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Background & Aims: The Forkhead box gene,
group O (FoxO) family of Forkhead transcription
factors is phopsphorylated and inactivated by the
phosphatidylinositol 3-kinase (PI3K)/AKT path-
way and regulates a variety of cellular functions.
Hepatic stellate cells (HSCs) play a crucial role in
liver fibrosis. A fibrotic stimulus causes HSCs to
transdifferentiate from a quiescent phenotype to a
collagen-producing myofibroblast-like phenotype
and to proliferate. Methods: Mutation/deletion
mutants of FoxO1 were introduced into primary
rat, mouse, and immortalized human HSCs and

assessed for activation, proliferation, and signal
transduction. The role of FoxO1 in experimental
liver fibrosis was assessed in FoxO1*/~ and
FoxO1*/* mice. Results: Platelet-derived growth
factor (PDGF) or insulin phosphorylates FoxO1
and induces FoxO1 translocation from the nuclei to
the cytosol via the PI3K/AKT pathway in HSCs.
Constitutively active FoxO1 inhibits proliferation
via cell cycle arrest at the G1 phase, whereas dom-
inant-negative FoxO1 enhances proliferation of
HSCs even in the presence of the PI3K inhibitor
LY294002. In addition, the phosphorylation of
FoxOl1 is increased during transdifferentiation of
HSCs. The transdifferentiation is also inhibited by
constitutively active FoxO1 and is accelerated by
dominant-negative FoxO1. FoxO1 directly induces
the expression of p27%P! and manganese superoxide
dismutase (MnSOD). After bile duct ligation for 3
weeks, FoxO1*/~ mice are more susceptible to liver
fibrosis, consistent with our in vitro results.
Conclusions: FoxO1 plays a crucial role in the
transdifferentiation and proliferation of HSCs in
liver fibrosis. Hyperinsulinemia inactivates FoxO1
in HSCs, resulting in HSC activation and may re-
sult in the fibrosis in nonalcoholic fatty liver dis-
ease.

Hepatic fibrosis is a wound-healing response to
chronic liver injury, and hepatic stellate cells
(HSCs) play a crucial role in this fibrotic response.! HSCs
from normal liver show a quiescent phenotype storing
vitamin A-rich fat droplets. During liver fibrosis, HSCs
undergo an activation or a transdifferentiation process,
which is characterized by loss of intracellular vitamin A
stores and change to a myofibroblast-like cell with ex-
pression of a-smooth muscle actin (e-SMA). Transdiffer-
entiated HSCs then remodel the extracellular matrix by
secreting matrix metalloproteinases and depositing extra-
cellular matrix, including type I collagen. In addition,
HSCs migrate and proliferate in response to a variety of
cytokines and growth factors elicited during liver injury.
Therefore, transdifferentiation, proliferation, and colla-
gen production of HSCs are key steps in liver fibrogen-
esis.

The phosphatidylinositol 3-kinase (PI3K)/AKT path-
way is activated by growth factors and controls a variety
of cellular responses, including survival, proliferation,
and metabolism.2 In HSC, the PI3K/AKT pathway is
strongly activated by platelet-derived growth factor
(PDGF), which is the most potent mitogen of HSC.3-5
However, the precise mechanism by which the PI3K/
AKT-signaling pathway regulates transdifferentiation
and proliferation in HSCs is still unclear.

The Forkhead box gene, group O (FoxO) subfamily of
Forkhead transcription factors comprises functionally re-

Abbreviations used in this paper: HSC, hepatic stellate cell; FoxO,
Forkhead box gene, group O; MnSOD, manganese superoxide dis-
mutase; PI3K, phosphatidylinositol 3-kinase; a-SMA, a-smooth mus-
cle actin; ECM, extracellular matrix; PDGF, platelet-derived growth
factor; PPAR-y, peroxisome proliferator-activated receptor-y; TIMP-1,
tissue inhibitor of metalloproteinase-1; ROS, reactive oxygen species;
NAFLD, nonalcoholic fatty liver disease; DAPI, 4’,6-diamidino-2-phe-
nylindole, dihydrochloride.
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lated proteins FoxO1, FoxO3a, and FoxO4 and plays an
important role in metabolism, differentiation, survival,
and proliferation.® AKT-catalyzed phosphorylation of
FoxO1 results in nuclear exclusion and inhibition of
FoxO-dependent gene expression.” Because FoxO factors
regulate proliferation and tumor growth in a variety of
cells,®° it is possible that FoxO1 participates in HSC
proliferation downstream of the PI3K/AKT pathway.

HSC transdifferentiation induces profound morpho-
logic and molecular changes. Transdifferentiated HSCs
express @-SMA and the myogenic transcription factor
MyoD,!® whereas quiescent HSCs express adipocytic per-
oxisome proliferator-activated receptor-y (PPAR-y).1112
These findings raise the possibility that HSCs undergo
transdifferentiation from an adipocytic phenotype into a
myofibroblastic phenotype. Because FoxO factors control
cellular differentiation including adipocytes and myo-
blasts,'3-15 it is possible that FoxO1 participates in the
transdifferentiation process of HSCs.

The present study evaluates the role of FoxO1 in pro-
liferation and transdifferentiation of HSCs. Our func-
tional analysis of FoxO1 revealed that both proliferation
and transdifferentiation of HSCs were inhibited by tran-
scriptionally active FoxO1 and enhanced by transcrip-
tionally inactive FoxO1. Moreover, mice of FoxO1 hap-
loinsufficiency (FoxO1%/7) were more sensitive to
experimental liver fibrosis. Our study identifies FoxO as a
key transcription factor that regulates hepatic fibrogen-
esis.

Materials and Methods
Cell Cultures and Treatments

Primary HSCs were isolated from male Sprague-
Dawley rats and male Balb/c mice. Primary HSCs were
isolated by a 2-step perfusion using pronase E (EMD
Chemicals, Gibbstown, NJ) and collagenase D (Roche,
Mannheim, Germany), followed by Nycodenz (Axis-
Shield, Oslo, Norway) 2-layer discontinuous density gra-
dient centrifugation as previously described.!¢ Purity of
rat or mouse HSC preparations was 96% and 97%, respec-
tively, as assessed by autofluorescence at day 1. HSCs
were cultured on uncoated plastic tissue culture dishes in
Dulbecco’s modified Eagle medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS). Growth me-
dium was changed daily. Rat HSCs were passaged once
between days 5 and 7 when cells were culture activated.
The fully transdifferentiated rat HSCs were used for
experiments between days 10 and 14. Mouse HSCs were
not passaged and were used for experiments on days 0
to 4. In some experiments, immortalized human HSC
line hTERT HSCs were cultured in DMEM supplemented
with 10% FBS as previously described.!” Primary rat HSCs
or hTERT HSCs were serum starved in serum-free
DMEM for 24 hours and were treated with 20 ng/mL
PDGF-BB (Roche) or 100 nmol/L insulin (Invitrogen,
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Auckland, New Zealand). Where indicated in results, cells
were preincubated with 20 umol/L LY294002 (Sigma-
Aldrich, St. Louis, MO) for 1 hour.

Adenoviruses

The adenoviral vectors encoding hemagglutinin
(HA)-tagged wild-type FoxOl (WT-FoxO1), HA-tagged
constitutively active FoxO1 (ADA-FoxO1), HA-tagged dom-
inant-negative FoxO1 (A256-FoxO1), HA-tagged constitu-
tively active AKT (Myr-AKT), HA-tagged dominant-neg-
ative AKT (DN-AKT), manganese superoxide dismutase
(MnSOD), green fluorescent protein (GFP), and bacterial
B-galactosidase (LacZ) have been previously de-
scribed.1416:18-20 ADA-FoxO1 contains mutation in all of
the 3 AKT phosphorylation sites, resulting in constitu-
tively active FoxOl-dependent gene transcription.'®
A256-FoxO1 contains a DNA-binding domain but lacks
a transactivation domain, resulting in inhibition of
FoxO1-dependent gene transcription.’® The adenovirus
vector encoding p27kP! short interfering RNA (siRNA)
was created by using the pRNAT-H1.1/Adeno shuttle
vector (GenScript, Piscataway, NJ) and AdEasy Adenovi-
ral Vector System (Stratagene, La Jolla, CA) according to
the manufacturers’ protocol. Oligonucleotide sequences
were modified from the sequences by Tamamori-Adachi
M et al2!: 5'-CGC GTG TGG GAG TGT TTA ATG GGA
ACG TGT GCT GTC CGT TCC CGT TAG ACA CTC
TCA CTT TTT A-3' and 5'-AGC TTA AAA AGT GAG
AGT GTC TAA CGG GAA CGG ACA GCA CAC GTT
CCC ATT AAA CAC TCC CAC A-3'. Cells were trans-
duced with each adenovirus at a multiplicity of infection
(MOI) of 100 (primary mouse HSCs), 200 (primary rat
HSCs or hTERT HSCs), or otherwise instructed to
achieve transduction rates of greater than 80%.

3H-Thymidine Incorporation Assay

DNA synthesis was estimated as the amount of
methyl-*H-thymidine as previously described.?? HSCs
were incubated with 1 uCi/mL 3H-thymidine (Amer-
sham, Piscataway, NJ) for 18 or 24 hours followed by
trichloroacetic precipitation, lysis, and measurement in a
scintillation counter.

Fluorescent-Activated Cell Sorting Analysis

Twenty-four hours after treatment with PDGF or
insulin, rat HSCs were harvested by scraping and fixed
with cold ethanol (50%) in phosphate-buffered saline
(PBS) for 1 hour. Cells were then washed with PBS and
treated with 0.5 mg/mL RNase A (Qiagen, Valencia, CA)
for 1 hour at 37°C. Cells were incubated with 20 wg/mL
propidium iodide (Sigma-Aldrich) at 4°C in the dark,
and cell cycle state was assessed by flow cytometry using
a fluorescent-activated cell sorting (FACS) instrument
(FACSCalibur, BD Biosciences, San Jose, CA).
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Western Blot Analysis and
Immunoprecipitation

Electrophoresis of protein extracts and subse-
quent blotting were performed as previously described.'®
Blots were incubated with antibodies against phospho-
FoxO1 (Ser-256), phospho-AKT (Ser-473), hemagglutinin
(both Cell Signaling, Beverly, MA), FoxO1, AKT (both
Santa Cruz, Santa Cruz, CA), p275r! (BD Biosciences),
MnSOD (Stressgen, Victoria BC, Canada), a-SMA, B-ac-
tin (both Sigma-Aldrich), and desmin (DAKO, Glostrup,
Denmark) overnight at 4°C. For detection of insulin
receptor substrate-2 (IRS-2) tyrosine phosphorylation,
cell lysates from insulin-treated rat HSCs were immuno-
precipitated with anti-IRS-2 antibody (Upstate, Lake
Placid, NY) and protein A-agarose (Santa Cruz). Immu-
noprecipitates were then subjected to SDS-PAGE, and
Western blot analysis was performed using antiphospho-
tyrosine antibody (Upstate) or anti-IRS-2 antibody.

Immunofluorescence Cell Staining

One hour after the treatment with PDGF or in-
sulin, primary rat HSCs were fixed with —10°C methanol
for 5 minutes and blocked with PBS containing 4% FBS.
Cells were incubated with anti-HA antibody for 1 hour
and then incubated with rhodamine-conjugated anti-
mouse IgG antibody (Pierce, Rockford, IL). For nuclear
counterstaining, 4’,6-diamidino-2-phenylindole, dihydro-
chloride (DAPI; Molecular Probes, Eugene, OR) was used
according to the manufacturer’s instruction. Cells were
observed under a fluorescence microscope with appropri-
ate filters.

Determination of Intracellular Reactive
Oxygen Species Production in HSCs

Reactive oxygen species (ROS) production was
tested in activated HSCs using 5-(and-6)-chloromethyl-
2',7'-dichlorodihydrofluorescein diacetate, acetyl ester
(CM-H,DCFDA)-based fluorescence. DCFDA-associated
ROS production was measured in a time course of 30
minutes using multiwell platereader (BMG Optima,
Durham, NC).23

Quantitative Real-Time Reverse-Transcriptase
Polymerase Chain Reaction

Extracted RNA from the liver and the cells was
reverse transcribed (First-Strand ¢cDNA Synthesis Kit;
Amersham), and quantitative real-time polymerase chain reac-
tdon (PCR) with the probe-primers sets of human p27Xi!
(Hs00153277_m1), mouse p274r! (Mm00438167_gl),
human MnSOD (SOD2, Hs00167309_ml), mouse
MnSOD (Mm00449726_m1), mouse collagen al(I)
(Mm00801666_g1), mouse PPAR-y (Mm00440945_m1),
mouse TIMP-1 (Mm00801666_g1), and 18S ribosomal
RNA (Hs99999901_s1) (Applied Biosystems, Foster City,
CA) was performed using Taqman analysis (ABI Prism
7000 Sequence Detection System, Applied Biosystems).
The changes were normalized to 18S.
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Chromatin Immunoprecipitation Assay

Chromatin immunoprecipitation (ChIP) assays
were performed by using the ChIP assay kit (Upstate)
with some modification as previously described.?* hTERT
HSCs were transduced with WT-FoxO1 or ADA-FoxO1
adenoviruses. ChIP was performed with anti-HA anti-
body or normal mouse IgG as a negative control. Precip-
itated DNA was analyzed by PCR using specific primers
for promoter regions containing the Forkhead binding
element (FBE) of p27%rl: 5'-TGCGCGCTCCTAGAG-
CTC-3' and S'-TTTCTCCCGGGTCTGCAC-3', MnSOD:
5'-GTCCCAGCCTGAATTTCC-3" and 5'-CTAGGCTTC-
CGGTAAGTG-3', and -actin coding region: 5'-CAA-
GAGATGGCCACGGCTGC-3" and 5'-CTAGAAGCATT-
TGCGGTGGACG-3'.25

Animal Studies

FoxO1%/~ mice and wild-type lictermates (FoxO1+/*
mice) (mixed background) were bred for studies as previ-
ously described.?¢ Liver fibrosis was induced by bile duct
ligation (BDL).2> The mice were killed 3 weeks after BDL,
and collagen al(I) mRNA levels and protein levels for
a-SMA and desmin were determined as previously de-
scribed.?? Collagen deposition was stained with Sirius red
(saturated picric acid containing 0.1% Direct Red 80 and
0.1% FastGreen FCF). For measurement of hydroxypro-
line content, the extracted protein from the liver was
hydrolyzed for 24 hours at 110°C in 6 mol/L HCI. The
samples were oxidized with Chloramine-T (Sigma-Al-
drich) for 25 minutes and then incubated with
Ehrich’s percholic acid solution containing 4-(Dimeth-
ylamino)benzaldehyde (Sigma-Aldrich) at 65°C for 20
minutes. The sample absorbance was measured at 560
nm. The acute liver injury produced by anti-Fas anti-
body (Jo2; BD Pharmingen, San Diego, CA) was also
assessed in FoxO1*%/~ and FoxO1™/* mice. Jo2 (100
pg/mouse) was administrated intravenously. Treated
animals were anesthetized and killed 2.5 hours after
Jo2 administration. All procedures for HSC isolation
and BDL were approved by the Investigation and Eth-
ics Committee and Institutional Animal Care and Use
Committee of the Columbia University.

Statistical Analysis

Results are expressed as mean = SD. The results
were analyzed using the unpaired Student ¢ test. A P
value of less than .05 was considered statistically sig-
nificant.

Results

PDGEF or Insulin Phosphorylates FoxO1 in
Transdifferentiated Primary Rat HSCs

Because the PI3K/AKT pathway induces prolifer-
ation and migration of HSCs,*$ we first sought to eluci-
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Figure 1. Activation of PISK/AKT pathway phosphorylates FoxO1. (A)
Primary rat HSCs were pretreated with (LY +) or without 20 wmol/L of
LY294002 for 1 hour. HSCs were then treated with 20 ng/mL PDGF or
100 nmol/L insulin for the indicated time periods. FoxO1, phospho-
FoxO1, AKT, phospho-AKT, and B-actin were analyzed by Western blot
analysis. (B) IRS-2 was immunoprecipitated (IP) using anti-IRS-2 anti-
body, and tyrosine phosphorylation was determined by Western blot
analysis (IB) using antiphosphortyrosine (pY) antibody. IRS-2 mass was
determined by reprobing the blot with anti-IRS-2 antibody. (C) Rat
HSCs were transduced with indicated adenoviruses for 24 hours. Se-
rum-starved HSCs were then treated with (+) or without (—) PDGF or
insulin for 30 minutes. FoxO1, phospho-FoxO1, HA, and B-actin were
analyzed by Western blot analysis. The results shown are representative
of 3 independent experiments.

date the role of FoxO1 in the proliferation of transdif-
ferentiated HSCs. PDGF (20 ng/mL) or insulin (100
nmol/L) induced phosphorylation of FoxO1 in parallel
with AKT phosphorylation in serum-starved primary rat
HSCs. The phosphorylation of FoxO1 or AKT was com-
pletely inhibited by the pretreatment with PI3K inhibitor
LY294002 (Figure 1A). Insulin also phosphorylated IRS-2
(Figure 1B). Moreover, phosphorylation of FoxO1l by
PDGEF or insulin was completely inhibited by overexpres-
sion of a dominant-negative form of AKT (DN-AKT)
(Figure 1C, leff). In contrast, constitutively active AKT-
transduced HSCs induce phosphorylation of FoxO1 dur-
ing serum starvation (Figure 1C, right). These results in-
dicate that PDGF or insulin induces phosphorylation of
endogenous FoxO1 via the PI3K/AKT pathway in pri-
mary rat HSCs.
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PDGEF or Insulin Induces Nuclear Exclusion
of FoxO1 in Transdifferentiated Primary
Rat HSCs

AKT-dependent phosphorylation of FoxO tran-
scription factors induces nuclear exclusion, resulting in
inhibition of their transcriptional activity.?”¢ To inves-
tigate the subcellular distribution of FoxO1 after PDGF
or insulin, we transduced rat HSC with WT-FoxO1 or
ADA-FoxO1 and immunostained with anti-HA antibody.
In serum-starved HSCs, FoxO1 protein had a nuclear
distribution (Figure 2A4). Addition of PDGF or insulin
resulted in a cytosolic redistribution of FoxO1, which was
blocked by LY294002 (Figure 2A). Phosphorylation-resis-
tant ADA-FoxO1 showed nuclear localization even after
PDGEF or insulin (Figure 2B and C). These results indicate
that PDGF- or insulin-induced FoxO1 phosphorylation
results in nuclear exclusion of FoxO1 via the PI3K/AKT
pathway.

FoxO1 Inhibits Proliferation by G1 Arrest of
Cell Cycle in Transdifferentiated Primary
Rat HSCs

To investigate the role of FoxO1 in the prolif-
eration of HSCs, *H-thymidine incorporation was as-
sessed. PDGF or insulin increased 3H-thymidine incor-
poration, which was significantly inhibited in ADA-
FoxOl-transduced HSCs (Figure 3A). In contrast,
HSCs transduced with A256-FoxO1 showed an in-
crease in H-thymidine incorporation (Figure 3B), and
PDGF or insulin did not further increase 3H-thymidine
in A256-FoxOl-transduced cells (data not shown).
LY294002 inhibited PDGF- or insulin-induced 3H-thy-
midine incorporation, whereas A256-FoxO1 reversed
this inhibition (Figure 3B), indicating that FoxO1 is a
crucial downstream target of the PI3K/AKT pathway
to control HSC proliferation. To investigate further
the mechanisms by which FoxO1 controls prolifera-
tion, FACS analyses were performed to examine the cell
cycle. PDGF, insulin or A256-FoxO1 induced cells to
accumulate in the S/G2/M phase of the cell cycle. In
contrast, ADA-FoxO1 resulted in the accumulation of
cells in the GO/G1 phase, even after treatment with
PDGF or insulin (Figure 3C and D). These results
indicate that active (nuclear) FoxO1 inhibits prolifer-
ation by inducing cell cycle arrest in the G1 phase.

Pp275P1 and MnSOD Are Transcriptional
Targets of FoxO1 That Regulate Proliferation
in HSCs

FoxO factors control a variety of target genes,
including antioxidant genes?® and regulators of metab-
olism,'® cell cycle,3° and cell death.”3! To investigate
the mechanism by which FoxO1 inhibits proliferation
via cell cycle arrest at G1, target genes of FoxO1 were
assessed with hTERT HSCs.!” hTERT HSCs showed
the same results as shown in primary rat HSCs, includ-
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Figure 2. PDGF or insulin induces subcellular translocation of FoxO1. (A) Rat HSCs were transduced with WT-FoxO1 and were treated with
PDGF or insulin for 30 minutes in the absence or presence (LY+) of LY294002. After fixation, immunofluorescence staining for HA was
performed with DAPI staining. Left panels indicate WT-FoxO1 (rhodamine), and right panels indicate merged images of WT-FoxO1 and DAPI.
(B) Immunofluorescence staining for ADA-FoxO1. The results shown are representative of at least 3 independent experiments. (C) Quantita-
tion of cells exhibiting positive nuclear staining (combination of cell exhibiting either nuclear staining only or cells exhibiting both nuclear and
cytoplasmic staining) was determined by counting a total of 10 randomly prechosen fields. P < .01 vs nonstimulated WT-FoxO1-transduced
cells, *P < .01 vs PDGF-stimulated WT-FoxO1-transduced cells, **P < .05 vs insulin-stimulated WT-FoxO1-transduced cells by using the

Student t test.

ing phosphorylation of FoxO1 by PDGF or insulin and
inhibition of proliferation by ADA-FoxO1 (data not
shown). Among the FoxO1 target genes tested, p27Xip!
and MnSOD were significantly decreased by PDGEF,
insulin, or A256-FoxO1. In contrast, ADA-FoxO1
markedly increased mRNA levels of p27P! and Mn-
SOD, which were not inhibited by PDGF or insulin
(Figure 4A and see Supplemental Figure 1 online at
www.gastrojournal.org). These changes in p27%P! and
MnSOD expression were confirmed at the protein level
(Figure 4B). ChIP assays demonstrated that WT-FoxO1
binds to the promoter regions of p27%P! and MnSOD
genes in serum-starved hTERT HSCs. This binding to

the promoter regions was inhibited by PDGF or insu-
lin (Figure 4C). In contrast, DNA binding of phospho-
rylation-resistant ADA-FoxO1 was not inhibited by
PDGF or insulin. To address whether p27Xi! and Mn-
SOD regulate HSC proliferation as a downstream tar-
get of FoxO1, we used adenoviruses that transduce
p27kiel short hairpin (shRNA) or MnSOD. p27kip!
shRNA effectively abolished the inhibitory effect of
ADA-FoxO1 on HSC proliferation, suggesting that
p27%Pl is a downstream target of FoxO1 (Figure 5B).
PDGF produced intracellular ROS in rat HSCs, as
measured by DCFDA fluorescence. Transduction of
MnSOD inhibited both PDGF-induced ROS produc-
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Figure 3. FoxO1 inhibits PDGF- or insulin-induced proliferation by GO/G1 cell arrest in rat HSCs. HSCs were transduced with ADA-FoxO1 in (A) and
A256-FoxO1 in (B) or GFP as control. Twenty-four hours after the transduction, HSCs were incubated under serum-free media for 24 hours. After
the preincubation with (+) or without (—) LY294002 for 1 hour, cells were stimulated with (+) or without (—) PDGF or insulin for 6 hours. Cells were
then incubated with 1 wCi/mL methyl-3H-thymidine for an additional 18 hours, and DNA synthesis was assessed. Data were expressed as the mean
+ SD from 3 independent experiments. (C) Rat HSCs were transduced with indicated adenoviruses for 24 hours. Rat HSCs were then serum starved
for additional 24 hours and stimulated without (control) or with PDGF or insulin. Twenty-four hours after the stimulus, FACS analysis was performed.
Representative FACS scan charts from 3 independent experiments are shown. (D) A graphical representation of the FACS data is shown. Data are
expressed as the mean *+ SD from 3 independent experiments. #P < .01 vs nonstimulated GFP-transduced cells; *P < .01, *P < .05 vs

GFP-transduced cells by using the Student t test.

tion (Figure 5C) and PDGF-induced proliferation, sug-
gesting critical roles of ROS and MnSOD in PDGF-
induced HSC proliferation (Figure 5D). In contrast,
insulin did not significantly increase intracellular ROS
in rat HSCs, and transduction of MnSOD did not
inhibit insulin-induced HSC proliferation (Figure 5C
and D). These results suggest that the role of MnSOD
in HSC proliferation is affected only by PDGF.

Collectively, these results suggest that p275*! and Mn-
SOD are specific transcriptional targets of FoxO1l in
HSCs. PDGF or insulin attenuated the binding of FoxO1
onto the p27kP! and MnSOD promoter regions, resulting
in inhibition of their transcription.

FoxO1 Inhibits Transdifferentiation of

Freshly Isolated Mouse HSCs

Because FoxOs control cellular differentiation in-
cluding that of adipocytes and myoblasts,!*15 we next
tried to elucidate whether FoxO1 regulates the transdif-
ferentiation process of HSCs. Mouse HSCs were isolated
and culture activated in 10% FBS-containing media. The
a-SMA expression and the phosphorylation status of
FoxO1 were increased in day 4 as compared with day 0
and day 2 HSCs (Figure 6A). Moreover, messenger RNA
(mRNA) levels of p27%r! and MnSOD were decreased in
day 4 HSCs compared with day 2 HSCs (Figure 6B).
A256-FoxO1-transduced HSCs showed an accelerated
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Figure 4. p274r! And MnSOD are transcriptional targets of FoxO1 in HSCs. hTERT HSCs were transduced with indicated adenoviruses for 24
hours. Cells were then serum starved for additional 24 hours. (A) Cells were treated with (+) or without (=) PDGF or insulin for 2 hours, and mRNA
levels of p27KPT and MnNSOD were determined by quantitative real-time RT-PCR. Data are expressed as the mean * SD from 3 independent
experiments. *P < .01 vs nonstimulated GFP-hTERT HSCs. (B) hnTERT HSCs were treated with (+) or without (—) PDGF or insulin for 18 hours, and
protein extracts were then subjected to Western blot analysis for p27kPT and MnSOD. The results shown are representative of at least 3 independent
experiments. (C) After preincubation with (+) or without (—) LY294002 for 1 hour, hTERT HSCs were treated with (+) or without (—) PDGF or insulin
for 1 hour, and ChIP assay was performed. Cross-linked DNA-protein complex was immunoprecipitated (IP) with anti-HA antibody or normal mouse
I9G (Cont IgG). Immunoprecipitated DNA was analyzed by PCR using specific primer sets for promoter regions of p274P' and MnSOD or B-actin
coding region. The results shown are representative of 3 independent experiments. NS, not significant.

change into myofibroblast-like appearance as compared
with GFP-transduced HSCs in day 4 (Figure 6C; a, c, d,
and f). In contrast, a vitamin A-containing quiescent phe-
notype was maintained in ADA-FoxO1-transduced HSCs in
day 4 (Figure 6C; b and e). Moreover, the expression of
a-SMA was inhibited by ADA-FoxO1 and enhanced by
A256-FoxO1 (Figure 6D). These results indicate that ADA-
FoxO1 inhibits and A256-FoxO1 accelerates HSC transdif-
ferentiation.

PPAR-v is expressed in the quiescent HSCs, and its
expression decreases after HSC transdifferentia-
tion.'51232  Tissue inhibitor of metalloproteinase-1
(TIMP-1) is not expressed in the quiescent HSCs, and its
expression increases after HSC transdifferentiation.3® As

we predicted, ADA-FoxO1l-transduced HSCs showed
higher PPAR-y and lower TIMP-1 mRNA levels as com-
pared with GFP-transduced HSCs, whereas A256-FoxO1-
transduced HSCs showed lower PPAR-vy levels (Figure
6E). Moreover, mRNA levels of collagen a1(I) were in-
creased in A256-FoxO1-transduced HSCs and decreased
in ADA-FoxOl-transduced HSCs (Figure 6E). These
changes in PPAR-y, TIMP-1, and collagen a1(I) expres-
sions by ADA-FoxO1 were likely to be due to an overall
inhibitory effect of FoxO1 on HSC transdifferentiation
rather than FoxO1l-mediated transcriptional up-regula-
tion because the Forkhead binding element was not
found in the promoter regions of these genes (data not
shown).
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150 (+) or 300 (+ +). Twenty-four hours after transduction, HSCs were incubated under serum-free media for 24 hours. (A) Protein extracts were then
subjected to Western blot analysis for p27XP1. The results shown are representative of at least 3 independent experiments. (B) Cells were then
stimulated with (+) or without (—) PDGF or insulin for 24 hours, and DNA synthesis was assessed. *P < .01 vs GFP (300 MOI)-transduced cells, **P
< .05 vs GFP+ADA-FoxO1 (150 + 150 MOI)-transduced cells by using the Student t test. (C and D) Rat HSCs were transduced with MnSOD,
ADA-FoxO1, or LacZ. Twenty-four hours after transduction, HSCs were incubated under serum-free media for 24 hours. (C) DCFDA-associated ROS
production immediately after treatment with PDGF or insulin was measured in a time course of 30 minutes using a multiwell plate reader. Cells were
stimulated with (+) or without (—) PDGF or insulin for 18 hours, and DNA synthesis was assessed. Data are expressed as the mean + SD from 3
independent experiments. #P < .05 vs nonstimulated GFP-transduced cells, *P < .05 vs GFP + PDGF, **P < .05 vs GFP + insulin by using the
Student ¢ test. NS, statistically not significant.

FoxO1 Inbhibits Proliferation of Mouse HSCs FoxO1%/~ Mice Are Sensitive to
During Transdifferentiation Experimental Liver Fibrosis

Because FoxO1 inhibits HSC transdifferentiation
and proliferation, we hypothesized that loss of FoxOl1
would increase liver fibrosis in vivo. Because FoxO17/~
mice have embryonic lethality,>* a model of secondary
biliary fibrosis was performed in FoxO1*%/~ and wild-type
proliferation of transdifferentiating mouse HSCs was  poxO1+/+ mice. Sham-operated FoxO1+/~ mice did not
increased in A256-FoxO1-transduced HSCs, whereas it ¢ ow any histologic differences from FoxO1*/* mice
was inhibited in ADA-FoxO1-transduced HSCs (Figure (data not shown). After 3 weeks of bile duct ligation,
7A and B). FACS analysis demonstrated that A256-  Sirjus red staining demonstrated markedly increased liver
FoxOl-transduced HSCs increased in number of cells  fibrosis in FoxO1%/~ mice as compared with FoxO1*/*
in the S/G2/M phase of the cell cycle, whereas ADA-  mijce (Figure 84 and B). Consistent with histologic anal-
FoxO1-transduced HSCs resulted in accumulation in  ysis, FoxO1*/~ mice showed increased hepatic levels of
the GO/G1 phase (Figure 7C). These results suggest  hydroxyproline and collagen a1(I) mRNA (Figure 8C and
that FoxOl also controls proliferation of HSCs not D). Moreover, @-SMA and desmin expressions were in-
only in the transdifferentiated state but also in the  creased in bile duct-ligated FoxO1"/~ mice (Figure 8F). In
transdifferentiation process. contrast, FoxO1%/~ and FoxO1*/* mice showed similar

Although the proliferative ability of mouse
transdifferentiated HSCs is less than that of rat trans-
differentiated HSCs (data not shown), mice HSCs
started to proliferate within day 4 (Figure 7A). The
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Characteristic morphorologic changes during HSC transdifferentiation were observed under fluorescent microscopy on day 4. Phase-contrasted
micrographs (a—c) and vitamin A autofluorescences (d—f) were shown. Original magnifications, 200X. (D) Western blot analysis for a-SMA and B-actin
on day 2 HSCs. The results shown are representative of 3 independent experiments. (E) mRNA levels of PPAR-vy, TIMP-1, and collagen a1(l) on day
4 HSCs were determined by quantitative real-time RT-PCR. Data are expressed as the mean + SD from 3 independent experiments. *P < .01 vs

GFP-transduced cells by using the Student t test.

liver injury at an earlier time point after bile duct ligation
(Figures 8 and 9E) and after the acute liver injury of
anti-Fas antibody (Jo-2) treatment (see Supplemental Fig-
ure 2A and B online at www.gastrojournal.org). Because
there are no targeted HSC gene knockout mice, the cell
type responsible for the increased hepatic fibrosis in the
FoxO1 heterozygous mice cannot be identified. However,
these results demonstrate that decreased FoxO1 increases
experimental liver fibrosis, consistent with our cell cul-
ture studies.

Discussion

The present study demonstrates that (1) PDGF or
insulin phosphorylates FoxO1 via the PI3K/AKT pathway
in transdifferentiated HSCs, result in FoxO1 translocation
from the nucleus to the cytosol; (2) FoxO1 is phosphory-
lated during the transdifferentiation of quiescent primary
HSCs; (3) proliferation and transdifferentiation of HSCs are
inhibited by transcriptionally active ADA-FoxO1 and en-
hanced by transcriptionally inactive A256-FoxO1; (4)
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p274ir! sShRNA effectively abolished the inhibitory effect of
ADA-FoxO1 on HSC proliferation; (5) PDGF produced
intracellular ROS, and transduction of MnSOD inhibited
PDGF-induced ROS production and proliferation in HSCs;
and (6) FoxO1"/~ mice are more susceptible to liver fibrosis
after bile duct ligation than wild-type littermates. The tran-
scriptional regulation of transdifferentiation, proliferation,
and collagen synthesis in HSCs has been intensely investi-
gated, and several transcription factors were identified that
control these processes, such as PPAR-y, Smad, and Krup-
pel-like factors.3® Here, we have identified that Forkhead
transcription factor FoxO1 is a key transcription factor that
regulates proliferation and transdifferentiation of HSCs
and liver fibrosis in vivo.

PDGEF is the most potent mitogen for transdifferentiated
HSCs during liver fibrosis. The PI3K/AKT pathway is acti-
vated by PDGF and is an important intracellular mediator
of growth signals in HSCs.3-5 p705°K Is a downstream target
of the PI3K/AKT pathway in HSC proliferation and colla-
gen gene expression.’ However, the role of mammalian
target of rapamycin (mTOR) still needs to be elucidated.
The present study indicates that transcriptionally active (ie,
nuclear localized) FoxO1 inhibits PDGF-induced HSC pro-

liferation by the G1 cell cycle arrest, whereas transcription-
ally inactive FoxO1 stimulated proliferation. Importantly,
transcriptionally inactive A256-FoxO1 rescued LY294002-
induced growth inhibition. Collectively, FoxO1 is a crucial
downstream target of the PI3K/AKT pathway to regulate
HSC proliferation.

We showed that insulin also phosphorylated FoxO1
via the IRS-2/PI3K/AKT pathway and stimulated HSC
proliferation. Nonalcoholic fatty liver disease (NAFLD) is
one of the most common causes of chronic liver injury
and fibrosis.3® Insulin resistance and subsequent hyper-
insulinemia are highly associated with NAFLD and are an
important risk factor for the progression of fibrosis in
NAFLD3” and chronic hepatitis C.38 The present study
suggests that hyperinsulinemia per se may stimulate HSC
proliferation via the PI3K/AKT/FoxO1 pathway and con-
tribute to the progression of fibrosis in patients with
NAFLD. Because FoxO1 also determines insulin sensitiv-
ity in the liver,2¢ possible roles of FoxO1 in both fibrosis
and insulin resistance may provide a new insight into the
pathophysiology and the treatment of NAFLD.

The mechanism underlying HSC transdifferentiation is
quite complex. A recent elegant study demonstrated the
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importance of PPAR-y in maintaining the quiescent HSC
phenotype.3? This study was based on the notion that
PPAR-y is a key transcription factor for adipocyte differen-
tiation® and is expressed in the “fat-storing” quiescent
HSCs. The expression and activity decreases during HSC
transdifferentiation.!’ Because FoxO1 also regulates cel-
lular differentiation including adipocyte differentia-
tion,!3-15 we postulated that FoxO1 contributes to the
HSC transdifferentiation process. Indeed, our data dem-
onstrated that ADA-FoxO1 inhibited and A256-FoxO1
accelerated the transdifferentiation process of quiescent
HSCs. The phosphorylated FoxO1 was increased during
their transdifferentiation in culture. Although the mech-
anism by which phosphorylation of FoxO1 is increased
during HSC transdifferentiation is unclear, it is possible
that posttranslational modification such as acetylation?’
changes FoxO1 activity during transdifferentiation. Col-
lagen a1(I) expression was also inhibited by ADA-FoxO1

in transdifferentiating HSCs, whereas it was enhanced by
A256-FoxO1. This inhibitory effect on collagen al(I)
expression may be due to the overall inhibitory effect of
FoxO1 on HSC transdifferentiation rather than a direct
regulation on collagen a1(I) gene transcription because it
was not changed by FoxO1 mutants in transdifferenti-
ated rat HSCs or hTERT HSCs (data not shown).
Among several downstream targets of FoxO1, we iden-
tified p27kP! and MnSOD as downstream targets of
FoxO1 in HSCs. PDGF or insulin inhibits DNA binding
of FoxO1 onto p27%! and MnSOD promoter regions,
resulting in transcriptional inactivation. In contrast, the
DNA binding of phosphorylation-resistant ADA-FoxO1
is not inhibited by PDGF or insulin. These findings
clearly indicate that transcription of p27XP! and MnSOD
is regulated by the PI3K/AKT/FoxO1 pathway in HSCs.
In addition to HSC proliferation, p27%r! and MnSOD
may also modulate HSC differentiation. As a result of
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regulation of p274P! leads HSCs into the S/G2/M phase of cell cycle and
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cellular mediators of proliferation. Hyperinsulinemia in NAFLD patients per
se stimulate HSC proliferation via the AKT/FoxO1 pathway.

increased phosphorylation of FoxO1, mRNA levels of
p27kP! and MnSOD are decreased during HSC transdif-
ferentiation. The decrease is reversed by ADA-FoxO1 and
enhanced by A256-FoxO1 (data not shown). p275P! is an
important regulator of cell cycle progression in the Gl
phase, supporting our results that FoxO1 inhibits prolif-
eration by G1 cell cycle arrest. In addition, factors that
regulate cell cycle can function as a regulator of cellular
differentiation.*9#! Qur data demonstrated that shRNA
for p27kiP! abolished suppressive effect of constitutively
active FoxO1 on HSC proliferation. ROS are also an
important mediator in proliferation, which can be inhib-
ited by MnSOD.#2 ROS play an important role in hepatic
fibrosis.2343 Indeed, adenoviral transduction of MnSOD
inhibited PDGF-induced ROS production and DNA syn-
thesis. Our results support a previous report that
NAD(P)H oxidase-derived ROS plays a crucial role in
PDGF-induced proliferation of HSCs.#4 In contrast, in-
sulin did not produce intracellular ROS in HSCs, and
transduction of MnSOD did not attenuate insulin-in-
duced HSC proliferation. These data suggest that there
are different intracellular signals between PDGF- and
insulin-induced growth stimuli in HSCs. Collectively, our
data support the notion that p27%P! and, in part, Mn-
SOD are the crucial downstream targets of the PI3K/
AKT/FoxO1 pathway to control HSC proliferation and
differentiation (Figure 9).
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Consistent with the results in culture, we demonstrated
that FoxO1 haploinsufficiency increases liver fibrosis in
vivo. Although bile duct-ligated FoxO1*/~ mice showed no
differences in liver injury compared with bile duct-ligated
wild-type littermates, FoxO1*/~ mice had increased liver
fibrosis in vivo. Further studies using other models, such as
HSC-specific FoxO1-knockout mice, are required to eluci-
date more precisely the pathophysiologic significance of
FoxO1 functions in liver fibrosis. In conclusion, the present
study indicates that the PI3K/AKT/FoxO1 pathway plays a
key role in liver fibrosis and thus provides a new direct link
between hyperinsulinemia and liver fibrosis. Our work may
contribute to the development of novel therapeutic strate-
gies for liver fibrosis induced by the hyperinsulinemia asso-
ciated with NAFLD.

Appendix

Supplementary Data

Supplementary data associated with this article
can be found, in the online version, at doi:10.1053/j.
gastro.2007.01.033.
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