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ABSTRACT5

The BATtle of the Attack Detection ALgorithms (BATADAL) is the most recent competition6
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Systems Analysis Symposium. The goal of the battle was to compare the performance of8

algorithms for the detection of cyber-physical attacks, whose frequency increased in the past9

few years along with the adoption of smart water technologies. The design challenge was set10

for C-Town network, a real-world, medium-sized water distribution system operated through11

Programmable Logic Controllers and a Supervisory Control And Data Acquisition (SCADA)12

system. Participants were provided with datasets containing (simulated) SCADA observa-13

tions, and challenged with the design of an attack detection algorithm. The effectiveness of14

all submitted algorithms was evaluated in terms of time-to-detection and classification accu-15

racy. Seven teams participated in the battle and proposed a variety of successful approaches16

leveraging data analysis, model-based detection mechanisms, and rule checking. Results were17

presented at the Water Distribution Systems Analysis Symposium (World Environmental &18

Water Resources Congress), in Sacramento, on May 21-25, 2017. This paper summarizes the19

BATADAL problem, proposed algorithms, results, and future research directions.20

Keywords: Water distribution systems, Cyber-physical attacks, Cyber security, EPANET,21

Smart water networks, Attack detection22

INTRODUCTION23

The past decades witnessed the transition of water distribution systems from traditional24

physical infrastructures to cyber-physical systems that combine physical processes with com-25

putation and networking: physical assets—such as pipes, pumps, and valves—work in unison26

with networked devices that monitor and coordinate the operations of the entire system.27

These devices include Programmable Logic Controllers (PLCs), Supervisory Control And28

Data Acquisition (SCADA) systems, Remote Terminal Units (RTUs), static and mobile29

sensor networks, and smart meters (Hill et al. 2014; Gong et al. 2016; Sønderlund et al.30

2016). The adoption of such smart water technologies plays a pivotal role in enhancing the31

automation and reliability of water distribution systems, but simultaneously exposes them32

to cyber-physical attacks (Rasekh et al. 2016)—namely the deliberate exploitation of com-33

puter systems aimed at accessing sensitive information or compromising the operations of34

3



the underlying physical system. Water (and wastewater) systems represent one of the sixteen35

critical infrastructure sectors identified by the U.S. Department of Homeland Security (U.S.36

Department of Homeland Security 2017), according to which the number of reported attacks37

on water infrastructures has been growing steadily (ICS-CERT 2014; ICS-CERT 2015; ICS-38

CERT 2016)—making them the third highest targeted sector after critical manufacturing39

and energy (ICS-CERT 2016). To take remedial actions, several countries are establishing40

research centres and international collaborations, such as the Israel–New York collaboration41

to defend water systems from "infrastructure terrorists" (The Times of Israel 2018).42

43

Protecting water distribution systems from cyber attacks requires (as with other cyber-44

physical systems) a combination of proactive and reactive mechanisms (Cardenas et al. 2008).45

Proactive mechanisms comprise all tools that reduce the chances to penetrate the system,46

such as appropriate measures for traffic authentication and confidentiality protection, access47

control, and device hardening (Graham et al. 2016; Adepu et al. 2017). Since it is not pos-48

sible to rule out all attacks, cyber-physical systems should also be equipped with intrusion49

detection schemes that assist with the recovery phase (Anderson 2010). Disclosing cyber50

attacks—without issuing false alarms—is thus crucial. Unfortunately, this does not come51

without some system-specific challenges. First, the definition of anomalous behaviours should52

not only be related to point, or content, anomalies—i.e., data points lying beyond some53

specific thresholds—since cyber-physical attacks can tamper one or multiple network com-54

ponents while keeping the performance characteristics within the historical bounds (Abokifa55

et al. 2017). This implies that detection schemes should be capable of disclosing both content56

and contextual anomalies, namely, data points that are considered abnormal when viewed57

against meta-information associated with the data points (Hayes and Capretz 2015). For58

example, unaccounted high volumes of water leaving tanks during nighttime, when demand59

is generally low, may be seen as a contextual anomaly revealed by looking at the flow data in60

the context of time. Second, the same hydraulic response of a water network (e.g., low water61
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levels in a tank) can be obtained through different attacks (Taormina et al. 2017). There-62

fore, detection schemes should also identify the cyber components that have been attacked;63

a non-negligible challenge in large water networks. Third, all networked devices, including64

SCADA systems, represent potential targets. This means that the information provided by65

SCADA systems may not be fully reliable.66

67

As the field of intrusion detection continues to grow, so too does the need of an objective68

comparison of attack detection algorithms for water distribution systems. The BATtle of69

the Attack Detection ALgorithms (BATADAL) was oragnized for this purpose. Participants70

were provided with datasets containing (simulated) SCADA data for a water distribution71

system victim of cyber attacks, and were tasked with the design of an attack detection72

mechanism. The design goals of a detection algorithm were to: (1) disclose the presence73

of an ongoing attack in the minimum time possible, (2) avoid issuing false alarms, and (3)74

identify which components of the system have been compromised (optional). Seven teams,75

from both academia and industry, contributed with novel solutions, which were evaluated76

using specific evaluation criteria—i.e., time-to-detection and classification accuracy. The77

BATADAL results were presented at a special session of the Water Distribution Systems78

Analysis Symposium (World Environmental & Water resources Congress), in Sacramento,79

on May 21-25, 2017.80

81

This paper summarizes the main solutions and outcomes of the BATADAL, and proposes82

future research directions for event detection in the realm of cyber-physical security. The83

remainder of the paper describes: (1) the BATADAL problem, data, and evaluation criteria;84

(2) a synopsis of the proposed attack detection algorithms; (3) an analysis of the results;85

and (4) conclusions and future research directions.86

PROBLEM DESCRIPTION87

The operators of C-Town water distribution system have observed anomalous behaviors88
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in some hydraulic components, e.g., tank overflows, reduction in pump speed, anomalous89

activation/deactivation of pumps. They suspect that the anomalies are attributable to cyber-90

physical attacks that interfered with the system operations and tampered with the readings91

recorded by the SCADA system. The aim of the participants was to develop an attack92

detection mechanism that detects the presence of attacks—in the shortest amount of time—93

from the available hourly SCADA data. In particular, attack detection algorithms must94

classify the system state as either ‘safe’ or ‘under attack’. A summary description of C-Town95

is provided below, along with the development data and evaluation criteria. BATADAL rules,96

problem details, and data are available in the supplemental material of the paper.97

C-Town Network98

C-Town water distribution system is based on a real-world, medium-sized network, first99

introduced for the Battle of the Water Calibration Network (Ostfeld et al. 2011). The network100

consists of 429 pipes, 388 junctions, 7 storage tanks, 11 pumps (distributed across 5 pumping101

stations), 5 valves, and a single reservoir (see Figure 1). Water consumption is fairly regular102

throughout the year. These physical assets were augmented with a network of nine PLCs,103

which are located in proximity of pumps, storage tanks, and valves. As shown in Table 1,104

most of the PLCs controlling the pumps receive the information needed by the control logic105

from other PLCs—for instance, PLC1 controls pump PU1 and PU2 on the basis of tank106

T1 water level, which is monitored by PLC2. PLCs controlling pumps and valves record107

information on the device status (ON/OFF or OPEN/CLOSED), the flow passing through108

it, and the inlet and outlet pressure of pumping stations. The cyber network includes a109

SCADA system, whose role is to coordinate the operations and store the readings provided110

by the PLCs. All information regarding the distribution system were incorporated into the111

EPANET2 (Rossman 2000) input file C-Town.inp, which was provided to the participants.112

Water demand in all nodes of C-Town was not shared, meaning that participants could not113

run the model for the same period and then compare the results with the provided SCADA114

data.115
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Development data116

Participants were provided with three datasets containing SCADA readings for 43 sys-117

tem variables, i.e., tank water levels (7 variables, denoted as L_<tank id>), inlet and118

outlet pressure for one actuated valve and all pumping stations (12 variables, denoted as119

P_<junction id>), as well as their flow and status (24 variables, denoted as F_<actuator120

id> and S_<actuator id>, respectively). All variables are continuous, with the excep-121

tion of the status of valve and pumps, represented by binary variables. The datasets were122

generated via simulation with epanetCPA, a Matlab toolbox that allows to design a va-123

riety of cyber attacks and simulate, with EPANET2 (version 2.0.12), the hydraulic re-124

sponse of a water distribution network (Taormina et al. 2017). The toolbox is available125

at https://github.com/rtaormina/epanetCPA. The hydraulic time step was set to 15126

minutes, while the SCADA data reported to the participants were sampled with fixed hourly127

intervals. The first two datasets, hereafter named Training dataset 1 and Training dataset128

2, were provided at the beginning of the competition, while the third one (Test dataset) was129

subsequently used to evaluate and rank the attack detection algorithms.130

• Training dataset 1 was generated with a simulation horizon of 365 days. A key aspect131

of the dataset is the absence of cyber attacks, which made it suitable for studying the132

operations of the water distribution system under normal operating conditions.133

• Training dataset 2 contains seven attacks, spanning over 492 hourly time steps. One134

attack was entirely revealed to the participants (by appropriately labelling the cor-135

responding time steps), while the remaining attacks were either partially revealed or136

hidden; see Table 2 for additional details. This corresponds to a post-attack scenario,137

in which forensics experts carry out an investigation to determine whether, when, and138

where the water distribution system has been affected.139

• Test dataset contains seven additional attacks, spanning over 407 hourly time steps140

(see Table 3). Naturally, no information regarding the attacks was revealed. Partici-141

pants were required to run the detection algorithms on the Test dataset and to submit142
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a detection report containing the following information: number of attacks detected,143

start and end time of each attack (in DD-MM-YYYY hh format), and the label of144

the attacked device(s) (optional).145

The operations of the water system were altered through malicious activation of hydraulic146

actuators, change of actuator settings, and deception attacks—amongst the most common147

for cyber-physical systems (Cardenas et al. 2009). The latter were aimed at manipulating148

the information sent or received by sensors and PLCs, with the ultimate goal of affecting the149

operations of an actuator (Urbina et al. 2016). Note that deception attacks were also used to150

alter the information received by SCADA, therefore concealing the real, physical outcomes151

of the attacks. SCADA concealment was performed by either adding an offset to the trans-152

mitted sensor readings or by replacing actual traffic information between PLCs and SCADA153

with previously-recorded data, a type of manipulation known as replay attack (Urbina et al.154

2016). The replay attacks featured in the BATADAL consisted in replacing data for a given155

hour of the day with those recorded during the same hour one or two days before. Figure 2156

illustrates attack #3 (Training dataset 2), where both pump operations and SCADA data157

are compromised. In this case, a deception attack manipulates Tank T1 water level readings158

sent by PLC2 to PLC1. PLC1 receives a reading equal to 0.5 meters, which is below the159

low level thresholds that activate pumps PU1 and PU2 (4 and 1 meter, respectively). This160

results in both pumps working for the entire period of the attack, which lasts for 60 hours.161

Consequently, the water level in Tank T1 reaches the full tank level (6.5 meters), with the162

excess water being spilled. The adversary tries to conceal the surge in T1 water level with a163

second deception attack that alters the signal sent by PLC2 to SCADA with a time-varying164

offset.165

Evaluation criteria166

The attack detection algorithms were evaluated by comparing the detection report submitted167

by each team against the provided Test dataset. The assessment was based on two scores168
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that account for (1) the time taken to detect an attack, and (2) the classification accuracy.169

The two scores were eventually combined into an overall ranking score, as explained next.170

Time-to-detection171

The time-to-detection (TTD) is the time needed by an algorithm to disclose a threat. It is172

defined as the difference between the time td at which the attack is detected and the time t0173

at which the attack started:174

TTD = td − t0. (1)175

The value of td is inferred from the detection report, and it corresponds to the first time176

stamp flagged as ‘under attack’ while the attack is ongoing. The lower the value of TTD,177

the better the algorithm performs. If an attack is detected, we then have:178

0 ≤ TTD ≤ ∆t, (2)179

where ∆t is the total duration of the attack. If the attack is not detected while it is ongoing180

(or at all), we set TTD = ∆t. To facilitate the comparison of all algorithms under different181

attack scenarios, the following performance score (STTD) was computed:182

STTD = 1 − 1

na

na∑
i

TTDi

∆ti
, (3)183

where na is the number of attacks contained in a dataset, TTDi the time-to-detection relative184

to the i -th attack, and ∆ti the corresponding duration. STTD varies between 0 and 1, with185

STTD = 1 being the ideal case in which all attacks are immediately detected, and STTD = 0186

the case in which none of the attacks is detected.187

Classification performance188

We determined the accuracy of an algorithm as its ability to disclose threats without raising189

false alarms. In the context of binary classification problems—like the BATADAL—the190

ability to identify threats is generally assessed with the True Positive Rate (TPR, also191
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known as recall or sensitivity), which is defined as:192

TPR =
TP

TP + FN
, (4)193

where TP and FN represent the number of True Positives and False Negatives, respectively.194

In other words, the True Positive Rate is the ratio between the number of time steps cor-195

rectly classified as under attack and the total number of time steps during which the system196

is under attack.197

198

The ability to avoid false alarms is measured with the True Negative Rate (TNR, or speci-199

ficity), defined as200

TNR =
TN

FP + TN
, (5)201

where FP and TN represent the number of False Positives and True Negatives, respectively.202

The True Negative Rate is thus the ratio between the number of time steps correctly classi-203

fied as safe conditions and the total number of time steps during which the system is in safe204

conditions.205

206

To ease the comparison across all algorithms, the True Positive and True Negative Rate were207

combined into a single classification performance score (SCLF ), defined as the mean between208

TPR and TNR, namely:209

SCLF =
TPR + TNR

2
. (6)210

This score accounts for both correct detection and false alarms, so it is suited for binary211

classification problems in which the sample distribution is biased towards one of the two212

classes—i.e., safe conditions, in the BATADAL. The value of SCLF varies between 0 and 1,213

with 1 representing a perfect classification.214
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Ranking score215

The time-to-detection and accuracy scores were finally merged into an overall ranking score216

(S), defined as:217

S = γ · STTD + (1 − γ) · SCLF , (7)218

where γ (0 ≤ γ ≤ 1) determines the relative importance of the two evaluation scores. The219

coefficient γ was set to 0.5 for the analysis reported below; so, early detection and accurate220

classification were equally weighed. Note that a naïve detection mechanism that predicts the221

system to be always in safe conditions gets a score S equal to 0.25 (STTD = 0, SCLF = 0.5).222

On the other hand, flagging the system as always under attack yields a value of S equal to223

0.75 (STTD = 1, SCLF = 0.5). This reflects the fact that S is intrinsically biased towards224

attack identification, since the the consequences of failing to disclose an attack are deemed225

more costly than issuing false alarms. These naïve detection methods have the same value226

of SCLF (equal to 0.5); yet, TPR and TNR are equal to 0 and 1 in the first case, and to227

1 and 0 in the second case. This highlights the contrasting nature of the two components228

of SCLF , and suggests how increased sensitivity may come at the cost of issuing more false229

alarms (and vice versa). Similarly, a potential conflict seems to exist between ensuring a230

timely detection of the attacks (high STTD) and issuing few false alarms, as recently pointed231

out by Housh and Ohar (2017c).232

ATTACK DETECTION ALGORITHMS233

Seven teams participated in the BATADAL. Here, we provide a brief description of each234

team’s attack detection algorithm.235

• Aghashahi et al. (2017) adopted a two-stage method that first extracts a four-236

dimensional feature vector from the observed (multi-dimensional) time series data,237

and then constructs a classifier to detect attacks. In the first stage, the time periods238

of attack/no attack were used to extract four features that captured information on239

the covariance and mean structure. Here, for every time instance, a local neighbor-240
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hood is utilized to construct estimates of mean and covariance. In the second stage, a241

supervised classification technique (i.e., Random Forests, Breiman (2001)) was used242

to classify the system state as safe or under attack.243

• Brentan et al. (2017) reduced the dimensionality of the problem by exploiting the244

division of C-Town network in District Metered Areas (DMAs). For each DMA, the245

authors used data on normal operating conditions to create Recurrent Neural Net-246

works that forecast tank water levels as a function of pump flow, upstream pressure247

(of the corresponding pump station), and hour of the day (Díaz et al. 2016). A statis-248

tical control process was finally used to identify abrupt changes in the neural networks249

error time series when the latter were applied to data containing cyber attacks (Gu-250

ralnik and Srivastava 1999). The rationale behind this approach is that it is plausible251

to expect an increase in the error time series when the system is under attack, since252

all neural networks are trained with data pertaining to normal operations.253

• Chandy et al. (2017) developed two detection models running sequentially. The first254

one uses features of the SCADA data (e.g., combined flow of pump stations, volume255

pumped and stored) to check whether physical and/or operating rules have been256

violated (e.g., tank levels within the bounds, hydraulic relationships between nodes257

hold). The outcome of this model is a set of flagged events, which are confirmed by the258

second model. The latter is a Convolutional Variational Auto-Encoder—belonging to259

the family of deep learning methods (Kingma and Welling 2013; Doersch 2016)—that260

calculates the reconstruction probability of the data: the lower the probability, the261

higher the chance of the data being anomalous.262

• Giacomoni et al. (2017) proposed two detection methods. The first one verifies the263

integrity of the actuator rules and SCADA data—by (1) checking whether the SCADA264

readings are consistent with the actuator rules defined for the water distribution265

system, and (2) comparing the data for all variables to identify values falling below266

or above thresholds created by analyzing data corresponding to normal operating267
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conditions. The second method builds on unveiling low-dimensionality components268

in the available data as well as the sparse nature of anomalies, thereby facilitating the269

separation of anomalies from the overall data. The separation of data into normal and270

anomalous components can be performed using prinicipal component analysis (PCA)271

(Lakhina et al. 2004) or a covex optimization routine (Mardani et al. 2013). (The272

results reported below for Giacomoni et al. (2017) correspond to the second detection273

method based on PCA.)274

• Abokifa et al. (2017) introduced a three-stage detection method, with each stage tar-275

geting a specific class of anomalies. The first step features outlier detection techniques276

to find statistical outliers in the data, thereby focusing on local anomalies that affect277

each sensor individually. The second stage employs an Artificial Neural Network—in278

the form of a Multi-Layer Perceptron—to detect contextual anomalies that do not279

conform to normal operating conditions. The third stage targets global anomalies280

that simultaneously affect multiple sensors. To disclose these anomalies, the layer281

uses Principal Component Analysis to decompose the high-dimensional datasets of282

sensor measurements into two sub-spaces representing normal and anomalous condi-283

tions (Lee et al. 2013).284

• Pasha et al. (2017) presented an algorithm consisting of three main interconnected285

modules working on control rules and consistency checks, pattern recognition, and286

hydraulic and system relationships. The first module checks the consistency of the287

data against the set of control rules characterizing the water system, while the second288

one uses statistical analysis to identify patterns for single hydraulic parameters and289

combination thereof. The idea is that patterns under cyber attacks may not follow the290

original ones. The anomalous behaviors detected by the first two modules are finally291

confirmed by the third one, which develops relationships for some physical quantities292

(e.g., tank levels, flows) and compares their estimates against those reported by the293

first two modules.294
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• Housh and Ohar (2017b) proposed a model-based approach that employs EPANET295

to simulate the hydraulic processes of the water distribution systems, and then uses296

the error between EPANET simulated values and the available SCADA readings to297

detect anomalous behaviors. The approach consists of three main steps: first, avail-298

able SCADA readings are used in a Mixed-Integer Linear Program to estimate the299

water demand in all nodes of C-Town; second, EPANET is used to generate reference300

values for the SCADA readings which are used to produce simulation errors when301

compared to actual readings; and third, a multi-level classification approach is imple-302

mented to classify the obtained simulation errors into event and normal conditions.303

A similar approach was successfully developed by Housh and Ohar (2017a) to detect304

contamination events in water distribution systems.305

RESULTS306

Algorithms performance307

Table 4 reports the values of the ranking, time-to-detection, and classification score (S,308

STTD, and SCLF ) obtained by the competing algorithms on the test dataset. The table also309

reports the number of attacks detected, the values of TPR and TNR yielding the classifica-310

tion score, and the elements of the confusion matrix (i.e., TP , FP , TN , and FN). A visual311

comparison of S, STTD, and SCLF is given in the scatter plot of Figure 3.312

313

Figure 3 highlights a cluster of four high-performing algorithms, all achieving a ranking314

score S higher than (or close to) 0.90. The group is led by the algorithm proposed by Housh315

and Ohar (2017b), which shows the best overall performance (S = 0.970). Note that this316

algorithm is the top scorer in terms of both time-to-detection STTD and classification score317

SCLF . Indeed, the detection trajectory depicted in Figure 4(a) shows that all attacks were318

immediately detected, with the exception of the last one, which was disclosed a few hours319

after its starting time. The algorithm of Abokifa et al. (2017) comes a close second, with S320
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equal to 0.949. This method was almost as quick as Housh and Ohar (2017b) in identifying321

the attacks, but it was more prone to false alarms. As shown in Figure 4(b), Abokifa et al.322

(2017) algorithm disclosed Attack #10 and #11 as a single continuous episode, erroneously323

flagging the system as under attack for the period in between. The algorithm proposed by Gi-324

acomoni et al. (2017) has the same TNR as that of Housh and Ohar (2017b)—meaning that325

both algorithms were the most successful in avoiding false alarms. However, Giacomoni326

et al. (2017) algorithm is less sensitive, resulting in lower TPR and minor timing errors (see327

Figure 4(c)) that led to a score S equal to 0.927. With a value of S equal to 0.896, the328

algorithm proposed by Brentan et al. (2017) can also be regarded as a strong performer. As329

shown in Figure 4(d), this algorithm was able to consistently and accurately detect most of330

the attacks, but it failed to identify the last one.331

332

Although outdistanced by the leading group, the contributions of Chandy et al. (2017)333

and Pasha et al. (2017) are still sensibly better than the naïve detection mechanisms de-334

scribed in the second section. Their score S is equal to 0.802 and 0.773, respectively. As335

illustrated in Figure 4(e,f), these two detection algorithms appear to suffer from opposite336

problems. The algorithm of Chandy et al. (2017) turned out to be over-sensitive—meaning337

that it was able to identify most of the attack instances, but at the cost of issuing numerous338

false alarms. This is reflected on a relatively high value of the TPR, which, however, coin-339

cides with the lowest overall value of the TNR. On the other hand, the algorithm of Pasha340

et al. (2017) issued just a few false alarms, but it lacked sensitivity, thus failing to flag the341

system as under attack for the entire duration of the events. This resulted in a very high342

value of the TNR and the overall lowest TPR. Finally, the contribution of Aghashahi et al.343

(2017) detected only three attacks, leading to a score S equal to 0.534.344

General Observations345

The main insights from the results presented above can be summarized as follows:346
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• All algorithms but one achieved a ranking score S larger than 0.75, meaning that347

they performed better than naïve detection mechanisms. Yet, we observed a large348

variability in the algorithm performance.349

• Both time-to-detection and classification score are important aspects of performance.350

Logically, the algorithms that performed consistently well for both metrics achieved351

a higher ranking score. There appears to be a strong correlation between these two352

metrics for most of the proposed algorithms (see Figure 3).353

• Interestingly, the BATADAL was won by the only model-based approach. The idea354

of estimating the water demands to simulate system dynamics with EPANET, and355

then measure the errors with respect to the SCADA readings, proved successful. In356

this regard, it is important to note that the BATADAL demand patterns were fairly357

regular and consistent across the three datasets. Similarly, the participants were given358

the same computational model of the C-Town network that was used to generate the359

SCADA data (i.e., the input file C-Town.inp). Therefore, successful application of360

this approach in real-world settings might be hindered by various factors, such as361

the intrinsic variability of demand patterns, key uncertainties in the hydraulic model362

(e.g., actual status of each component, pipe roughness, or pump performance curves),363

or the unavailability of a reliable system model.364

• Three data-driven algorithms belong to the cluster of high-performing detection mech-365

anisms. This indicates that both model-based and data-driven approaches may be366

suitable for attack detection problems, although their performance would probably367

vary with the modelling context at hand.368

• Only a few algorithms provided information on the attacked devices. Among these,369

the algorithms proposed by Brentan et al. (2017) and Giacomoni et al. (2017) were370

the most accurate.371

• Most teams presented multi-stage detection methods. Comparing and confirming the372

detection issued by different modules can help decrease classification errors.373
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• Detection algorithms adopting a ‘multivariate’ approach may be best suited than al-374

gorithms analyzing a single time series per time. The inherent interdependence of the375

elements in the water network should theoretically allow for the detection of anoma-376

lies, even when the adversaries try to conceal their actions by altering the SCADA377

readings of one or a few deployed sensors. Note that such interdependence generally378

presents a nonlinear nature, which can be well described by nonlinear models—such379

as those belonging to the class of Artificial Neural Networks.380

• The adoption of supervised classification algorithms that learn how to classify the381

system state (as either safe or under attack) may not be ideal, since the number of382

attacks in the available data is generally limited. Supervised classification algorithms383

should always be combined with cross-validation schemes.384

• It appears that consistency checks and the analysis of control rules should lead to the385

identification of the simplest attacks.386

We note that the results described above were obtained on three specific datasets, which387

represent only a small portion of the entire set of cyber-attacks that could threaten a water388

distribution system. Hence, the generation of different attacks is likely to produce different389

results—a limitation observed in other battles (e.g., Ostfeld et al. (2008)).390

Another factor that influences the BATADAL results relates to the evaluation criteria. First,391

the time-to-detection score STTD is based on the ratio between the time taken to detect an392

attack and the attack duration; this implies that a 2-hour attack detected within 1 hour393

would have the same score as a 10-hour attack detected on hour 5. Some operators may394

prefer to define scores that account explicitly for the absolute value of the attack duration395

or its corresponding damage. Second, the classification performance score SCLF is based on396

TPR and TNR, which are common metrics for classification problems. Yet, one may adopt397

other metrics, such as the F1 score (Sokolova and Lapalme 2009). Third, time-to-detection398

and classification performance score were given the same importance (the coefficient γ is399

equal to 0.50 in Eq. (7)). Depending on the problem at hand, one may want to outweigh400
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the time-to-detection (or the classification accuracy).401

FUTURE RESEARCH DIRECTIONS402

The BATADAL highlighted the following gaps that may need additional research efforts:403

• Robustness analysis. As mentioned above, the performance of an attack detection404

algorithm may depend—to a certain extent—on the data used during the calibration405

and validation process. To limit the impact of data when evaluating the robustness of406

an algorithm, it is thus advisable to generate stochastic simulation scenarios compris-407

ing varying hydraulic conditions (i.e., water demand, initial tank levels) and multiple408

attack sequences.409

• Use of real SCADA data. A major limitation of the current research on cyber-security410

is the absence of detailed information on cyber attacks to water utilities (e.g., timing,411

compromised devices, hydraulic response of the system). Access to such information412

and to the corresponding SCADA data—perhaps, in some anonymized forms—would413

drastically enhance our understanding on skills and limitations of detection algo-414

rithms. Another challenge with SCADA data is that they often contain noise and415

measurement errors, so attack detection algorithms should be coupled with data pre-416

processing techniques.417

• Pressure deficient conditions and water quality problems. A limitation of this battle418

is its reliance of data generated with a demand-driven engine (Taormina et al. 2017).419

The range of attacks should be thus extended to include pressure-deficient conditions,420

water quality problems, and adversial attempts aimed at threatening emergency re-421

sponses, such as firefighting operations. In the absence of real SCADA data, sim-422

ulated data could be generated by combining epanetCPA with more sophisticated423

hydraulic engines (e.g., Sayyed et al. (2015)) or water quality models (e.g., EPANET-424

MSX, Shang et al. (2007)).425

• Sensitivity analysis. The definition of the cut-off criteria defining outliers regulates426
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the trade-off between TPR and TNR for most of the algorithms, so there is a need427

to adopt or develop sensitivity analysis tools that draw the appropriate line between428

normal and anomalous data (Abokifa et al. 2017). This step should always precede429

the application of an algorithm to new datasets—or its deployment in a SCADA430

system.431

• Computational requirements and scalability to large networks. The algorithms pre-432

sented in this paper were applied to a medium-sized water distribution system com-433

prising one SCADA system and nine PLCs. Since attack detection algorithm are434

meant to run in real-time, it is necessary to evaluate their computational require-435

ments as well as their scalability to larger networks.436

• Attack localization. To facilitate and hasten incident resolution, an ideal detection437

mechanism should be able to identify which components of the network are being438

attacked. This is a rather challenging task due to the intrinsic correlation among the439

hydraulic variables. For data-driven detection mechanisms, the task may be solved440

with variable (or feature) selection algorithms (Galelli et al. 2014; Karakaya et al.441

2016), which identify the variables that are strongly related to the detected anomalies.442

• Integration with other fault detection mechanisms. Since attack detection mechanisms443

aim to disclose outliers and contextual anomalies in the system behavior, they may444

accidentally disclose anomalous behaviors that are not necessarily caused by cyber at-445

tacks (e.g., a water level sensor reporting wrong readings or a malfunctioning pump).446

Hence, there is a need to disclose the nature of each problem being identified—for ex-447

ample, by combining the attack detection algorithms with fault detection mechanisms448

that monitor the operations of PLCs.449

• Cost effectiveness of attack detection. In the BATADAL, the different algorithms were450

evaluated based on their responsiveness and classification performance. Although451

these metrics provide some insights on the potential benefits of deploying an attack452

detection mechanism, a more comprehensive evaluation is needed. For example, one453
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could try to estimate the damage or cost associated to each cyber-physical attack and454

the corresponding cost savings guaranteed by a detection algorithm.455

CLOSURE456

The BATADAL is the first battle competition dealing with the emerging topic of cyber-457

physical security of water distribution systems. This battle gave an opportunity to develop,458

test, and compare attack detection algorithms for SCADA data. The solutions provided by459

seven teams suggest that timely and accurate detection can be obtained by both model-460

based and data-driven approaches, usually made of multiple sequential stages. While the461

data and algorithms presented here provide a first step towards an objective comparison of462

attack detection algorithms for water distribution systems, they do not represent the entire463

spectrum of modelling contexts that practitioners and researchers would encounter. Hence,464

we hope that the availability of a dedicated website (www.batadal.net) will help share more465

datasets and case studies.466

SUPPLEMENTAL DATA467

The supplemental data include the following files, which are available online in the ASCE468

Library (www.ascelibrary.org):469

• BATADAL rules.pdf—competition rules, available to participants;470

• C-Town.inp—EPANET input file, version 2.00.12, available to participants;471

• Training dataset 1.csv—data without attacks, available to participants;472

• Training dataset 2.csv—data with attacks and corresponding labels, available to the473

participants with partial labels;474

• Test dataset.csv—data with attacks and corresponding labels, available to the partic-475

ipants without labels;476

• Detection Reports.zip—detection reports submitted by the participants.477

Additional details about BATADAL are available at www.batadal.net. epanetCPA is avail-478

able at https://github.com/rtaormina/epanetCPA.479
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TABLE 1. Sensors and actuators (pumps, valves) monitored/controlled by the PLCs.
For each PLC, we also report the corresponding controlling sensor, which provides the
information needed to operate the actuators. Note that a PLC-to-PLC connection is
established whenever an actuator and the corresponding control sensor are connected
to two different PLCs.

PLC Sensor Actuators (Controlling sensor)

PLC1 - PU1(T1), PU2(T1)
PLC2 T1 -
PLC3 T2 V2(T2), PU4(T3), PU5(T3), PU6(T4), PU7(T4)
PLC4 T3 -
PLC5 - PU8(T5), PU9(-), PU10(T7), PU11(T7)
PLC6 T4 -
PLC7 T5 -
PLC8 T6 -
PLC9 T7 -
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TABLE 2. Attacks featured in Training dataset 2.

ID Starting time
[dd/mm/YY HH]

Ending time
[dd/mm/YY HH]

Duration
[hours] Attack description SCADA concealment Labeled

[hours]

1 13/09/2016 23 16/09/2016 00 50 Attacker alters SCADA transmission to
PLC9 and changes the L_T7 thresholds
determining when pumps PU10/PU11 are
switched ON/OFF. Low levels in T7.

Replay attack on
L_T7 .

42

2 26/09/2016 11 27/09/2016 10 24 Like Attack #1. Like Attack #1 but re-
play attack extended
on PU10/PU11 flow
and status.

0

3 09/10/2016 09 11/10/2016 20 60 Attack alters L_T1 readings sent by PLC2
to PLC1, which reads a constant low level
and keeps pumps PU1/PU2 ON. Overflow in
T1.

Polyline to offset
L_T1 increase.

60

4 29/10/2016 19 02/11/2016 16 94 Like Attack #3. Replay attack on
L_T1, PU1/PU2 flow
and status, as well as
on pressure at pumps
outlet (P_J269).

37

5 26/11/2016 17 29/11/2016 04 60 Working speed of PU7 reduced to 0.9 of nom-
inal speed. Lower water levels in T4.

7

6 06/12/2016 07 10/12/2016 04 94 Like Attack #5, but speed reduced to 0.7. Replay attack on
L_T4.

73

7 14/12/2016 15 19/12/2016 04 110 Like Attack #6. Replay attack on
L_T4, as well as on
PU6/PU7 flow and
status.

0
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TABLE 3. Attacks featured in the Test dataset.

ID Starting time
[dd/mm/YY HH]

Ending time
[dd/mm/YY HH]

Duration
[hours] Attack description SCADA concealment

8 16/01/2017 09 19/01/2017 06 70 Attacker gains control of PLC3 and changes
the L_T3 thresholds determining when
pumps PU4/PU5 are switched ON/OFF.
Low levels in T3.

Replay attack on
L_T3, as well as on
PU4/PU5 flow and
status.

9 30/01/2017 08 02/02/2017 00 65 Attack alters L_T2 readings arriving to
PLC3, which reads a low level and keeps
valve V2 OPEN. The attack leads T2 to over-
flow.

Polyline to offset
L_T2 increase.

10 09/02/2017 03 10/02/2017 09 31 Malicious activation of pump PU3

11 12/02/2017 01 13/02/2017 07 31 Similar to Attack #10

12 24/02/2017 05 28/02/2017 08 100 Similar to Attack #9 Replay attack on
L_T2, V2 flow and
status, as well as on
V2 inlet and outlet
pressure readings
(P_J14, P_J422)

13 10/03/2017 14 13/03/2017 21 80 Attacker gains control of PLC5 and changes
the L_T7 thresholds determining when
pumps PU10/PU11 are switched ON/OFF.
The pumps are forced to switch ON/OFF
continuously during the attack.

Replay attack on
L_T7, PU10/PU11
flow and status, as
well as on pumps inlet
and outlet pressure
readings (P_J14,
P_J422). Inlet pres-
sure concealment
terminates before that
of other variables.

14 25/03/2017 20 27/03/2017 01 30 Alteration of T4 signal arriving to PLC6.
Overflow in T6.
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TABLE 4. Performance of all attack detection algorithms, assessed in terms of num-
ber of attacks detected, overall ranking score (S), time-to-detection (STTD), accu-
racy (SCLF ), True Positive Ratio (TPR), True Negative Ratio (TNR), and number of
True Positives (TP ), False Positives (FP ), True Negatives (TN) and False Negatives
(FN). The algorithms are ranked according to the their overall ranking score.

Rank Team # Attacks detected S STTD SCLF TPR TNR TP FP TN FN

1 Housh and Ohar 7 0.970 0.965 0.975 0.953 0.997 388 5 1677 19
2 Abokifa et al. 7 0.949 0.958 0.940 0.921 0.959 375 69 1613 32
3 Giacomoni et al. 7 0.927 0.936 0.917 0.838 0.997 341 5 1677 66
4 Brentan et al. 6 0.894 0.857 0.931 0.889 0.973 362 45 1637 45
5 Chandy et al. 7 0.802 0.835 0.768 0.857 0.678 349 541 1141 58
6 Pasha et al. 7 0.773 0.885 0.660 0.329 0.992 134 14 1668 273
7 Aghashahi et al. 3 0.534 0.429 0.640 0.396 0.884 161 195 1487 246
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FIG. 1. Graphical representation of C-Town water distribution system (adapted from
Taormina et al. 2017).
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Attack window

FIG. 2. Illustration of attack #3 (from Training dataset 2). The attacker alters Tank
T1 water level readings (continuous black line) sent by PLC2 to PLC1, which reads
a constant low level (dotted black line) and keeps Pumps PU1/PU2 ON. This causes
an overflow in Tank T1 (thick gray line). To conceal the action, the attacker alters
the signal sent by PLC2 to SCADA (dashed black line) by adding a time-varying
offset (continuous gray line). The duration of the entire attack is highlighted by the
light gray line on the horizontal axis.
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FIG. 3. Graphical representation of the algorithm performance, measured in terms of
time-to-detection (STTD, horizontal axis), classification performance (SCLF , vertical
axis), and overall ranking score (S, color-bar).
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FIG. 4. Comparison between actual and detected attacks (gray area and black line,
respectively) for the Test dataset. Each panel corresponds to a different attack
detection algorithm.
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