2 2 2
French nage naʒe 3 3 3 1 3
German schwimmt ʃvim 2 2 4 2 2
Hawaiian ‘au ʔau 5 5 5 5 5
Navajo ’ashkǫ́ǫ́h ʔaɬkõːh 6 6 6 6 6
Turkish yüzüyor jyz 7 7 7 7 7

“tail” (164) GLD TUR NED SCA LxS.
Albanian bisht biʃt 1 1 1 1 1
English tail tel 2 2 2 2 2
French queue kø 3 3 3 3 3
German Schwanz ʃvanʦ 4 4 4 4 4
Hawaiian huelo huelo 5 5 2 5 5
Navajo ’atsee’ ʦeːʔ 6 6 6 6 6
Turkish kuyruk kujruk 7 7 7 7 7

“that” (165) GLD TUR NED SCA LxS.
Albanian ai ai 1 1 1 1 1
English that ðat 2 2 2 2 2
French cela səla 3 3 3 3 3
German das das 2 4 4 4 2
Hawaiian kēlā keːlaː 5 5 5 3 5
Navajo ’éi ʔeiː 6 6 6 6 6
Turkish o on 7 7 7 7 7

“there” (166) GLD TUR NED SCA LxS.
Albanian aty aty 1 1 1 1 1
English there ðɛr 2 2 2 2 2
French là la 3 3 3 3 3
German da daː 2 1 4 4 4
Hawaiian laila laila 5 5 3 5 5
Navajo ’áadi ʔaːdi 6 6 6 1 6
Turkish orada ora 7 3 7 7 7

“they” (167) GLD TUR NED SCA LxS.
Albanian ata ata 1 1 1 1 1
English they ðe 2 1 2 2 2
French ils il 3 3 3 3 3
German sie ziː 4 4 4 2 4
Hawaiian lākou laːkou 5 5 5 5 5
Navajo daabí bi 6 6 6 6 6
Turkish onlar on 7 7 7 7 7
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“thick” (168) GLD TUR NED SCA LxS.
Albanian trashë traʃ 1 1 1 1 1
English thick θɪk 2 2 2 2 2
French épais epɛs 3 3 3 3 3
German dick dik 2 2 4 2 2
Hawaiian mānoa maːnoa 5 5 5 5 5
Navajo ditą́ ditã́ 6 6 4 6 6
Turkish kalın kalɯn 7 7 7 7 7

“thin” (169) GLD TUR NED SCA LxS.
Albanian hollë hoł 1 1 1 1 1
English thin θɪn 2 2 2 2 2
French mince mɛs̃ 3 3 3 3 3
German dünn dyn 2 2 4 2 2
Hawaiian wīwī wiːwiː 5 5 5 5 5
Navajo ’áƚt’ą́’í ʔayɬtˀãʔ́i 6 1 6 6 6
Turkish ince inʤe 7 7 7 7 7

“think” (170) GLD TUR NED SCA LxS.
Albanian mendon mendo 1 1 1 1 1
English thinks θɪŋk 2 2 2 2 2
French pense pɑ̃se 3 3 3 3 3
German denkt deŋk 2 2 2 2 2
Hawaiian mana‘o manaʔo 5 1 1 5 5
Navajo nízin nizin 6 6 6 6 6
Turkish düşünüyor dyʃyn 7 7 7 6 7

“this” (171) GLD TUR NED SCA LxS.
Albanian ky k 1 1 1 1 1
English this ðɪs 2 2 2 2 2
French ceci səsi 3 3 3 3 3
German dieses diːz 2 2 4 2 2
Hawaiian kēia keːia 5 1 5 5 5
Navajo díí diː 6 6 4 2 6
Turkish bu bun 7 7 7 7 7

“thou” (172) GLD TUR NED SCA LxS.
Albanian ti t 1 1 1 1 1
English you ju 2 2 2 2 2
French tu ty 1 1 1 1 3
German du duː 1 1 4 1 1
Hawaiian ‘oe ʔoe 5 5 5 5 5
Navajo ni ni 6 6 6 6 6
Turkish sen sen 7 7 7 7 7
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“three” (173) GLD TUR NED SCA LxS.
Albanian tre tre 1 1 1 1 1
English three θri 1 1 2 1 1
French trois trwa 1 1 1 1 3
German drei drai 1 1 4 1 1
Hawaiian kolu kolu 5 5 5 5 5
Navajo táá’ taːʔ 6 6 6 6 6
Turkish üç yʧ 7 7 7 7 7

“tongue” (176) GLD TUR NED SCA LxS.
Albanian gjuhë ɟuh 1 1 1 1 1
English tongue təŋ 2 2 2 2 2
French langue lɑ̃g 2 3 3 3 3
German Zunge ʦuŋə 2 4 4 2 4
Hawaiian alelo alelo 5 5 5 5 5
Navajo ’atsoo’ ʦoːʔ 6 1 6 1 6
Turkish dil dil 7 7 7 7 7

“tooth” (177) GLD TUR NED SCA LxS.
Albanian dhëmb ðəmb 1 1 1 1 1
English tooth tuθ 2 2 2 2 2
French dent dɑ̃ 2 3 3 2 3
German Zahn ʦaːn 2 4 4 4 4
Hawaiian niho niho 5 5 5 5 5
Navajo ’awoo’ ɣoːʔ 6 6 6 6 6
Turkish diş diʃ 7 7 7 2 7

“tree” (178) GLD TUR NED SCA LxS.
Albanian dru drur 1 1 1 1 1
English tree tri 1 1 2 1 1
French arbre arbr 3 3 1 3 3
German Baum baum 4 4 4 4 4
Hawaiian lā‘au laːʔau 5 5 5 5 5
Navajo tsin ʦin 6 6 6 6 6
Turkish ağaç aɣaʤ 7 7 7 7 7

“true” (179) GLD TUR NED SCA LxS.
Albanian vërtetë vərtet 1 1 1 1 1
English true tru 2 2 2 2 2
French vrai vrɛ 1 1 3 3 1
German wahr vaːr 1 1 4 3 4
Hawaiian ‘oia‘i‘o ʔoiaʔiʔo 5 5 5 5 5
Navajo ’aaníí ʔaːniː 6 6 6 6 6
Turkish doğru doɣru 7 7 2 2 7
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“two” (180) GLD TUR NED SCA LxS.
Albanian dy dy 1 1 1 1 1
English two tu 1 1 2 1 2
French deux dø 1 1 1 1 3
German zwei ʦvai 1 4 4 4 4
Hawaiian lua lua 5 5 5 5 5
Navajo naaki naːki 6 6 6 6 6
Turkish iki iki 7 7 6 6 7

“wash” (182) GLD TUR NED SCA LxS.
Albanian lau la 1 1 1 1 1
English washes wɑʃ 2 2 2 2 2
French lave lave 1 3 1 1 1
German wäscht vaʃ 2 2 4 2 2
Hawaiian holoi holoi 5 5 5 5 5
Navajo yiisgis jiːgis 6 6 6 6 6
Turkish yıkıyor jɯka 7 6 7 6 7

“water” (183) GLD TUR NED SCA LxS.
Albanian ujë uj 1 1 1 1 1
English water wɑtər 1 2 2 2 2
French eau o 3 3 3 3 3
German Wasser vasər 1 4 2 2 2
Hawaiian wai wai 5 5 5 5 5
Navajo tó to 6 6 3 6 6
Turkish su suj 7 7 1 1 7

“we” (184) GLD TUR NED SCA LxS.
Albanian né n 1 1 1 1 1
English we wi 2 2 2 2 2
French nous nu 1 1 1 1 3
German wir viːr 2 4 4 4 4
Hawaiian mākou maːkou 5 5 5 5 5
Navajo nihí nihi 6 6 6 6 6
Turkish biz b 7 7 7 7 7

“what” (186) GLD TUR NED SCA LxS.
Albanian ç’ ʧ 1 1 1 1 1
English what wɑt 2 2 2 2 2
French quoi kwa 2 3 3 3 3
German was v 2 4 4 4 4
Hawaiian aha aha 5 5 5 5 5
Navajo ha’át’íísh haʔaytˀiːʃ 6 6 6 6 6
Turkish ne ne 7 7 7 7 7
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“white” (187) GLD TUR NED SCA LxS.
Albanian bardhë barð 1 1 1 1 1
English white wait 2 2 2 2 2
French blanc blɑ̃ʃ 3 1 3 3 3
German weiß vais 2 4 4 3 2
Hawaiian ke‘oke‘o keʔokeʔo 5 5 5 5 5
Navajo ƚigai ɬigai 6 6 6 6 6
Turkish ak ak 7 7 7 7 7

“who” (188) GLD TUR NED SCA LxS.
Albanian kush k 1 1 1 1 1
English who hu 1 2 2 2 2
French qui ki 1 1 1 1 1
German wer veː 1 4 4 4 4
Hawaiian wai wai 5 4 5 5 5
Navajo háí hayi 6 2 6 2 6
Turkish kim kim 7 7 1 1 7

“wide” (189) GLD TUR NED SCA LxS.
Albanian gjerë ɟer 1 1 1 1 1
English wide waid 2 2 2 2 2
French large larʒ 3 3 3 3 3
German weit vait 2 2 4 2 2
Hawaiian ākea aːkea 5 5 5 5 5
Navajo niteel niteːl 6 6 6 6 6
Turkish geniş geniʃ 7 7 7 7 7

“wife” (190) GLD TUR NED SCA LxS.
Albanian grua gru 1 1 1 1 1
English wife waif 2 2 2 2 2
French femme fam 3 3 3 3 3
German Gattin gatin 4 4 4 4 4
Hawaiian wahine wahine 5 5 4 5 5
Navajo ’a’áád ʔaːd 6 6 6 6 6
Turkish karı karɯ 7 1 7 1 7

“wind” (191) GLD TUR NED SCA LxS.
Albanian erë er 1 1 1 1 1
English wind wɪnd 2 2 2 2 2
French vent vɑ̃ 2 3 3 3 3
German Wind vind 2 2 2 2 2
Hawaiian makani makani 5 5 5 5 5
Navajo níƚch’i niɬʧˀi 6 6 6 6 6
Turkish rüzgar ryzgaːr 7 7 7 7 7
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“wing” (192) GLD TUR NED SCA LxS.
Albanian fletë flet 1 1 1 1 1
English wing wɪŋ 2 2 2 2 2
French aile ɛl 3 3 3 3 3
German Flügel flyːgəl 4 1 4 4 4
Hawaiian ‘ēheu ʔeːheu 5 5 5 5 5
Navajo ’at’a’ tˀaʔ 6 6 6 6 6
Turkish kanat kanad 7 7 7 7 7

“wipe” (193) GLD TUR NED SCA LxS.
Albanian fshin fʃi 1 1 1 1 1
English wipes waip 2 2 2 2 2
French essuie esɥije 3 3 3 3 3
German wischt viʃ 4 4 4 1 4
Hawaiian kāwele kaːwele 5 5 5 5 5
Navajo nánísht’od naynitˀod 6 6 6 6 6
Turkish siliyor sil 7 7 7 7 7

“with” (194) GLD TUR NED SCA LxS.
Albanian me me 1 1 1 1 1
English with wɪθ 2 2 2 2 2
French avec avɛk 3 3 3 3 3
German mit mit 1 4 4 1 4
Hawaiian me me 5 1 1 1 1
Navajo biƚ iɬ 6 6 6 6 6
Turkish ile ile 7 6 7 6 7

“woman” (195) GLD TUR NED SCA LxS.
Albanian grua gru 1 1 1 1 1
English woman wʊmən 2 2 2 2 2
French femme fam 3 3 3 3 3
German Frau frau 4 4 4 4 1
Hawaiian wahine wahine 5 5 5 5 5
Navajo ’asdzání ʔasʣayni 6 6 6 6 6
Turkish kadın kadɯn 7 7 7 7 7

“woods” (196) GLD TUR NED SCA LxS.
Albanian pyll pył 1 1 1 1 1
English woods wʊd 2 2 2 2 2
French bois bwa 3 3 3 3 3
German Wald vald 4 4 4 4 2
Hawaiian ulu lā‘au ululaːʔau 5 5 5 5 5
Navajo tsintah ʦintah 6 6 6 6 6
Turkish orman orman 7 7 7 7 7
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“worm” (197) GLD TUR NED SCA LxS.
Albanian krimb krimb 1 1 1 1 1
English worm wərm 2 2 2 2 2
French ver vɛr 2 2 2 2 3
German Wurm vurm 2 2 2 2 2
Hawaiian ko‘e koʔe 5 5 5 5 5
Navajo ch’osh ʧˀoʃ 6 6 6 6 6
Turkish solucan soluʤan 7 7 7 7 7

“year” (198) GLD TUR NED SCA LxS.
Albanian vit vit 1 1 1 1 1
English year jɪr 2 2 2 2 2
French année ane 3 3 3 3 3
German Jahr jaːr 2 2 2 2 2
Hawaiian makahiki makahiki 5 5 5 5 5
Navajo hai hai 6 6 6 6 6
Turkish sene sene 7 7 3 3 7

“yellow” (199) GLD TUR NED SCA LxS.
Albanian verdhë verð 1 1 1 1 1
English yellow jɛlo 2 2 2 2 2
French jaune ʒon 2 3 3 3 3
German gelb gelb 2 4 4 4 4
Hawaiian melemele melemele 5 5 5 5 5
Navajo ƚitso ɬiʦo 6 6 6 6 6
Turkish sarı sarɯ 7 7 7 7 7

“you” (200) GLD TUR NED SCA LxS.
Albanian ju ju 1 1 1 1 1
English you ju 2 1 1 1 2
French vous vu 1 3 1 3 3
German ihr iːr 2 4 4 4 4
Hawaiian ‘oukou ʔou 5 5 5 5 5
Navajo nihí nihi 6 6 6 6 6
Turkish siz s 7 7 7 7 7
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