geoSphere
Below is a demonstration of the features of the geoSphere function
Contents
clear all; close all; clc;
Plot settings
fig_color='w'; fig_colordef='white'; fontSize=15; faceAlpha=0.75; edgeColor=0.3*ones(1,3); edgeWidth=1.5;
Building a geodesic dome
The function inputs are n and r which define the mesh refinement and radius respectively. The mesh refinement number n defines the number of subtriangulation (see function subTri) iterations performed on an icosahedron. Below is a visualisation for n=0:1:3. The function outputs the geodesic dome faces (F) and vertices (V) and also the spherical coordinates of the vertices (Vs) (this output is suppressed in the example below).
% Open figure for plotting hf=figuremax(fig_color,fig_colordef); %Defining geodesic dome r=1; %sphere radius n=0:1:3; %Refinements pColors=autumn(numel(n)); for q=1:1:numel(n); [F,V,~]=geoSphere(n(q),r); subplot(2,2,q); hold on; title([num2str(n(q)),' refinement iterations'],'FontSize',fontSize); xlabel('X','FontSize',fontSize); ylabel('Y','FontSize',fontSize); zlabel('Z','FontSize',fontSize); hp=patch('Faces',F,'Vertices',V); set(hp,'FaceColor',pColors(q,:),'FaceAlpha',faceAlpha,'lineWidth',edgeWidth,'edgeColor',edgeColor); camlight headlight; set(gca,'FontSize',fontSize); view(3); axis tight; axis equal; grid on; end

GIBBON
Kevin M. Moerman (kevinmoerman@hotmail.com)