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Abstract— Associative Skill Memories (ASMs) were formu-
lated to encode stereotypical movements along with their
stereotypical sensory events to increase robustness of underlying
dynamic movement primitives (DMPs) against noisy perception
and perturbations. In ASMs, the stored sensory trajectories,
such as the haptic and tactile measurements, are used to
compute how much a perturbed movement deviates from
the desired one, and to correct the movement if possible. In
our work, we extend ASMs: rather than using stored single
sensory trajectory instances, our system generates sensory event
models, and exploits those models to correct the perturbed
movements during executions with the aim of generalizing to
novel configurations. In particular, measured force and the
torque trajectories are modeled using Hidden Markov Models,
and then reproduced by Gaussian Mixture Regression. With
Baxter robot, we demonstrate that our proposed force feedback
model can be used to correct a non-linear trajectory while
pushing an object, which otherwise slips away from the gripper
because of noise. At the end, we discuss how far this skill
can be generalized using the force model and possible future
improvements.

I. INTRODUCTION

Learning from Demonstration (LfD) [1] has been sug-
gested as an efficient and intuitive way to teach new skills
to the robots, where the robot observes, learns and imitates
the actions demonstrated by the human tutors. LfD has been
applied to various robotic learning problems including object
grasping and manipulation [2]–[6]. Among others, learning
methods that are based on dynamic systems [7] and statistical
modeling have been popular in the recent years.

Dynamic Movement Primitives (DMPs) [7], for example,
encode the demonstrated trajectory as a set of differential
equations, and offers advantages such as one-shot learning
of non-linear movements, real-time stability and robustness
under perturbations with guarantees in reaching the goal
state, generalization of the movement for different goals, and
linear combination of parameters. The parameters of the sys-
tem can be learned with different advanced algorithms such
as Locally Weighted Regression [8] and Locally Weighted
Projection Regression [9]. Statistical modeling, which can
model the statistical regularities and important features of the
demonstrated motions, has also been influential in learning
the skills [2], [10].

After encoding the action, the robot is generally required
to refine the parameters of the learned control policy [11].
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Fig. 1: Baxter robot pushing an object on table along a curved
trajectory to a goal position.

Memorized force and tactile profiles can also be used to
modulate learned Dynamic Movement Primitives (DMPs)
[12], [13]. Memorized force and tactile profiles have already
been successfully utilized in modulating learned movement
primitives in difficult manipulation tasks that contain high
degrees of noise in perception such as flipping a box using
chopsticks However, we believe that rather than memorizing
one single haptic profile for a skill, learning general multi-
model sensory models might provide us with more general-
izable and robust manipulation skills.

Recently, Chu et al. learned such multi-modal models
based on Hidden Markov Models from temperature, pressure
and fingertip information for exploratory object classification
tasks [14], however the learned models were not used to
adapt any further action execution. Latent Drichlet Allocation
[15] and recently deep networks [16] were used to learn
multi-modal models from different sensory information such
as temperature, pressure, fingertip, contacts, proprioception,
and speech; however these models were used only to catego-



rize the sensory data without any effect on action execution.
In this paper, our system generates sensory event models,

and exploits those models to correct the perturbed move-
ments during executions with the aim of generalizing to the
novel configurations. In particular, measured force and the
torque trajectories are modeled using Hidden Markov Mod-
els, and then reproduced by Gaussian Mixture Regression.
With Baxter robot, we demonstrate that our proposed force
feedback model can be used to correct a non-linear trajectory
while pushing an object, which otherwise slips away from
the gripper because of noise.

II. METHODS

The formulation of DMP allows the robot to learn a
stereotypical skill from demonstration. Adding a sensory
feedback to the system enhances the capabilities of the robot
in the learned skill by sending corrective signals to low-level
controllers [4]. In the skill of pushing a cup, for example,
the dynamics of the environment can not be always known
to robot and the cup can slide from its end-effector from
time to time. The forces that the robot should feel during
the execution, namely the desired forces, help the robot the
orient and position its end-effector so that it prevents sliding
of the cup.

However, storing and using force trajectory instance does
not allow generalization to new situations in the long run.
Pastor et al. called this storage of data coupling with move-
ments as Associative Skill Memories [12]. Here, instead of
memorizing how to feel during each execution, we propose
to model the forces that the robot senses for each primitive
movement by using Hidden Markov Models and reproduce
them using Gaussian Mixture Regression. For a typical
movement, we argue that at least two force models obtained
can be tied linearly by means of their hidden states, and that
desired forces for a new movement at the proximity of these
demonstrations can be calculated from interpolation.

A. Dynamic Movement Primitives

A one dimensional DMP is represented by the following
set of equations

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s) (1)
τ ẋ = v (2)

where x and ẋ are the position and the velocity, whereas
v and v̇ are the corresponding velocity and acceleration of
the system scaled by the duration of the demonstration τ .
K is a spring constant and D is a damping term. f(s) is a
non-linear function of the phase variable s, which is defined
as

f(s) =

∑
i wiψi(s)s∑

i ψi(s)
(3)

where ψi = exp(−hi(s− ci)2) are Gaussian basis functions
whose centers and widths are ci and hi, respectively. The
parameters wi for each basis function are to be learned by
linear regression to render the shape specific to the trajectory.

The phase variable makes DMP temporal invariant by
encoding time in its canonical system defined as

τ ṡ = −αs (4)

where α is a constant representing the convergence rate of
the phase variable from 1 to 0. Starting each DMP with the
same phase variable and integrating with the same canonical
system ensures their simultaneous evaluation.

B. Sensory Feedback Extension to DMPs

In ASMs, a coupling term is integrated into the original
DMP formulation Eq. (1) to compensate for the generalized
forces that the robot senses during the execution of a task,
since each movement primitive should capture the entire
dynamics of the skill. This coupling term is given by

ζ = K1JT
sensorK2(F− Fdes) (5)

where K1 and K2 are positive definite gain matrices,
JT
sensor is the transpose of the Jacobian with respect to

sensors by which the forces are measured. F and Fdes are
the current and desired generalized forces which, in task-
space, is the end-effector’s 6D wrench.

Coupling term incorporated in DMP formulation Eq. (1)
is then given by

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s) + ζ (6)

C. Encoding Force Feedback by Hidden Markov Models

In this paper, we propose to construct temporal probabilis-
tic models to encode force feedback trajectories measured
from the same movement primitive that is executed several
times. For this we propose to use Hidden Markov Models
(HMM).

An HMM of N component has the following set of
parameters

θ = {πi, aij , µi,Σi}

with i, j = 1, 2, ..., N representing the states. Here, πi is
the initial distribution of the state i and aij is the transition
probability from state i to j. Each hidden state i is repre-
sented by a Gaussian distribution whose mean vector is µi

and covariance matrix is Σi. Baum-Welch algorithm is used
to determine these parameters.

D. Force Feedback Model Reproduction using Gaussian
Mixture Regression

The force feedback coupling term in Eq. (5) requires
prediction of desired force trajectory, i.e. Fdes. We propose
to use Gaussian Mixture Regression to reproduce this desired
trajectory. For each Gaussian representing a hidden state i in
HMM, the mean vector µi and the covariance matrix Σi can
be expressed in terms of input x and output y dimensions
as

µi =

[
µi

x

µi
y

]
Σi =

[
Σi

xx Σi
xy

Σi
yx Σi

yy

]
(7)

Then, given the input vector x, the output vector y can
be calculated from the following linear regression equation



y =

N∑
i=1

hi[µi
y + Σi

yx(Σi
xx)−1(x− µi

x)] (8)

where hi is a weight factor based on the input and given by

hi =
N (x;µi

x,Σi
xx)∑N

i=1N (x;µi
x,Σi

xx)
(9)

where N (x;µi
x,Σi

xx) is the multivariate Gaussian distri-
bution of the input.

E. Interpolation From Force Models

We would like to utilize the constructed force feedback
models to predict the force feedback in novel situations as
well. Here, we propose to use at least 2 different force
feedback models - and combine these models based on a
similarity metric that computes the distance between known
situations and the novel one. One idea would be to tie
up the means of Hidden Markov Model of forces based
on this metric. However, the means of Hidden Markov
Model are not temporally aligned. To this end, we decided
simply to interpolate between two force models reproduced
by Gaussian Mixture Regression. For further discussion on
generalization, please see Section IV.

III. EXPERIMENTS

A. Robot Platform

Our experimental setup is composed of a Baxter robot
which has two 7-DoF anthropomorphic arm, each actuated
by a series elastic actuators enabling to measure torque
output directly from the actuators (see Figure 1). The arm
has a electric, parallel jaw gripper that is used in closed state
with 4 cm wide open during the experiments.

The experiments are conducted using a 5 kg box with
9.5cm height and 8x8cm2 surface area, placed on a flat table.
The task of the robot is to push the box from an initial
position to a final position with a curved trajectory, which is
taught by kinesthetic teaching.

B. Task

We selected the task of “pushing an object to a goal posi-
tion along a trajectory” task in the experiments as this task
requires exploitation of learned force feedback model when
the object is not moving as expected during the execution in
response to the learned and reproduced movement of the end-
effector. Such unexpected behavior can be observed through
introducing different types of noise and perturbations: by
incorrect perception of the exact location of the object and
initiating the push trajectory from a slightly shifted position;
or by physically perturbing the object while being pushed.
In this paper, we simulated noise in perception, initiated
the push trajectory from a slightly different position (around
5cm), and called this setup as ‘misplaced object’.

The task for the robot arm is to push the object follow-
ing a curved trajectory. The movement is demonstrated by
kinesthetic teaching, using the gravity compensating mode
of the Baxter arm. Because holding the end effector while

kinesthetic teaching affects the force/torque measurements,
the recorded trajectory is re-executed without human inter-
vention, and modelled with a set of DMPs in joint space.
Working in joint space allowed us to use the force feedback
coupling term (Eq. 5) by computing transpose of the Jacobian
at each joint value and to show the validity of the transfor-
mation from end-effector 6D wrench to 7D joint torques by
multiplying it with the transpose of the Jacobian. Note that
the torques generated by self-motion (upto 2N in our case)
of the end effector are not automatically compensated by the
robot, therefore we applied an additional compensation step.
In this step, the measurements taken during push action are
averaged with a moving window of 30 ms, and subtracted
from force measurements created by the same trajectory
without any external interaction, i.e. pushed object.

After the trajectory is encoded as DMP as described above,
the trajectory is executed in four different conditions, three
times each. See Table I for details of these conditions.

TABLE I: Experimental conditions.

Condition Explanation
Default-No-Force object is in its default position initially,

control with no force feedback coupling term
Default-With-Force object is in its default position initially,

control with force feedback coupling term
Misplaced-No-Force object is misplaced,

control with no force feedback coupling term
Misplaced-With-Force object is misplaced,

control with force feedback coupling term

C. Force feedback model

Force/torque data obtained from the original end-effector
trajectory was fitted into HMM model. Fig. 2a shows all the
trajectories resulting from preprocessing of data described
above. Since the task is to push a box on a table, we decided
to neglect the effect of the forces orthogonal to the table,
i.e. Fz , and the corresponding torques, Tx and Ty in the
computations. Forces in x and y coordinates showed similar
patterns, therefore we only showed the forces and position
data in the x coordinate.

In our experiment, we set K1 as the diagonal matrix of
10’s and K2 as identity matrix. Obtained force/torque and
the time data are fitted in a Hidden Markov Model with
10 hidden states and with full covariance matrices. Taking
time as input and force/torque as output, Gaussian Mixture
Regression created a model from these 3 demonstrations.
As shown in Fig. 2b, the resulting force feedback trajectory
encodes forces taking into account the variation in the data.
This feedback force model is set as Fdes in Eq. (5).

D. Execution in default conditions

Due to inhomogeneities in the shape and the weight of the
box (it includes 20 batteries inside), due to the noise in force
readings, and additionally the slight differences in initial
position of the box, executions even in Default-With-Force
configuration show some variance. This causes discrepancies
between the model and the original demonstration replication
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Fig. 2: (a) Raw and compensated force readings in x dimension. Three trajectories correspond to execution of the push action with object
in default position initially. (b) The corresponding HMM model of the force trajectory with 10 hidden states. Mean and variances of
hidden states represented by a univariate Gaussian distribution are shown by dark blue ellipses’ center and radii.
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Fig. 3: This figure shows how the actual force feedback deviates from the predicted one (at around t = 1.7s), and how the position of
the gripper adapts in response to this change.
(a,b): Forces in Misplaced-No-Force configuration. Red dashed line represents GMR model of forces, namely the predicted force and the
blue solid lines represent the actual force readings.
(c,d): Positions in Misplaced-No-Force configuration. Red dashed line represents the default predicted position and the blue solid lines
represent the actual position readings.
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Fig. 4: Forces for robot execution with tactile feedback with
object on its default position. Dashed lines correspond to the
predicted force feedback obtained from GMR and solid lines
correspond to the actual force feedbacks.

Fig. 5: The final positions of the object in different configu-
rations, and the corresponding approximate trajectories. See
link for the video : https://youtu.be/nxdP5QiyUY4

with tactile feedback as seen in Fig 4. Despite those, the end-
effector follows the approximately the same x position and
has little deviation from y position, therefore the object is
pushed to the target position successfully (see Fig. 5).

E. Execution in noisy conditions

As described above, noisy conditions are generated by
misplacing the object 5cm further away in the frontal di-
rection from start position of the push trajectory. In all three
executions, at around t = 1.7s, the actual force measured
in x and in y directions starts deviating from the predicted
force (see Fig. 3a and Fig. 3b). In response to this deviation,
which is encoded in the force feedback component of the
DMP, the movement of the gripper also starts deviating from
the original demonstration trajectory. As seen in Fig. 3c and
Fig. 3d, from t = 1.7s, while x position increases slightly
following predicted trajectory, y position remains same for
0.4s. Such behavior keeps the object in front of the gripper
that starts pushing the object towards the goal position
as desired. However, the effect of the initial perturbation

cannot be compensated completely, as visible from the huge
difference in both Fy and py (Fig. 3b and Fig. 3d), and the
final position of the pushed object (Fig. 5). Still, without this
force adaptation, the object slips away from the beginning
as shown in Fig. 5.

F. Robot execution

Figure 5 shows the trajectories of the object obtained in
different configurations. When object is placed to its default
position, the target object trajectory is observed with or
without tactile feedback component. When object misplaced
around 5 cm and without the tactile feedback component, the
robot executes the taught trajectory and the object slips away
in the beginning of this trajectory. When tactile feedback
component is used and the movement is adapted based on
this feedback, the object does not slip away from the be-
ginning and the object is pushed towards the target position.
As shown in this figure, the adaptation is not perfect, i.e.
the object is not pushed to the target position exactly. We
expect that through changing the effect of the tactile feedback
component, i.e. by varying the magnitude of the coefficient
K, the behavior of the system can be improved. Analyzing
the reasons of this behavior and improving the trajectories
with richer set of experiments are set as future work.

G. Generalization of the tactile feedback

We developed our framework with the aim of generalizing
the demonstrated actions to novel situations exploiting the
learned sensory feedback models. While this aim is beyond
the scope of the current workshop paper, in this section we
will provide the initial results in this direction. For this,
the learned DMP-based push action is executed with two
different final positions. As the movements are performed
on the table, and DMPs work in joint-space, we decided to
set different wrist orientation angles for these two different
final positions. Force feedback trajectory models for these
two different final positions, denoted as Pos. A and Pos.
B are constructed and shown by red and blue solid lines in
Fig. 6. Then, force feedback model for a novel final position,
Pos. C, is computed from those models, taking into account
the pair-wise final position distances. The prediction of force
feedback trajectory for this novel final position is plotted
with solid black line in the same figure. Finally, to verify
whether the predicted model, three more push actions are
executed, this time with Pos. C, and the measured force
feedback trajectories are shown with dashed black lines.
As seen, generalized model gives a similar trajectory to the
actual ones. While this holds roughly in this situation, we do
not argue that such interpolation should always work. The
dynamic relation between complex actions and interacted
objects are difficult to model and the corresponding metrics
can also be learned from further exploration [17].

IV. CONCLUSION

In this paper, we learned and exploited sensory event
models to correct ongoing movements that are affected from
noisy perception, with the future aim of generalizing learned
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Fig. 6: Generalization of tactile feedback in (a) forces in x direction and (b) forces in y direction. Red line corresponds to
forces when the wrist angle equals to 0.7 rad, Pos. A; blue line corresponds to forces when the wrist angle equals to 0.2
rad, Pos. B . Dashed lines represent forces of 3 demonstrations when the wrist angle equals to 0.45 rad, Pos. C. The green
line corresponds to the GMR reproduction of these three demonstrations.

movements and sensory event models to the novel setups.
Our system successfully exploited the learned force feedback
models in order to adapt to noisy situations in a object
pushing task with non-linear trajectory. We also showed that
simple interpolation using learned force feedback models
can be effective in predicting the force feedback in never
experienced novel situations. However, we discussed that
such interpolation idea would fail in complex settings. For
this, in future, we plan to explore the idea of using Parametric
HMMs in modeling sensory events [18].
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