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Abstract. This paper introduces a resource allocation framework specif-
ically tailored for addressing the problem of dynamic placement (or
pinning) of parallelized applications to many-core systems. Under the
proposed setup each thread of the parallelized application constitutes
an independent decision maker, which autonomously decides on which
processing unit to run next. Decisions are updated recursively for each
thread by a resource manager which runs in parallel to the applica-
tion’s threads and periodically records their performances and assigns
to them new CPU affinities. We extend prior work of the authors by
introducing a two-level decision making process that is more appropriate
to handle many-core systems under Non-Uniform Memory Access archi-
tectures (NUMA). In particular, the first level may handle pinning of
threads or memory over the available NUMA nodes, while the second
level may handle pinning over the available CPU cores of the selected
NUMA nodes. Under such framework, a learning process updates current
estimates and decisions separately for each one of the two decision levels.
Additionally, a novel performance-based learning dynamics is introduced
which is more appropriate to handle measurement noise and rapid vari-
ations in the performance of the threads. Experiments are performed in
a many-core Linux platform.

1 Introduction

Resource allocation has become an indispensable part of the design of any engi-
neering system that consumes resources, such as electricity power in home energy
management [1], access bandwidth and battery life in wireless communications
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[8], computing bandwidth under certain QoS requirements [2], computing band-
width for time-sensitive applications [5], computing bandwidth and memory in
parallelized applications [3].

When resource allocation is performed online and the number, arrival and
departure times of the tasks are not known a priori (as in the case of CPU band-
width allocation), the role of a resource manager (RM) is to guarantee an efficient
operation of all tasks by appropriately distributing resources. However, guaran-
teeing efficiency through the adjustment of resources requires the formulation
of a centralized optimization problem (e.g., mixed-integer linear programming
formulations [2]), which further requires information about the specifics of each
task (i.e., application details). Such information may not be available to neither
the RM nor the task itself.

Given the difficulties involved in the formulation of centralized optimization
problems in resource allocation, not to mention their computational complexity,
feedback from the running tasks in the form of performance measurements may
provide valuable information for the establishment of efficient allocations. Such
(feedback-based) techniques have recently been considered in several scientific
domains, such as in the case of application parallelization (where information
about the memory access patterns or affinity between threads and data are used
in the form of scheduling hints) [4], or in the case of allocating virtual processors
to time-sensitive applications [5].

To this end, this paper proposes a distributed learning scheme specifically
tailored for addressing the problem of dynamically assigning/pinning threads
of a parallelized application to the available processing units. The proposed
scheme is flexible enough to incorporate alternative optimization criteria. In
particular, we demonstrate its utility in maximizing the average processing speed
of the overall application, which under certain conditions also imply shorter
completion time. The proposed scheme also reduces computational complexity
usually encountered in centralized optimization problems, while it provides an
adaptive response to the variability of the provided resources.

The proposed framework extends prior work of the authors [6, 12]. In par-
ticular, we propose a two-level decision making process that is more appropri-
ate to handle resource allocation optimization in Non-Uniform Memory Access
(NUMA) architectures. At the first (higher) level, the RM makes decisions with
respect to the NUMA node which a thread should be pinned to and/or its mem-
ory should be allocated to. At the second (lower) level, the RM makes decisions
with respect to the CPU core which each thread should be pinned to. Addition-
ally, we propose a novel learning dynamics motivated by aspiration learning that
is more appropriate for a) controling the switching frequency between NUMA
nodes, and b) adjusting the experimentation probability as a function of the cur-
rent performance. We finally validate the efficiency of the proposed algorithm
to increasing the average processing speed of the application with experiments
performed in a Linux platform.

The paper is organized as follows. Section 2 discusses the related work. Sec-
tion 3 describes the overall problem formulation, objective and contributions of



the paper. Section 4 presents the features of the proposed Dynamic Scheduler as
well as its advancement over its earlier versions. Section 5 presents experiments
of the proposed resource manager in a many-core Linux platform and comparison
tests with the operating system’s response. Finally, Section 6 presents concluding
remarks and future work.

2 Related work

To tackle the issues of centralized optimization techniques, resource allocation
problems have also been addressed through distributed or game-theoretic opti-
mization schemes. The main goal of such approaches is to address a centralized
(global) objective for resource allocation through agent-based (local) objectives,
where, for instance, agents may represent the tasks to be allocated. Examples
include the cooperative game formulation for allocating bandwidth in grid com-
puting [13], the non-cooperative game formulation in the problem of medium
access protocols in communications [14] or for allocating resources in cloud com-
puting [16]. The main advantage of distributing the decision-making process is
the considerable reduction in computational complexity (a group of n tasks can
be allocated to m resources with mn possible ways, while a single task may be
allocated with only m possible ways). This further allows for the development
of online selection rules where tasks/agents make decisions often using current
observations of their own performance.

Prior work has demonstrated the importance of thread-to-core bindings in
the overall performance of a parallelized application. For example, [9] describes
a tool that checks the performance of each of the available thread-to-core bind-
ings and searches for an optimal placement. Unfortunately, the exhaustive-search
type of optimization that is implemented may prohibit runtime implementation.
Reference [4] combines the problem of thread scheduling with scheduling hints
related to thread-memory affinity issues. These hints are able to accommodate
load distribution given information for the application structure and the hard-
ware topology. The HWLOC library is used to perform the topology discovery
which builds a hierarchical architecture consisting of hardware objects (NUMA
nodes, sockets, caches, cores, etc.), and the BubbleSched library [15] is used to
implement scheduling policies. A similar scheduling policy is also implemented
by [11].

Contrary to this line of research, recent work by the authors [6, 12] has pro-
posed a dynamic (learning-based) scheme for optimally allocating threads of a
parallelized application into a set of available CPU cores. This approach im-
plements a reinforcement learning algorithm (executed in parallel by a resource
manager/scheduler), according to which each thread is considered as an indepen-
dent agent making decisions over its own CPU-affinities. It requires a minimum
information exchange, that is only the performance measurements collected from
each running thread. Furthermore, it is flexible enough to accommodate alterna-
tive optimization criteria depending on the available performance counters (e.g.,
average processing speed in [6, 12]). It was shown both analytically and through



experiments under the Linux operating system, that the proposed methodology
learns a locally-optimal allocation, which under certain conditions also corre-
sponds to the globally optimal solution.

This line of work was an important step towards a) understanding the lim-
itations of the OS in the presence of disturbances, and b) efficiently exploiting
performance measurements to guide resource allocation. However, one potential
drawback of the proposed approach in [6, 12] was the fact that no special con-
sideration was taken upon the possible non-uniform memory access (NUMA)
architectures of the provided CPU cores. The proposed learning dynamics in
[6, 12] can be applied when the provided CPU cores belong to different NUMA
nodes (see, e.g., [12]). However, during the experimentation phase of the dynam-
ics, switching between CPU cores of different NUMA nodes has equal probability
to occur as switching between CPU cores within the same NUMA node. As a
result, when multiple NUMA nodes are available, it is highly likely that the con-
vergence rates to the optimal allocation will be much slower as compared to the
case of a single NUMA node.

To address this potential inefficiency of the learning dynamics when multiple
NUMA nodes are available, we provide a two-level resource allocation frame-
work. The first level addresses allocation over the available NUMA nodes, while
the second level addresses allocation over the available CPU cores (of the cur-
rently selected NUMA node). Such a hierarchical-based framework allows for
better controlling switching between NUMA nodes, thus reducing potential in-
efficiencies due to memory access patterns of the running threads. Furthermore,
the newly proposed framework allows for a) introducing multiple time-scale re-
source allocation, where allocation at the NUMA-level may take place at a slower
pace than allocation at the CPU-level, b) introducing auxiliary memory alloca-
tion actuation mechanisms which may support dynamic pinning of threads.

3 Problem Formulation and Objective

3.1 Framework

We consider a resource allocation framework for addressing the problem of dy-
namic pinning of parallelized applications. In particular, we consider a num-
ber of threads I = {1, 2, ..., n} resulting from a parallelized application. These
threads need to be pinned for processing into a set of available CPU cores
J = {1, 2, ...,m} (not necessarily homogeneous).

We denote the assignment of a thread i to the set of available CPU cores by
αi ∈ Ai ≡ J , i.e., αi designates the number of the CPU where this thread is
being assigned to. Let also α = {αi}i denote the assignment profile.

Responsible for the assignment of CPU cores into the threads is the Resource
Manager (RM), which periodically checks the prior performance of each thread
and makes a decision over their next CPU placements so that a (user-specified)
objective is maximized. For the remainder of the paper , we will assume
that:



Resource Manager (RM)
α∗ = (α∗1, α

∗
2, ..., α

∗
n)

.
= argmaxα∈A f(α,w)

T1 T2 Tn· · ·

CPU 1 CPU 2 CPU 3 · · · CPU m

α∗
1 α∗

2 α∗
n

w1 w2 w3 wm

α∗
1 α∗

2 α∗
n

Fig. 1. Schematic of static resource allocation framework.

(a) The internal properties and details of the threads are not known to the
RM. Instead, the RM may only have access to measurements related to their
performance (e.g., their processing speed).

(b) Threads may not be idled or postponed. Instead, the goal of the RM is to
assign the currently available resources to the currently running threads.

(c) Each thread may only be assigned to a single CPU core.

3.2 Static optimization and issues

Let vi = vi(α,w) denote the processing speed of thread i which depends on both
the assignment profile α, as well as exogenous parameters aggregated within
w. The exogenous parameters w summarize, for example, the impact of other
applications running on the same platform (disturbances). Then, the previously
mentioned centralized objectives may take on the following form:

max
α∈A

f(α,w). (1)

In the present work, the centralized objective will correspond to the average
processing speed of the running threads, i.e.,

f(α,w)
.
=

n∑
i=1

vi/n. (2)



Any solution to the optimization problem (1) will correspond to an efficient
assignment. Figure 1 presents a schematic of a static resource allocation frame-
work sequence of actions where the centralized objective (1) is solved by the RM
once and then it communicates the optimal assignment to the threads.

However, there are two practical issues when posing an optimization problem
in the form of (1). In particular,

1. the function vi(α,w) is unknown and it may only be evaluated through
measurements of the processing speed, denoted ṽi;

2. the exogenous disturbances w = (w1, ..., wm) are unknown and may vary
with time, thus the optimal assignment may not be fixed with time.

3.3 Measurement- or learning-based optimization

We wish to address a static objective of the form (1) through a measurement-
or learning-based optimization approach. According to such approach, the RM
reacts to measurements of the objective function f(α,w), periodically collected
at time instances k = 1, 2, ... and denoted by f̃(k). For example, in the case of
objective (2), the measured objective takes on the form f̃(k)

.
=

∑n
i=1 ṽi(k)/n.

Given these measurements and the current assignment α(k) of resources, the RM
selects the next assignment of resources α(k+ 1) so that the measured objective
approaches the true optimum of the unknown performance function f(α,w). In
other words, the RM employs an update rule of the form:

{(ṽi(1), αi(1)), ..., (ṽi(k), αi(k))}i 7→ {αi(k + 1)}i (3)

according to which prior pairs of measurements and assignments for each thread
i are mapped into a new assignment αi(k+ 1) that will be employed during the
next evaluation interval.

A dynamic (measurement-based) counterpart of the static framework of Fig-
ure 1 is shown in Figure 2. According to such scheme, at any given time instance
k = 1, 2, ..., each thread i communicates to the RM its current processing speed
ṽi(k). Then the RM updates the assignments for each thread i, αi(k + 1), and
communicates this assignment to them.

3.4 Multi-level decision-making and actuation

Recent work by the authors [6, 12] has demonstrated the potential of such dy-
namic (measurement-based) control of the CPU affinity of the running threads.
However, when an application runs on a Non-Uniform Memory Access (NUMA)
machine, additional information can be exploited to enhance scheduling of a
parallelized application. Consider, for example, the case that the RM periodi-
cally makes a decision about the NUMA-CPU affinity pair over which a run-
ning thread should run. If the running thread is currently restricted to run on
a specific NUMA node, then altering it may result in significant performance
degradation (due to, e.g., shared memory with other threads). Although such a
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Fig. 2. Schematic of dynamic resource allocation framework.

decision could be corrected at a later evaluation interval, it would be preferable
that NUMA affinities are decided through a different optimization process than
the one considered for altering the CPU affinities of a thread.

To this end, a multi-level decision-making and actuation process is consid-
ered. The proposed framework builds upon the PaRLSched scheduler presented
in [6], which was essentially concerned only with the efficient mapping of a par-
allelized application within a single NUMA node.

The proposed extension of the PaRLSched dynamic scheduler consists of two
nested decision processes depicted in Figure 3. At the higher level, the perfor-
mance of a thread is evaluated with respect to its own prior history of perfor-
mances, and decisions are taken with respect to its NUMA placement (possibly
involving memory affinities). At the lower level, the performance of a thread is
evaluated with respect to its own prior history of performances, and decisions are
taken with respect to its CPU placement (within the selected NUMA node). The
details of the scheduler will be described in detail in the forthcoming sections.

The main objective of the updated PaRLSched scheduler is to exploit appro-
priately the available hardware resources (i.e., processing bandwidth and mem-
ory), so that it increases the performance of a parallelised application during
run-time. Additionally, we should also increase the robustness and resilience
of the parallelised application, since a) the application should meet high perfor-
mance standards relatively to the provided hardware configurations and b) other
applications might share the same resources, which may lead to unpredictable
variations in the performance of the running applications.
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Fig. 3. Schematic of a multi-layer dynamic resource allocation framework.

3.5 Contributions

In prior work of the authors [6, 12], the Dynamic Scheduler addressed the
problem of automatically and dynamically discovering the optimal placement
of threads (pinning) into a homogeneous hardware platform (in fact, a set of
identical CPU processing units). It was based on a distributed Reinforcement-
Learning algorithm that learns the optimal pinning of threads into the set of
available CPU cores based solely on the performance measurements of each
thread. The proposed methodology emphasized the fact that the performance of
a parallelised application can increase significantly under a) dynamic changes in
the availability of resources and b) dynamic changes in the application’s demand.
These two points seem to be the two major weaknesses of modern operating sys-
tems, i.e., the ability to re-adjust under dynamic changes.

We would like to emphasize though that the methodology proposed in [6, 12]
could further be improved with respect to the following aspects:



− Multiple resources. The proposed approach in [6, 12] was concerned with the
optimization of a single resource (i.e., the processing bandwidth through the
allocation of CPU cores to threads). The question that naturally emerges is
the following: How the proposed methodology can be modified to accommo-
date multiple and possibly non-uniform resources? For example, in NUMA
architectures we may be concerned of both processing bandwidth as well as
memory.

− Hierarchical structure. Resources in NUMA architectures may involve hier-
archical structures. For example, placement of a thread into a CPU core
constitutes a fine-grained allocation of the processing bandwidth. Allocation
may instead be performed into NUMA nodes, which can be thought of as a
higher-level allocation of processing bandwidth.

− Non-uniform constraints/requirements. Multiplicity in the number and na-
ture of optimized resources may additionally impose non-uniform constraints
and/or requirements. For example, switching the placement of a thread to a
different CPU core may be performed more often compared to, for example,
switching the placement of its memory pages among different NUMA nodes.
Such differences in the constraints of placing non-uniform resources require
special treatment and the algorithms provided should be able to accommo-
date alternative criteria.

− Estimation & Optimization. The approach in [6, 12] provided a unified
methodology for concurrent estimation and optimization. In particular, es-
timation was performed through the reinforcement-learning updates of a
strategy/probability vector that summarizes prior experience of a thread
over the most beneficial allocation. Moreover, optimization was achieved by
randomly selecting the destination of a thread according to the correspond-
ing probability vector. However, it might be desirable that estimation and
optimization are separated from each other, in order for the designer to be
able to incorporate alternative methodologies (either for estimation or for
optimization). Furthermore, alternative estimation methods might be avail-
able at the same time and the role of the optimizer should be to optimally
integrate their predictions.

To this end, in this paper we provide an extension of the Dynamic Scheduler
(PaRLSched) developed in [6, 12] in two main directions:

(F1) Advancement of architecture.We provide a Dynamic Scheduler (PaRLSched)
that may easily accommodate more than a single resource at the same time
(e.g., both processing bandwidth and memory). However, resources may not
necessarily be uniform in nature, optimization criteria and constraints, while
they may be organized in a hierarchical structure. To this end, we introduced
a rather abstract structure in the dynamic scheduler, which is characterized
by the following features:
(a) Multiple resources. The user may define alternative resources to be opti-

mized (i.e., processing bandwidth in the form of thread placement, and
memory allocation).



(b) Hierarchical structure. The resources may accept child resources, a term
introduced to establish hierarchical dependencies between the resources.
For example, thread placement may be performed with respect to NUMA
nodes, however therein a subsequent placement may also be performed
with respect to the available CPU cores.

(c) Distinct optimization criteria. Each one of the optimized resources and/or
their child resources, may accept a distinct method for estimation and
optimization, as well as a distinct optimization criterion.

(F2) Separating estimation from optimization. We advanced our framework
for generating strategies for threads by separating the role of estimation/pre-
diction from the role of the optimization. The reason for this distinction
comes from the need to incorporate alternative prediction schemes over op-
timal allocations without necessarily imposing any constraint in the way
these predictions are utilized in the formulation of an optimal strategy.

(F3) Advancement of learning dynamics. When optimizing memory place-
ment in run-time, we wish to minimize the number of placement switches
necessary for approaching an optimal allocation. At the same time, we wish
to increase the reaction speed to rapid variations in the performance. To this
end, we introduced a novel learning dynamics that is based upon the formu-
lation of benchmark performances/actions. This class of dynamics closely
follows the evolution of the performance and triggers the appropriate re-
sponses (e.g., experimentation).

4 Dynamic Scheduler

Parallelized applications consist of multiple threads that can be controlled in-
dependently with respect to their NUMA/CPU affinity (at least in Linux ma-
chines). Thus, decisions over the assignment of CPU affinities can be performed
independently for each thread, allowing for the introduction of a distributed
learning framework. This implies that performance measurements can be ex-
ploited at the thread-level allowing for the introduction of a “local” learning
process, without however excluding the possibility of any information exchange
between threads. A schematic of the architecture of the dynamic resource allo-
cation framework is provided in Figure 3.

Below we provide a detailed description of the new features of the updated
PaRLSched Dynamic Scheduler.

4.1 Advancement of architecture

As briefly discussed in Section 3.5, the main goal of the updated architecture is
to provide a straightforward integration of (a) multiple resources, (b) hierarchical
structure of resources, and (c) alternative optimization criteria.

According to the new architecture, the user may define the resources to be
optimized as well as the corresponding methods used for establishing predictions
and for computing optimal allocations. In particular, the initialization of the
scheduler accepts the parameters depicted in the following table.



RESOURCES={"NUMA_BANDWIDTH" ,"NUMA_MEMORY"}
OPT_CRITERIA={"PROCESSING_SPEED" ,"PROCESSING_SPEED"}
RESOURCES_EST_METHODS={"RL" ,"RL"}
RESOURCES_OPT_METHODS={"RL" ,"AL"}

In the above example, we have defined two distinct resources to be opti-
mized, namely ”NUMA_BANDWIDTH”, which refers to the placement of threads to
specific NUMA nodes, and ”NUMA_MEMORY”, which refers to the placement/bind-
ing of the thread’s memory pages into specific NUMA nodes. For each one of
the resources to be optimized, there might be alternative optimization criteria,
which summarize our objectives for guiding the placements. The selection of the
optimization criteria is open-ended and directly depends upon the available per-
formance metrics. Currently, we evaluate allocations based on their impact in the
average processing speed over all running threads of the parallelized application.

In parallel to the selection of the optimized resources, we need to also define
the corresponding “methods” for establishing predictions (which are used under
the estimate() part of the Dynamic Scheduler, Figure 2). For example, we may
use the Reinforcement-Learning (RL) algorithm (some alternatives of which were
developed in [6, 12]) to formulate predictions based on prior performances. In this
case, the outcome of the estimate() part of the scheduler will be a probability or
strategy vector over the available placement choices that represents a prediction
over the most beneficial placement.

Similarly, we need to define the corresponding “methods” for the computation
of the next placements (which are used under the optimize() part of the Dy-
namic Scheduler, Figure 2). For example, we may use again the Reinforcement-
Learning (RL) perturbed selection criterion (cf., [6]) which is based upon the
strategy vectors developed in the estimate(). For the case of ”NUMA_MEMORY”,
we may use an alternative optimization method, aspiration learning (AL), briefly
described in the forthcoming Section 4.4 as more appropriate for less frequent
decision processing.

4.2 Hierarchical structure

Apart from the ability to optimize over more than one resources, it might be
the case (as evident in NUMA architectures) that placement of resources can
be specialized over several levels. For example, a thread may be bound for pro-
cessing into one of the available NUMA nodes, however placement can further
be specialized over the underlying CPU cores of this node. Thus, the nested
hardware architecture naturally imposes a nested description of the resource as-
signment. That is, the decision α1(k) of thread T1 in Figure 3 may consist of two
levels: in the first level, the NUMA node is selected, while in the second level,
the CPU-core of this NUMA node is selected.

The Dynamic Scheduler has been redesigned so that it accepts a nested de-
scription of resources. The depth of such description is not limited, although in
the current implementation we have been experimenting with a single type of a
child resource. An example of how child resources can be defined by the user is
depicted in the following table.



CHILD_RESOURCES={"CPU_BANDWIDTH" ,"NULL"}
CHILD_OPT_CRITERIA={"PROCESSING_SPEED" ,"PROCESSING_SPEED"}
CHILD_RESOURCES_EST_METHODS={"RL" ,"RL"}
CHILD_RESOURCES_OPT_METHODS={"AL" ,"AL"}

We have defined a child resource for the NUMA bandwidth resources, which
corresponds to a CPU-based description of the placement. On the other hand, for
the NUMA memory resources, we have not defined any child resources. For each
one of the child resources, we may define separate estimation and optimization
methods. Note that the decisions and algorithms over child resources may not
coincide with the corresponding methods applied for the case of the original
resources.

4.3 Separating estimation from optimization

An additional feature of the updated PaRLSched Dynamic Scheduler is the sepa-
ration between estimation/prediction and optimization. These two distinct func-
tionalities of the scheduler are depicted in Figure 3. The reason for this separation
in the scheduler was the need for incorporating alternative methodologies for the
establishment of both predictions and optimal decisions.

For example, in the learning dynamics (Reinforcement Learning) implemented
for optimizing the overall processing speed of a parallelized application in [6, 12],
we have implicitly incorporated the functionalities of estimation and optimiza-
tion within a single learning procedure. Recall that the first part of the Rein-
forcement Learning methodology is devoted to updating the strategy vectors
for each one of the threads (which summarize our predictions over the most
beneficial placement), while the second part is devoted to randomly selecting a
decision based on a slightly perturbed strategy vector. Under the updated archi-
tecture of the scheduler, these two functionalities (estimation and optimization)
are separated.

4.4 Aspiration-learning-based dynamics

As briefly described in Section 3.5, we wish to provide a class of learning dy-
namics which provides a better control over two important features: a) speed of
response to rapid performance variations, and b) experimentation rate.

The Reinforcement Learning dynamics presented in [6], provide a class of
learning dynamics that requires an experimentation phase controlled through a
rather small perturbation factor λ > 0. Essentially, this factor represents a very
small probability that a thread will not be placed according to the formulated
estimates, rather it will be placed according to a uniform distribution. Such
perturbation is essential for establishing a search path towards the current best
placement.

However, under this learning dynamics, the times at which the experimen-
tation phase occurs are independent from the current performance of a thread.
Thus, situations may occur at which a) experimentation occurs frequently at



allocations at which rather high performance is currently observed (something
that would not be desirable), and b) experimentation may be delayed when
needed the most (e.g., when performance is dropping). In such cases, it would
have been desirable to also exploit the available performance metrics.

To this end, we developed a novel learning scheme that is based upon the
notions of benchmark actions/performances and bears similarities with the so-
called aspiration learning. In words, the basic steps of this learning scheme can
be summarized as follows: Let k denote the time index of the optimizer update
(it may or may not coincide with the update index of the scheduler).

1. Performance update. At time k, update the (discounted) running average
performance of the thread (with respect to the optimized resource). Let us
denote this average performance by v̄i(k). It is updated according to the the
following update rule:

v̄i(k + 1) = v̄i(k) + ε · [vi(k)− v̄i(k)], (4)

where vi(k) is the current measurement of the processing speed of thread i.
2. Benchmark update. Define the upper benchmark performance b̄i(k) as

follows:

b̄i(k) =


v̄i(k), if v̄i(k) ≥ b̄i(k − 1)

b̄i(k − 1), if bi(k − 1) < v̄i(k) < b̄i(k − 1)

ηbi, else,
(5)

for some constant η > 1. The low benchmark performance is updated as
follows:

bi(k) =


v̄i(k), if v̄i(k) ≤ bi(k − 1)

bi(k − 1), if bi(k − 1) < v̄i(k) ≤ b̄i(k − 1)

(1/η)b̄i, else.
(6)

3. Action update. Given the current benchmark and performance, a thread
i selects actions according to the following rule:
(a) if v̄i(k) < bi(k), i.e., if the current average performance is smaller than

the low benchmark performance, then thread i will perform a random
switch to an alternative selection according to a uniform distribution.

(b) if bi(k) ≤ v̄i(k) < b̄i(k), then each thread i will keep playing the same
action with high probability and experiment with any other action with
a small probability λ > 0.

(c) if v̄i(k) ≥ b̄i(k), i.e., if the current average performance is larger than the
high benchmark performance, then thread i will keep playing the same
action.

It is important to note that the above learning scheme will react immedi-
ately when a rapid decrease is observed in the performance (thus, we indirectly
increase the response time to large performance variations). At the same time,



the small probability of experimentation is necessary under situations of rather
constant performance in order to explore a more beneficial allocation. However,
we may direct the search of the experimentation towards allocations which we
believe will provide a better outcome. This can be done by directly incorporat-
ing the outcome of an estimation method directly in step (3a) of the learning
scheme. Thus, such learning scheme can easily be incorporated in the updated
architecture of Figure 3 and make use of the outcome of any estimation method.

5 Experiments

In this section, we present an experimental study of the proposed reinforce-
ment learning scheme for dynamic pinning of parallelized applications. Experi-
ments were conducted on 28×Intel c©Xeon c©CPU E5-2650 v3 2.30 GHz run-
ning Linux Kernel 64bit 3.13.0-43-generic. The machine divides the physical cores
into two NUMA nodes (Node 1: 0-13 CPU cores, Node 2: 14-27 CPU cores).

In the following subsections, we consider a parallelized implementation of the
so-called Ant Colony Optimization. The proposed PaRLSched Dynamic Sched-
uler is implemented in scenarios under which the availability of resources may
vary with time. We compare the overall performance of the algorithm with that
of the OS scheduler, where comparison is performed on the basis of the processing
speed and completion time of the application.

5.1 Ant Colony Optimization (ACO)

Ant Colony Optimisation (ACO) [7] is a metaheuristic used for solving NP-hard
combinatorial optimization problems. In this paper, we apply ACO to the Single
Machine Total Weighted Tardiness Problem (SMTWTP). We are given n jobs.
Each job, i, is characterised by its processing time, pi (p in the code below),
deadline, di (d in the code below), and weight, wi (w in the code below). The
goal is to find the schedule of jobs that minimises the total weighted tardiness,
defined as

∑
wi ·max{0, Ci − di} where Ci is the completion time of the job, i.

The ACO solution to the SMTWTP problem consists of a number of itera-
tions, where in each iteration each ant independently computes a schedule, and
is biased by a pheromone trail (t in the code below). The pheromone trail is
stronger along previously successful routes and is defined by a matrix τ , where
τ [i, j] is the preference of assigning job j to the ith place in the schedule. After
all ants having computed their solutions, the best solution is chosen as the “run-
ning best”; the pheromone trail is updated accordingly, and the next iteration is
started. The main part of the program is given in Algorithm 2.



ALGORITHM 1: Metaheuristics of Ant Colony Optimization.
for (j=0; j<num_iter; j++) {

for (i=0; i<num_ants; i++)
cost[i] = solve (i,p,d,w,t);

best_t = pick_best(&best_result);
for (i=0; i<n; i++)

t[i] = update(i, best_t, best_result);
}

ALGORITHM 2: Pseudocode of metaheuristics in ACO.
Data: this text
Result: best_result
initialization;
for j = 0 to j < num_iter do

read current;
if understand then

go to next section;
current section becomes this one;

else
go back to the beginning of current section;

end
end

5.2 Parallelization and experimental setup

Parallelization of the ACO metaheuristic can naturally be implemented by as-
signing a subgroup of ants to each one of the threads. We consider a uniform
division of the work-load to each one of the threads (farm pattern). Paralleliza-
tion is performed using the pthread.h (C++ POSIX thread library).

Throughout the execution, and with a fixed period of 0.2 sec, the PaRLSched
collects measurements of the total instructions per sec (using the PAPI library
[10]) for each one of the threads separately. As described in detail in Section 4,
the decision over the pinning of a thread is taken into two levels. At the first
level, the scheduler decides which NUMA node the thread will be assigned to,
following the aspiration-learning-based algorithm presented in Section 4.4. At the
second level, the scheduler decides which CPU core the thread will be assigned to,
within the previously selected NUMA node. This part of the learning dynamics
follows the reinforcement-learning rule presented in [6, 12].

The learning process over the NUMA node assignment takes place at a faster
pace as compared to the CPU core assignment. Placement of the threads to
the available CPU’s is achieved through the sched.h library (in particular, the
pthread_setaffinity_np function). In the following, we demonstrate the re-
sponse of the PaRLSched scheme in comparison to the Operating System’s (OS)
response (i.e., when placement of the threads is fully controlled by the OS).



In all the forthcoming experiments, the RM is executed by the master thread
which is always running in a fixed CPU core (usually the first available CPU
core of the first NUMA node).

In Table 1, we provide an overview of the investigated experiments with the
ACO case study. As we see, we consider four main sets of experiments (A, B,
C, and D), where each set differs in the amount of provided resources and their
temporal availability. In the first set (Exp. A.1–A.3), we essentially restrict the
scheduler into a single NUMA node (small availability). In the second set of
experiments (Exp. B.1–B.3) we provide equal number of CPU cores in both
NUMA nodes (medium availability). In the third set of experiments (Exp. C.1–
C.3), we further increase the number of available CPU cores in both NUMA
nodes (large availability). Finally, in the fourth set of experiments (D), we provide
a time-varying availability of resources alternating between the available NUMA
nodes.

Our goal is to investigate the performance of the scheduler under different
set of available resources, and how the dynamic scheduler adapts to exogenous
interferences. To this end, in each one of these sets, we also vary the tempo-
ral availability of the provided bandwidth. In particular, under the non-uniform

Table 1. Brief description of ACO experiments.

Exp. Ants Threads # CPU’s/NUMA Conditions
A.1 5000 40 8/0, 2/1 Uniform CPU availability.
A.2 5000 40 8/0, 2/1 Non-uniform CPU availability.
A.3 5000 40 8/0, 2/1 Time-varying CPU availability.
B.1 5000 40 8/0, 8/1 Uniform CPU availability.
B.2 5000 40 8/0, 8/1 Non-uniform CPU availability.
B.3 5000 40 8/0, 8/1 Time-varying CPU availability.
C.1 5000 40 12/0, 12/1 Uniform CPU availability.
C.2 5000 40 12/0, 12/1 Non-uniform CPU availability.
C.3 5000 40 12/0, 12/1 Time-varying CPU availability.

D 5000 40 6/0, 6/1 Time-varying CPU availability
alternating between NUMA nodes.

CPU availability condition, other applications occupy a constant number of the
available CPU cores throughout the whole duration of the experiment. On the
other hand, under the time-varying CPU availability condition, other applica-
tions occupy a non-constant part of the available bandwidth (i.e., exogenous
applications start running 1 min after the beginning of the experiment). In both
the non-uniform CPU availability and the time-varying CPU availability case,
the exogenous disturbances (other applications) comprise computational tasks
often equally distributed among the available CPU cores. In the experiment sets
A, B, and C, these exogenous applications occupy the first 6 CPU cores of both
NUMA nodes.



Furthermore, in set D, we alternate the exogenous interferences between the
two NUMA nodes. Our goal is to investigate the effect of the (stack) memory
of threads in the overall performance of the application. In particular, in this
experiment, an exogenous application alternates between the first 6 CPU cores
of the two available NUMA nodes (with a switching period of 5 min).

5.3 Thread Pinning

Experiment Set A: Small CPU availability In this experiment set, we
would like to test the performance of the dynamic scheduler under conditions
of small CPU availability (as compared to the number of running threads). As
depicted in Table 1, 8 CPU cores are available from the first NUMA node and
only 2 CPU cores are available from the second one. We would like to investigate
the completion time of the application under three possible conditions (A.1)
uniform CPU availability (i.e., no other application is utilizing the platform),
(A.2) non-uniform CPU availability (i.e., other applications constantly occupy
some of the available CPU cores constantly over the duration of the experiment),
and (A.3) time-varying CPU availability (i.e., other applications start running
after the first minute of the experiment).

The statistical analysis of the performance of the OSand the PaRLSched
dynamic scheduler are depicted in Table 2. Furthermore, in Figure 4, we have
plotted the sample

Table 2. Statistical results regarding the completion time (in sec) of OS and PaRLSched
under Experiment Group B (ε = 0.3/v̄i/108, λ = 0.1/v̄i/108).

Run
#

A.1 A.2 A.3
OS PaRLSched OS PaRLSched OS PaRLSched

1 1075.21 1078.35 1730.38 1499.02 1449.87 1398.02
2 1056.01 1079.44 1760.73 1444.15 1472.76 1401.65
3 1060.62 1066.12 1753.34 1456.40 1468.28 1399.02
4 1060.18 1069.92 1745.90 1433.08 1451.86 1409.59
5 1073.21 1083.59 1771.97 1446.96 1453.15 1401.76

aver. 1065.05 1075.48 1752.46 1455.92 1459.18 1402.00
s.d. 7.68 6.45 14.00 22.80 9.42 4.06

This set of experiments is rather interesting since they provide an uneven
number of CPU cores in each one of the available NUMA nodes. Some remarks
are the following:

− Completion-time under small interference: The PaRLSched scheduler is able
to almost match the performance of the OS when there is no interference.
In particular, the completion time of the scheduler is about 1% larger than
that of the OS. This small difference should be attributed to the following
factors:



1. Experimentation: The PaRLSched implements a necessary (non-zero) ex-
perimentation probability that affects both the selection of the NUMA
node as well as the selection of the CPU core.

2. Load-balancing: Another reason for this difference might be the poten-
tially more efficient load-balancing incorporated by the OS. Note that
the PaRLSched scheduler optimizes with respect to the speed, and in
fact, we may observe in Figure 4 (A1), that the running average speed of
the OS scheduler coincides with the corresponding one of the PaRLSched
scheduler. Thus, the shorter completion time under OS should only be
the outcome of the load-balancing algorithm implemented within the
Linux kernel. We will revisit this remark in the forthcoming experiments
as well.

− Optimization criterion: Recall that the optimization criterion driving allo-
cation of resources under the PaRLSched dynamic scheduler is the average
processing speed of each thread. Note that the dynamic scheduler is able to
achieve the same or higher average processing speed than the OS. In other
words, the PaRLSched is able to meet its design specifications.
However, processing speed is only one factor that contributes to the overall
completion time. Apparently, there could be additional factors that may
influence the completion time, such as internal application details, as well as
the load balancing algorithm of the OS discussed above.

− Completion time under large interference: The performance of the PaRLSched
is significantly better both in experiments A.2 and A.3. This should be at-
tributed to the fact that the PaRLSched utilizes performance measurements
in order to adapt in the performance variations of each thread separately.
The speed of response to such variations has also been improved by the
updated learning dynamics discussed in Section 4.4.

Experiment Set B: Medium CPU availability In this set of experiments,
we increase the CPU availability (i.e., we provide a larger number of CPU cores
from each one of the available NUMA nodes). The statistical analysis of the
performance of the OS and the PaRLSched is provided in Table 3. In Figure 6,
we provide sample responses for the different classes of interference introduced
in Table 1.

We may point out the following remarks:

− Completion time under small interference: The OS outperforms the PaRLSched
scheduler when there are no disturbances, i.e., the parallel application is the
only application running in the system. Note that this discrepancy between
the dynamic scheduler and the OS was smaller in experiment set A, when
essentially only the first NUMA node was available. In other words, the
larger CPU availability or the smaller degree of interference, increased the
performance of the OS with respect to the overall completion time. This
discrepancy should be attributed primarily to the load balancing algorithm
implemented by the OS (as also discussed in the experiment set A). This
observation will become more clear in the forthcoming experiment set C.



Table 3. Statistical results regarding the completion time (in sec) of OS and PaRLSched
under Experiment Group B (ε = 0.3/v̄i/108, λ = 0.1/v̄i/108).

Run
#

B.1 B.2 B.3
OS PaRLSched OS PaRLSched OS PaRLSched

1 669.20 715.47 1114.39 1038.96 1065.86 1012.14
2 671.67 698.14 1113.25 1042.97 1066.24 1013.26
3 684.35 691.66 1113.29 1031.61 1067.14 1019.89
4 669.98 704.48 1117.78 1052.01 1066.95 1015.24
5 670.24 686.04 1073.09 1041.11 1064.69 1035.02

aver. 673.09 699.16 1106.36 1041.33 1066.18 1019.11
s.d. 5.69 10.24 16.71 6.59 0.88 8.39

− Optimization criterion: As also was the case in experiment set A, the PaRLSched
dynamic scheduler achieves a running average speed that is either larger than
or equal to the corresponfing processing speed achieved by the OS. This is
independent of the interference level, as shown in the sample responses of
Figure 5.

− Completion time under large interference: Observe that the dynamic adap-
tivity of the PaRLSched scheduler is able to provide better responses with re-
spect to the completion time in dynamic environments (i.e., non-uniform and
non-constant availability of resources), i.e., when the interference is rather
high. This should be attributed to the adaptive response of the dynamic
scheduler to variations in the processing speed of the threads.

Experiment Group C: Large CPU availability In this set of experiments,
we increase the CPU availability even further. In particular, we provide almost
the full available bandwidth from both NUMA nodes. The statistical analysis
of the performance of the OS and the PaRLSched is provided by Table 4, while
in Figure 6, we provide sample responses for the different classes of interference
introduced in Table 1.

A few interesting observations stem from this set of experiments, especially
in comparison with the corresponding performances in sets A and B.

− Completion time: We observe that in set C, the benefit (initially observed
in A and B) of using the PaRLSched dynamic scheduler under the presence
of exogenous applications is lost. In fact, the completion time under the
PaRLSched scheduler is always slightly larger than that of the OS. One reason
for this change (as compared to the sets A and B) is the fact that the
interference is now smaller (as a percentage of the provided resources) than
that of experiment sets A or B. In particular, in experiment set C, the
interference covers 50% of the available CPU cores (since the exogenous
applications uses only the 6 first CPU cores of each NUMA node), while in
set A and B, the interference covers 80% and 75% of the available CPU cores,



Table 4. Statistical results regarding the completion time (in sec) of OS and PaRLSched
under Experiment Group C (ε = 0.3/v̄i/108, λ = 0.1/v̄i/108).

Run
#

C.1 C.2 C.3
OS PaRLSched OS PaRLSched OS PaRLSched

1 452.94 500.87 657.74 665.24 660.70 685.73
2 451.95 487.71 657.26 675.26 660.71 678.85
3 465.63 510.34 679.96 706.61 656.76 665.13
4 452.72 490.86 692.16 714.24 664.54 669.07
5 456.11 491.65 611.78 682.63 654.04 681.39

aver. 455.87 496.29 659.78 688.80 659.35 676.03
s.d. 5.08 8.28 27.45 18.66 3.62 7.72

respectively. Thus, we may conclude that the OS is able to respond better
under small interferences, most probably due to its internal load balancing
of the running threads among the provided CPU cores. The load balancing
algorithm of the OS is not utilized by the PaRLSched mainly due to the fact
that, at any given time, each thread is restricted to run only at a single CPU
core.

− Average processing speed: Note that in all experiments (A, B, and C) the
average processing speed under the PaRLSched dynamic scheduler is either
larger than or equal to the corresponding processing speed under the OS.
Observe, for example, in Figure 6(C2)–(C3), that although the running aver-
age processing speed under the PaRLSched is larger than that of the OS, the
OS completes the tasks at an earlier time. This shows that the PaRLSched
is successful with respect to its initial design specifications, that is to max-
imize the average processing speed of the overall application. However, this
is not necessarily enough to provide a shorter completion time (at least in
situations of small or no interference).

5.4 Thread pinning and memory binding

In this last experiment, an additional feature has been added into the PaRLSched
scheduler, that is the memory binding of a newly allocated (stack) memory
to the selected NUMA node of the running thread. The intention here is to
constrain any newly allocated memory into the selected NUMA node, which
may potentially further increase the running speed of the overall application.
We wish to investigate the effect of this additional degree of optimization into
the overall completion time of the application.

We further introduce the variable ζ ∈ [0, 1] that captures the minimum per-
centage of occupancy (among threads) requested before binding the memory of
a thread into a NUMA node. For example, if ζ = 1/2, it implies that a thread’s
memory will be bound to a NUMA node if and only if more than 1/2 of the
threads also run on that node. Intuitively, the more threads occupy a NUMA
node, the more likely it is that the larger part of the shared memory will be (or



should be) attached on that node. Thus, essentially, through the introduction of
ζ, we get an additional control variable that may potentially affect the speed of
the overall application.

This is indeed the case as depicted in the statistical analysis of Table 5. It is
observed that under ζ = 1/2, a small decrease is observed in the completion time
of the overall application (which is not observed under ζ = 0).

Table 5. Statistical results regarding the completion time (in sec) of OS and PaRLSched
under Experiment Group D (ε = 0.3/v̄i/108, λ = 0.1/v̄i/108).

Run
#

D
OS PaRLSched PaRLSched (ζ = 1/2) PaRLSched (ζ = 0)

1 1310.93 1231.38 1217.91 1225.06
2 1322.39 1222.69 1221.69 1227.94
3 1339.97 1226.25 1220.07 1223.37
4 1315.60 1224.49 1223.50 1226.11
5 1332.67 1231.12 1220.59 1230.58
6 1303.44 1238.09 1231.45 1228.79
7 1306.84 1224.52 1227.91 1233.87
8 1322.44 1224.56 1219.17 1226.60
9 1311.75 1235.77 1225.76 1221.96
10 1309.82 1219.98 1225.94 1224.55

aver. 1317.59 1227.89 1223.40 1226.88
s.d. 11.11 5.613 4.088 3.365
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Fig. 4. Experiment Group A: Sample Responses
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Fig. 5. Experiment Group B: Sample Responses
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Fig. 6. Experiment Group C: Sample Responses



6 Conclusions and future work

We proposed a measurement- (or performance-) based learning scheme for ad-
dressing the problem of efficient dynamic pinning of parallelized applications into
many-core systems under a NUMA architecture. According to this scheme, a cen-
tralized objective is decomposed into thread-based objectives, where each thread
is assigned its own utility function. Allocation decisions were organized into a hi-
erarchical decision structure: at the first level, decisions are taken with respect to
the assigned NUMA node, while at the second level, decisions are taken with re-
spect to the assigned CPU core (within the selected NUMA node). The proposed
framework is flexible enough to accommodate a large set of actuation decisions,
including memory placement. Moreover, we introduced a novel learning-based
optimization scheme that is more appropriate for administering actuation deci-
sions under a NUMA architecture, since a) it provides better control over the
switching frequency and b) it provides better adaptivity to variations in the
performance, since the experimentation probability is directly influenced by the
current performance.

We demonstrated the utility of the proposed framework in the maximization
of the running average processing speed of the threads. Through experiments,
we observed that the PaRLSched dynamic scheduler can ensure that the running
average speed of the parallelized application will be either larger than or equal
to the corresponding speed under the OS’s scheduler. However, (as we showed
in experiment set C), this may not be sufficient to guarantee shorter completion
time of the overall application. This was particularly evident under small degree
of interference. One way to resolve this discrepancy in the overall completion
time under the PaRLSched scheduler and under small interference is to allow the
scheduler to assign more than a single CPU core to each thread. In this way, we
will allow the internal load balancing algorithm to also contribute to the better
bandwidth management, thus we will manage to better combine the adaptive
response of the PaRLSched and the load balancing algorithm of the OS.
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