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Abstract

The problem of efficient resource allocation has drawn significant attention in many scientific
disciplines due to its direct societal benefits, such as energy savings. Traditional approaches in
addressing online resource allocation problems neglect the potential benefit of feedback informa-
tion available from the running tasks/loads as well as the potential flexibility of a task to adjust
its operation/service level in order to increase efficiency. The present paper builds upon recent
developments in the area of bandwidth allocation in computing systems and proposes a unified
design approach for efficient resource allocation which is based upon a measurement- or utility-
based learning scheme. We demonstrate through analysis the potential of the proposed scheme
in providing efficient allocation of resources in a large class of resource allocation problems and
when only measurements of the performances of the tasks are available.

1 Introduction

Resource allocation has become an indispensable part of the design of any engineering system that
consumes resources, such as electricity power in home energy management [1], access bandwidth
and battery life in wireless communications [8], computing bandwidth and memory in parallelization
algorithms [3], computing bandwidth in CPU cores [2].

When resource allocation is performed online and the number, arrival and departure times of
the tasks are not known a priori (as in the case of CPU bandwidth allocation), the role of a re-
source manager (RM) is to guarantee an efficient operation of all tasks by appropriately distributing
resources to the tasks and also assigning their operation/service level. However, guaranteeing ef-
ficiency through the adjustment of resources and/or service levels requires the formulation of a
centralized optimization problem (e.g., mixed-integer linear programming formulations [2]), which
further requires information about the specifics of each task and their response under different
resource-service level pairs. Such information may not be available to neither the RM nor the task
itself.

Given the difficulties involved in the formulation of centralized optimization problems, not to
mention their computational complexity, feedback from the running tasks in the form of performance
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measurements may provide valuable information for the establishment of efficient allocations. Such
(feedback-based) techniques have recently been considered in several scientific domains, such as
in the case of application parallelization (where information about the memory access patterns or
affinity between threads and data are used in the form of scheduling hints) [4], or in the case of
allocating virtual processors to computing applications [12].

To tackle the issues of centralized optimization techniques, resource allocation problems have
also been addressed through distributed or game-theoretic optimization schemes. The main goal of
such approaches is the solution of centralized (global) optimization problems through agent-based
(local) objectives, where agents may represent the tasks to be allocated. Examples include the
cooperative game formulation for allocating bandwidth in grid computing [13], the non-cooperative
game formulation in the problem of medium access protocols in communications [14] or for allocating
resources in cloud computing [15].

Recently, a distributed learning scheme has been proposed [6] specifically tailored for the problem
of CPU allocation for time-sensitive applications. This scheme exhibits the benefits of measurement-
or feedback-based methods, while, in parallel, allows applications for adjusting their own opera-
tion/service levels. Motivated by this work and the potential of exploiting both measurements
available from the tasks and the flexibility of some tasks in changing their own operation level, in
the present paper we propose a unified design methodology for addressing a general class of online
resource allocation problems.

According to the proposed scheme, the RM is responsible for adjusting both the resource al-
location and the operation level of each task, where the adjustment processes are based only on
performance measurements received from each task. The proposed scheme exhibits adaptivity and
robustness in the number, type and performance variations of the tasks. It may also be imple-
mented in a distributed fashion, where both resource- and operation-levels are updated locally by
each task independently. We demonstrate through analysis the potential of the proposed scheme in
the establishment of efficient allocations for a large class of resource allocation problems.

Summarizing, the contributions of the proposed scheme (as compared to [5, 6]), are as follows:

• it introduces a measurement- or feedback-based resource allocation framework that applies
to a general class of resource allocation problems, not necessarily restricted to time-sensitive
applications;

• tasks may be of different nature (e.g., any application that may request bandwidth in a
computing system);

• the analysis incorporates measurement-noise, and provides a robust analysis of the convergence
properties in the presence of noisy observations;

• the analysis provides global convergence guarantees under minimal assumptions in the design
of performance functions of the tasks (and not only for the case of peak demand as in [5, 6]).

The paper is organized as follows. Section 2 formulates the centralized optimization problem for
a general class of resource allocation problems and provides examples. Section 3 presents a learning
scheme for addressing adaptive resource allocation. Section 4 presents convergence properties of the
resource-level updates, while Section 5 presents convergence properties of the combined resource-
and operation-levels update scheme. Section 6 provides a simulation study in the context of power
management in residential buildings. Finally, Section 7 presents concluding remarks.

Notation:
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− Π[a,b] is the projection onto the set [a, b].

− For any x ∈ Rn and set A ⊂ Rn, define

dist (x,A)
.
= inf

y∈A
|x− y|,

where | · | denotes the Euclidean norm.

− For some set A ⊂ Rn and δ > 0,

Bδ(A)
.
= {x ∈ Rn : dist (x,A) ≤ δ} .

− The probability simplex of dimension n is denoted by ∆ (n) and defined as

∆ (n)
.
=
{
x = (x1, ..., xn) ∈ [0, 1]n :

n∑

i=1

xi = 1
}
.

− For some finite set A, |A| denotes the cardinality of A.

2 Problem Formulation

2.1 Framework

We consider a resource allocation framework where one or multiple users request a finite number of
tasks I = {1, 2, ..., n} to be executed. We denote such requests by di ∈ Di, indicating the demand
of a user with respect to task i. Each of these tasks may run at a different operation or service level,
denoted by si ∈ Si indicating the level of comfort provided to the user through task i. We admit a
normalization of the space of operation levels, i.e., we consider Si .= [0, 1], ranging between its two
extreme values.

In order for a task to be executed, an amount of resources needs to be assigned to it which
corresponds to a portion vi ∈ Vi .

= [0, 1] of the overall available resource. In other words, vi
corresponds to the rate of accessing a common good. Here it is implicitly assumed that there is
one type of available resource. Examples include a) electrical power in residential buildings where
tasks represent electricity loads, b) computing bandwidth in CPU cores or computing grids, and c)
communication bandwidth in communication systems.

The operation level of each task, si, and the amount of resources assigned to it, vi, are determined
by a resource manager (RM) which is responsible for maintaing a desirable performance of the overall
system (according to some user-defined criterion). The RM makes decisions about the resources and
service levels of the tasks at regular time instances denoted by k = 0, 1, 2, .... The assignment of
resources and service levels to the tasks is based upon measurements related to the performance of
each task, denoted by ũi. Throughout the paper, we consider the following assumption.

Assumption 2.1 The RM satisfies the following design properties:

− (D1) The internal characteristics of the tasks may not be known to the RM. Instead, the RM
may only have access to measurements related to their performance.

− (D2) Tasks may not be split, rescheduled or postponed. Instead, the goal of the RM is to assign
the currently available resources to the currently requested tasks in an efficient manner.
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User(s)

Resource Manager (RM)
{di(k), ũi(k), vi(k), si(k)}i 7→ {vi(k + 1), si(k + 1)}i

T1 T2 Tn· · ·

ũ1(k)

s1(k)

ũ2(k)

s2(k)

ũn(k)

sn(k)

λ1, d1(k) λ2, d2(k) λn, dn(k)

Figure 1: Schematic of resource allocation framework.

Note that the design assumptions (D1) and (D2) describe a framework at which the starting
time of a task is not an optimization parameter. The RM does not have the necessary information to
make such scheduling decisions (e.g., it does not know the duration time of a task). Thus, the main
question is how to efficiently assign resources to the tasks assuming that they should immediately
start running upon creation.

The overall framework is illustrated in Figure 1 describing the flow of information, starting from
the users who determine the requests and ending to the RM which recursively allocates resources v =
(v1, ..., vn) and operation levels s = (s1, ..., sn) to the tasks in I based on the recorded measurements.
Figure 2 demonstrates schematically how an allocation of resources v may look like for a set of
tasks requesting resources at regular time intervals. We assume that allocations belong to the set
V .

= ∆ (n), since each resource vi may only be a portion of the total available resource corresponding
to 1. Figure 3 demonstrates how an allocation of operation levels si ∈ Si to a task i may look like
as updated by the RM over time.

It is important to point out that the amount of resources assigned by the RM to the currently
requested tasks may not necessarily correspond to the amount of resources used by each task. The
amount of resources used by each task depend solely on the operation level si and the corresponding
demand level di. Informally, we may say that the resource allocation v constitutes a form of rec-
ommendation provided by the RM. Whether this recommendation is indeed implemented depends
on whether the operation level allocation is appropriately set to use efficiently the recommended
amount of resources. These points will become more obvious shortly when we discuss these terms
through some application scenarios.
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Figure 2: Schematic of resource-allocation evolution.
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Figure 3: Schematic of operation-level evolution.

2.2 Utility function and efficiency

The objective is two fold. On the one hand, the RM is responsible for maintaining a fair allocation, v,
among the requested tasks, while, on the other hand, the service level of each task i should guarantee
an efficient operation given the amount of resources vi provided by the RM. Before introducing
the notions of fairness and efficiency, we first need to introduce the performace measure or utility
function for each task i.

2.2.1 Utility function

The utility of a task i is introduced to capture the fitness of the task conditional to the amount of
resources vi provided by the resource manager, its operation level si and the user demand di. It is
defined as a function of the form ui : Si×Vi×Di 7→ R+, where we employ the following conditions.

Assumption 2.2 (Utility function) The utility function ui : Si × Vi ×Di 7→ R+ of a task i ∈ I
is continuous with respect to its arguments and satisfies:

− (U1) There exists a positive constant ci > 1, such that

1 ≤ ui(si, vi, di) ≤ ci
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uniformly on vi ∈ Vi, si ∈ Si and di ∈ Di.

− (U2) For any given allocation vi and demand di, ui(·, vi, di) is concave with respect to its first
argument si ∈ Si.

Note that these are design assumptions that may be used to well represent the reasoning of a
performance index in a resource allocation problem. In particular, we should always expect (given
the boundedness of the provided resources) that (U1) the utility function is uniformly bounded
from above. The condition of the utility function being greater than the unity is introduced for
technical reasons and can always be met by appropriately shifting the utility function. Finally, we
should further expect that as the operation level increases, then (U2) the corresponding performance
should increase, however the gradient of the performance should saturate given the limited amount
of resources.

2.2.2 Efficiency

Assuming that the utility function for each task has been designed, we introduce the following
fairness measure :

Φi(s, v, d)
.
=

(1− vi)λi[ui(si, vi, di)]−1 − vi
∑

j 6=i
λj [uj(sj , vj , dj)]

−1,

for some constants, λi ∈ (0, 1], i ∈ I.
The function Φi captures the deficiency in resources of task i as compared to the rest of the

tasks. When task i is not performing well in comparison with the rest of tasks, i.e., [ui(si, vi, di)]
−1

is significantly larger than [uj(sj , vj , dj)]
−1, j 6= i, and its available resources vi are small, we should

expect that Φi admits large (positive) values (indicating deficiency of resources for task i). If,
instead, task i is performing well, while it also has large amount of resources vi, then we should
expect that Φi admits small (negative) values (indicating sufficiency of resources for task i). The
factor λi ∈ [0, 1] which scales the inverse utility represents the importance of the task and it is user
defined.

Definition 2.1 (Efficient allocation) For some given demand profile d = (d1, ..., dn) ∈ D, an
allocation of resources v∗ ∈ V and operation levels s∗ ∈ S is called efficient if the following two
conditions are satisfied:

− (E1) Φi(s
∗, v∗, d) ≡ 0 for all applications i.

− (E2) ui(s∗i , v
∗
i , di)→ max for all applications i.

We will often denote E∗ = E∗(d) as the set of efficient allocations. The first condition (E1)
provides a fairness condition for allocating resources to the tasks, while condition (E2) guarantees
the efficient operation of the task itself. Thus, a pair (v∗, s∗) will provide an ideal operation with
respect to both a) the allocation of resources, and b) the operation of each task separately.

According to Definition 2.1 (E1), an allocation of resources v∗ is fair for application i only if
v∗i 6= 0, since at zero resources ui(si, 0) > 0. Thus, an allocation v∗ is fair if and only if the following
identity holds:

v∗i∑
j 6=i v

∗
j

=
λi[ui(si, v

∗
i , di]

−1

∑
j 6=i λj [uj(sj , v

∗
j , dj)]

−1
,
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given that 1 − v∗i =
∑

j 6=i v
∗
j . In this case, the resources are balanced with the performances. To

understand this identity, let us consider the case of equal weights, i.e., λ1 = ... = λn. If v∗i is large
as compared to the rest of the resources,

∑
j 6=i v

∗
j , then [ui]

−1 has to be sufficiently large, i.e., task
i should not perform so well in comparison with the rest of the tasks. Informally, there could not
be a task i that monopolizes the resources at a fair allocation when i performs well and the others
do not. Large amount of resources in a single task may only be justified if the task is performing
poorly in comparison with the rest of the tasks. If we allow for non-uniform weights λi, then large
amount of resources in a single task may also be justified by a large weight.

A similar fairness measure has been introduced within the context of CPU Bandwidth Alloca-
tion problem in [6]. The above definition is more general since it is not restricted to any specific
application scenario.

2.3 Examples

To demonstrate the utility of the proposed framework, let us discuss the following practical scenarios.

2.3.1 Home-energy management

A simplified version of the smart-home paradigm considers a central resource manager which controls
the amount of electrical power assigned to the electricity loads demanded by the user. In this case,
vi ∈ [0, 1] represents the power assigned to each load where the maximum value 1 corresponds to
the (desirable) maximum power available. Note that this might not be the actual power used.

Loads may correspond to flexible loads, such as the operation of the climate control, heat pumps
or lighting. In this scenario, the user may define set-point temperatures for the operation of the
heating system and the heat pumps, and desired luminance levels for lighting. Such set points may
be considered as demand requirements, di.

The operation level si of each task imay correspond to the different levels of the service provided.
For example, in the case of the heating system, it may correspond to the heating input provided to
each thermal zone of the building, while in the case of the lighting equipment, it may represent the
luminance level provided to each zone.

The definition of a utility function that may represent the operation of these tasks is open-ended.
Consider the trivial example of the greedy objective for maximizing the comfort level provided by
each task, which may be represented by a utility function of the form:

ui(si, vi, di)
.
= a`i(si, di) + b(vi − ei(si)) + c, (1)

for some positive constants a, b and c, where the function ` captures the comfort of the user, while
the function ei corresponds to the energy rate consumed by task i. Note that any excess energy rate
from the assigned vi (i.e., when vi < ei(si)) is penalized, while any energy rate savings (i.e., when
vi > ei(si)) is encouraged. Alternative functions can be defined depending on the application and
the performance indices which can be measured. The parameters of such objective function may be
user-defined.

Let us consider the example of the heating system in a residential building as described in detail
in [7]. In this example, the comfort of the user can be described as

`i(si, di)
.
= κ− (si − di)2,

for some positive constant κ > 0. The comfort admits its maximum value κ when the operation
level meets the corresponding demand, i.e., si ≡ di. In any other case, the comfort admits lower
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values than κ. Furthermore, the heating cost of a radiant heating system can be approximated by
a linear function of the flow rate of the thermal medium (in this case, the operation level), i.e.,

ei(si)
.
= hsi,

for some h > 0. Thus, in the case of the heating system, the utility function of the task takes on
the following form:

ui(si, vi, di) = a
(
κ− (si − di)2

)
+ b(vi − hsi) + c,

for some positive constants a, b and c such that condition (U1) is satisfied. It is also straightforward
to verify that the utility function is continuous with respect to its arguments and that (U2) the
utility function is concave with respect to si due to the fact that ∇2

siui(si, vi, di) = −2a < 0.

2.3.2 CPU bandwidth allocation

The above framework may also accommodate resource allocation problems encountered in the con-
text of CPU bandwidth allocation. Recent work [6] has focused on designing such utility functions
for the case of time sensitive applications. In this scenario, the RM is responsible for assigning
virtual-platforms vi to each application i. We may think of vi as the percentage/portion of the CPU
assigned to application i, which determines the rate with which an application i executes a job and
the corresponding time interval assigned to the application.

Specifically in the case of time sensitive applications, including for example multimedia and con-
trol applications, the performance of the application depends on the relation between the response-
time of a job Ri and the corresponding soft-deadline for executing a job, Di, (determined by vi).
Good performance translates to Ri ≡ Di. A natural definition of such a performance function for
time-sensitive applications may take on the following form,

ui(si, vi, di)
.
= −a(Di(di, si)−Ri(si, vi))2 + b, (2)

for some constants a, b > 0 selected appropriately so that condition (U1) is satisfied. Note that
the utility function attains a unique maximum when the deadline Di approaches Ri, which is the
desired property.

As described in [6], and in the context of multimedia applications, the soft deadline Di can be
considered constant, e.g., Di = h > 0, while the response time can be defined as Ri = Ci/vi, where
Ci = ρisi is the execution time per job (at a service level si), for some ρi > 0, and vi is the speed
of execution. In this case, the utility of application i takes on the following form:

ui(si, vi, di) = −a
(
h− ρi

si
vi

)2
+ b. (3)

It is straightforward to check that this function is continuous. Furthermore, it is concave with
respect to the service level, since ∇2

siui(si, vi, di) = −2a(ρi/vi)
2 < 0.

2.4 Objective

Ideally, we would like to set up a centralized optimization problem, solved by the RM, such that
at each update instance k and depending on the number of tasks and their importance, it would
assign resources in a efficient manner to all tasks. Definition 2.1 introduces a potential centralized
problem for efficient allocations, a candidate form of which is:

mins∈S,v∈V
∑

i∈I |Φi(s, v, d)|2
s.t. si = arg maxs∈Si ui(s, vi, di), i ∈ I, (4)
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for some given di ∈ Di, i ∈ I.
Whether such an optimization problem is well posed and the type of solutions it may accept

depend on the characteristics of the designed utility functions ui. Our goal is not to address
such centralized optimization problem. This is because the definition of the utility function will
necessarily be based upon measurements of quantities related to the performance of a task, whose
explicit relation to the (internal) variables si and the provided resources vi is not known in general.

To see this, let us consider the example of home energy management discussed in Section 2.3.1.
Note that the function ei(si) captures the energy consumed by the task. It can be measured, however
its explicit relation to the operation level si is not known a-priori to the RM (i.e., the parameter h is
unknown). Similar is also the case in the CPU Bandwidth Allocation problem, where the deadline
Di and the response-time Ri can be measured by the RM, however their explicit dependence on the
resource level vi and operation level si is not known.

The RM may only respond to measurements available, and thus addressing a centralized opti-
mization problem as stated above is not possible. The goal of this paper is to investigate a class
of utility- or measurement-based learning dynamics in addressing computation of efficient allocation
pairs (s∗, v∗) as defined in Definition 2.1.

3 Learning Dynamics

Given the difficulties in formulating centralized optimization problems in the absence of explicit
knowledge of the characteristics of the tasks requesting resources, we propose an adaptive scheme
which is based on learning-based (or measurement-based) dynamics. According to the proposed
scheme, the RM is responsible for updating both the resource allocation v and the service levels s
of the tasks. The goal is to attain convergence to an efficient allocation when only measurements
of the utility functions are provided.

3.1 Resources update

At time instances tk, k = 0, 1, . . . the RM measures the utility function of each task i ∈ I and
updates the resources assigned to i as follows:

vi(k + 1) = vi(k) + εFi(k, vi(k)), (5)

for each i = 1, ..., n, where Fi is the observed fairness index defined as follows:

Fi(k, vi(k))
.
=

(1− vi(k))λi[ũi(k)]−1 − vi(k)
∑

j 6=i
λj [ũj(k)]−1.

The quantity ũi(k) denotes the measurement of the utility function of task i which admits the form:

ũi(k) = ui(si(k), vi(k), di(k)) + σi(k), (6)

where σi(k) is a zero-mean bounded measurement noise, i.e., supi∈I |σi| ≤ σ for some σ > 0. We
further assume that this noise process is independently distributed for each i ∈ I. The introduction
of the bounded noise process is necessary in order to capture some irregularities of the tasks (e.g.,
processes in computing systems). However, the type of the noise process cannot be known a-priori.
The boundedness of the noise process is an indirect implication of the nature of the problems
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considered here, given that the performance indicators considered cannot deviate significantly from
a nominal value (e.g., energy, time response, processing speed, etc.). However, even in the case that
large noise values can be justified, for security reasons lower and upper bounds should be artificially
introduced in all measured quantities.

According to the definition of Fi, if there is a deficiency of resources for i, i.e., Fi > 0, then vi
will increase, otherwise it will decrease. We consider a constant step size ε > 0, since it provides an
adaptive response to changes in the number of applications.

The above recursion (5) is motivated by the standard replicator dynamics (cf., [16, Chapter 3]),
whose relevance and significance in resource allocation problems has been pointed out in [6] when
addressing the problem of fair CPU Bandwidth Allocation. The difference here is that we include
measurement noise in the observations of the performances of the tasks. Furthermore, the current
framework is independent of the type of the task, so we do not assume any special form for the
performance function ui.

3.2 Operation-level update

Due to the concavity of the utility function ui with respect to the operation level si, a gradient-based
learning dynamics can be introduced for updating the operation level si, for each task i. Similarly
to the case of the resource update, the explicit form of the utility function may not be known to
the RM thus we may only make use of measurements of the utility function.

We would like that the operation level updates take place at a faster timescale as compared
to the resource update (5). The reason for this choice is the better control over the resulting
convergence properties of the overall dynamics, since any decision over the allocation of resources
will be performed with the operation level updates being nearly equilibrated. To this end, we
introduce the following recursion for the operation level of each task i.

si(k + 1) =

Π[0,1]

[
si(k) + εµ(ε) tanh

(
Ũi(k)

S̃i(k)

)
+ εµ(ε)ζi(k)

]
(7)

where µ(ε) is defined so that
lim
ε↓0

εµ(ε) = 0, lim
ε↓0

ε

εµ(ε)
= 0, (8)

i.e., ε goes faster to zero than εµ(ε), as ε ↓ 0. Thus, the update recursion (7) moves on a faster
timescale than recursion (5). The term ζi(k) corresponds to an artificially introduced noise term,
i.e., ζi(k)

.
= rand([−ζ, ζ]), for some positive constant ζ > 0. The quantities Ũi(k) and S̃i(k) are

approximations of the gradient of the measured performance ũi(k) and the operation level si(k),
respectively. They can be generated by the following recursions

Ũi(k)
.
= γ · (ũi(k)− ρi(k))

S̃i(k)
.
= γ · (si(k)− ξi(k))

for some γ > 0, where ρi(k) and ξi(k) are updated as follows:

ρi(k + 1) = ρi(k) + εµ(ε) · Ũi(k) (9a)
ξi(k + 1) = ξi(k) + εµ(ε) · S̃i(k). (9b)

Note that the higher the value of γ > 0, the better the approximation of the gradients. Thus,
as γ increases, we should expect that si changes in the direction of increasing the utility ũi. This
will become more clear when we discuss the convergence properties of the recursion.
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3.3 Overall update recursion

It will be helpful to analyze the overall recursion dynamics as a whole, leading to the following set
of recursions




vi
si
ρi
ξi


 (k + 1) =




vi
si
ρi
ξi


 (k)+

ε




Fi(k, vi(k))

µ(ε) tanh
(
Ũi(k)

S̃i(k)

)
+ µ(ε)ζi(k)

µ(ε)Ũi(k)

µ(ε)S̃i(k)


+ ε




0
zsi (k)

0
0


 (10)

i ∈ I, where zsi (k) are correction terms for the resource- and operation-level updates, respectively,
that keeps them within the domain [0, 1]. It is worth noting that the above recursion evolves in
two timescales, the fast timescale of the operation level update, si(k) (including the approximations
Ũi(k) and S̃i(k)) and the slow timescale of the resource-level update, vi(k). For convenience, in
several cases, we will denote xi(k) as the overall state vector of task i, i.e.,

xi(k)
.
= (vi(k), si(k), ρi(k), ξi(k))

which evolves on Xi .
= [0, 1] × [0, 1] × R × R. In the remainder of this paper, we will provide a

characterization of the asymptotic behavior of the collection x(k) = (x1(k), ..., xn(k)) ∈ X1× ...×Xn
as the time index k increases. Note that the overall update recursion is stochastic in nature due
to the presence of measurement noise, σi(k) in the recordings of the performance of a task and
secondly due to the artificial perturbation term, ζi(k), in the update of the operation level. In the
following analysis, we will often use the probability and expectation operator Px and Ex, initiated
at state x, defined on the canonical path space generated by the sequences of the recursion (10) for
each i ∈ I.

4 Resource-Level Convergence Properties

In this section, we demonstrate the convergence properties of the resource update recursion (5)
independently of the operation-level update.

Before proceeding, it is important to find a bound for the expected utility measurement as well
as the incremental difference of the resources. Let us introduce the notation: λ = infi∈I λi > 0,
c = infi∈I ci > 1, and c = supi∈I ci > 1. We will also make frequent use of the following sets
Lα

.
= [0, α) (i.e., ‘less than α’) and Gα

.
= (α, 1] (i.e., ‘greater than α’), for some constant α ∈ (0, 1).

Proposition 4.1 (Bounded inverse utility) As σ ↓ 0,

[ũi(k)]−1 ≈ [ui(si, vi, di)]
−1 +O

(
σ2
)
,

and
1

c
≤ [ũi(k)]−1 ≤ 1 +O

(
σ2
)
, (11)

where O (·) denotes the order of the approximation error of the equality/inequality.
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Proof. See Appendix 8.1. �

Proposition 4.2 (Bounded fairness) As σ ↓ 0, the incremental difference of the resource update
satisfies

Λ(vi)
.
= λ/c− vin

(
1 +O

(
σ2
))

≤ Fi(k, vi(k))

≤ 1 +O
(
σ2
)
− vinλ/c .

= Λ(vi).
(12)

Proof. See Appendix 8.2. �

4.1 Feasibility

The first property of the proposed adjustment process is the feasibility of the resulting vector of
resources. In fact, we would like that the resource vector v(k) remains within the probability simplex
∆ (n) for all future times k.

Proposition 4.3 (Feasibility) For any number of tasks n and noise size σ > 0, there exists
ε∗ = ε∗(n, σ) > 0, such that for any ε < ε∗, the resources update recursion (5) generates a sequence
of resources {v(k)} which satisfies v(k) ∈∆ (n) for all k = 1, ... as long as v(0) ∈∆ (n).

Proof. The sum of resources satisfies:
n∑

i=1

vi(k + 1)

=
n∑

i=1

vi(k) + ε
n∑

j=1

λj [ũj(k)]−1
(

1−
n∑

i=1

vi(k)
)
.

Note that the second part of the r.h.s. becomes identically zero when
∑n

i=1 vi(k) = 1. Thus, if the
initial allocation satisfies

∑n
i=1 vi(0) = 1, then

∑n
i=1 vi(k) = 1 for all k = 1, 2, ....

It remains to check under which conditions vi(k) ∈ [0, 1]. From Proposition 4.2, we have that
the incremental difference of vi at time k satisfies:

|vi(k + 1)− vi(k)| ≤ ε
(
1 +O

(
σ2
)) .

= ω(ε) > 0. (13)

In order for vi(k + 1) to drop below zero, vi(k) should be at least within ω(ε) distance from zero.
Take vi(k) ∈ [0, ω(ε)). Then,

Fi(k, vi(k))

= λi[ũi(k)]−1 − vi(k)

n∑

j=1

λj [ũj ]
−1

≥ λ/c− ω(ε)n(1 +O
(
σ2
)
).

Given that λ, c > 0, there exists ε∗1 = ε∗1(n, σ) sufficiently small, such that if ε < ε∗1, we have that
Fi(k, vi(k)) ≥ 0 for all vi(k) ∈ [0, ω(ε)).

12



Similarly, in order for vi(k + 1) to become larger than 1, vi(k) should be at least within ω(ε)-
distance from 1. Take vi(k) ∈ (1− ω(ε), 1]. Then, we have

Fi(k, vi(k))

= (1− vi(k))λi[ũi(k)]−1 − vi(k)
∑

j 6=i
λj [ũj ]

−1

≤ ω(ε)λi[ũi(k)]−1 − (1− ω(ε))
∑

j 6=i
λj [ũj ]

−1

≤ ω(ε)− (1− ω(ε))λ(n− 1)/c

where we have used the properties λ ≤ λi ≤ 1 and [ũi]
−1 ≥ 1/c for all i ∈ I. Given that

λ, c > 0, there exists ε∗2 = ε∗2(n) such that, for any ε < ε∗2(n), we have Fi(k, vi(k)) ≤ 0 for all
vi(k) ∈ (1− ω(ε), 1].

In conclusion, for any ε < ε∗
.
= min{ε∗1(n, σ), ε∗2(n)}, we have vi(k) ∈ [0, 1] for any k = 1, 2, ....

�

For the remainder of the paper, we will assume that the step size ε is chosen appropriately
(according to Proposition 4.3), so that the resource level is always within the feasible region for all
tasks.

4.2 Starvation Avoidance

The adjustment process guarantees starvation avoidance, i.e., a positive amount of resources to all
tasks and at all times.

Proposition 4.4 (Starvation Avoidance) Given a number of tasks n ∈ N and as σ ↓ 0, there
exists α∗ = α∗(n)

.
= λ/(nc) > 0 such that, for any task i ∈ I, and any 0 < α < α∗, the following

holds
Px
[
lim inf
k→∞

dist (vi(k), Gα) = 0

]
= 1. (14)

Proof. Let α > 0. We restrict the analysis to the per-task process {vi(k)}. Let also consider the
non-negative function V (k, vi)

.
= 1−vi ≥ 0. The expected incremental difference of V (k, vi) satisfies

∆V (k)
.
= Ex [V (k + 1, vi(k + 1))− V (k, vi(k))|vi(k) = vi]
= Ex [vi(k)− vi(k + 1)|vi(k) = vi]
= −εEx [Fi(k, vi(k))|vi(k) = vi]
≤ −εΛ(vi),

for all vi ∈ [0, 1], where Λ(vi) is defined in Proposition 4.2. For any vi ∈ Lα−δ .
= [0, α − δ), δ > 0,

we have that:
Λ(vi) ≥ λ/c− (α− δ)n

(
1 +O

(
σ2
))
.

As σ ↓ 0, there exists α∗ = α∗(n)
.
= λ/(nc) such that, if α < α∗, then we have

lim
σ↓0

inf
vi∈Lα−δ

Λ(vi) = λ/c− (α− δ)n > δn > 0

for all δ > 0. Then, the conclusion follows directly from [11, Theorem 5.1]. �
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Proposition 4.4 states that the allocation of resources vi that the RM will approach infinitely
often an amount of resources that it is at least α∗(n) > 0, i.e., it is always bounded away from zero
for some fixed number of tasks n. Practically, this condition assures that zero amount of resources
to one or more tasks cannot be sustainable.

4.3 Balance

Another property of the resource update recursion (that is complementary to the starvation avoid-
ance property) assures that a task may never monopolize the amount of resources. This is especially
important in the case of large number of tasks, thus establishing a form of balance between tasks.

Proposition 4.5 (Balance) Pick 0 < β ≤ 1. There exists n∗ = n∗(β)
.
= dc/(βλ)e such that, for

any set of applications I with |I| ≥ n∗ and for any i ∈ I, the following hold:

Px
[
lim inf
k→∞

dist(vi(k), Lβ) = 0

]
= 1. (15)

Also, as β → 0, n∗(β)→∞ and βn∗(β)→ dc/λe.

Proof. At time instance k, let I ′ ⊆ I be the set of tasks with resources greater than β, i.e.,
I ′(β)

.
= {i ∈ I : vi(k) > β}. Pick 0 < β ≤ 1. For any i ∈ I ′, let us define the nonnegative function

V (k, vi)
.
= vi ≥ 0. The expected incremental difference of this function, as σ ↓ 0, satisfies

∆V (k)
.
= Ex [vi(k + 1)− vi(k)|vi(k) = vi]
= εEx [Fi(k, vi(k))|vi(k) = vi]
≤ εΛ(vi)

As σ ↓ 0, there exists n∗ = n∗(β)
.
= dc/(βλ)e , such that if n ≥ n∗(β), then,

lim
σ↓0

sup
vi(k)∈Gβ+δ

Λ(vi) ≤ 1− vi/β < 0,

for any δ > 0. According to [11, Theorem 5.1], the conclusion follows. Finally, note that as β ↓ 0,
then n∗ →∞ and βn∗ → dc/λe. �

Proposition 4.5 states that if we pick any β ∈ (0, 1] and we consider a sufficiently large number
of tasks n ≥ n∗(α), then all tasks will end up with an amount of resources less than β infinitely
often. Informally, we may say that no task can monopolize the available resources when the number
of tasks increases.

4.4 Efficiency

Lastly, we demonstrate one of the most attractive properties of the proposed resource update recur-
sion, i.e., the fact that, for any given allocation of the operation level s and the demand level d, the
allocation of resources will approach an efficient (or fair) allocation, as defined by Definition 2.1.
This is formally stated as follows. Let us define the set

E = E(s, d)
.
= {v ∈∆ (n) : Φi(vi, si, di) = 0} ,

which correspond to the efficient allocations of Definition 2.1 with respect to the resource allocation
v. Let us further denote the δ-neighborhood of this set by Bδ(E).
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Proposition 4.6 (Efficiency) As σ, ε ↓ 0 and for any δ > 0,

Px
[
lim inf
k→∞

dist (v(k),Bδ(E)) = 0

]
= 1.

Proof. Let us define the nonnegative function

W (k, v)
.
=
∑

i∈I
Fi(k, vi)

2 ≥ 0.

We can approximate the expected incremental gain ofW (k, v) by applying a Taylor series expansion.
All expectations in this proof are conditioned to v(k) = v. We have:

∆W (k)
.
= Ex

[∑

i∈I

[
Fi(k + 1, vi(k + 1))2 − Fi(k, vi(k))2

] ]

≈ ε
∑

i∈I
Ex
[
[∇viFi(k, vi)2]TFi(k, vi)

]
+O

(
ε2
)
.

Note that
∇vi [Fi(k, vi)2] = −2Fi(k, vi)

∑

j∈I
λj [ũj(k)]−1,

where the observations ũj are considered exogenous parameters. Thus,

∆W (k)

≈ ε
∑

i∈I
Ex



(
− 2

∑

j∈I
λj [ũj(k)]−1

)
Fi(k, vi)

2


+O

(
ε2
)

= −2ε
∑

i∈I

∑

j∈I
λjEx

[
[ũj(k)]−1Fi(k, vi)

2
]

+O
(
ε2
)
.

Given the boundedness of the performance function and the measurement noise (6), we have that
supvi∈[0,1] ũi = ci + σ, which results in

inf
vi∈[0,1]

[ũi]
−1 =

1

ci + σ
≥ 1

c+ σ
.

Thus, we have that

∆W (k) ≤ −2ε

c+ σ

∑

i∈I

∑

j∈I
λjEx

[
Fi(k, vi)

2
]

+O
(
ε2
)

Let us define the set

Ẽ .
=
{
v ∈∆ (n) : Ex

[
Fi(vi, si, di)

2
]

= 0,∀i ∈ I
}
.

Let also Gδ .
= ∆ (n) \Bδ(Ẽ), i.e., the set Gδ contains all non-efficient allocations that are at least δ

far from the ones in Ẽ . It is evident that, for any v ∈ Gδ,
∑

i∈I Ex
[
Fi(k, vi)

2
]
> 0, by definition of

the set Gδ. Thus, by [11, Theorem 5.1], we have that, as ε ↓ 0 and for any δ > 0,

Px
[
lim inf
k→∞

dist
(
v(k),Bδ(Ẽ)

)
= 0

]
= 1.
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By convexity of the function x2 and Jensen’s inequality, we have that

Ex
[
Fi(k, vi(k))2

]
≥ (Ex [Fi(k, vi(k))])2

≈
(
Φi(vi, si(k), di(k)) +O

(
σ2
))2

.

Thus, as σ ↓ 0, Ẽ ⊆ E , which concludes the proof. �

Proposition 4.6, states that for any δ > 0, the allocation v of resources will be in the δ-
neighborhood of the set of efficient allocations Bδ(E) infinitely often with probability 1. Thus,
it establishes a guarantee over the asymptotic properties of the algorithm independently of the val-
ues of the operation levels and the demand levels. However, as pointed out in the definition of the
set of efficient allocations, the set of efficient allocations may change as operation levels and demand
levels change.

4.5 Discussion

The above properties of feasibility, starvation avoidance, balance and efficiency provide guarantees
that any scheduling mechanism should provide independently of the application of interest. In the
application of CPU Bandwidth Allocation these properties are essential and should be satisfied by
any operating system, i.e., tasks should always receive resources and resources should be balanced.
Furthermore, note that these properties were shown only under Assumption 2.2, and thus they are
relevant to a large class of resource allocation problems.

In the following section we wish to go one step further by providing a characterization of the
convergence properties of the overall update recursion (10).

5 Overall Convergence Properties

The previous convergence results were shown under no assumption in the operation level si(k),
for each task i ∈ I. In fact, the operation level may be constant or varying with no influence
in the conclusions of Propositions 4.3–4.6. In this section, we wish to provide a more detailed
characterization of the properties of the global attractors of the overall dynamics (10).

5.1 ODE approximation

The asymptotic behavior of the overall recursion (10) can be analyzed by the ODE-method for
stochastic approximations [10]. In particular, the convergence behavior can be associated with the
limit points of the following system of ordinary differential equations (ODE’s):




˙̄vi
˙̄si
˙̄ρi
˙̄ξi


 =




Φi(s̄, v̄, d̄)

µ tanh
(
ui(s̄i,v̄i,d̄i)−ρi

s̄i−ξ̄i

)
+ Zsi

µγ
(
ui(s̄i, v̄i, d̄i)− ρ̄i

)

µγ
(
s̄i − ξ̄i

)


 , (16)

for each i ∈ I, as the step size ε approaches zero, where the terms v̄i, s̄i, d̄i, ρ̄i, and ξ̄i denote the
linear-time interpolations1 of the corresponding discrete-time variables vi(k), si(k), di(k), ρi(k) and
ξi(k), respectively. The scalar Zi represents the minimum effort required to drive s̄i(t) back to [0, 1].

1The linear-time interpolation of a recursion v(k), k = 0, 1, ..., is defined as v(τ) = v(k) for all εtk ≤ τ < ε(tk+1).
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Figure 4: Resource- and operation-level adaptation for 4 identical tasks.

All terms of the above ODE are functions of an artificial continuous-time index t, which is skipped
here to avoid confusion.

The following proposition associates the above system of ODE’s (16) with the potential attractors
of the recursions (10).

Proposition 5.1 (ODE approximation) Consider the overall update recursion (10) with a fixed
demand d(k) = d and with a step size ε satisfying condition (8) and

εµ(ε) <
1

γ
.

Let L denote the limit points2 of the system of ODE’s

˙̄vi(t) = Φi

(
s̄∗(v̄, d̄), v̄, d̄

)
, i ∈ I, (17)

where s̄∗ = (s̄∗1, ..., s̄
∗
n), and

s̄∗i (v̄i, d̄i)
.
= arg max

s̄i∈[0,1]
ui(s̄i, v̄i, d̄i), i ∈ I.

2The set of limit points L of an ODE ẋ = g(x) with domain A is defined as L .
= limt→∞

⋃
x∈A{x(s), s ≥ t : x(0) =

x}, i.e., it is the set of all points in A to which the solution of the ODE converges.
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Figure 5: Resource- and operation-level adaptation for 30 randomly generated tasks.

As σ ↓ 0 and γ →∞, the following hold: for any δ > 0, the fraction of time that the discrete-time
process {s(k), v(k)} spends in the δ-neighborhood of L, Bδ(L), goes to one (in probability) as k →∞.

Proof. See Appendix 8.3. �

The importance of Proposition 5.1 lies in the observation that through the two time-scale dy-
namics, we guarantee that: independently of the resource-level adjustments vi(k), the operation level
is always located at the maximizer of the utility function ui. Note though that convergence is estab-
lished in distribution and states that if we consider a sufficiently large number of iterations k →∞,
the recursion spends most of its time in a small neighborhood of the limit points of the ODE (16).
In fact, the fraction of time that this occurs approaches one as the step size approaches zero and
the number of iterations increases.

5.2 Global convergence

In general, the limit points of the limiting ODE (17) may include stationary points (i.e., ˙̄vi(t) = 0,
i ∈ I) but not necessarily only stationary points. However, we have shown the following:

• Proposition 4.6 shows that the allocation of resources will be in a δ-neighborhood of the set
of the efficient allocations Bδ(E) infinitely often with probability one.
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• Proposition 5.1 shows that the fraction of time that the discrete-time process spends in a
δ-neighborhood of the limit points of the ODE (17), Bδ(L), goes to one (in probability) as
time increases.

The combination of these two results may only be valid if and only if the set of limit points L in
Proposition 5.1 is replaced by the set of efficient allocations E∗. This leads to the following theorem.

Theorem 5.1 (Global convergence) Consider the hypotheses of Proposition 5.1. As σ ↓ 0 and
γ → ∞, we have: for any δ > 0, the fraction of time that the discrete-time process {s(k), v(k)}
spends in Bδ(E∗), goes to one (in probability) as k →∞.

5.3 Discussion

Theorem 5.1 establishes convergence (in a weak sense) of the discrete-time recursion of Equation (10)
to the efficient allocations E∗ as defined in Definition 2.1. We should expect that the fraction of
time that these allocations are observed is close to one as we increase γ (or, equivalently, decrease
ε).

The result applies for a fixed demand d = (d1, ..., dn) set by the user. However, if the demand
changes, the algorithm will automatically adapt to the new condition, due to the use of a constant
step size ε. That is, the algorithm is adaptive to changes in the demand of the user. The time
needed for the algorithm to converge to the efficient allocations depend on the selected step size ε.
However, given the linear complexity of the recursions (10) with the number of tasks, as well as its
distributed nature, the algorithm is computationally efficient.

The distributed nature of the dynamics lies in the observation that the overall update recursion
(10) of task i can also be updated by each one of the tasks independently. In this case, the RM is
simply responsible for communicating the measured quantities Fi to each one of the tasks.

6 Simulations

In this section, we provide a simulation study to demonstrate the convergence properties of the
proposed dynamics. In all considered simulation studies, we introduce 3 time-zones (depicted by
(e1), (e2) and (e3)), where we alter the demand-level requested by the tasks. In particular, in time-
zone (e2) the demand-level of half the considered tasks increases by a factor of 2, while in time-zone
(e3) the demand-level of the same tasks returns to its initial level (i.e., the one at time-zone (e1)).
With this variation in the demand level of the task, we wish to demonstrate the adaptation of the
proposed learning framework in varying user requests.

In the first simulation study of Figure 4, we consider 4 identical tasks with a utility function
of the form (1), i.e., all parameters of the utility function are identical in each task. Furthermore,
the initial requested demands are identical, as well as the weights of the tasks, i.e., λi = λ = 1
for each i. In particular, the considered parameters of the tasks simulated are: ai = 2, bi = 1,
ci = 2, ε = 0.0005, µ(ε) = ε−1/20, and σ = ζ = 0.001. In this case, and according to Definition 2.1,
we should expect a unique efficient allocation corresponding to λi/

∑
j λj = 1/n = 1/4 = 0.25.

This is indeed the emergent behavior in time-zone (e1). When the demand increases for two of the
tasks, the emergent allocation accommodates this request (time-zone (e2)), and when the updated
requests return to their original values, the initial allocation emerges again. This adaptive response
of the dynamics to the demand variations should be attributed to the selection of constant step size
ε, and agrees with our remark in Section 5.3. Note, finally, that throughout the simulation study,
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the efficiency criterion of Fi approaching zero is maintained, something that verifies our global
convergence result of Theorem 5.1.

In the second simulation study of Figure 5, we consider 30 tasks with a utility function of the
form (1). The parameters of the utility function, the weights and the demands of the tasks are
randomly generated. Note that the main conclusions noted for the simple case of 4 tasks continue
to hold even for this large number of tasks. In particular, the dynamics adapt rather fast to the
variation in the demands, while the efficiency criterion is maintained throughout the simulations.

7 Conclusions and Future Work

We proposed a measurement- or utility-based learning scheme for addressing a large class of resource
allocation problems. An initially formulated centralized objective was translated into resource- and
operation-level-adjustment dynamics which exhibit desirable properties, such as starvation avoid-
ance, balance and efficiency. Furthermore, global convergence guarantees to efficient outcomes were
demonstrated under generic assumptions in the design of the utility functions.

The importance of the proposed methodology lies in the fact that no a-priori knowledge of the
details of the utility function is required, something that it is relevant to several practical scenarios,
such as the allocation of CPU bandwidth in computing applications. The proposed dynamics can
also be distributed in a natural way, a property that is rather attractive when we consider an
extremely large number of applications. The investigation of the convergence properties of the
proposed update dynamics under this context (which may lead to asynchronous updates) should
also be investigated.

8 Appendix

8.1 Proof of Proposition 4.1 (Bounded inverse utility)

By Taylor-series expansion of the inverse measurement function about its nominal value ui(si, vi, di),
we have that

[ũi]
−1 =

∑

m≥0

(−1)m

[ui(si, vi, di)]m+1
σmi .

This approximation is convergent by the ratio test, since σ < 1 and ui(si, vi, di) ≥ 1. We conclude
that

[ũi]
−1

=
∑

m≥0

(−1)m
σmi

[ui(si, vi, di)]m+1

≈ [ui(si, vi, di)]
−1 +O

(
σ2
i

[ui(si, vi, di)]3

)
.

The second part of the above approximation is nonnegative. Thus, given that 1 ≤ ui(si, vi, di) ≤
ci ≤ c, we conclude that

[ũi]
−1 ≥ 1/ci ≥ 1/c.

Furthermore, given that [ui(si, vi, di)]
−1 is uniformly bounded from below, and the fact that σ2

i ≤ σ2,
we may write equivalently that

[ũi]
−1
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≈ [ui(si, vi, di)]
−1 +O

(
σ2
i

)

≤ [ui(si, vi, di)]
−1 +O

(
σ2
)

≤ 1 +O
(
σ2
)
,

which establishes the desired upper bound.

8.2 Proof of Proposition 4.2 (Bounded fairness)

Given Proposition 4.1, and as σ ↓ 0, we have

Fi(k, vi(k))

= λi[ũi(k)]−1 − vi
∑

j∈I
λj [ũj(k)]−1

≤ λi
(
1 +O

(
σ2
))
− vi

∑

j∈I
λj/cj

≤ 1 +O
(
σ2
)
− vinλ/c,

where the last inequality results from the fact that λ ≤ λi ≤ 1 and c ≤ ci ≤ c. Accordingly, we get

Fi(k, vi(k))
≥ λ/c− vin

(
1 +O

(
σ2
))
,

which concludes the proof.

8.3 Proof of Proposition 5.1 (ODE approximation)

Note the following:

− The utility function ui(·, ·, d̄i) is continuous with respect to the operation level si and the
resource level vi, and therefore Φ(·, ·, d̄) is also continuous with respect to s and v.

− The observation terms in (10) are uniformly bounded for all k in the domain, and therefore
uniformly integrable. To show this, first note that Ex [|Fi(k, vi(k))|] <∞ uniformly for all k,
according to Proposition 4.2. Secondly, note that

|ρi(k)− ρi(0)| ≤
k∑

`=0

κ(1− κ)k |ũi(k − `)− ρi(0)| ,

where κ .
= εµ(ε)γ. Given Proposition 4.1, if κ < 1 (which will be the case when we take ε ↓ 0),

|ρi(k)− ρi(0)| <∞ uniformly for all k as long as ρi(0) is bounded. The same conclusion can
also be derived for the auxiliary state variable ξi(k), given that si(k) ∈ [0, 1] for all k.

− Let L′ denote the limit points of the ODE (16). The uniform integrability of the observation
terms in (10) establishes (according to Theorem 8.2.1 in [10]) the following weak-convergence:
As σ ↓ 0 and for any δ > 0, the fraction of time that (si(k), vi(k), ρi(k), ξi(k))i spends in the
δ-neighborhood of L′, Bδ(L′), goes to one (in probability) as ε ↓ 0 and k →∞.

− As we increase the value of γ, we may refine the set of limit points L′. Note that the auxiliary
state variables ρ̄i and ξ̄i satisfy:

˙̄ρi(t)/γ = µ
(
ui(s̄i(t), v̄i(t), d̄i(t))− ρ̄i(t)

)

˙̄ξi(t)/γ = µ
(
s̄i(t)− ξ̄i(t)

)
.
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Given that both ˙̄ρi(t) and ˙̄ξi(t) are uniformly bounded, as we take γ → ∞, we establish the
following identities:

{
ui(s̄i(t), v̄i(t), d̄i(t)) = ρ̄i(t)

s̄i(t) = ξ̄i(t)

and therefore, by taking the time derivatives,
{
u̇i(s̄i(t), v̄i(t), d̄i(t)) = ˙̄ρi(t)

˙̄si(t) = ˙̄ξi(t).

− Consider the (unprojected) faster response ODE, defined by




˙̄si
˙̄ρi
˙̄ξi


 =




µ tanh
(
ui(s̄i,v̄i,d̄i)−ρ̄i

s̄i−ξ̄i

)

µγ
(
ui(s̄i, v̄i, d̄i)− ρ̄i

)

µγ
(
s̄i − ξ̄i

)


 , (18)

for some given v̄ and d̄. Furthermore, consider the nonnegative function

W (s)
.
=
∑

i∈I

{
max
s̄i∈[0,1]

ui(s̄i, v̄i, d̄i)− ui(s̄i, v̄i, d̄i)
}
.

Its time derivative satisfies:

Ẇ (s) = −µ
∑

i∈I
∇s̄iui(s̄i, v̄i, d̄i) · ˙̄si(t),

where ˙̄si(t) is evaluated along the trajectories of the ODE (18). Thus, we may write:

˙̄si(t) = µ tanh

(
˙̄ρi(t)
˙̄ξi(t)

)

γ→∞−−−→ µ tanh

(
u̇i(s̄i(t), v̄i, d̄i(t))

˙̄si(t)

)
. (19)

Since the involved time derivatives are evaluated along the trajectories of the ODE (18), note
that

u̇i(s̄i(t), v̄i, d̄i)
˙̄si(t)

= lim
∆t→0

[ui(s̄i(t+ ∆t))− ui(s̄i(t))]/∆t
[s̄i(t+ ∆t)− s̄i(t)]/∆t

= lim
∆t→0

ui(s̄i(t+ ∆t))− ui(s̄i(t))
s̄i(t+ ∆t)− s̄i(t)

= ∇s̄iui(s̄i(t), v̄i, d̄i)

where the last equality is due to the continuity of the solution s̄i(t). Thus, we conclude that,

Ẇ (s̄)
γ→∞−−−→
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−µ
∑

i∈I
∇s̄iui(s̄i, v̄i, d̄i) tanh

(
∇s̄iui(s̄i, v̄i, d̄i)

)
≤ 0.

The time derivative of the nonnegative function W (·) accepts a unique zero, satisfying

Ẇ (s̄) = 0 ⇔ ∇s̄iui(s̄i, v̄i, d̄i) = 0
⇔ s̄i = s̄∗i (v̄i, d̄i)

.
= arg max

s̄i∈[0,1]
ui(s̄i, v̄i, d̄i),

which according to [9, Theorem 3.1], shows that s̄∗i is a globally asymptotically stable equi-
librium point of the fast response dynamics (18). Given also Assumption 2.2, s̄∗i (v̄i, d̄i) is the
unique globally asymptotically stable equilibrium point of the ODE (18).

− Given that the globally asymptotically stable equilibrium of the unprojected dynamics lies
within the domain Si .= [0, 1], s̄∗i is also the unique globally asymptotically stable point of the
projected ODE.

Thus, the conclusion is a direct implication of [10, Theorem 8.6.1].
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