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Abstract. OpenCL has been proposed as a means of accelerating func-
tional computation using FPGA and GPU accelerators. Although it pro-
vides ease of programmability and code portability, questions remain
about the performance portability and underlying vendor’s compiler ca-
pabilities to generate efficient implementations without user-defined, plat-
form specific optimizations. In this work, we systematically evaluate
this by formalizing a design space exploration strategy using platform-
independent micro-architectural and application-specific optimizations
only. The optimizations are then applied across Altera FPGA, NVIDIA
GPU and ARM Mali GPU platforms for three computing examples,
namely matrix-matrix multiplication, binomial-tree option pricing and
3-dimensional finite difference time domain. Our strategy enables a fair
comparison across platforms in terms of throughput and energy efficiency
by using the same design effort. Our results indicate that FPGA pro-
vides better performance portability in terms of achieved percentage of
device’s peak performance (68%) compared to NVIDIA GPU (20%) and
also achieves better energy efficiency (up to 1.4×) for some of the con-
sidered cases without requiring in-depth hardware design expertise.

1 Introduction

The rapidly increasing use of heterogeneous accelerators such as Graphic Pro-
cessing Unit (GPU) and Field Programmable Gate Array (FPGA) in data cen-
tres necessitates the adoption of a unified programming environment that also
maintains better throughput and energy efficiency [1]. This is hard to achieve,
however, due to widely varied architectures and technologies, which have been
traditionally programmed via specialized languages e.g. VHDL for FPGAs and
CUDA for NVIDIA GPUs, using detailed knowledge of underlying hardware. In
addition to programming inefficiency, this hinders fair comparison of achieved
performance and design cost across the different accelerating technologies.

To address this challenge, the Open Computing Language (OpenCL) [2] has
been introduced as a C-based platform-independent language, to allow paral-
lelism to be expressed explicitly regardless of the underlying hardware. OpenCL
is now supported by a range of programmable accelerators including GPUs and
FPGAs. However, OpenCL only provides functional portability and the applica-
tion implementation needs to be optimized by the underlying accelerator vendor



compilers. Under such a reality, the question remains about performance porta-
bility of OpenCL applications on various accelerators. That is, how much per-
formance an application can achieve across various platforms and how to gauge
the efficiency of the vendor-specific compilers to map OpenCL source code to
the targeted device with minimum or even no user-defined platform-specific opti-
mizations. Also, it is questionable if FPGAs still require more in-depth knowledge
of underlying hardware compared to other technologies.

Achieving performance portability and fair evaluation is becoming extremely
important with increased usage of accelerators in data centres and cloud environ-
ments [3]. Researchers have approacehd these challenges from two angles. On one
hand some studies compare programming languages such as a hardware descrip-
tive language (HDL) and Compute Unified Device Architecture (CUDA) with
OpenCL on the same platform, e.g. FPGAs [4] and GPUs [5]. On the other hand
there is portability evaluation of the same language e.g. OpenCL across multiple
platforms i.e. NVIDIA GPU, AMD GPU, Intel CPU and Sony/Toshiba/IBM
Cell Broadband Engine [6]. These works conclude that although platform inde-
pendent language can lead to better portability, additional effort is required for
tuning kernels to each device to achieve comparable performance.

An architectural and programming model study on fractal video compres-
sion involving optimization of OpenCL on FPGA has been presented in [7] and
provides a series of FPGA-based optimizations on FPGA before comparing the
results with CPU and GPU for an optimized kernel. In [8], six benchmarks of
the Rodinia suite are evaluated using OpenCL and FPGA-specific optimiza-
tions are performed on kernels optimized for GPU-like devices, achieving up to
3.4x better energy efficiency compared to GPUs. However, this work requires
platform-specific optimizations, which partially nullifies the motivation behind
a software-based approach via a unified programming environment. In addition,
they compare the output with already-optimized implementations on other plat-
forms and do not discussed performance portability.

In this paper, we develop and apply a systematic approach to gauging per-
formance portability and fair evaluation. We apply a set of uniform micro-
architectural optimizations for fair porting, optimization and evaluation of appli-
cations across platforms using OpenCL. The optimizations are based on carefully
selected common micro-architectural features that can be easily parametrized
via the OpenCL model. Initially, we take C source code of kernels for 3 acceler-
ated computing applications, namely matrix-matrix multiplication (SGEMM),
Binomial-tree Option Pricing (BOP) and 3 dimensional Finite Difference Time
Domain (FDTD) and port them to OpenCL as base kernels before applying the
platform-independent optimizations.

We then evaluate these optimisations on 3, state-of-the art, platforms namely
Altera FPGA, a high performance NVIDIA GPU and a low power ARM Mali
GPU. In doing so, we analyse the underlying compilers’ job in generating an
optimized implementation. We also compare the achieved performance to the
theoretical peak throughput and platform-specific implementations. To the best
of our knowledge, this is the first work to discuss platform-independent, design



space exploration across FPGA and GPU and use the same optimization efforts,
programming environment and runtime for a fair comparison of heterogeneous
accelerators for throughput and energy efficiency.

In brief the key contributions of this paper include:

– A micro-architectural optimization and design space exploration approach
based on platform-independent parameters of OpenCL model.

– Implementation of three applications from linear algebra (SGEMM), finan-
cial computation (BOP) and electromagnetic modelling (FDTD) on het-
erogeneous accelerators while analysing the architectural and algorithmic
challenges using OpenCL.

– Fair comparison of the implementations of the above applications on state-of-
art FPGA and GPUs in terms of application-specific metrics for throughput
and energy efficiency while trying to keep the design efforts the same.

– Comparison of achieved performance through platform-independent opti-
mizations with theoretical peak and platform-specific optimizations.

The rest of the paper is organized as follows. Section II describes the design
environment by reviewing OpenCL programming model, the tested use cases
and experimental platforms. Section III summarizes the optimization and design
space exploration methodology and its application to the use cases. Section IV
and V then analyse the throughput and energy efficiency optimizations on each
of the platforms. Finally, Section VI concludes the presented work.

2 Design Environment

2.1 Overview of OpenCL

OpenCL is a cross platform open standard for heterogeneous parallel program-
ming that defines platform-independent APIs for abstraction of parallelism. A
serial OpenCL program runs on a host CPU with parallel compute intensive
tasks being offloaded via a kernel definition and OpenCL runtime onto a com-
pute device. A compute device contains one or more compute units (CU) each
of which has one or more processing elements (PE) (Fig. 1).

A complete application is usually divided into smaller tasks, work-groups,
with each running independently on a CU. A work-group has further 3 dimen-
sional parallel work-items, which run on a PE. Memory types of OpenCL based
on latency are high-latency global memory accessible to a whole kernel and fast
local memory shared within a work-group.

2.2 Use Cases

We take three different use cases from linear algebra, financial computation
and electromagnetic modelling; their computation range offers diverse testing of
micro-architecture, as summarized in Table 1. These are briefly explained below.

Matrix-Matrix Multiply: SGEMM of two square matrices, A and B, of
order n results in a matrix C of order n where each ijth element of C is the dot
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Fig. 1. OpenCL architecture

Table 1. Use cases characteristics

Characteristic SGEMM BOP FDTD

Domain Linear Algebra Finance Modelling
Evaluated Data Points Up to 32K Up to 4K 105M
Data Dimensions 1 2 3
Data Access Pattern Regular 1 Regular, 1 Irregular Regular
Architecture SIMD Iterative Sliding Window
Data Reuse Order of matrix 2 Radius2

product of ith row of A and jth column of B. SGEMM is a main component of
various libraries and benchmarks (such as LAPACK) used in dense linear algebra
algorithms and for benchmarking purposes.

Binomial-Tree Option Pricing: BOP is a key model in finance that offers
a generalized method for option valuation and can be applied for more exotic
options with complex features. It calculates the value of the option at the final
nodes of a binomial tree. The next, computationally complex step involves walk-
ing backwards up the tree calculating the price of all nodes at each time step
sequentially, until the first node is reached. Each node, n, in a vertical column
at a time step, t, is dependent on two nodes, n and n+ 1, in the time step, t+ 1.

3 Dimensional Finite Difference Time Domain: FDTD is an important
numerical method in electromagnetic numerical modelling which builds a model
space and stores it in memory. The calculation of electric and magnetic field
progression in 3D space, dimx× dimy× dimz, is conducted in a sliding window
fashion, where window is a sphere of set radius. Apart from the computational
needs, another reason for selecting this algorithm for comparison is due to the
availability of fine tuned implementations from vendors, Altera and NVIDIA.



2.3 Platforms

We evaluate 3 typical state-of-the art platforms, based on the same technology,
from Altera, NVIDIA and ARM (Table 2). In terms of architecture, both GPUs
share similarities with fixed micro-architecture consisting of processing cores and
cache. The main differentiation factor lies in the device scale and non-availability
of separate local memory for CUs in Mali. In comparison, FPGA offers a recon-
figurable architecture with variable precision Digital Signal Processors (DSPs),
a common large local memory for all DSPs and non-availability of cache.

Table 2. Key platforms characteristics

Characteristic Altera NVIDIA MALI

Board Nallatech 385 GTX 980 ODROID XU-3
Chip 5SGXA7 GM204 T628
Technology (nm) 28 28 28
Frequency Variable 1216 MHz 600MHz
Compute Units Variable 16 4
Floating Point Units 256 2048 16
Local Memory 6.25MB 256 KB Virtual
Cache - 2MB 256KB
Work-Items Single preferred 1024 × 1024 × 64 256 × 256 × 256

3 Platform-Independent, Application-Specific
Optimizations

Here we define a platform-independent micro-architecture optimization flow and
apply along with application-specific optimizations applied to various use cases.

3.1 Platform-Independent Optimizations

Irrespective of underlying hardware, we target the following optimizations based
on general principles of parallel computing and the OpenCL model (Fig. 2):

Explicit Parallelism: The first step is to define parallelism explicitly using
the OpenCL model of work-items and work-groups. This requires a general un-
derstanding of the application to explicitly divide each task into fine-grained
multiple parallel units, forming the base kernel.

Cores: The second step is to implement core-level optimizations in two ways:
firstly, by providing enough parallel work-items and data to enable maximum
cores utilization in time and secondly, exploiting vector operations in a single
core, if available, using OpenCL vector data types for maximizing spatial usage.

Memory: The third step optimizes memory access for reduced latency by
hiding the main memory access latency. This is achieved by memory coalescing
and also by maximising the use of high speed, local memories in OpenCL.
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Auto-tuning: Finally, auto-tuning using an iterative approach, where the tun-
able parameters are scaled from minimum to maximum in power of two, is es-
sential to maximise workload balancing and resource utilization. In our con-
text, this involves varying OpenCL parameters such as number of work-items,
work-groups, loop unrolling, etc., via argument passing to compiler, to find the
optimum combination.

Next, we consider these optimizations in addition to application-specific op-
timizations that are applicable to all platforms.

3.2 Application-Specific Optimizations

We start by applying the steps of optimization flow on SGEMM and then briefly
summarize the applied optimizations on BOP.

Matrix-Matrix Multiply: 4 different implementations of SGEMM kernels
have been investigated. Let us consider the pseudo code for the kernel as:

f o r ( i in range n)
f o r ( j in range m )

acc = 0
f o r ( k in range p)

acc += A( i , k ) ∗ B(k , j ) ;
C( i , j ) = acc ;

Then each kernel optimizes the pseudo code as follows:
Kernel 1, the basic implementation, distributes the first two outer loops into

parallel work-items such that each work-item computes one element of C. There
is plenty of parallelism but no explicit use of data locality.

Kernel 2 exploits on-chip, fast memory by loading smaller blocks of data on
local memory and maximally utilizing it before being replaced by new data from
global memory.

Kernel 3 builds on kernel 2 to exploit the fastest memory, registers. Using
the same local memory of the OpenCL model, the inner-most loop is divided
into sub-blocks, targeting data-locality equal to the size of the registers.
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Fig. 3. SGEMM throughput variations on devices for square matrices of various sizes
mentioned in legend

Kernel 4 exploits high bandwidth memory operations as well as parallel arith-
metic operations, if supported by hardware units. This is achieved by processing
vector of values in SIMD fashion using vector data types of OpenCL.

Furthermore, block size for kernels 2-4 is chosen to make maximum use of lo-
cal memory and data-locality. All devices benefit from memory coalescing when
consecutive work-items access data from consecutive memory locations. Finally,
auto-tuning for SGEMM is simple, as each work-item works in a single instruc-
tion multiple data (SIMD) fashion on elements and data size is large enough to
keep resource usage to maximum.

Binomial Option Pricing: The BOP computation is not as inherently
parallel as SGEMM as the iterations over number of steps during backwards
walk have loop carried dependences. Within each step, there is anti-dependence
due to each value being used in two backward nodes calculation. The later can
be removed by using two buffers. Parallelism can also be achieved by pricing
multiple options in a work-group.

Targeting the defined flow, the first basic implementation included definition
of kernel’s parallelism via work-groups and work-items. From the top level, the
number of options in a work-group can be varied with each work-group running
on an individual CU. To maximise local memory usage, maximum number of
options are selected such that all intermediate values are stored on local memory.

Similarly, multiple work-items per option operate on different nodes at a
single time step in parallel and thus balance cores usage. However, increasing
number of options per work-group or number of work-items per option put con-
straints on local memory bandwidth as work-items share local memory. Work-
items also need to synchronize before moving on to next step in backward walk
due to true dependence and the penalty for that increases with increasing num-
ber of work-items. In addition, fewer work-items limits the parallelism available
to maximise compute resource usage. The optimum point is achieved with auto-
tuning as explained in Section 4.1. Vector processing is also evaluated.

Finite Difference Time Domain: FDTD kernels from vendor optimized
libraries were only auto tuned for each device to maximise local memory and
cores usage.



4 Throughput Analysis

In this section, we analyse the achieved throughput computed via kernel pro-
cessing time on the 3 targeted accelerators using the defined optimization flow.

4.1 Throughput Variations

SGEMM: We observe varying trends for all devices for SGEMM kernels 1-4
(Fig. 3). For kernel 1, the FPGA performs the worst compared to GPUs. This
can be partially attributed to more mature GPU compilers allowing them to
scale out significant performance from basic definition of explicit parallelism.
More importantly, although no local memory usage is defined for any device,
the cache in GPUs is able to improve memory latency whilst FPGAs suffer due
to non-availability of cache.

Throughputs for kernel 2 improve for all platforms. However, FPGA bene-
fits the most of this optimization due to large local memory of FPGA and its
explicit description compensating for lack of cache. For kernel 3, both the GPUs
perform better than the 2nd kernel, making use of the registers. For FPGA, the
performance degrades as explained later. For kernel 4, only the Mali GPU is able
to exploit vectorization. For Altera and NVIDIA, the additional control instruc-
tions provide overhead and perform worse than kernel 2 and 3, respectively.

SGEMM - FPGA Analysis: We take a more detailed look at various SGEMM
kernels mapping on hardware to better understand the variation of the through-
put on FPGA. Looking at Table 3, kernel 1 offers reasonable parallelism, de-
fined by loop unrolling, and a decent operating frequency. However, the actual
throughput is lower than expected due to global memory latency.

Kernel 2 achieves maximum parallelism and full utilization of DSPs. Using
only two nested loops results in lower overhead and the highest synthesized
frequency. The theoretical performance after synthesis is about 120 GFLOPs
compared to actual 111 GFLOPs which is due to higher global memory latency.

Kernel 3 is interesting since, unlike GPUs, it degrades throughput. This is due
to lower frequency owing to the additional overhead of 3rd nested loops over the
sub-blocks. In FPGAs, the compiler should use registers for 3rd loop elements,
however, the OpenCL memory architecture does not support a different memory
type for registers and the Altera compiler is not able to do it automatically. Also
the structure of kernel 3 made full utilization of DSPs difficult, resulting in 192
way parallelism only.

Finally, an extra processing dimension in kernel 4 due to two way vector-
ization of elements in matrices A and B resulted in the lowest frequency. This
requires a loop to go over the width of vector with each iteration multiplying
a vector element from A with a sub-vector element (selected via switch state-
ment) of vector B. However, it offers improvement in memory latency owing to
vectorized access and achieves the same performance as predicted after synthesis.

Surprisingly, Altera, NVIDIA and Mali perform the best for Kernels 2,3 and
4 and show up to 298×, 4.4× and 13× improvement over their worst implemen-
tation, respectively.



Table 3. SGEMM synthesis results on FPGA

Resource Kernel 1 Kernel 2 Kernel 3 Kernel 4

Logical Elements (%) 28.87 41.41 36.11 45.59
Flip Flops (%) 22.61 30.43 26.31 38.43
RAMs (%) 62.38 49.80 33.55 60.66
DSPs (%) 39.06 100 84.37 100
Frequency (MHz) 210.7 236.23 201.93 179.14
Parallelism 32 256 192 256
GFLOPS 0.37 111.65 46.43 91.66

BOP: As described earlier, after the parametrized implementation of the
BOP kernel, auto-tuning is needed to optimize number of work-items in a work-
group. For all devices, the throughput followed a similar trend and increased
when the work-items were increased by power of two starting at 4. Taking 2048
steps as an example, the best throughput for NVIDIA, FPGA and Mali GPUs
was seen at 128, 128 and 64 work-items, respectively. After that it started in-
creasing again for higher number of work-items due to resources contention.

Vectorization performed worse for Altera and NVIDIA while for Mali the
4-way vectorisation improved the throughput by more than 3×. Using more
number of options per work-group reduced performance owing to increased local
memory bandwidth contentions. Even if all other optimizations are ignored,
Altera, NVIDIA and Mali showed 2.8×, 3.5× and 2× improvement over worst
case via balancing of work-items.

4.2 Throughput Comparison

The absolute throughputs for varying data sizes are shown in Fig. 4. We chose
the best throughputs for each device which were measured using OpenCL’s
clGetEventProfilingInfo. As expected, the NVIDIA GPU performs the best by
up to 8×, 17× and 56× over Altera FPGA for BOP, SGEMM and FDTD respec-
tively. The FPGA performs up to 56×, 5.5× and 16× better than Mali GPU.
The overall performance on all devices can be related to the size of each device.

4.3 Theoretical vs Achieved Throughput

Compiler efficiency can be estimated by analysing their ability to achieve high
throughput compared to the theoretical peak performance on each platform. The
theoretical peak throughput for NVIDIA GPU is 4612 GFLOPS computed as
number of cores× Frequency × 2(ArithmeticP ipelinesPerCore) FLOPS. As
the Stratix V has 256 of 27 × 27 and 512 of 18 × 18 multipliers and a floating
point unit uses 2 of 27 × 27 or 4 of 18 × 18 multipliers with 2 FLOPs per
cycle with a peak operating frequency of 300 MHz [9], the peak throughput can
be calculated as 256 × 300 × 2 = 153.6 GFLOPS. For Mali GPU, the peak is
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estimated using cores×Frequency×2(ArithmeticP ipelinesPerCore)×4(way−
vectorization) FLOPS as 19.2 GFLOPS.

For SGEMM the FLOPs are calculated as 2×n3 where n is the size of square
matrices. For BOP, the total FLOPs are given by 3 × n(n + 1)/2, where n is
number of steps. For FDTD, we used a radius of 4 for calculating the new field
values. A radius of 4 constitutes 25 points and thus 49 FLOPs per point. The
total number of FLOPs are then dimx× dimy × dimz × 49.

We have also included figures for achieved performance using platform-specific
optimizations for SGEMM on each platform. For FPGA and MALI GPU, figures
are projected estimates from implementations in [10] and [11], respectively, on
similar devices while NVIDIA figures are of execution via CuBLAS library [12].
The normalized peak throughputs are shown in Fig. 5. It shows that for our
used methodology, FPGA performs the best and even though GPU is supposed
to be the preferred candidate for OpenCL, it requires more optimization effort
utilizing platform-specific characteristics to achieve maximum throughput.

5 Energy Efficiency Analysis

To focus only on energy consumed in computing, we measured the dynamic
power, i.e. the power utilized on top of static power during computation, using
on-board sensors and looked at how it varied for different use cases.
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5.1 Energy Efficiency Variations

SGEMM: Although the energy efficiencies of all devices for SGEMM followed a
similar pattern to the throughput as both depend on resource usage, they are not
exactly proportional. For example, kernel 4 outperforms kernel 3 for NVIDIA
GPU, kernel 3 is better than kernel 4 for FPGA while kernel 2 is better than
kernel 3 for Mali GPU whereas it was vice versa for throughput. In addition,
although FPGA has the best peak performance, NVIDIA is better than FPGA
for kernels 1 and 3 highlighting the importance of the platform-independent
optimizations. Overall, the optimization methodology improves energy efficiency
of FPGA, NVIDIA and Mali by 24× (Kernel 2), 5.8× (Kernel 3) and 14× (Kernel
4), respectively, compared to the worst performing points.

BOP: The achieved energy efficiency trend for 2048 steps (Fig. 6) is different
from throughput with a maxima of 64 and 256 work-items for NVIDIA and Mali
GPU, respectively. Interestingly, the energy efficiency curves cross over at multi-
ple points for all platforms. Overall, the methodology improves energy efficiency
of Altera, NVIDIA and Mali by up to 2.8×, 2.7× and 2.7× , respectively.

5.2 Energy Efficiency Comparison

As with throughput analysis, we choose the best energy efficiency points for
each device which may not have the best throughputs. The graphs shown in Fig.
7 against application-specific metrics are self explanatory to characterize the



accelerators based on energy efficiency. For BOP, Altera performs 1.15× worse
than NVIDIA for a smaller problem size but performs up to 1.02× better for
higher step sizes. For SGEMM and FDTD, Altera and NVIDIA perform the best
by up to 1.4× and 6×, respectively. Mali performs the worst for all cases.

6 Conclusion

This work develops a design space exploration based on OpenCL and the iden-
tification of platform independent optimization that are applied on a variety of
accelerators. To evaluate the energy efficiency and performance of the consid-
ered accelerators we mapped three popular application kernels. The results show
that although GPUs outperform FPGA in terms of throughput, FPGA is able
to achieve better energy efficiency for some of the tested cases whilst not re-
quiring traditional hardware design expertise. On the other hand GPU requires
more platform-specific optimizations utilizing in-depth knowledge of hardware
to achieve high performance.
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