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Abstract—Block-wise super-resolution methods, and in par-
ticular sparse representation based approaches, often focus on
spatial upsampling of still images. Applying such models to
videos is an extremely time consuming process due to the
expensive sparse coding process for every block of each frame,
and the conventional exhaustive overlapping blocks processing
for reducing the blocking artifacts. In this paper, we introduce
an approach that enables us to skip the sparse representation
process for the static portions of a video by predicting the
high resolution blocks from previously super-resolved frames,
exploiting the significant amount of correlation between the
adjacent frames in a video. Our approach is also enhanced by
adaptive in-loop filters for removing the blocking and pixel-wise
artifacts, replacing the overlapping blocks structure of super-
resolution. Our method provides comparable results in terms of
image quality with respect to the state of the art, and can reduce
the processing time of the super-resolution methods by 63% in
average. It enables the block based super-resolution methods to
be applied in upsampling of videos to very high resolutions with
a reasonable processing time.

I. INTRODUCTION

Super-resolution (SR) techniques have been receiving a
lot of attention recently, while addressing the problem of
spatial upsampling. SR approaches can be categorized into
reconstruction based SR [6], [10], [11], and example based SR
[3], [8], [19]. While the former approach computes the high
resolution images by simulating the image formation process,
the latter aims at generating high resolution images based
on small image segments extracted from training high res-
olution images. Example based approaches often reconstruct
the high resolution image in a block-wise routine, hence all
the operations are performed on blocks (patches) of pixels.
Recently, example based techniques were improved further by
introducing sparse coding [15] to the SR problem. Yang et
al. [23], [24], [25] improved the approach presented in [3]
by employing sparse representation paradigm and Dai et al.
[4] and Kato et al. [12] made further contributions in the
enhancement of the sparse representation based SR.

SR algorithms based on the sparse representation provide
a high quality image reconstruction. However applying such
methods to very high resolutions and extending the algorithms
to videos are quite challenging due to the high complexity of
the sparse coding. Block-wise operations in SR cause block
artifacts at the block boundaries, and this issue is often solved
by using overlapping blocks. Hence the number of block
operations increases significantly and could reach to millions

in the case of UHD resolution leading to an extremely slow
image reconstruction. Furthermore, sparse coding methods
have mainly focused on still images domain, thus the naı̈ve
frame-wise application of these approaches on videos can be
extremely time consuming and impractical.

In this paper, we introduce an in-loop filtering mechanism
adapted to the SR that replaces the exhaustive overlapping
block operations, while retaining the high quality of the
reconstructed image. Furthermore, we introduce a predictive
approach for video SR, with which the high resolution blocks
can be predicted using the previously super-resolved frames,
reducing the computation time of the SR further.

II. STILL IMAGE SR VIA SPARSE REPRESENTATION

The initial idea of sparse coding SR was proposed by Yang
et al. [24], [25], where a low resolution frame is super-resolved
to a higher resolution using a high resolution dictionary.

A. Single-frame SR

Let D = {D1, D2, . . . , Dk} ∈ Rn×k be a high resolution
dictionary with k different atoms of size n. Sparse coding
enables representation of a vectorized block xt ∈ Rn as

xt = Dα. (1)

xt represents the training high resolution data, and α ∈ Rk
represents the coefficients vector for sparse representation of
xt. The atoms of the dictionary are learned by the following
minimization problem [12].

minimize
{D,α}

‖Dα− xt‖22 + η ‖α‖1 , (2)

where η ≥ 0 represents the sparseness constraint strength.
Solving this problem results in a high resolution dictionary.

SR based on the sparse representation also requires a low
resolution dictionary d = {d1, d2, . . . , dk} ∈ Rn̂×k for repre-
senting the low resolution input image, with n̂ denoting the
number of elements (pixels) in each low resolution atom. The
low resolution dictionary can of course be modeled by degra-
dation of the high resolution dictionary using downsampling
and blurring operations. Low resolution dictionary can also
be learned in parallel with the high resolution dictionary [23].
If yt ∈ Rn̂ represents the vectorized low resolution training
blocks (or features), then the following equation results in a

978-1-5090-3649-3/17/$31.00 c© 2017 IEEE



low resolution dictionary, given that the high resolution and
low resolution training data are paired.

minimize
{d,α}

‖dα− yt‖22 + η ‖α‖1 (3)

The same sparse coefficients α are used for the low res-
olution data according to Equation (3). This is a critical
assumption building the core idea of the sparse coding. Once
the atoms of the dictionaries are available, each low resolution
block y can be modeled by the following sparse representation.

y = d1α1 + d2α2 + d3α3 + . . . , (4)

and once the sparse coefficients are obtained, the high resolu-
tion version of the target block is created using the following.

x = D1α1 +D2α2 +D3α3 + . . . , (5)

where x represents the high resolution block. As described
earlier, this block-wise procedure generates artifacts and un-
wanted edges at the block boundaries. To avoid these artifacts,
overlapping blocks are employed. As a simple approach, it is
possible to average the feature values in overlapped regions
between adjacent blocks [3], [12]. For combining neighboring
high resolution blocks, two-dimensional Hanning windows can
be applied to reduce the effect of overlapping.

B. Multi-frame SR

Kato et al. [12] and Dai et al. [4] presented approaches
to utilize multiple low resolution frames for generating one
target high resolution frame. In multi-frame SR, a set of low
resolution frames Yi, i = 1, 2, . . . , N (eg. consecutive frames
of a video) are considered to be an outcome of different
degradations of the high resolution target image X . Hence the
correlation between the target low resolution frame Y and the
auxiliary low resolution frames Yi can result in a better sparse
representation of the low resolution blocks. This approach can
be very effective for video signals, since the adjacent frames
of a video are highly correlated.

1) Registration via block matching: When using auxiliary
frames, the target low resolution block should be registered to
the co-located low resolution blocks in the auxiliary frames.
Hence a reliable motion estimation is essential to proceed with
this approach. Kato et al. [12] use a block matching method
[1], [2] for registration of the target block to the auxiliary
blocks. It is assumed that the positional relationship of blocks
are fully described by parallel translation. In multi-frame
SR, estimating the sub-pixel shifts between the images can
enhance the results remarkably. There are several approaches
for estimating positional shifts in sub-pixel accuracy. Shimizu
and Okutomi [16] suggest a two-parameter simultaneous esti-
mation method, which balances accuracy and complexity.

By the block matching method, the following similarity
score is obtained between the target low resolution block y
and an auxiliary block yi.

sim(y, yi) =
yᵀyi

‖y‖2 · ‖yi‖2
∈ [0, 1] (6)

target frame Y auxiliary frame Y1 auxiliary frame YN

y y1 yN

Fig. 1. Clipping and stacking of the auxiliary blocks.

Block matching is of course not the only registration
scheme, and there exists other registration methods such as
the optical flow estimation [5] adopted by Dai et al. [4].

2) Multi-frame sparse coding: Once the target low res-
olution block y is registered to the auxiliary blocks yi,
i = 1, 2, . . . , N , where N is the total number of auxiliary
frames containing a block with a similarity value above a
certain threshold δ, all the vectorized blocks concatenate in
one vector as

ỹ = [yᵀ yᵀ1 y
ᵀ
2 . . . yᵀN ]

ᵀ
,with ∀yi : sim(y, yi) > δ. (7)

This process is illustrated in Figure 1. Figure 1 also depicts
the clipping operation, which extracts the pixels completely
included in the cutoff line (solid boxes) to avoid boundary
effects. The following optimization problem results in the re-
quired sparse coefficients for generation of the high resolution
block using multi-frame low resolution blocks [12].

minimize
{α}

∥∥∥d̃α− ỹ∥∥∥2
2
+ η ‖α‖1 , (8)

where d̃ represents the stacked low resolution dictionary
created by means of the application of the downsampling and
blurring operators on the deformed high resolution dictionary
considering the registration of the auxiliary frames.

III. PROPOSED VIDEO SR APPROACH

Inspired by the recent advances in video compression,
including H.264/AVC [22] and H.265/HEVC [18], we present
an efficient video SR approach, which is based on the core
idea of the sparse coding adapted to the nature of videos.

A. Motion compensated block prediction in SR

The first step to extend the SR approaches to videos is
to extend the upsampling units from a single frame to a
set of frames, i.e. group of pictures (GOP). In our proposed
scheme, every GOP contains an I-frame which is super-
resolved individually using the multi-frame sparse coding
approach, presented in Section II-B. However the rest of the
frames in the GOP are P-frames, which have the possibility to
be predicted partially by the previously super-resolved frames
in the GOP. Table I demonstrates our proposed structure of a
GOP. The frame order is different from the SR order. The size
of a GOP is 9 and the frame in the center of the GOP is the I-
frame. Every P-frame can exploit the information from all the
previously super-resolved frames within the GOP and when



TABLE I
GOP STRUCTURE IN SR.

Frame type P P P P I P P P P
Frame order 1 2 3 4 5 6 7 8 9

SR order 6 8 2 4 1 5 3 9 7

appropriate skip the sparse coding process and instead predict
the high resolution blocks from the neighboring frames.

A crucial step in block prediction is motion estimation. We
use the block matching approach described in Section II-B1
for motion estimation. The block matching information is
available for every block of each frame within the GOP.
By using the block matching information and examining the
similarity scores (6) between the low resolution block y and
its corresponding matched blocks yi from the adjacent frames,
we can find the most similar auxiliary block yî amongst the
blocks with a similarity value above the threshold δ, namely
the reference block.

yî = max
{i}

sim(y, yi), i ∈ {1, 2, . . . , N}. (9)

If the reference block yî is extracted from an already super-
resolved frame, then the current block y can skip the sparse
coding procedure and be represented by the following.

y = yî + yres, (10)

where yres is the residual block representing the disparity
between y and yî. Given that the frame containing yî is already
upsampled and the position of the block is known, the high
resolution version of the reference block xî can be extracted.
Hence the high resolution version of y will be as following.

x = xî + xres, (11)

where xres is the upsampled version of yres. Since the residual
pixels are often close to zero, and they contain no significant
details, we use a simple bi-cubic upsampling for obtaining
xres. The prediction procedure leads to a fast reconstruction
of x by skipping the sparse coding process.

Block matching operates with a sub-pixel accuracy. To
achieve a finer approximation and take advantage of the
sub-pixel block matching, we employ a half-pixel interpola-
tion [20] of the pixel space using bilinear filters, enabling a
more accurate prediction of the original block.

B. In-loop filters with non-overlapping blocks

As discussed in Section II-A, blocking artifacts occur in
SR due to the nature of block-wise operations. Overlapping
blocks are employed conventionally as a solution. Although
effective in terms of the reconstruction quality, introducing
overlapping blocks increases the complexity of SR signifi-
cantly. Blocking artifacts appear to be a very well known
issue in video compression, too, and in-loop filtering is proved
to be very effective in video coding in dealing with such
artifacts. H.264/AVC and H.265/HEVC employ pixel-wise
filtering operations [9], [13], [14] with non-overlapping blocks,

which improve the visual quality of the reconstructed images.
That inspired us to design in-loop filtering in the SR problem.

1) Deblocking filters: Deblocking filters operate at the pixel
level and modify the pixel values at the block boundaries.
Figure 2(b) illustrates a one-dimensional case of a blocking
artifact. For such a scenario, a typical deblocking filter mod-
ifies the pixels in the vicinity of the boundary, eg. l0 and c0,
so that a smoother transition takes place at the boundary.

In order to avoid high complexity operations and over-
smoothening of the image, we impose the filters to one layer
of pixels at the boundary. Let C denote the current block
undergoing the SR by sparse coding. T and L represent the
top and left blocks which are already super-resolved. The
deblocking mechanism is performed between C and T (if T
is available), then between C and L (if L is available). For
the sake of simplicity, we use the one-dimensional notation
presented in Figure 2(b) in the following formulations, as the
procedure will be similar for the two-dimensional case.

A strong deblocking mechanism will activate when a block
is predicted from a neighboring frame. A normal deblocking
mechanism can also be triggered when the following holds.

|c0 − l0| > |c0 − c1|+ |l0 − l1| (12)

In case of a deblocking, c0 will go through the followings.

c0 = c0 + (l1 + 2l0 − 6c0 + 2c1 + c2)/8, (13)

c0 = c0 + (−3l1 + 9l0 − 9c0 + 3c1)/16. (14)

The modified value of l0 is calculated by exchanging l
and c in (13) and (14). Strong filtering is performed using
(13), while normal filtering is performed using (14). The
impulse responses of the (13) and (14) are (1, 2, 2, 2, 1)/8 and
(3, 7, 9,−3)/16, respectively. The target pixel values remain
unchanged in both cases in the presence of a perfect ramp.
The above coefficients are extracted using heuristics.

Since the filtering is applied on a very narrow margin, the
edges are retained in the reconstructed image. However ringing
artifacts may appear near the sharp edges. Another in-loop
process described next can eliminate these artifacts.

2) Adaptive pixel-wise operation: We propose an adaptive
pixel-wise operation (APO), which can remove pixel-wise dis-
tortions and ringing artifacts as in Figure 2(c). This operation
is also an in-loop (block-wise) process taking place directly
after the deblocking filtering on every pixel of each block.

Figure 2(d) illustrates a 4×4 super-resolved and deblocked
block going through the APO. All the pixels experience the
APO and in the case of Figure 2(d), pixel p is about to
undergo the process. A mask of 3 × 3 is created over each
pixel (shaded pixels in Figure 2(d)) to monitor the variation of
intensity values in horizontal, vertical and diagonal directions.
The following conditions need to be checked for pixel p.

p < i1 ∧ p < i2, (1)

p > i1 ∧ p > i2, (2)

(p < i1 ∧ p = i2) ∨ (p = i1 ∧ p < i2), (3)

(p > i1 ∧ p = i2) ∨ (p = i1 ∧ p > i2), (4)

(15)
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Fig. 2. (a) An example of blocking artifacts in an image. (b) 1-D example of a block boundary with blocking artifact. (c) An example of an image with pixel
distortions (eg. artifacts above the characters). (d) Pixel p to undergo the APO in a block of 4× 4.

where ∧ and ∨ represent the logical and and logical or,
respectively, and i ∈

{
h, v, d, d̂

}
(see Figure 2(d)).

The conditions in (15) represent four one-dimensional pat-
terns in horizontal, vertical or diagonal directions depending
on the value of i. (15.1) and (15.2) are associated with a local
valley and a local peak along the selected one-dimensional
pattern, and (15.3) and (15.4) represent concave and convex
corners. The above conditions are associated with pixel distor-
tions, and when any of them holds the APO will be activated
and p will be updated to the mean value of i1 and i2 in the
selected direction. If condition (15) is satisfied for more than
one direction, p changes to

p =
1

K

∑
i∈{h,v,d,d̂}

(
i1 + i2

2
), (16)

where K ∈ {1, 2, 3, 4} denotes the number of directions that
can satisfy the conditions in (15).

IV. EXPERIMENTAL RESULTS

We performed a comprehensive analysis of our proposed
approach in comparison with state of the art sparse represen-
tation based SR using an optimized C++ implementation of

the models on an Intel(R) Core i7 3.20GHz machine with
16GB physical memory. We applied Yang et al. [23] bi-level
dictionary learning, and Kato et al. [12] multi-frame SR. We
trained a high resolution dictionary with 512 atoms of size
10×10 pixels and its associated low resolution dictionary with
a scaling factor of 2. We employed 8 auxiliary low resolution
frames (GOP of size 9) for the upsampling. It is worth noting
that every type of multi-frame sparse representation based SR,
and in general all the existing multi-frame overlapping block
upsampling methods can be applied here, as the focus of our
work is in extending the existing image SR approaches to the
videos, and our approach does not change the nature of the
SR, and it can be applicable to any block-wise algorithm.

The test data was 13 different sequences [17], [21] of
each 1 GOP (9 frames), which covered different types of
visual content. We performed an upsampling of 1080p HD to
UHD. The low resolution data was obtained by downsampling
the original UHD content using FFmpeg library [7]. We
conducted tests using the sparse coding based SR on a frame
by frame basis (all frames in the GOP were I-frames), while
there was no overlap between the processed blocks. This was
considered as the baseline system. We also tested under the

TABLE II
QUALITY AND COMPLEXITY EVALUATIONS OF NON-OVERLAPPING SR (BASELINE), OVERLAPPING SR (STATE OF THE ART), NON-OVERLAPPING SR

ENHANCED BY IN-LOOP FILTERS, AND THE PREDICTIVE MECHANISM. RESULTS CORRESPOND TO AN UPSAMPLING OF 1920× 1080 TO 3840× 2160.

Data Baseline State of the art In-loop filters In-loop + Prediction

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Book 40.24 0.9776 41.00 0.9812 41.00 0.9816 40.62 0.9813
Boxing 34.93 0.9443 35.69 0.9536 35.99 0.9573 35.71 0.9575

CalendarAndPlants 37.05 0.9727 37.79 0.9777 37.87 0.9787 37.82 0.9787
CampfireParty 34.38 0.9168 34.84 0.9231 35.05 0.9223 35.04 0.9223

Discus 30.13 0.9191 30.81 0.9297 30.73 0.9280 29.57 0.9142
Manege 27.14 0.8502 27.76 0.8654 27.63 0.8602 27.50 0.8566
Netball 37.14 0.9497 37.80 0.9557 37.89 0.9571 37.59 0.9570

ParkAndBuildings 30.68 0.9311 31.28 0.9425 31.16 0.9415 30.72 0.9388
Ribbon 40.96 0.9645 41.80 0.9682 42.12 0.9696 42.12 0.9696

RushHour 36.71 0.9274 37.44 0.9366 37.67 0.9388 37.62 0.9390
ShakeNDry 36.93 0.9076 37.47 0.9167 37.77 0.9188 37.76 0.9196

TallBuildings 30.23 0.8947 30.75 0.9041 30.60 0.8989 30.33 0.8971
TrafficFlow 34.42 0.8938 35.01 0.9018 35.09 0.9004 34.98 0.9002

Average processing time [sec] 10,092 24,506 10,523 9,042

Super-resolved blocks per frame 82,944 230,400 82,944 ∼69,605



same conditions while there was a 40% overlap between the
processed blocks to present the state of the art system. 40%
overlap provides a favorable image reconstruction with respect
to the baseline, and it is sufficient to remove the blocking
artifacts. The two described systems are the references for our
analysis.

We applied in-loop filters with non-overlapping blocks on
an all I-frame configuration without any block prediction
to analyze the effect of in-loop filters and compare their
performance with the overlapping blocks mechanism. As the
last step, we enabled 8 P-frames in the GOP and allowed
prediction of the blocks from neighboring frames. This was
tested while the in-loop filters were enabled.

Table II summarizes the objective evaluation of the proposed
method in terms of quality and complexity in comparison with
the two references. Introducing overlapping blocks (state of
the art) enhances the image quality as expected, resulting in
an average increase of 0.65 dB in PSNR, while increasing the
number of upsampled blocks. Accordingly, the processing time
has an 143% increase. Furthermore, the number of processed
blocks increases by a factor of 3 compared to the baseline.

Applying in-loop filters on top of non-overlapping blocks,
on the other hand, does not increase the number of processed
blocks. Moreover, the complexity of the filters compared to the
sparse coding routine is negligible and the processing times
remain at the same level as the baseline. In terms of quality,
in-loop filters provide an average of 0.74 dB improvement
in PSNR and 0.008 improvement in SSIM over the baseline.
Introducing the P-frames to the SR and enabling the block
prediction from neighboring frames reduces the complexity
further with respect to the all I-frame in-loop filtering case.
In this scenario, the average number of super-resolved blocks
decreases to 69,605 per frame and the processing time is 10%
lower than the baseline, while providing an acceptable quality
in terms of PSNR and SSIM.

Although PSNR and SSIM are widely used in evaluation
of SR, subjective evaluation also plays an important role in
incorporating the human perception in the analysis of different
methods. Hence we also analyzed the quality of reconstructed
high resolution images from a subjective perspective. Figure
3 shows different types of textures upsampled by the non-
overlapping block based SR (baseline), overlapped block based
SR (state of the art), and the proposed methods. The improve-
ments over the baseline is vivid for both the state of the art
and the proposed approach, and there is not a significant visual
difference between the two. In-loop filters are able to remove
the blocking artifacts and pixel-wise distortions successfully,
while retaining the general consistency of some of the most
challenging textures in Figure 3. Furthermore, block prediction
does not degrade the quality of the reconstructed texture and
keeps the general consistency of the image.

V. CONCLUSION

Our proposed sparse coding based video SR approach
operates on a GOP basis, within which the frames have
the possibility to be partially predicted using the previously

upsampled frames. It reduces the computation time of the
SR by skipping the expensive sparse coding process for the
blocks that are highly correlated with the co-located blocks
in the adjacent frames. We developed an adaptive in-loop
filtering approach that reduces the blocking and pixel-wise
artifacts in block based SR, while providing favorable objec-
tive and subjective quality in images. This approach promises
an alternative to the exhaustive routine of overlapping blocks
mechanism in the state of the art SR, which happens to be
extremely complex. In-loop filters often provide better PSNR
values to the overlapping blocks routine, while keeping the
framework almost at the same complexity level as the non-
overlapping blocks processing case. In total we reduced the
complexity of the sparse coding approach by 63%, while
providing the same level of image quality. The proposed video
SR framework is an important step in extending the current
image SR methods to videos and enabling to reach very high
resolutions such as UHD.
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