
D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

1

WHOLODANCE
Whole-Body Interaction Learning for Dance Education

Call identifier: H2020-ICT-2015 - Grant agreement no: 688865

Topic: ICT-20-2015 - Technologies for better human learning and teaching

Deliverable 4.3

Analysis and Integration of Generic Application

Framework

Due date of delivery: January 31st, 2018

Actual submission date: February 23rd, 2018

Start of the project: 1st January 2016

Ending Date: 31st December 2018

Partner responsible for this deliverable: POLIMI

Version: 4.0

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

2

Dissemination Level: Public

Document Classification

Title Analysis an Integration of Generic Application

Framework

Deliverable 4.3

Reporting Period M1-25

Authors Massimiliano Zanoni, Michele Buccoli, Augusto

Sarti, Fabio Antonacci

Work Package WP4

Security Public

Nature Report

Keyword(s) Software platform, software libraries, application

framework, software integration

Document History

Name Remark Version Date

Massimiliano Zanoni TOC 0.1 24/01/2018

Michele Buccoli Data Exchange 0.2 30/01/2018

Stefano Piana Added Feature extraction engine 05/02/2018

Stefano Piana Added contribute to unity-based

integration

 08/02/2018

Katerina El Raheb,

Akrivi Katifori,

Aristotelis Kasomoulis,

Marianna Rezkalla,

George Tsampounaris

Contribution to Sections 3, 4 and 5

related to the work of Athena RC

 8/02/2018

Oshri Even-Zohar Contribution to the motion capture and

the unity integration sections (3&5)

related to the work of Motek

entertainment.

 08/02/2018

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

3

Augusto Sarti,

Massimiliano Zanoni

Final Review 1.0 17/02/2018

List of Contributors

Name Affiliation

Massimiliano Zanoni, Michele Buccoli, Augusto Sarti Polimi

Katerina El Raheb, Akrivi Katifori, Aristotelis

Kasomoulis, Marianna Rezkalla, George

Tsampounaris

Athena

Oshri Even-Zohar Motek

Vladimir Viro Peachnote

Stefano Piana Unige

List of reviewers

Name Affiliation

Vladimir Viro Peachnote

Antonella Trezzani Lynkeus

Anna Rizzo Lynkeus

Edwin Morley-Fletcher Lynkeus

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

4

1 Executive Summary

This Deliverable is based on the outcomes of task T4.2.2 Generic middleware architecture design and
implementation and T4.2.3 Component specification and implementation for application scenarios.

Within WhoLoDancE, several tools have been developed to fulfil the project requirements. Since
WhoLoDancE considers several application scenarios, the use of different programming languages,
development environments and technologies is mandatory. Nevertheless, in the development process an
integration policy has been adopted in order to build a unique integrated WhoLoDancE framework.

The framework is designed to be scalable and platform independent. For this reason, a layered architecture
is considered and tools that compose the framework are designed to be modular and reusable in various
applications.

In order for all the components to be able to interact with each other, and in order to be able to interact with
applications and engines outside the framework (VR visors, etc.) effective interfaces and protocols for data
exchange are needed.

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

5

Table of Contents

1 Executive Summary .. 4

2 The global scheme .. 6

3 Data Exchange .. 7

3.1 Recording signals .. 7

3.1.1 Audio and video data ... 8

3.1.2 Motion capture data ... 8

3.1.3 Synchronization data ... 9

3.1.4 Metadata ... 9

3.2 Annotations data ... 10

3.3 Features .. 11

4 The back-end servers ... 11

4.1 The Storage Layer (Movement Library Repository) .. 11

4.2 The similarity search engine... 12

4.2.1 Self-hosted documentation .. 12

4.2.2 Access control .. 12

4.2.3 Data management .. 12

4.2.4 Deployment... 12

4.3 The Feature extraction engine ... 13

4.3.1 Feature Extraction Engine functionalities ... 13

4.3.2 Feature Extraction Engine web API .. 13

4.3.3 Extensions of the Feature Extraction Engine .. 14

5 The front-end applications ... 14

5.1 Web-based framework .. 15

5.1.1 Web-based applications – an overview... 15

5.2 Unity-based framework... 19

5.2.1 Unity-based applications – an overview ... 19

5.2.2 Embedding of web-based tools into the Unity-based framework ... 20

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

6

2 The global scheme
In figure 1, the global schema of the WhoLoDancE framework is presented.

Figure 1 Global Scheme of the WhoLoDancE Framework

The WhoLoDancE project addresses different learning scenarios and dance practices, and this leads to several

possible application scenarios. Moreover, the project has the goal to be easily expandable to scenarios that

are not considered here. For this reason, the application framework we developed within the project is

thought to cover different state-of-the-art technologies, easily re-usable in different contexts and

expandable.

With this in mind, the framework is designed in three layers. The first is the back-end and represents the

foundation layers. It implements a number of services like the Storage Layer, the Feature Extraction Engine

and the Similarity Search Engine that are the base for most of the WhoLoDancE applications.

In order to be flexible and expandable, tools in the back-end layer need to be cross-platform and easily

accessible from all the applications in the layers above and located in different regions, since the project

Consortium is composed by different partners spread across Europe. For these reasons, tools are provided

over as Internet services. Each service runs in a different server. With this architecture, the back-end can be

easily expanded by adding new servers running new services. A set of efficient APIs are developed to access

each service.

The second layer is the front-end. The front-end includes all the applications and tools that will be available

to users. They can be an interface through which users can access back-end services, like the Movement

Library front-end, or applications used in a specific learning scenario like the Blending Machine.

Due to the number of different scenarios to cover, we implemented the front-end considering two main

technologies: Web-based and Unity-based technologies. The first is appropriate for distributed tools that do

not need to be installed on a computer, they need to run on several platforms and they do not need to

provide real-time responses. Whereas the second is mainly considered for real-time, interactive and

immersive applications.

The various components of the front-end are developed to be modular and reusable. As an example, the

Multimodal Visualization Framework is used in most of the implemented web-based tools.

Movement Library
Repository

Similarity Search Engine

Movement
Library

front-end

Similarity
Search Engine

front-end
Annotation system

Web-based
VR

Back-end

Web-based front-end

Interactive and immersive experience

API API

Multimodal
visualization
framework

High-end
VR

High-end
AR

Feature Extraction Engine

API

Unity Framework

Blending Machine Movement Sketching
Web-based

Choreomorphy
Real-time

Choreomorphy

Sensor-based
Interactive
systems

E
m

b
e

d
d

in
g

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

7

Web-based and Unity based-frameworks can interact via Internet through back-end services or through

direct Internet calls. However, as we will describe, in some cases an embedding procedure is needed (see

section 5.2.2).

Since the project concerns real-time interactive applications, at the top level there is the interactive and

immersive layer. The layer includes all the engines suitable for interactive and immersive experience like VR

and AR engines, as well as sensor-based interactive systems. Front-end applications implement

methodologies to interface with the upper layer that are specific for each engine.

In order for all the tools to interact within the framework we designed effective interfaces and protocols for

data exchange.

All the components are described in the next sections in more detail.

3 Data Exchange
Due to the numerous tools developed for the project, the need to choose or design a common file format for

data exchange arose. WhoLoDancE concerns the use of multimodal signals captured from dance

performances including video, audio (music or environmental noise) and motion capture recordings. The

dance experts in WhoLoDancE then annotated these recordings to provide manual descriptions of

performances. In parallel, we also designed algorithms to extract from recording signals those properties,

namely features, which provide an automatic description of performances.

In this Section, we describe file formats we used to describe recording signals, annotation data and features.

We mostly relied on the JSON (JavaScript Object Notation) text-based file format. JSON is language-

independent, hence an ideal data-interchange language, and is a standard application-level protocol for

Internet-based application. The use of JSON was particularly suitable for the applications developed using

web technologies (see 5.1 Web-based framework). JSON is built on two kinds of structures: a collection of

name-value pairs and an ordered list of values. The combination and nesting of these two kinds allows to

realize universal data structures with JSON. While text-based file formats are naturally more space-

demanding than binary formats, we adopt some common compressing approaches to minimize the demand

of Internet bandwidth when transmitting files.

In the rest of this Section, we will explain the data structure of files, and specify when such structure is

exported using JSON. For the sake of brevity, we will avoid a technical explanation of the actual

implementation of the structure.

3.1 Recording signals
The recording of dance performance sessions (see D1.5 Data Acquisition Plan and D2.3 Outcome of the

Capture Process) produced a high number of multimodal signals, including high-end and low-end video

recordings, audio recordings of environmental sounds, performer’s breath, music tracks used for

accompaniment and motion capture signals. The various signals may not be synchronized (e.g., the video

recording started 3 seconds before the motion), so there is also the need of creating and exchanging data

regarding the synchronization (see D3.6 First Report on Software Platform and Libraries). Many multimodal

signals ultimately refer to the same dance performance; we therefore need a unified data format for saving

the performances metadata.

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

8

3.1.1 Audio and video data

Audio and video data are widely employed and then use stable and shared file formats. For video signals, we

used AVI and MPEG-4 video files that are supported by the HTML5 standard for web technologies. For audio

signals, we used lossless WAV files and lossy MP3, which are both widely employed in literature and fully

supported in HTML5.

3.1.2 Motion capture data

The motion capture (MoCap) system employs a set of 3D tracking markers that are placed on the dancer’s

suit, resulting in a cloud of points representation of the performance, which we store in a standard C3D file.

Cloud-of-point representation is affected by noise from occlusion, mixing of markers, and slight change of

muscular tension. For this reason, we converted them into a skeletal representation, which cleans the data

and exposes the kinematic chain of movement by applying inverse kinematics techniques.

For exchange of skeletal data among project partners, we used the standard FBX file format, owned by

Autodesk. On the one hand, FBX files are widely used for 3D model and animations, due to their compactness

when expressed in binary format. On the other hand, the FBX structure requires computational effort to be

processed; for this reason, we developed a Python script to convert FBX files to a simpler and explicit data

structure that is best suitable for web-based applications, and we exported the converted structure into JSON

files. The MoCap structure is shown in the following table.

Variable Type Description

Name String Name or identifier of the recording

filename String Name of the file from which the MoCap has been extracted

Np Integer Number of limbs in the MoCap representation

Nf Integer Number of frames in the MoCap animation

samplerate Integer Number of frames to be executed in one second (fps)

properties Name-pairs Properties as defined in the FBX file

labels String [Np] Name of each limb

conn Int [][2] Connections between limbs, following the kinematic chain, e.g., the

LeftShoulder is connected with the LeftElbow

dancers Name-Int[] pairs For each dancer in the performance, which limb refer to him/her

GlobalPos Float [Nf, Np, 3] Global Position of each limb, in each frame, in the 3D world

LocalEuler Float [Nf, Np, 3] Euler Angles of each limb, in each frame, with respect to its parent

connection

GlobalEuler Float [Nf, Np, 3] Euler Angles of each limb, in each frame, with respect to the 3D world

The MoCap JSON file represents an offline-processed, ready-to-use and web-friendly version of the FBX

mocap files. The Position and Angles are expressed following the Unity reference system for 3D world.

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

9

3.1.3 Synchronization data

Multimodal signals from the same performance need to be synchronized with each other to guarantee

simultaneous visualization, as in the WhoLoDancE Movement Library (see Section 5.1.1 Web-based

applications – an overview).

In order to express the value of synchronization, we assume the existence of a time reference t0 and express

the starting point tx of the generic recording x as an offset sync[x] with respect to such t0, i.e., sync[x]= tx-t0.

We have sync[x]>0 if tx>t0 and sync[x]<0 if tx<t0. We represent this strategy in 2.

Figure 2. A representation of the synchronization strategy

To compute the synchronization between two recordings, for instance Mocap0 and Video0 (Figure 1), we

compute the offset of Mocap0 with respect to Video0 (i.e., sync[M0|V0]) as:

𝑠𝑦𝑛𝑐[𝑀0|𝑉0] = 𝑠𝑦𝑛𝑐[𝑀𝑜𝑐𝑎𝑝0] − 𝑠𝑦𝑛𝑐[𝑉𝑖𝑑𝑒𝑜0] = (𝑡𝑀0 − 𝑡0) − (𝑡𝑉0 − 𝑡0) = 𝑡𝑀0 − 𝑡𝑉0,

and vice versa for 𝑠𝑦𝑛𝑐[𝑀0|𝑉0].

We set 𝑡0 = min
𝑥∈𝑅𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠

𝑡𝑥, in order to have 𝑠𝑦𝑛𝑐[𝑥] ≥ 0 for all the recordings. The key-value pairs

recording-synchronization are then stored in the metadata regarding the corresponding session, as detailed

in the next subsection.

3.1.4 Metadata

The metadata concerning each performance are stored in the CKAN database described in D5.1 Data

modeling, Data Integration and Data Management Plan. The database employs the standard CKAN server

to provide stability and maintenance. CKAN provides a web-API for database querying and retrieval,

exporting results in standard the JSON format.

We use the following structure to describe dance performances. While the structure was designed for the

project, it is flexible and open for external contributions.

Variable Type Description

name String Name of the performance

id String Identifier of the performance as assigned by CKAN

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

10

url String URL in the WhoLoDancE Movement Library where the performance

can be watched

performer List of String(s) Name of the performer(s)

Num_performers Integer Number of performer(s)

Dance Genre String Genre of the performance

Company String Performers’ company

Capture Date Date Date of capture of the performance

Capture Venue String Place (city) where the performance was recorded

Resources List of

recordings

Recordings that have been captured during the performance (video,

audio, MoCaps, etc.), with information on synchronization

Num_resources Int Amount of captured recordings

3.2 Annotations data
The WhoLoDancE Movement Library (WML) allows users to simultaneously watch the MoCap and video

recordings of a performance, and to add annotations to it. These annotations may refer to movement

qualities (graded between 0 or 10), actions that appear during performance, other elements define in the

ontology described in D3.1 Report on Semantic Representation Models, or even free-text labels (tags). Each

annotation may refer to the whole performance or to a narrow fragment and apply to all performers or focus

on a specific limb.

These annotations are useful for performance retrieval in the WML itself (e.g., all performances with a jump),

and to train models for the extraction of data-driven features (see next section and D3.5 Report on Data-

driven and Model-driven Analysis Methodologies). We designed a simple structure for annotations, that are

stored in the CKAN repository and exportable in JSON format.

Variable Type Description

name String Name of the annotated performance

id String Identifier of the annotated performance as assigned by CKAN

user String Annotating user’s name

Motion Capture Boolean Whether the annotation refers to the MoCap recording

Video Boolean Whether the annotation refers to the Video recording

Dance Genre String Genre of the performance

Category String Type of annotation (Movement Quality, Action, etc.)

Label String Name of action /movement quality annotated

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

11

Value Integer If graded annotation: grade value (0-10), otherwise is -1

Starting Time Float Starting time of the reference segment for annotation

Ending Time Float Ending time of the reference segment for annotation

3.3 Features
We can extract many features from multimodal recordings, and techniques vary depending on several

factors:

• the recording signals -and the underlying information- vary from 1-dimensional audio times-series to

3-dimensional video and MoCap signals; different signals lead to different extraction techniques and

extracted properties; in the project, we focused on MoCap recordings for the richness of information;

• we can extract different levels of features, from physical (low-level) features, to semantic (high-level)

features; the higher the level of the features, the longer the window of observation needed for

computation, from frame-level to tens of seconds, or even not fixed a priori, hence the

dimensionality may vary (see D3.5 Report on Data-driven and Model-driven Analysis

Methodologies);

• we can aggregate information over different dimensions: features may be computed for each joint

in the MoCap, for each direction, or aggregated over axes, to have a global descriptor for each joint,

or aggregated over joints, to have a descriptor for each main limb (e.g., torso, left arm) or even for

the whole body (especially for higher-level features).

Combining the aforementioned factors, we may have 4-d features as well as scalar values for the description

of a performance. Due to the high variety of features we can extract, we did not design a fixed structure for

them and let it change freely depending on the feature. We export extracted features in JSON and CSV text-

based files.

4 The back-end servers

4.1 The Storage Layer (Movement Library Repository)
The WhoLoDancE storage layer is part of the data management system and is described in detail in

Deliverable 5.1 Data modelling, data integration and data management plan report (Section 4). It is a file-

based object store for depositing binary data objects. The repository is implemented over a redundant store

with one delayed replica and is accessible via a number of standard protocols such as FTP and HTTP, while

special protocols are also available depending on the data type (e.g., streams for media objects). Items in the

repository obtain URLs that can be disseminated via standard web means, yet access may be provided only

with granted credentials.

The storage layer includes also a relational database management system (PostgreSQL) for managing dataset

metadata, behind the CKAN repository and pilot-specific services.

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

12

4.2 The similarity search engine
The search engine is described in detail in Deliverable 4.1 Report on Data Integration, Algorithm and System

Analysis, and Framework Description, in particular the section “Service Implementation” which describes the

system architecture.

The search and similarity platform supports automated submission of recordings and time series data by

authorized users. It supports flexible querying scenarios, in which users can specify the features to be used

for searching and their weights by themselves. The functionality is exposed via a REST API that consumes and

produces data in JSON format. The API is documented and easily consumable in a variety of environments. A

simple authentication scheme is employed. Multiple deployment instances of the engine are available to

technical partners for experimenting with the API, the low-, mid- and high-level features that they can

generate and submit to the search engine on their own, and the custom weighted templates without

interfering with other partners or the production deployment. The deployments are easily upgradeable to

support short development and deployment cycles.

The Search and Similarity Engine is implemented as a stand-alone Java application that can be interacted

with over a REST API. The API implements a Swagger API definition, from which client implementation in

multiple languages can be automatically generated.

For real-time applications WebSocket connections can be used for streaming motion and HLF data to the

search engine and receiving a stream of pointers to the search results. WebSocket connections are supported

for both Unity and Web-based clients.

4.2.1 Self-hosted documentation

The application hosts its own documentation, available at the root endpoint of the API, e.g.

http://search.WhoLoDancE.peachnote.com. The documentation describes all available REST endpoints and

the data structures consumed and returned by the API.

4.2.2 Access control

The access to the API is secured with HTTP Basic Authentication mechanism, which requires the user to

provide a username and password before accessing the service. The authentication is transmitted using an

HTTP header of any request sent to the service.

The API supports the Cross-Origin Resource Sharing (CORS) mechanism that makes it easy to consume the

API from within any web page that wishes to make use of it.

4.2.3 Data management

The search engine ingests submitted time series and meta data and persists them in a PostgreSQL database

and on the file system. The configuration of the database access and the file system storage is provided using

a configuration file.

4.2.4 Deployment

The application is automatically updated on every change in its source code repository resulting in a

successful build.

http://search.wholodance.peachnote.com/

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

13

4.3 The Feature extraction engine
In view of WhoLoDancE’s purpose of giving accessibility to the various tools over internet, we are developing

a service that will provide online accessibility to movement feature extraction from recordings. The service

will embed the feature extraction modules developed so far in the project (See D3.4 and D3.5 for details) and

provide an API to access the functionalities from remote clients.

The first version of the service will require FBX files to be analysed, and the analysis will be performed

asynchronously. An extension of the service to add compatibility to live streams and different file formats is

under investigation, the API of the service is detailed in Section 4.3.2.

4.3.1 Feature Extraction Engine functionalities

The Feature Extraction Service will initially allow two types of usage: direct analysis of a capture sequence

(i), fetching and analysis of a sequence from the WhoLoDancE repository (ii). In the first case the user will

provide an existing recording that will be analysed while for the latter one the system will fetch an existing

recording from the WhoLoDancE repository and analyse it. In both cases, the user will be able to download

the features from the Feature Extraction Service.

4.3.2 Feature Extraction Engine web API

This section describes the API that will be available on the feature extraction engine that is currently under

development, the service will provide a REST API that will enable feature extraction from FBX recordings, an

extension to CSV, c3d and JSON recordings is under investigation. The current version of the API is detailed

it Table 1 and Table 2.

Table 1: API methods related to feature extraction modules

Features

Method Address Description Parameters Returns

GET /features Lists available

features on the

server

Limit: the

maximum

number of

retrieved

entries

List of

retrieved

features as a

JSON array

GET /features/{recordingId}

Lists extracted

features for

recording with

given Id

RecordingId:

the id of the

desired

recording

List of

extracted

features for

the given

recording as a

JSON array

GET /features/{recordingId}/{featureId} Download a file

containing

RecordingId:

the id of the

desired

recording

featureId: the

id of the

A CSV file

containing the

extracted

feature

https://app.swaggerhub.com/apis/steto84/feature_extraction_api/1.0.0#/Analysis
https://app.swaggerhub.com/apis/steto84/feature_extraction_api/1.0.0#/operations/Features/listFeatures
https://app.swaggerhub.com/apis/steto84/feature_extraction_api/1.0.0#/operations/Features/listRecordingFeatures
https://app.swaggerhub.com/apis/steto84/feature_extraction_api/1.0.0#/operations/Features/getRecordingFeatureFile

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

14

desired

feature

Table 2: API methods related to feature analysis

Analysis

Method Address Description Parameters Returns

POST /analysis/analyse Analyses a

recording

Expects A

Json

containing

the link to

the file of the

recording

An Id given to

the request

POST /analysis/analyse_from_repository Analyses a

recording

fetching it from

the

WhoLoDancE

repository

RecordingId:

the id of the

desired

recording

An Id given to

the request

GET /analysis/status List the status

of all the

requests

enquired so far

Limit: the

maximum

number of

retrieved

entries

GET /analysis/status/{requestId} Gives the status

of an analysis

request

requestId:

the Id of the

desired

request

The status of

the desired

request

4.3.3 Extensions of the Feature Extraction Engine

The first version of the Feature Extraction Engine will provide asynchronous data analysis; one of the

extensions that are under investigation is real-time data streaming-analysis. In this scenario, a client would

connect to the Analysis Service, stream coordinates and receive analysis results in real-time (with reasonable

delay). This process would require the client to provide a stream of data to the service and receive the stream

of results from it, thus requiring a pretty wide available upstream/downstream bandwidth and a

synchronization mechanism (i.e., timestamping) between client and server.

5 The front-end applications
Front-end applications are the interface with which users can access services and data provided or stored in

the back-end service, in a typical client-based architecture. There are two main approaches for the front-end

https://app.swaggerhub.com/apis/steto84/feature_extraction_api/1.0.0#/Analysis
https://app.swaggerhub.com/apis/steto84/feature_extraction_api/1.0.0#/operations/Analysis/analyseRecording
https://app.swaggerhub.com/apis/steto84/feature_extraction_api/1.0.0#/operations/Analysis/analyseRecordingFromRepoory
https://app.swaggerhub.com/apis/steto84/feature_extraction_api/1.0.0#/operations/Analysis/listRequestStatus
https://app.swaggerhub.com/apis/steto84/feature_extraction_api/1.0.0#/operations/Analysis/analisysStatus

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

15

development: web-based and stand-alone. Both approaches offer pros and cons and, for this reason, in the

project we decided to follow both. In the following, we present the application framework and integration

among applications.

5.1 Web-based framework
Web-based applications are very common nowadays, due to numerous pros. Firstly, they do not require a

dedicated installation, since they are accessible by using a modern web browser, and are therefore naturally

cross-platform. Moreover, they offer more control to the owner of the application, including authentication

or geographical limitations. Lastly, the deployment of new versions is instantaneous, as soon as the new

version is uploaded to the server, overcoming issues related to backward compatibility. In the rest of the

Section, we describe each implemented web-based application, highlighting their interaction with back-ends

servers and other applications. For a detailed description of the applications, please refer to D5.3 Integration

and interoperability with external services, systems and applications report.

5.1.1 Web-based applications – an overview

For each application we provide a brief overview of the functionalities.

Visualization tool

First, we implemented the visualization tool to visualize MoCap performances as 3D movements. The tool

contains a 3D scene (using WebGL API) that can be manipulated to rotate the scene, zoom in/out or move

the scene. This allows users to watch a MoCap dance performance from every angle they desire. The tool

loads MoCap JSON files as described above, and it shows it using a simple stick-man visualization. In case two

performers are involved, the tool renders them with different colours to ease discriminability between the

two.

The execution of the performance (starting, pausing, resuming, seek at a given moment, etc.) is controlled

by Javascript functions accessible from the outside. For instance, one can design a progress bar to show the

execution instant, insert HTML buttons for playing/pausing the performance, or using voice command to

control it.

The visualization tool is in fact the very first web-based module designed for the project, complying

modularity and reusability requirements. It is indeed included in the Annotation Tool, in the Similarity Search

Engine front end and in the WhoLoDancE Movement Library front end (see below), and its code is the core

of the Web-Based VR tool. The Choreomorphy Web-based version can be seen as the natural evolution of

the tool for more artistic purposes.

Annotation tool

Annotations on the recordings describe and analyse the dancer’s motion. The “Annotation Table” allow users

to quickly add, edit or delete annotations inline through the table structure. The steps of adding and editing

annotations takes place gradually. The system guides the user step by step, including several useful

mechanisms, such as searching with keywords, regulating the number of annotations that will emerge in

each page, as well as sorting the columns of the table. Last but not least, undo and redo methods have been

implemented.

Regarding the need of visualizing annotations, a timeline structure has been created, under the player’s box.

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

16

Users will be informed of the existing annotations, both from the annotation table and the timeline. The

timeline structure is synchronised with the media player. During the playback of the recording, a vertical, red

line moves through the timeline segments, in order to present the annotations that correspond in each time

spot. The timeline is also combined with many useful functionalities. Filtering, zoom in and out, slide right or

left, move in specific timestamp are some of the provided functions. However, the timeline structure could

also be used as an effective means for managing annotations. By hovering over a timeline annotation, options

for editing and deleting will appear, while a button is used to add new annotations instantly on the timeline.

Figure 3 Timeline and table of Annotations

Similarity Search Engine front end

The Similarity Search front-end is a web-based prototype developed to test and showcase the Similarity

Search Engine back end. In order to use it, we had to extract features from the MoCap recordings using the

Feature Extraction Engine and upload them to the Similarity Search Engine for offline optimization.

The Similarity Search shows performances metadata and corresponding MoCap recording accessing the

CKAN repository. By interacting with the Similarity Search Engine, and with the CKAN repository, the front-

end returns and show the most similar fragments of performance. The query fragment and the results are

played simultaneously and shown side-by-side, to help comparison.

A more detailed description of the front-end is provided in D4.2 Similarity Search Framework and

Components.
WhoLoDancE data management system

The main objectives of the WhoLoDancE data management system interface is to organize the files in the

FTP server by grouping them into recordings and adding metadata information. It also provides a useful API

in order to access the stored data and metadata from other applications. CKAN Action API exposes all of

CKAN core features to API clients. All CKAN website core functionality can be used by external code that calls

the CKAN API. Moreover, it provides a vast number of tools and libraries for the CKAN API, such as Python,

Java and Javascript. The WhoLoDancE data management is based on the CKAN metadata which is a repository

tailor-made with regards to configuration and plugins, to fit WhoLoDancE project datasets and metadata

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

17

servicing needs. It offers full web interface for managing and accessing metadata and a rich set of tools and

libraries for consuming/exploring projects datasets.

Figure 4. The Data management system front end tool

The WhoLoDancE Movement Library

The main objective of the WhoLoDancE Movement Library (WML) application is to provide access to the

WhoLoDancE repository, through a usable interface with browsing, searching, visualization and annotation

functionalities for the multimodal recordings.

More specifically, the user can browse the recordings by dance genre, and search by using keywords that are

included as metadata of the recordings. A special player has been developed, to allow the synchronised

playback of a video, as well as its corresponding motion capture file. Moreover, not only do users have the

opportunity to view the recordings but also to annotate them. Finally, a timeline that operates as viewer for

the annotations has been developed.

Figure 5. Search Results page

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

18

The WML tool is a web-based application, compatible with every OS system, built according to the principles

of the MVC architecture. Model-View-Controller (MVC) software design pattern, works by dividing an

application into three interconnected parts, in order to separate internal representations of information from

the ways that information is presented to and accepted from the user.

Spring Web MVC framework was selected. Like many other web frameworks, it is designed around the front

controller pattern where a central Servlet, the DispatcherServlet, provides a shared algorithm for request

processing while actual work is performed by configurable, delegate components. This model is flexible,

scalable and supports diverse workflows.

The view component has been developed by utilizing the JSP script based templating system. JavaServer

Pages (JSP) technology has the ability to create dynamically generated web pages. Web pages development

is based on the HTML mark-up language and CSS determines how those HTML elements should be displayed.

Bootstrap has been used in order to design and implement the Wholodance Movement Library application.

The current open source toolkit contains HTML and CSS based design templates, as well as optional JavaScript

extensions.

AJAX, which is a set of Web development techniques on the client side that creates asynchronous Web

applications, has been used. With Ajax, WML application can send and retrieve data from the server

asynchronously (in the background) without interfering with the display and behaviour of the current page.

Through the WML application, several different functionalities, allow users to interact with the tool. Those

functionalities were implemented with the scripting language, Javascript. Its use is primarily for DOM

Manipulation, AJAX Calls and Validation. Features such as the player functions, synchronisation between the

video and the mocap, as well as services supported by the annotations table, have been all developed with

Javascript.

Web-based VR

We implemented a web-based VR application using modern Javascript WebVR APIs and dedicated libraries.

The application works with low-end devices (such as Google Cardboard) as well as high-end compatible

devices (including HTC Vive). Due to the need to provide an enjoyable experience to users regardless of their

device, our web-based VR are designed to use a modest amount of computational and graphical resources.

In the current implementation of web-based VR, users load a performance from the CKAN repository and

watch it with a VR device in an immersive scene. Users can move through the VR space, watching the

performance from every angle and view. Moreover, since the web-based VR is able to show any performance

which complies with the aforementioned JSON MoCap structure, it is also possible to load a performance

created with the blending engine (see next section). This aspect makes the web-based VR a useful application

for choreographers to easily and immediately share their creations over the web. The current prototype

offers a set of pre-defined environments - an empty space, a virtual rehearsal space, a Laban cube – among

which the user can choose.

Choreomorphy web-based version

The Choreomorphy web-based tool allows the visualization of a recording in WML through the use of

different avatars. The WebGL build option allows Unity to publish content as JavaScript programs which use

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

19

HTML5 technologies and the WebGL rendering API to run Unity content in a web browser. Choreomorphy

WebGL edition is supported by all major desktop browsers to some degree. It operates as a beautified

viewport of the WML 3D visualization. When the user has selected a choreography, Choreomorphy retrieves

with Ajax the motion capture data from the remote repository and then visualizes it on the avatars.

5.2 Unity-based framework

5.2.1 Unity-based applications – an overview

For each application we provide a brief overview of the functionalities.

Real-time Choreomorphy

Choreomorphy is a whole-body interaction interface that allows a user to visualize their movement in real

time using motion capture technologies. The interface allows a user to change avatars and different

visualizations in real time, in order to focus on specific aspects of their movement such as traces, trails, and

volumetric space, and improvise while seeing themselves as different avatars and shapes and interact with

virtual objects. Choreomorphy has been implemented in Unity®, a cross-platform game engine developed by

Unity Technologies, which is primarily used to develop both three-dimensional and two-dimensional video

games and simulations for computers. Mono, the open source development platform based on the .NET

Framework is used for the development of the app. Mono .NET implementation is based on the ECMA

standards for C# and the Common Language Infrastructure. The dynamic shaders are developed using Cg,

that is a modified version of Microsoft's High-Level Shading Language.

Choreomorphy is created in such a way as to be able to work with any motion capture equipment that

includes a Unity Plugin. In our case, we used Synertial IGS-C420 motion capture equipment, which is an

inertial motion capture suit with 42 IMU sensors.

The pipeline for a successful setup and motion capture session with Choreomorphy is the following:

1. Router: establish a local network that will enable communication between computer and motion capture

suit via its wireless HUB.

2. PC: launch Animate.exe, which is a Synertial software that fetches the motion capture data that is

streamed by the suit ‘s HUB and then broadcasts it to Choreomorphy app.

3. PC: in Animate software, enable the broadcast option to broadcast the motion capture data anywhere. In

our case to Choreomorphy.

4. Motion capture suit: turn on HUB to connect with Animate software, to stream the motion capture data

to it.

5. PC: calibrate the suit. (~3 seconds)

6. ready to start the session.

The avatar library consists of 3D models that are available at the Unity Asset Store, some of them have been

designed by 3D Artist Maya Lara and Motek. More details on the tool can be found in deliverable D5.3

Integration and interoperability with external services, systems and applications report.

http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
https://en.wikipedia.org/wiki/Cg_(programming_language)
https://en.wikipedia.org/wiki/High-Level_Shading_Language
https://en.wikipedia.org/wiki/High-Level_Shading_Language

D4.3 Analysis and Integration of Generic Application Framework WhoLoDancE - H2020-ICT-2015 (688865)

20

Movement sketching and feature analysis integration in the unity environment (UNIGE)

Modules for feature extraction and the movement sketching application were developed in the EyesWeb

XMI1 environment, to provide a single environment to end users, especially in real-time use cases, the tools

will be integrated in Unity. The integration is implemented using a communication mechanism between the

Unity Environment and the EyesWeb-based implementation; using OSC protocol, in particular, commands

and raw MoCap (positions, rotations) data streams will be sent to the Analysis modules by the Unity

application, and results of the analysis will be received from the EyesWeb-based Application. The current

Graphical user interface will be ported and integrated into Unity: Errore. L'origine riferimento non è stata

trovata. shows a schematic view of the communication between Unity and Eyesweb-based applications.

Blending machine

The Blending engine is a standalone PC desktop application that enables blending of every motion capture

sequence from the repository to every other sequence, while allowing separation and different blend types

for each body part. It also enables the creation of long choreographic pieces by assembly of sequences. The

blending machine will be integrated into Unity as an FBX stream source. Inside Unity, the users may request

the direct output in runtime from the blending engine, or just load into the scene blended sequence.

5.2.2 Embedding of web-based tools into the Unity-based framework

Web-based tools can easily interact with the Unity-bases tools by using the throughput of data via Web

socket, or Tcpip or Udp protocols to input and output data stream. Nevertheless, in some scenarios it will be

useful to embed web-based applications into the Unity-based framework, preserving the advantages of the

web technology and without the need to re-develop the application into the Unity environment. Operations

that stay in the 2d domain can be visualized as a full Web browser inside a window in the AR or VR view. This

is the case, for instance, when a dancer dances with an avatar that should be loaded by from the Movement

Library.

1 http://www.infomus.org/eyesweb_eng.php

Figure 6. Unity Integration schema and communication protocol between Unity-based and Eyesweb-based applications

