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“Any who may wish to profit himself alone from the knowledge given him, rather
than serve others through the knowledge he has gained from learning, is betraying
knowledge and rendering it worthless.”

Haile Selassie I
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Abstract
In this work we present a novel approach in capturing violin performance ges-
tures by employing both direct and indirect acquisition methods based on low-cost
equipment that is available with any modern personal device. It is a multidisci-
plinary study that covers several research fields, including audio signal processing,
machine learning, motion capture and computer vision. According to the bibliog-
raphy, the majority of the proposals employs a direct way for the acquisition of
musical gestures, by measuring the physical variables with the support of sensors
which are placed on the instrument or on the performer. However, these systems
invoke some kind of intrusiveness that affects the performance procedure. An al-
ternative approach is to apply indirect acquisition from the analysis of the audio
signal. The main difficulty of this method is to develop robust detection algo-
rithms and provide accurate measurements similar to the sensors. Therefore, our
goal was to implement a hybrid audio-informed system that utilizes the built-in
web camera and microphone of a laptop, in order to provide qualitative feedback
to the performer. This was achieved by developing an algorithm that employs
video frame analysis, augmented reality and audio signal processing methods. Af-
ter computing the various features from the video and audio domains, we unified
the retrieved information into a single dataset in order to apply feature selection
and machine learning techniques for investigating the regression prediction be-
tween the audio descriptors and the bowing controls, as they were computed from
our analysis algorithm. The results are promising, since they present high corre-
lation rates between the Bow Inclination parameter and the audio features, with
maximum accuracy of 97%.
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Chapter 1

INTRODUCTION

During a musical performance, the artist is required to transform a musical pattern
or score into a sequence of instrumental gestures in order to control the instru-
ment and thus producing the expected sonic result. In this sense, the musical idea
can be transformed between different representations including the musical score,
the gestures and the sound domain. Moreover, the interaction between the mu-
sician and his instrument gets much more complex when performing excitation-
continuous musical instruments such as the bowed-string instruments, which are
considered of being between the most expressive musical instruments. Track-
ing and acquiring violin instrumental gestures parameters, by means of physical
movements that are directly involved in the sound production procedure, has re-
ceive a lot of research attention, with multiple applications in performance tran-
scription, performance modeling, mapping performance models with gestural pat-
terns, sound synthesis, and pedagogy.

1.1 Motivation
A novice violin player needs to develop a greate variety of cognitive and physical
skills specified by reading music notation (i.e. the score), counting notes and have
rests in order to follow the rhythm, learning how to place correctly his fingers
on the fingerboard as well as listening to the sound outcome for playing in right
tuning. Furthermore, in order to reach professional performance skills in playing
a string instrument such as the violin, a musician has to develop precise control of
complex arm movements, as well as great postural awareness.

The bowing action in bowed-string instruments, is a complex motor skill that
requires the coordination of various number of degrees of freedom (DOF) between
the shoulder, elbow, wrist and hand. The most difficult part of playing a string in-
strument, lies in the sound generation process, which happens due to the frictional
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interaction between the bow and the string. Therefore, learning how to play the
violin is a difficult and long process that demands effective teaching reinforced
through excessive practice and training.

Traditionally, the learning of how to perform the violin requires to observe and
imitate the actions of the teacher while listening to his verbal feedback. Some-
times a mirror is used so that the students can watch their own bowing actions
and postures. However, learning by observation and imitation is challenging for
novice players since most of the times they do not know which are the important
parameters to focus and how to translate what they see into their own movements.
Moreover, this master-apprentice model often restricts the student to have short
sessions with his teacher and long periods of self-study that unfortunately results
to high abandonment rates.

However, various scientist have approach this problem in order to develop
interactive systems that are able to assist the players and promote self-learning
through augmented feedback. The most important part of these systems is the
technology that they employ in order to capture and validate the performance
gestures. The majority employs a direct way for the acquisition of musical ges-
tures, by measuring the physical variables with the support of sensors which are
placed on the instrument or on the performer. Usually, the direct measurement
involves the use of expensive sensors with some degree of intrusiveness and gen-
erally consists of complex setups. An alternative approach is by applying indirect
acquisition from the analysis of the audio signal. Indirect acquisition is not an in-
trusive method and has numerous advantages such as its simplicity, low-cost set-
up in addition to the possibility of examining old audio recordings. Nevertheless,
the main difficulty is to develop robust detection algorithms and provide accurate
measurements similar to the sensors. Only the last years, there are some studies
that employ both methods in order to minimize the overall cost while increasing
the accuracy of their systems.

1.2 Objectives
As an aftermath, this Master’s Thesis will try to approximate the efficiency of a
low-cost gesture recognition system that utilizes in real-time both built-in cameras
and microphones, which nowadays are available with many personal devices such
as the laptops and smartphones. Additionally, we will investigate the potential
relations amongst the variety of the available low-level audio features and their
gestural representation. Hence, the goals of this work can be specified to the
following:

• Record real violin performances by means of multimodal data.

2
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• Implementation of a video processing algorithm for tracking different bow-
ing parameters.

• Identify relevant audio features that can be related and predict the various
bowing gestures.

• Implementation of an audio-informed tracking system for bowing gestures.

1.3 Thesis structure
After this brief introduction, Chapter 2 focuses on presenting the related state of
the art in the given research field, along with general information that may help
for the understanding of this project. Next, Chapter 3 describes the methods that
were employed for recording real violin performances as test data, along with the
algorithms that were developed for capturing the bowing parameters, in both audio
and video recordings. Chapter 4 presents and explains the evaluation method
along with a discussion on the retrieved results. Final comes Chapter 5, which
exposes the reproducibility aspects and the contributions of this project and lists
possible future work that could be developed by means of extending the system,
while improving its results and general performance.

3
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Chapter 2

STATE OF THE ART

Initial efforts on experimenting with digital interactive systems within music and
arts, are dated to more than fifty years old. For instance, in the piece entitled ”Vari-
ations V”, Cage and Cunningham developed a system where dancers are capable
to control the soundscape creation with their movements, hence establishing a new
relationship between gestures and music performance [Miller, 2001]. However,
the interactive digital technology gained interest from the research community
during the 1990s due to the emergence of the different sensor technologies and
software that were developed for tracking human and object motion. This field
of research and technology is known as Motion Capture (MoCap), which can be
further employed in various applications, including Human-Computer Interaction
(HCI) systems, animation creation, biomedical analysis, sports performance anal-
ysis and as already mentioned in music and arts performance.

Furthermore, researchers and developers have implemented special software
and programming libraries for motion tracking, such as EyesWeb [Camurri et al.,
2007], Vicon [Ltd, 2016], MoCap Toolbox [Burger and Toiviainen, 2013], Eye-
Con [Wechsler et al., 2004], The Gesture Recognition Toolkit [Gillian and Par-
adiso, 2014] and openCV [Bradski, 2000]. However, some of them are commer-
cial software that require the users to purchase licenses, thus introducing further
cost considerations. On the other hand, open source software can provide a cost-
free solution, that enable the users to proceed with an experimental approach on
the utilization of technology.

In a general view, there is a diversity on the available approaches for devel-
oping MoCap application that can be classified either as marker-based or marker-
free systems [Bregler, 2007]. For instance, in a marker-based tracking system, we
record the reflections of markers that are placed on the subject of interest, while in
a marker-free capture system we may record multiple natural points for replicating
the three-dimensional (3D) space.

However, we can argue that the aforementioned classification is not efficient
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for describing the details and requirements of MoCap utilization in artistic appli-
cations, since technical constrains influence the expression and freedom of move-
ments during performance. In order to provide meaningful systems we should
analyze the various gestural notations, with respect to the different scientific dis-
ciplines that converge towards gestural research, including computer science, en-
gineering, music, dance and cognitive science.

In this sense, this Chapter provides a musical approach on the meaning of ges-
tures. Next, it outlines the main categories of MoCap technology as employed in
numerous artistic-centered projects, followed by a brief description of the bowing
gestures and the state of the art on the possible acquisition techniques for these
gestures.

2.1 Gestures in music
Globally, gestures derive as intrinsic information that is further perceived and
transmitted in different levels, such as visual and auditory queues in conjunc-
tion with internal cognitive processes. For instance, the visual information are
transmitted by the movements of a musician, along with the audible information
that is produced whilst performing his instrument. Therefore according to their
physical nature, the musical gestures, can be broadly defined either as composi-
tion gestures (i.e. not physical) or performance gestures (i.e. physical) [Metois,
1996]. Moreover, the composition gestures can be thought as the musical infor-
mation that is notated on the musical score, such as the notes, chords, dynamics
and gradual changes etc. On the other hand, the performance gestures refer to
movements that are conducted by the performer during the transformation of the
notations into musical sound.

In this sense, we can further specify the performance gestures, as being either
ancillary or instrumental gestures [Wanderley and Depalle, 2004]. We refer to
instrumental gestures to those that take part in the sound production procedure,
such as the fingerings on the strings and the bow acceleration in the context of
a violin performance. The ancillary gestures are introduced by the musician, by
means of extra body movements that are not directly connected with the sound
production, rather than associating with the performance in a way to express and
transmit emotional information, which can also modulate slightly some sound
features.

Furthermore, the instrumental gestures can be categorized into more detailed
groups according to their function on the instrumental object that they are applied
[Cadoz, 1988], which are the excitation, modulation and selection gestures as
described below:

• Excitation gestures are those that emit the energy which is found in the

6
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Figure 2.1: Musical gestures classification [Cadoz, 1988].

sound outcome, such as the blowing force in wind instruments.

• Modulation gestures refer to those that modulate the sound properties of
the instrument without transmitting energy on the sonic outcome and can
be further divided into parametric and structural. Parametric modulation
gestures are those that affect constantly an instrumental parameter, similar
to the bow pressure variations during a violin performance. On the other
hand, structural modulation gestures are those that modify the structure of
the instrument, such as opening or closing the keys of a saxophone during
performance.

• Selection gestures refer to those that require an instant choice between var-
ious but equivalent forms, that happen during a musical performance, such
as in bow-based instruments, where the choice of the bow direction does not
affect the energy outcome neither applies any instrumental modification.

However, in real performance conditions, it is hard to distinguish the different
gestural mechanisms since they happen in parallel. For instance excitation and
modulation gestures can be found during a vibrato in a flute performance. A more
diverse example is the complex functionality during a violin performance, where
the musician emits energy with the movement of his bow (i.e. excitation gesture),
while modulating its speed (i.e. modulation gesture) and deciding its direction
(i.e. selection gesture). The aforementioned classification is illustrated in Figure
2.1.

7



“ExempleUsPlantillaA4” — 2016/9/10 — 17:36 — page 8 — #24

2.2 MoCap for music applications

Consequently, we can classify the variety of gesture technology for motion capture
according to the medium that is employed for transmitting the information, by
means of body, space and time sensing [Bevilacqua et al., 2011].

2.2.1 Body-centered

It is obvious that the physical movements are the most common medium for in-
terfacing with digital systems. However, additional body-centered signals may be
employed for interaction, such as the physiological signals.

Physiological signals

There is a great variety of possible physiological parameters that can be utilized
in interactive systems. Most of the sensing technology for capturing this kind of
signals have been developed for health monitoring and general biofeedback ap-
plications, such as the electromyography (EMG) and the electroencephalography
(EEG) methods. Furthermore, EEG is used to monitor the electrical activity of the
brain neurons by placing multiple electrodes along the scalp. For instance, musi-
cal interactive systems based on the brain waves activity have been developed for
real-time emotive control in music performance [Giraldo and Ramirez, 2013] as
well as treating depression [Ramirez et al., 2015].

Similarly, the EMG allow us to monitor the skeleton-muscle motions in form
of electrical activity, by applying surface skin conductive sensors on various parts
of the body, according to the area of interest. A literature review of the artistic in-
teractive systems based on EMG bio-signals tend to fall into three main fields, in-
cluding performance skill analysis, training method evaluations and bio-feedback
for pedagogy and injury remediation [Visentin and Shan, 2011]. However, these
types of sensing technologies delicate to pre-movements of muscle tension, which
further introduce noisy recordings, thus requiring some sort of filtering in order to
retrieve meaningful measurements.

It is important to mention that the property of the skin to be electrically con-
ductive allow us to develop numerous touch sensitive applications and monitor
additional bio-signals such as the heart beat. For instance, researchers have ex-
perimented with the heart rate bio-feedback for proposing training methods in
the context of emotional management and anxiety recovery during performance
[Thurber et al., 2010].

8
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Movements and postures

There are numerous technological methods that allow us to capture gestures and
movements, since most of the interactive systems require some kind of body-
centric action. One solution can be provided by the wearable sensors that carry
accelerometers and gyroscopes which can monitor the pitch, yaw and roll rotations
as well as the acceleration of the object that carries these devices. Nowadays, the
production cost of these sensors has decreased dramatically, thus allowing the in-
dustry to integrate them in multiple electronic devices, such as the smartphones
and other gaming interfaces. Furthermore, flex sensors can be employed in order
to monitor the curvature measurement, such as the bending of the fingers in dif-
ferent postures [Mitchell, 2011] or the elasticity of object, similar to the WaveSaw
[Dahl et al., 2007] and Music Ball projects [Jensenius and Voldsund, 2012].

Another efficient approach on capturing gestures and movements remotely is
to employ video cameras, in conjunction with special software, as those men-
tioned on the beginning of this Chapter, that allow us to apply computer vision
technics so as to filter the input recordings and track the subject of interest. For
instance, EyesWeb [Camurri et al., 2007] is capable of recognizing the body skele-
ton from single camera captions and providing details about the direction, stability
and quantity of the subjected motion.

However in simple single camera installations the motion of the subject and its
position are always relative to a two-dimensional (2D) representation that is also
limited to the visual range of the camera, thus introducing further complexities
for extracting 3D information. In order to overcome such problems, one solu-
tion is to install multiple cameras that usually associate with reflective markers
or special LEDs in order to digitally reconstruct the 3D captions. Nevertheless,
these systems are expensive to acquire, which by its side introduces further cost
considerations.

A more cost-efficient option can be found within the modern multimedia cam-
eras such as the Microsoft Kinect and Leap Motion, which both utilize infrared
(IR) technology in order to recognize the 3D space, according to the orientation
of specifically projected IR patterns. For instance, Hantraku and Kaczmarek have
experimented with Leap Motion for sound synthesis as well as an assistive perfor-
mance tool for modulating effects in real-time [Hantrakul and Kaczmarek, 2014].
Furthermore, Kinect has been used in research projects in the context of musi-
cal interfaces, similar to the Air Violin project [Fan and Essl, 2013], as well as
for gesture analysis in music conducting [Sarasúa, 2013] and music performance
[Hadjakos, 2012].

9
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2.2.2 Space-centered
There are multiple research proposals that follow a space-centric approach for in-
terfacing. Such applications usually require the user to manipulate either physical
or virtual space features, in order to actively participate in the interaction process.
Usually, the events are triggered according to the movements and presence of ob-
jects in predefined spatially distributed zones. However, through the literature we
are able to distinguish two broad approaches on the utilization of space, which can
be either physical or virtual.

For instance, an early experimentation with virtual space interactions can be
considered the piece ”Various V” where the dancers were able to interact with
Theremin antennas that were placed along the stage [Miller, 2001]. Modern pro-
posals on the subject have experimented with virtual augmented reality, where
users can react with virtual audio objects such as the AHNE interface [Niinimäki
and Tahiroglu, 2012], as well as for promoting collaborative creativity, similarly
to the Music Room project [Morreale et al., 2014].

Nevertheless, researches on musical interactive systems within the physical
space, include studies for tangible music tables such as the Reactable [Jordà et al.,
2007], which can be played by manipulating a set of objects that are distributed on
top of an interactive table surface. Furthermore, each object has a specific function
on the generation, modification and control of the output sound, in addition to the
projected visual feedback that further illustrates the sound path onto the table
surface. Generally, motion is naturally related with these interactions by means
of measuring its orientation in particular spatial zones, thus referring to absolute
locations, and not to the body itself as described in the section above.

2.2.3 Time-centered
Even if it is not clear how time is used as a medium for interactions, we can argue
that temporal features are able to be utilized for triggering events, in a coherent
manner to the space-centered interactions. In this sense, interactions can take
place in predefined time limits or on fixed moments, similar to the spatial zones.
Therefore this approach requires a temporal analysis of the sensing information,
since the interactions are driven by instant events, sequences and synchronization
mechanisms, according to specific gestures and audiovisual processes.

An example of research with time-centric interactions is the EyeHarp [Vam-
vakousis and Ramirez, 2012], where the performer is able to triggered musical
events over a continuous real time tracking of his gaze. Another paradigm that
falls in this type of interfacing, is the Virtual Conductor project, which is a soft-
ware that emulates an orchestra conductor, able to lead and interact with musicians
while they simultaneously perform a musical work [Reidsma et al., 2008].

10
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2.3 Instrumental gesture acquisition classification
In general, the acquisition of instrumental gestures can be approached from two
different domains, which are the domain of physical actions and the domain of
audio analysis. Moreover, the very small details of the physical actions during
an instrumental performance are hard to be perceived by a listener only from the
produced sound, thus emerging the need to develop and apply methods that di-
rectly attend the actual instrumental control signals. However, the acquisition of
the instrumental gestures on the physical domain may arise some limitations on
the permmited level of intrusiveness by the measuring setup.

Therefore, the knowledge of the underlying physical phenomena that take an
active role on the modulation of the perceptual properties of the instrumental sonic
result, allow us to employ indirect models which are induced by the physical ac-
tions throughout a musical performance. According to the study of Wanderlay
and Depalle entitled “Gestural control of sound synthesis” [Wanderley and De-
palle, 2004], such methods belong to the indirect acquisition domain and can be
considered as an alternative or even complementary approach to the general ac-
quisition problem.

2.3.1 Indirect acquisition - audio analysis
Globally, the indirect acquisition of instrumental gestures has received much at-
tention due to its interdisciplinary background. The given simplicity on recording
the sonic environment with microphones and the previous research that already
has been conducted by the community on the different audio analysis techniques,
along with the knowledge on the acoustical attributes of the various musical in-
struments, enables the scientists to experiment with the acoustic signal itself in
order to extract the involved instrumental gestures.

For instance there are various articles that approach the acquisition of the gui-
tar plucking point, either from the spectral domain [Traube and Smith, 2001,
Traube et al., 2003] or from the time domain [Penttinen and Välimäki, 2004].
Examples of studies on wind instruments investigate the estimation of the finger-
ings on the flute [Kereliuk et al., 2007] and the saxophone performance [Smyth
and Wang, 2014], as well as the reed pulses of the clarinet mouthpiece [Smyth and
Abel, 2012] and the lip-valve system relation of the trombone [Smyth and Scott,
2011].

Generally, the domain of audio processing for retrieving instrumental gestures
is proven to be effective in cases where the analysis and modeling of the percep-
tual mechanism is of higher importance. However, these methods may fall upon
inconvenient surjections, since their description is based only on the sonic result
of the physical actions which are performed by the musician. In other words, in-
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direct acquisition may provide incomplete representation of the instrumental ges-
tures that affect the timber of the outcome sound, since several control parameters
may have a unique point in the instrument’s timber space [Maestre, 2009], in ad-
dition to mutual influences of noisy attributes that are also present in the resulting
sound, such as the effect of the room acoustics and possible performer movements
[Wanderley, 2001].

2.3.2 Direct acquisition - physical actions
In theory, the direct acquisition of musical gestures provides the best solution
since the recorded signals are uniquely coupled with discrete gestures. Further-
more, the physical actions are measured by utilizing one or more sensors, which
usually are of different type and technology, such to meet the needs of the various
capturing systems and tracking scenarios. The signals from these sensors are able
to isolate and acquire raw information of the basic physical features of gestures
such as pressure, linear or angular displacement and acceleration. Typically, each
sensor is employed in order to capture a specific physical variable of the gesture,
thus not requiring any preprocessing step for gestural induction.

However, due to the independence of the captured variables, direct acquisi-
tion techniques may underestimate the interdependencies that may exist amongst
them [Wanderley, 2001]. Moreover, the high difficulty of gathering information
without intruding to the instrument or the performer, makes this method a less
explored field, with exception the bowed-string instrumental family, which has
been researched by numerous scientists and proven to be a very successful captur-
ing technique, with respect to the characteristics of the bowing-based interaction
between the performer and the musical instrument. Examples that fall into this
acquisition methodology are presented and commented in the following section,
after a brief introduction to the basics of the bowing gestures in violin perfor-
mance.

2.4 Bowing gestures in violin performance
Bowed-string instruments are considered being highly musical expressive, similar
to the human voice. Even though, the space of the control parameters is lim-
ited, it can still provide adequate freedom to the instrument player for constantly
modifying in detail the timber of the sonic result. Most part of the performance
expressiveness is carried by the musician through his navigation style between the
notes in the control parameter space [Schoonderwaldt, 2009].

The violin, as a bowed-string musical instrument, is usually played by sliding
the bow on one of the strings, known as bowing performance. Furthermore, the
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Figure 2.2: Parts of violin and the bow.

violin consists of 4 strings, usually tuned at 660 Hz (E), 440 Hz (A), 293 Hz (D),
and 195 Hz (G). Usually, the violin musicians enumerate the strings in ascending
order, starting from the highest to lowest frequency, however in this document
they are addressed by their note name, in order to avoid any confusions and mis-
conceptions.

As it is illustrated in Figure 2.2, the strings start at the peg box, where each
string is inserted into a hole in one of the pegs respectively. The peg is a cylindric
piece able to turn and roll the string so as to modify its tension and thus tuning
it. Next the strings pass over the nut, which provides four grooves so as to ensure
that the strings are equally spaced, then continue over the fingerboard up to the
bridge and reach their ending point on the tailpiece, that usually contains one or
more fine tuners. However it is important to mention that the bridge is one of the
most critical parts on the violin, since it is the component that is resonating by the
strings’ vibrations and is responsible for transmitting the movement down to the
top plate and the rest of the violin body.

On the other hand, the bow is a stick that it is usually made of wood or even
carbon fiber. The stick needs to be light, supple and bendy in order to be able

13



“ExempleUsPlantillaA4” — 2016/9/10 — 17:36 — page 14 — #30

to support the tightening and loosening of the bow hair, which are attached as a
ribbon between the tip and the frog of the bow. Usually, the hair are made of
either a synthetic material or horse hair. The musician can pull the ribbon and
increase its tension by moving the frog downwards along the stick, with the help
of a screw. If the screw on the end of the frog is completely unscrewed then the
frog can be detached from the bow.

As with the majority of the classical musical instruments, both hands are re-
quired in order to perform the violin. By giving a non-functional perspective to the
previously mentioned classification of instrumental gestures, violin performance
involves left-hand and right-hand instrumental gestures. Typically, the left hand
is in charge of controlling the fingerings and the length of the played string, while
the right hand holds the bow and transfers the excitation energy to the strings, by
modeling the desired envelope and modulating its timber space. The interaction
between the bow hairs, the string and the fingerings, creates the characteristic vi-
bration of the bowed-string, which by its side is resonating the violin body through
the bridge end that is in contact with the string. Finally, the structure of the res-
onating violin body amplifies the string vibration and gives the sonic result that is
transferred through the surrounding air molecules to the listener’s ears.

Consequently, the playing techniques that are related with the performance
expressiveness in classical violin are conducted by the right hand instrumental
gestures that are not directly involved on the selection process of the played string
[Maestre, 2009]. Generally, these right hand gestures that are directly affecting the
bow-string interaction, are know as bowing controls or bowing parameters, and
they are employed continuously during a violin performance in order to control
the timbre attributes of the final sound.

2.4.1 Violin bowing parameters
The performance of bowing control parameters is carefully controlled by the mu-
sician so as to achieve the expected acoustical character of the notes and phrases
while his physical actions are constrained by the bow-string system. In other
words, the violin performer is required to continuously synchronize various bow-
ing parameters, where some of them may be in conflict with each other as a re-
sult of physical, bio-mechanical (i.e. the players build and level of performance
skills), or musical (i.e. the score) limitations. However, according to Schoonder-
wald’s doctoral study [Schoonderwaldt, 2009], there are three basic bowing pa-
rameters participating in the violin performance, which are the bowing velocity,
the bow-bridge distance and the bow force, in addition to four “secondary” at-
tributes, including the bow position, tilt, skewness and inclination. The aforemen-
tioned bowing parameters are illustrated in Figure 2.3 and are briefly described as
follows.
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Figure 2.3: Violin bowing parameters. The red color represents the basic pa-
rameters in addition to the secondary parameters that are marked with blue color
[Schoonderwaldt, 2016].

• Bow velocity: Represents the velocity of the bow as imposed by the player’s
right hand, while he is holding the bow at the frog. The instant velocity on
the contact point with the string is not exactly the same due to small mod-
ulations in the bow hair and bending vibrations of the stick. Bow velocity
sets the string amplitude along with the bow-bridge distance.

• Bow-bridge distance: Is specified as the distance along the string, between
the contact point of the bow and the bridge. The bow-bridge distance in
conjunction with the bow velocity shape the string amplitude, and it is often
modulated as a mean for controlling the high-frequency content or “bright-
ness” of the resulted sound.

• Bow force: The force with which the bow hair is pressed against the string
at the contact point. The bow force parameter determines the timbre of the
tone by controlling the high-frequency content in the string spectrum, ac-
cordingly to the two previously mentioned parameters. Moreover, in tones
of normal quality the bow force needs to stay within a certain allowed range.
The upper and lower limits for this range in bow force range increase with
increasing bow velocity and decreasing bow-bridge distance.
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• Bow position: Is the measurement that specifies the distance between the
contact point of the bow hair on the string and the frog. The bow position
alternates between ?at the tip? and ?at the frog?. The bow position does
not influence the string vibrations by itself, but has a profound influence on
how the player organizes the bowing movement. The given length of the
bow hair is one of the most important limitations in violin performance.

• Bow tilt: As it is illustrated in Figure 2.3, the bow tilt is the rotation of
the bow around the length axis. The bow is often tilted during performance
in order to reduce the number of bow hairs that are in contact with the
string. In classical violin playing, the bow is tilted with the stick towards
the fingerboard. Altering the tilt angle helps the performer to modulate
both, the width of the hair ribbon and the pressing force that is applied on
the string.

• Skewness: Is the angle that is formed between the length axis of the bow
and an hypothetical line parallel to the bridge. Skewness is an indicator that
is used for specifying the deviations in the so called “straight bowing”.

• Inclination: Is the pivoting angle of the bow, vertically to the strings. The
inclination is a parameter mainly employed in order to select the played
string.

2.4.2 Acquisition of bowing parameters in violin performance
Initial efforts on the realization and analysis of the bowing gesturers during vio-
lin performance approach the subject from a pedagogical perspective. Moreover,
there is an extensive literature that focuses on performance training and education
techniques, while they are providing qualitative description of the possible bow-
ing patterns in classic music [Jackson et al., 1987, Fischer, 1997, Galamian and
Thomas, 2013].

However, there are also some early studies that approach the problem by an-
alyzing information captured from real violin performances. At the late 50’s of
the last century, Hodgson made the first attempt on capturing and visualizing the
trajectories of the bow and the bowing arm by using the so called “cyclegraphs”
[Hodgson, 1958]. This technique was developed by the manufacturing industries
in order to analyze the time efficiency of their employees. Nevertheless, he took
advantage of this technology and by attaching small electrical bulbs on the bow
and on the performer’s arm, he was able to record the light motion on a still-film
plate and thus retrieving visualizations of the general bowing patters.

Almost three decades later, Askenfelt investigated the basic aspects of the bow
motion, by using a modified bow that was equipped with custom-made sensors for
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retrieving calibrated measurements of most bowing parameters, except the variety
of the bow angles [Askenfelt, 1989]. Additionally, he achieved to measure the
typical ranges of the bowing parameters as well as the basic bowing styles includ-
ing, detache, crescendo-diminuendo, sforzando and spiccato. The results of his
study show that the coordination of the bowing parameters is the most interesting
aspect during violin performance.

After ten years, a different approach was studied by Paradiso and Gershenfeld,
who measured the bow displacement by means of oscillators which were driving
the sensing antennas (i.e. electric field sensing). In a first prototype that was
carried by a cello, a resistive strip was attached to the bow and it was driven
by a mounted antenna behind the bridge, thus resulting to a wired violin-bow
system. The second prototype was improved, since it was the first attempt for
developing a wireless acquisition system for tracking the bowing parameters. It
was implemented for the violin and the antenna worked as the receiver, while two
oscillators that were placed in the bow, worked as drivers. The bow pressure was
measured by using a force-sensitive resistor below the point where the forefinger
is placed [Paradiso and Gershenfeld, 1997].

In the more recent years, the research community has developed less intrusive
systems for tracking the violin bowing parameter. For instance, in the studies
published by Young, he measured the bow downward and lateral pressure with foil
strain gages, while the bow-bridge distance was measured in a similar way to the
previously presented method of Paradiso and Gershenfeld. Furthermore, the strain
gages were permanently mounted around the middle point of the bow stick and
the sensing data were collected by a remote computer via a wireless transmitter,
which was mounted at the frog [Young, 2002, Young, 2007]. However this setup
resulted being of considerable intrusiveness to the performer thus affecting his
movements and his overall performance.

An interesting approach for developing a less intrusive system, was developed
by Goudeseune, who employed a commercial Electromagnetic Field (EMF) de-
vice for tracking some low-level movements and later, he was mapping them to
specific digital synthesis parameters which were controlled in real-time during
a violin performance scenario. However, his procedure on extracting the move-
ments was not representing the real bowing gestures, since he was simply using
the speeds and rotations of the sensors that were placed on the violin and the
bow without considering the relevant instrumental gestures and bowing parame-
ters [Goudeseune, 2001].

Another interesting study that was conducted by Rasamimanana et al. [Rasami-
manana et al., 2005], describes a wireless acquisition system that measures the
acceleration of the bow by attaching accelerometers on the bow, in addition to
some force sensitive resistors (FSRs) which are used in order to obtain the strain
of the bow hair by means of bow pressure. The advantage of this system was that
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it could be easily installed to any type of bow. On the other hand, its significant
drawback was that the sensing data required heavy post-processing so as to ob-
tain the representative gestural information, since it was able to acquire only the
acceleration measurement. However, an attempt to overcome this limitation was
conducted by Schoonderwaldt et al., who employed video cameras in conjunction
with the measurements given by the accelerometers in order to model the different
bow velocity profiles [Schoonderwaldt et al., 2006].

Furthermore, the accuracy and robustness of measuring the bow force was
studied and improved by numerous scientific contributions, by using strain gages
that were attached to the frog-end of the bow hair, hence achieving to measure the
hair ribbon deflections [Demoucron and Causse, 2007, Demoucron et al., 2009,
Guaus et al., 2007, Guaus et al., 2009].

Considering the advancements of commercial EMF systems, there was an-
other important research that was conducted by scientist members of our de-
partment (MTG-UPF), where they developed an accurate and transformable Mo-
Cap system for measuring the various bowing control parameters [Maestre et al.,
2007]. More details of the aforementioned EMF system are presented in the next
Chapter, since it was employed in this thesis for retrieving the ground-truth mea-
surements of the bowing controls.

Another example of research that employ MoCap technology in combination
with attached sensors for tracking the bow force and other bowing controls, was
developed again by Schoonderwaldt, and it was based on an expensive commer-
cial camera-based motion capture system that required a more complex calibration
system with difficult post-processing procedures [Schoonderwaldt and Demou-
cron, 2009].

Also, the overall research in capturing bowing parameters led to commercial
products like the K-Bow [McMillen, 2016], which consists of an augmented bow
and a removable emitter that is attached to the underside of the fingerboard. Fur-
thermore, the K-Bow is able to measure the bow position, acceleration, force and
tilt for controlling sound processing algorithms in real time.

However, there are also scientific contributions that approach the acquisition
problem from the spectral domain. For instance, Perez et al. have published a se-
ries of articles where they study various indirect acquisition methods for tracking
violin controls from the audio signal by applying machine learning algorithms
on empirical data that were previously collected with a highly accurate sens-
ing system. The learning consists of training statistical models with a database
that includes audio spectral features and instrumental controls, such as bow tilt,
bow force, bow velocity, bow-bridge distance as well as the played string [Perez-
Carrillo and Wanderley, 2012, Perez-Carrillo and Wanderley, 2015].
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Chapter 3

MATERIALS AND METHODS

This Chapter contains all the appropriate information regarding the various tech-
niques that were employed for acquiring the multimodal data, along with the
recording set up and the audiovisual analysis algorithms that were developed for
this Thesis study. Moreover it describes the details of the Polhemus1 EMF sensing
system and its application on the acquisition of the bowing gestures, as proposed
by Maestre et al. [Maestre et al., 2007], in addition to the low-cost camera and
microphone system as they were utilized in this project. Next, the analysis al-
gorithms that were developed for the video and audio data are presented along
with the applied post-processing for removing possible acquisition noise before
the transition to the evaluation phase.

3.1 Data collection and recording set-up
As an initial step in our study, we emphasized on collecting violin performance in-
formation from diverse domains. Hence, we decided to select the laptop’s built-in
web camera and microphone as low-cost equipment for recording the real violin
performances. Next, we had to select a reliable sensing system, able to provide
accurate measurements from the physical movements of the violin player and later
use this information as ground-truth. Consequently, we employed a commercial
EMF tracking system, which was previously studied by research members of our
department (MTG-UPF) with successful results on measuring the different bow-
ing parameters. In addition to the laptops built-in microphone’s recordings, we
captured the audio of the violin with a bridge pickup in order to capture a cleaner
audio signal. Finally, all these multimodal data required preprocessing procedures
so as to get synchronized before applying the various analysis algorithms in the
different representation domains.

1http://polhemus.com/
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(a) Polhemus TX4 (b) Polhemus RX2

(c) Polhemus RX1-D (d) Polhemus ST8

Figure 3.1: The main accessories of the Polhemus system as employed in this
study.

3.1.1 Polhemus EMF motion tracking system

For the acquisition of the related bowing parameters we employed the EMF Pol-
hemus Liberty commercial device, which is able of delivering real 6 DOF sensing,
based on alternative current (AC) electromagnetic technology [Polhemus, 2016].
Furthermore, it consists of a source transmitter unit along with a set of wired sen-
sors that work as receivers with sizes around 0.5cm and weights down to 6gr. Each
sensor provides 3 DOF for translating its position from the source and 3 DOF for
its orientation by means of yaw, pitch and roll. In our case, we use the TX4 source
model (see Figure 3.1a), which has a sampling rate of 240Hz, latency less than
0.4ms, static accuracies of 0.75mm for the translation and 0.15 degrees for the
orientation within a range of 2m.

As it is depicted in Figure 3.2, the sensor model RX2 (see Figure 3.1b) is
attached to the violin body and is marked as S1, while the RX1-D sensor model
(see Figure 3.1c) that is named as S2, is attached close to the center of gravity of

20



“ExempleUsPlantillaA4” — 2016/9/10 — 17:36 — page 21 — #37

Figure 3.2: Detail on the positioning of the two 6DOF Polhemus sensors [Maestre,
2009].

the bow. This model was selected in order to minimize the intrusiveness on the
bow while its balanced point remains unaffected. From the 6DOF data stream of
the sensor that is attached on the body, we can extract the position of the ends of
each string, which can be estimated for any position or orientation of the violin.
Analogously, the ends of the hair ribbon can be accurately estimated from the
6DOF data streams of the sensor that is attached on the bow. The ends of the
strings and the hair ribbon, along with the reference positions of the two sensors,
are able to obtain the various bowing parameters, including the bow transversal
position, bow velocity, bow-bridge distance and bow tilt. However in order to
obtain meaningful results we have to calibrate the system.

The calibration process consists of two steps that are quit similar. The sensor
S1 that is attached on the violin provides the mechanism for estimating the eight
ending positions of the four strings, between the four slopes at the bridge and the
other four at the nut (see Figure 3.3a), relatively to the coordinate system defined
by the sensor’s six DOF for its positioning and orientation. With the second step
we obtain the ending positions of the hair ribbon, between the tip and the frog,
relatively to the coordinate system defined by the translation and rotation of the
S2 sensor that is attached on the bow (see Figure 3.3b).

In order to calibrate the system, Polhemus provides the stylus sensor ST8, as
it is depicted in Figure 3.1d. The stylus sensor is required for the calibration and
is used similarly to a marker for annotating the locations of the various points of
interest, so that they can be expressed in their respective coordinate systems, while
the violin and bow sensors remain still. Generally, the three employed sensors are
able to support accurate positioning and rotation measurements with regards to the
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(a) Schematic view of the strings calibration step.

(b) Schematic view of the hair ribbon calibration step.

Figure 3.3: Detail view of the calibration points of interest on the strings and the
bow hair ribbon.[Maestre, 2009].

common reference point defined by the coordinates of the Polhemus TX4 source
transmitter. The translation and orientation of S1 define the violin coordinate
system in which the coordinates of the string ends remain unchanged while the
violin is in motion. In a similar manner, the translation and orientation of S2
measures the coordinates of the two extremes of the bow hair, since they move
and rotate jointly to the bow motion.

After the calibration process, the sensors remain attached to the bow and vio-
lin body, so that the strings and the hair ribbon can be tracked during real perfor-
mance. Once we obtain the coordinates of the individual points in their respective
vectorial spaces through calibration, we are able to detect their translation and ro-
tation in the reference vectorial space (i.e. the physical coordinate system), at any
time by monitoring the relevant sensing data from the corresponding sensors.

Synchronization of the various sensing data is integrated via a VST plug-in
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Figure 3.4: Screenshot of the VST while providing real-time 3D representation
of the violin and bow positions, in addition to some visualizations of the bowing
parameter.

that is used within the Steinberg’s Cubase 2 commercial digital audio workstation
(DAW) software. Furthermore, the plug-in is able to manage and correct the la-
tency between the different data streams arriving from the bridge pickup and the
EMF motion tracker. Additionally, it contains specific working modes for carrying
out the calibration process, while it visualizes in teal-time the 3D representation
of the position of the violin and bow, as well as some graphs of the bowing param-
eters which are useful for giving visual feedback to the performer. An example of
the VST’s graphical user interface (GUI) is presented in Figure 3.4.

3.1.2 Low-cost camera system
According to our goals, we have selected to build our system over low-cost mul-
timedia equipment that is available on most personal electronic devices, such as
smartphones, tablets and laptops. Consequently, we utilized the built-in FaceTime
HD camera of an early 2012 MacBook Pro (see Figure 3.7a), formerly known as
iSight camera, in order to capture real violin performances. This web camera
is capable of providing an image resolution of 1280x720 pixels with a sampling
frequency of 30 frames per second (fps), thus allowing us to record and analyze
high quality videos. Additionally, all the video recordings were captured by utiliz-

2http://www.steinberg.net/en/home.html
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Figure 3.5: Detail on the positioning of the styrofoam color markers for detecting
the bow, in addition to the ArUco marker for estimating the pose of the violin
body with respect to the point of view of the camera.

ing Apple’s QuickTime Player version 10.4, with maximum quality settings and
stored in *.mov file format.

In order to proceed with the video recordings, we have selected to employ
color markers and the ArUco fiducial markers [Garrido-Jurado et al., 2014], as
a low-cost alternative to the Polhemus system. Furthermore the colored markers
are custom made out of styrofoam so as to be light enough and to avoid adding
extra weight on the bow. As it is illustrated in Figure 3.5, they are placed on the
tip and the screw points of the bow, while having a spheric shape with a yellow
color so they can be easily tracked from any point of view and lighting conditions.
The ArUco fiducial marker is used for estimating the camera pose with respect to
the marker. In other words, it allows us to detect the translation and orientation
of the fiducial marker according to the point of view of the camera, thus making
it an optimum solution for Augmented Reality (AR) applications. Regarding our
application setup, we employ a single fiducial marker that is placed at the bottom
right of the top plate of the violin body, under the fingerboard where the neck
starts, as it is depicted in Figure 3.5. We have selected this position to minimize the
possibility of sight overlapping by the performer’s hand and bowing movements
while recording the video.

Consequently, the recording setup consisted of two laptops. One was dedi-
cated to record the Polhemus EMF system along with the audio that was coming
from the violin pick up. The second laptop was placed between 1.5m and 2.5m
away, with a height of 0.5m to 1m from the the violin player’s shoulder, as it is pre-
sented in Figure 3.6a. Moreover, the performer needed to face the camera, while
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(a) Recording set-up general scheme.

(b) Example of the point of view from the web camera.

Figure 3.6: Recording setup scheme and an example on the perspective from the
web camera.

holding the violin’s fingerboard in a parallel position with the camera, similarly to
Figure 3.6b.

3.1.3 Audio acquisition

At first sight, the estimation of bowing control signals does not appear to be di-
rectly linked with the audio signal that is produced by the violin. However, by
synchronizing the recorded audio with acquired bowing parameters, it is possible
to retrieve important information concerning the effect of the various bowing con-
trols on the resulted sound. Hence, by analyzing the timber related features of the
recorded audio content, we will investigate their relevance to the acquired bowing
parameters so as to result in an audio-informed model.
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(a) MacBook Pro FaceTime HD camera. (b) MacBook Pro built-in microphone.

(c) L.R. Baggs acoustic violin pickup.

Figure 3.7: Detail of the positioning of the built-in FaceTime HD camera and
microphone of an early 2012 MacBook Pro, as well as a closeup picture of the
employed L.R. Baggs bridge pickup.

Regarding our recording setup we employed two types of audio microphones,
including the built-in microphone of the same laptop that was used for the video
captures (see Figure 3.7b), in addition to the L.R. Baggs acoustic violin bridge
pickup3 that is illustrated in Figure 3.7c. The built-in microphone was selected as
a low-cost alternative to the bridge pick-up which is capable of recording much
cleaner sound, by means of maximum sensitivity. The pickup has a piezoelectric
transducer as an integral part of the bridge that captures the instrument’s inherent
dynamics and resonances. Furthermore, its selective admittance pattern is aligned
so that the signal is generated while the bridge moves in a left-right motion, in
response to the string vibrations. Additionally, the pickup rejects any impulse
directed to the plane of the bridge by minimizing possible undesired signals from
the finger squeaks, body movements or background noise.

3http://www.lrbaggs.com/pickups/violin-pickup
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3.1.4 Data preprocessing
In total we recorded two series of real violin performances. The first attempt took
place in one of the offices within our department, where we utilized only the low-
cost camera and microphone system. There the player was asked to play all the
notes of the four strings in three different bowing speeds. On the second attempt
we employed also the Polhemus EMF system in addition to the low-cost system,
and the recording took place in the demonstration room of our department. There
we asked from the performer to play in four different bowing speeds all the notes
of the four strings as well as a short improvisation part. However, during the
performances the player was having rests between the different patterns, which
resulted in recoding irrelevant movements as well as audio signals that required
further processing in order to clear and synchronize our multimodal recordings
before proceeding to the analysis phase.

As it is already mentioned, the multimodal data were captured with two lap-
tops. One laptop was utilizing the VST software which is capable of synchro-
nizing the EMF tracking data with the audio signal from the bridge pickup. The
other laptop was recording the performances with the QuickTime software while
the camera was focusing to keep within an optical range the various markers that
were placed on the bow and the violin. Then, the video recordings were divided
in numerous parts according to the current played string by utilizing the Apple’s
iMovie software, version 10.1. With this application we were able to edit si-
multaneously the video images with the recorded audio signal from the built-in
microphone.

3.2 Video analysis
Even thought there are many available software and programming libraries for
motion tracking, such as EyesWeb [Camurri et al., 2007], Vicon [Ltd, 2016], Mo-
Cap Toolbox [Burger and Toiviainen, 2013], EyeCon [Wechsler et al., 2004] and
The Gesture Recognition Toolkit [Gillian and Paradiso, 2014] we have selected to
employ the OpenCV [Bradski, 2000] library, since it comes with an open-source
license and it is well maintained with a lot of documentation.

Moreover, OpenCV4 is a computer vision and machine learning software li-
brary that provides C, C++, Python and Java interfaces for coding, while support-
ing cross-platform applications amongst Windows, Linux, Mac OS X, iOS and
Android operating systems (OSs). It has more than 2500 core functions which
are written in optimized C and C++, in order to take advantage of the multi-core
processing. Additionally, it allows the programmer to enable the OpenCL technol-

4http://opencv.org/
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ogy that uses the hardware acceleration of the underlying heterogeneous compute
platform, thus improving the overall performance in real-time applications.

Similarly, the ArUco library was developed on top of the OpenCV and is con-
sidered as an integral part of the OpenCV package, hence inheriting its core func-
tions and capabilities. Furthermore, it contains functions for generating and de-
tecting various fiducial marker dictionaries, including AprilTag, ArToolKit, ARTAG
and ArUco. However, the pose estimation function supports only the ArUco mark-
ers.

Therefore, the video analysis phase contains two main parts. The first step is
dedicated into tracking the color markers that represent the two extremes of the
bow, while the second is focused on detecting the ArUco marker that is attached
on the violin body and estimating its pose with respect to the camera orientation.
All of the algorithms that we developed for this phase are written in C++ with
Apple’s Xcode integrated development environment (IDE), version 7.2.1.

3.2.1 Color tracking
Up to date, there are numerous studies that contribute in the computer vision re-
search field of object detection and scene segmentation. However, it still remains
a challenging task due to the great diversity of possible backgrounds and shapes
of the tracking objects. The most convenient way to detect and segment an object
from an image is by applying color filtering. In order to achieve meaningful results
with this method, the object of interest should have a significant color difference
from the background.

As a result, we needed to simplify our problem since we were constrained by
the low-cost requirement of our system design. Hence, we selected to employ
the yellow styrofoam balls in order to achieve maximum color difference. Fur-
thermore, this material is light and easy to handle while having a rough surface
that minimizes the light reflections from the different lighting conditions. Addi-
tionally, its spheric shape maximizes the visual contact within the camera range,
during the performance of the various bowing gestures. Considering our study,
we investigated the performance of three different approaches for the color track-
ing, which are the Meanshift, Camshift and a modified version of the optical flow
algorithm.

The Meanshift algorithm works by starting with a set of pixels within the limits
of a window that is moving while searching the image area for the maximum
pixel density, as it is illustrated in Figure 3.8b. Moreover, the initial window that
is presented by a blue circle with the name C1, has an original center which is
marked with a blue rectangle and is named C1 o. However, if we compute the
density centroid of the points inside the given window we will get the point that is
marked as C1 r. This means that the window should move till its center matches
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(a) Example of the optical flow algorithm between five consecutive frames.

(b) Example of the Meanshift algorithm.

Figure 3.8: Examples on the Meanshift and the optical flow motion tracking algo-
rithms.

the previously calculated density centroid. This iterative process continues till the
center of the window and its density centroid falls on the same location, so as to
obtain a window with maximum pixel distribution which is presented by a green
circle and marked as C2. However, this method has the disadvantage of a static
window size that results to many errors.

As an improvement, the OpenCV research community developed the Contin-
uously Adaptive Meanshift algorithm, know as Camshift. This method starts by
applying Meanshift. Once it converges, it updates the size of the window and
calculates the orientation of the best fitting ellipse. Next it applies the Meanshift
with the new scaled window and its previous window location. This process iter-
ates until it reaches a predefined accuracy, in a similar manner to Meanshift.

After implementing both of the aforementioned algorithms, our results show
very low accuracy in tracking the movements of the two color markers. More
specifically, the centroid of the window was unstable in nearly every frame of
our video recordings, thus making it impossible to track the bow stick and its
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movements. Therefore, we developed the third algorithm that is based on the
optical flow approach. The basic concept behind this method is the detection of
the pattern of the apparent motion of an object within a visual scene between two
consecutive frames. This motion can be specified by two-dimensional vectors,
where each vector represents the displacement of the points of interest, from the
first frame to the second. Considering the example that is presented in Figure 3.8a,
the arrow shows the displacement vector between five consecutive frames.

Our algorithm takes advantage of the main idea behind the optical flow, by
means of tracking the displacement of the contours of the two color markers, be-
tween the consecutive frames of the recorded videos. As it is illustrated in Figure
3.9a, our implementations starts by receiving an incoming video frame that is con-
verted into the HSV color space, which stands for hue, saturation, value, and is
the most common cylindrical-coordinate representation of the RGB color model.
This color space allow us to isolate a specific color within different saturation and
brightness ranges, thus enabling robust color filtering. Next, the filtered image that
contains the yellow color contours is converted into grey-scale, so as to apply the
appropriate morphology filtering that is useful for clearing possible background
noise and isolating the contours of the two markers.

Up to this point we are able to calculate the size of the bow by measuring
the maximum distance in pixels, between the two centroids of the contours of the
detected markers, with respect to the real size of the bow stick. This step is where
we obtain the bow calibration data, which further allow us to estimate real-world
measurements from their pixel representations. Consequently, as a final task we
apply the optical flow method along with single view geometry principles in order
to calculate the velocity vectors, velocity magnitude and acceleration of the two
markers, in addition to the bow inclination according to the camera orientation.
The mathematical formulas that we employed for calculating these parameters are
listed as follows:

• Bow length: Is calculated by applying the euclidean distance between the
coordinates of the two points in the center of the detected marker contours.
As A(x, y) is considered the attached marker on the tip of the bow, while
B(x, y) is the other marker that is placed on the frog screw. This formula is
calculated in pixels.
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• Velocity vector: In order to calculate this vector, it requires to calculate the
coordinates of the individual marker contours at least in two consecutive
video frames. Negative X vector values specify upward directions, while

30



“ExempleUsPlantillaA4” — 2016/9/10 — 17:36 — page 31 — #47

positive vectors have a downward direction. This equation is applied sep-
arately for the A and the B markers. The velocity vector is calculated in
pixels.
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• Velocity magnitude or instant velocity: Similarly to the velocity vector,
we need at least two consecutive video frames for calculating the instant
velocity of the A and the B markers. It is a function of time that specifies the
rate of pixel displacement. In order to translate it to the physical magnitude
we need to multiply by the number that is given from the ratio between the
maximum bow length and the current bow length in pixels.
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• Acceleration: Is the rate of change of the velocity of the A and the B

markers as a time function between two continuous video frames.
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• Inclination: This parameter is calculated according to the pythagorean the-
orem that is applied to the imaginary right triangle, that is shaped between
the current two dimensional projection of the three dimensional bow and its
angle with respect to the camera orientation. More specifically, we consider
the current bow length as the adjacent side and the maximum bow length as
the hypotenuse. Hence, we are able to estimate the angle between these two
sides with the following equation.

Inclination = cos

�1
⇣

bowlength

max(bowlength)

⌘
(3.5)

The aforementioned parameters are computed for every incoming frame of the
video sequence and their results are saved as plane text in a comma-separated val-
ues (CSV) file format. Each line of the file consists of eight fields that represent
the various calculations of a single frame, including the Current Bow-length, Ve-
locity Vector A, Velocity Vector B, Velocity Magnitude A, Velocity Magnitude B,
Acceleration A, Acceleration B and Inclination. As A and B we refer to the color
markers that are placed on the tip and the frog screw respectively.
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(a) Color tracking algorithm. (b) ArUco tracking algorithm.

Figure 3.9: The schemes of the developed algorithms for tracking the movement
of the color markers in addition to the detection of the ArUco marker.

3.2.2 ArUco AR marker tracking
Generally, the ArUco markers are binary square fiducial markers that can be used
for camera pose estimation and AR applications. The software library includes
methods for the detection of this type of markers as well as the appropriate tools
for executing pose estimation and camera calibration. The main advantage of this
library is that the marker detection algorithm is simple to use, robust and fast.

However, in order to perform pose estimation we need first to calculate the
calibration parameters of the employed camera. These parameters allows us to
determine how a 3D point within the visual range of the camera is projected on the
camera sensor. Furthermore, the camera parameters can be divided into intrinsic
and extrinsic parameters as it is depicted in Figure 3.10. As intrinsic parameters
are specified the following.

• The coordinates in pixels of the focal length in the two axes: f(x, y)

• The coordinates in pixels of the optical center of the camera sensor in the
two axes: c(x, y)

• The radial and tangential camera distortion coefficients: k1, k2, k3, p1, p2
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Figure 3.10: The intrinsic and extrinsic projection parameters. Intrinsic param-
eters allows to model the optic component considering distortions introduced by
the lens in the image. Extrinsic parameters represent the camera position and
orientation with respect to an external reference system.

In an ideal camera with no distortion coefficients we could estimate the pro-
jection of a 3D point (X, Y, Z) with the formulas below:
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Nevertheless, the camera lenses normally distorts the scene while projecting
the points far from their real center on the camera sensor, by means of radial
and tangential distortion. The positive radial distortion promotes the so called
barrel effect as depicted in Figure 3.11a, and can be calculated with the following
formulas:
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with r

2
= x

2
+ y

2 and x, y as the undistorted pixel coordinates. Typically, two
coefficients are sufficient for the calibration. In cases of severe distortion, such
as in wide-angle lenses, we can add the k3 coefficient in our equation. On the
other hand, tangential distortion occurs when the lens and the image plane are not
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(a) Radial distortion.

(b) Tangential distortion.

Figure 3.11: Examples of the radial and the tangential camera distortions [Math-
works, 2016].

perfectly parallel, similarly to Figure 3.11b. The tangential distortion coefficients
model can be calculated as:
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with r
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2 and x, y as the undistorted pixel coordinates.
As a consequence, if we want to know a pixel’s projection, then we must take

into account the distortion coefficients. However, the above formulas assumes
that we know the 3D location of the point of interest with respect to the camera
reference system.

In order to compute the projection of a point with respect to an external ref-
erence system, we must then employ the extrinsic parameters (see Figure 3.10).
Basically, these parameters represent the 3D rotation and translation vectors which
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are required for translating the camera reference system to the external one. The
vectors are specified as:
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Regarding our application, these parameters allow us to estimate the camera pose
with respect to the center of the fiducial marker, as the 3D transformation from
the marker coordinate system to the camera coordinate system. For retrieving
the intrinsic and extrinsic parameters of our camera, we recorded a video with
multiple perspectives of an asymmetrical circle pattern that was later fed to the
OpenCV calibration algorithm. As a result, the algorithm returns an *.xml file
that contains all the required camera calibration parameters. Once we obtain the
intrinsic camera parameters we are able to use them whenever it is required.

After computing the calibration features, we continue with the detection pro-
cess of the ArUco marker. As it presented in Figure 3.9b, our algorithm starts by
receiving an incoming video frame that is converted into grayscale color space in
order to apply an adaptive threshold for obtaining the various line contours, in-
cluding the real marker’s contours but also many other undesired borders. Hence,
the marker detection step aims on filtering out all the unwanted borders, by remov-
ing the contours that do not approximate to a square shape in addition to those that
consist of few points. Furthermore, the contours that are too close to each other
are also discarded, since the adaptive threshold normally detects both the internal
and external contours of the marker border and up to this stage, we are interested
in keeping only the external border.

Later to the candidate detection, it is necessary to determine if they are actually
markers by analyzing their inner codification. Firstly, perspective transformation
is applied by using homography so as to obtain the frontal view of the marker in
its canonical form. Then, the canonical image is thresholded with the Otsu’s algo-
rithm in order to identify the internal marker code by separating the white and the
black bits. Moreover, the maker image is divided in a 6x6 grid, where the internal
5x5 cells contains the code information, while the rest correspond to the external
black border. Then the bits are analyzed to determine if the marker belongs to a
valid marker dictionary and if necessary error correction techniques are employed,
by means of corner refinement with sub-pixel interpolation. Finally, by utilizing
the *.xml file that contains the camera parameters from the calibration step, we
are able to proceed with the computation of the extrinsic parameters for estimating
the marker’s pose with respect to the camera orientation.

Even though, the detection algorithms for the ArUco and color markers are
described separately, their implementation is combined in a single application. For
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(a) Low brightness. (b) High brightness

Figure 3.12: Examples of the video analysis algorithms for the detection of the
ArUco and color markers, in different lighting conditions.

instance, Figure 3.12 presents the outcome of our algorithm in different lighting
conditions.

3.3 Audio analysis
For analyzing the recorded audio signals we needed to apply music information
retrieval (MIR) methods so as to acquire meaningful results. Numerous software
libraries have been proposed over the last years to facilitate research and appli-
cations development in MIR. Most of the libraries concentrate on extracting low-
level features from the audio signal, in addition to higher level features such as
tonal and rhythmic descriptors. Some examples of the available MIR libraries in-
clude the Marsyas framework [Tzanetakis and Lemstrom, 2007] that is based on
C++, MIRToolbox [Lartillot and Toiviainen, 2007] that contains a set of Matlab
methods, SCMIR[Collins, 2011] which utilizes the SuperCollider programming
language and the Python-based Librosa [McFee et al., 2015]. In our project we
employed the Essentia library,[Bogdanov et al., 2013], since it comes with an
open-source license and it is well maintained with a online documentation.

Essentia is a C++ library, which was developed within our department and
it is used for audio analysis and audio-based MIR applications. It consists of an
extensive collection of reusable algorithms, including audio input/output function-
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Figure 3.13: .

alities, standard digital signal processing methods, statistical characterization of
data, as well as a large set of spectral, temporal, tonal and high-level music de-
scriptors. However, Essentia is not considered a framework, but rather a collection
of algorithms that is wrapped in a programming library. Furthermore, it focuses
on the robustness, performance and optimality of the provided algorithms, as well
as its simplicity in building custom audio processing methods. The flow of the
analysis is decided and implemented by the user, while Essentia is responsible for
the implementation details of the employed algorithms.

The library is also wrapped in Python and includes a number of predefined
extractors for the available music descriptors as binary executables, which fur-
ther promotes fast prototyping and rapid implementation of research experiments.
However, they should be considered as examples and not as the only correct way
of utilizing the Essentia functionalities. Additionally, there are various third-party
extensions of Essentia that enable its utilization within the frameworks of Pure-
Data, Max/MSP, openFrameworks, and Matlab. Furthermore, it can be be cross-
compiled to JavaScript for developing web-based applications, as well as a Vamp
plug-in within Sonic Visualiser so as to visualize the outcomes of the provided al-
gorithms. Hence, the library is considered to be cross-platform, since it supports
Linux, Mac OS X, Windows, iOS and Android OSs.

Consequently, our audio analysis algorithm was implemented in Python due
to its syntax simplicity during the programming process, compered to C++. Fur-
thermore we employed the Jupyther Notebook5 web application for the Python
development, since it supports live coding with direct feedback. As it is illus-
trated in Figure 3.13 our algorithm, starts by loading a given audio file with the
MonoLoader function that downmixes the the stereo signal to a mono channel,
while resampling it to a given sample rate, with a default frequency of 44.1 KHz.

5http://jupyter.org/index.html

37



“ExempleUsPlantillaA4” — 2016/9/10 — 17:36 — page 38 — #54

Then, we apply the FrameCutter method in order to slice the input signal to the
appropriate number of frames so as to retrieve the same analysis resolution with
the video frame rate. Therefore, we choose a window size of 2942 samples with
50% overlap, in order to match the 30 fps frequency of the video recordings.

Next we follow three different approaches for computing the various descrip-
tors with respect to their abstraction level. For calculating the tonal features we
employed the predefined TonalExtractor method that computes a collection of
tonal-related features, including chords changes rate, chords histogram, chords
key, chords number rate, chords progression, chords scale, chords strength, Har-
monic Pitch Class Profile (HPCP), key scale and key strength. However, for our
study we take into account only the HPCP and the key tonal features. In a similar
sense, we computed most of the low-level descriptors by utilizing the predefined
LowLevelSpectralExtractor algorithm which calculates a set of low-level audio
features, such as barkbands, kurtosis, skewness, spread, high frequency content
(HFC), Mel-frequency cepstral coefficients (MFCCs), pitch, pitch instantaneous
confidence, pitch salience, silence rate, complexity, crest, decrease, energy, low
energy band (20 - 150 HZ), middle-low energy band (150 - 800 Hz), middle-
high energy band (800 - 4000 Hz), high energy band (4000 - 20000 Hz), flat-
ness, flux, spectral root mean square (RMS), roll-off, strong-peak, zero crossing
rate, inharmonicity, tristimulus and odd to even harmonic energy ratio. The third
approach calculates the spectral centroid by applying a hanning window on the
sliced frames, then it computes the spectrum magnitude of the window and finally
its centroid.

As a last step of the audio analysis phase, the extracted descriptors of the
aforementioned algorithms are merged and saved as plane text in a CSV file for-
mat. Each line of the outcome file represents each individual frame and consists
of numerous fields equal to the total amount of the previously computed tonal and
low-level features.

3.4 Post-processing and dataset creation
Before proceeding to the evaluation phase, we first need to concatenate the results
from the video and audio analysis into one data file. Furthermore, it is critical
to ensure that there are no noisy or null records within our dataset, since they
affect directly the quality and accuracy of the evaluation results. Therefore, we
employed the Unix bash shell for developing small scripts and executing the ap-
propriate commands for filtering the two CSV files and merging them into one
dataset. We chose to use the bash shell since it allow us to execute the required
filtering conveniently with a single line of code.
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Chapter 4

EVALUATION AND RESULTS

In this Chapter, we will describe all the methods that were involved in the evalua-
tion procedure of our study, in addition to the acquired results. More specifically,
we present the details of the machine learning methods that were applied on our
dataset, for investigating the possible relations between the audio descriptors and
the bowing features, as computed by our low-cost tracking system. Next, we list
the retrieved regression accuracies from various machine learning algorithms and
discuss on the given results.

4.1 Evaluation
After the creation of our final dataset that contains the filtered acquisition infor-
mation from the video and sound domains, we were interested into researching the
possible connections amongst the low-level and tonal descriptors with the bowing
parameters as they were computed by our video analysis algorithm. For this pur-
pose, we employed the Weka Data Mining1 software [Hall et al., 2009], which is
an open source application specific for machine learning tasks.

Furthermore, Weka provides a collection of algorithms for data pre-processing,
classification, regression, clustering, association rules, visualization and predic-
tive modeling, which are written in Java programming language. Therefore, by
taking advantage of the Java Virtual Machine (JVM) and its portability property,
Weka is capable of running on almost any modern computer platform. Addition-
ally, it comes with a GUI that enables direct application of the available algorithms
on a given dataset, which further facilitates the overall working process. However,
Weka can be also imported as an external library, so as to enable the developers
to access its algorithms as call functions within a custom Java program. The im-
ported dataset is required to be contained in a single file, where each data record

1http://www.cs.waikato.ac.nz/ml/weka/
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is described by a fixed number of attributes that are either numeric or nominal.
Regarding our study, the evaluation process consists of two steps. Firstly we

applied a feature selection method in order to minimize the dimensionality of
our research problem and possible over-fitting. Then we performed a regression
analysis on the selected features by utilizing four different machine learning algo-
rithms, so as to estimate the relationships between the audio and bowing gestural
features.

4.1.1 Feature selection
Generally, feature selection or attribute selection is the process of automatically
searching for the best subset of attributes in a given dataset. The concept of “best
subset” is relative to the subjective problem that we try to solve, but typically
reflects to higher accuracy. The hypothesis behind the feature selection technique
is that usually the dataset contains many attributes which are either redundant or
irrelevant, hence they can be removed without causing information loss. However,
it is important to mention that redundant and irrelevant features are two distinct
states, since one relevant feature may be redundant in the presence of another
relevant feature with which it is strongly correlated.

Therefore, the goal is to navigate through the feature space and locate the best
or a good enough combination of features that improves the performance of our
predictive model, over selecting the total amount of attributes. By applying feature
selection to our dataset we avoid over-fitting due to the existence of less redundant
features. Additionally, the absence of noisy attributes results to more meaningful
models with higher accuracy confidence. Furthermore, by minimizing the amount
of data we also reduce the training time of our predictive model. In Weka, the
attribute selection process is separated in two parts. Firstly we need to specify
the attribute evaluator algorithm, which is responsible for assessing the various
attributes subsets. On the second step it is required to select the search method
that is in charge of searching the feature space for possible subsets according to
the results of the subset evaluation method.

In this sense, for our dataset we applied three times the feature selection pro-
cedure, since we were interested to investigate the best attributes subset for three
different classes, which represent the two velocities of the two color markers in
addition to the bow inclination. Furthermore, we selected the CfsSubsetEval al-
gorithm as attribute evaluator that assesses the worth of a subset of features by
considering the individual predictive ability of each feature, along with the degree
of redundancy between them. In other words, good subsets are considered those
that are highly correlated with the class while having low intercorrelation. Ad-
ditionally, we enabled the locallyPredictive property, which iteratively adds the
attributes with the highest class correlation, as long as there is not already another
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attribute in the subset that has a higher correlation compered to the attribute in
question. As for the search method, we utilized the BestFirst algorithm, which
searches forward the space of attributes subsets by starting with an empty set. The
algorithm is also equipped with a backtracking mechanism by setting the num-
ber of consecutive non-improving nodes that are allowed before terminating the
search. The quality of the attribute subset is determined by a process of 10-fold
cross-validation, where the original dataset is randomly partitioned into 10 equal
sized subsamples. A random subsample is selected as the validation data for test-
ing the model, and the remaining 9 are used as training data.

By applying the aforementioned attribute selection process for the Velocity A
and Velocity B as target classes, we retrieved the same 7 features, including the
MFCC1, MFCC5, MFCC7, HFC, spectral crest, flux, and strong-peak out of the
total 37 low-level descriptors that were contained in our dataset. In a similar man-
ner, we acquired 10 features for the Bow Inclination as the predicted class, spec-
ified by the MFCC2, MFCC4, MFCC6, MFCC11, MFCC12, barkbands spread,
pitch, pitch instantaneous confidence, spectral crest and Inharmonicity low-level
audio descriptors.

4.1.2 Regression analysis with machine learning

The regression analysis is a famous statistical process for estimating the rela-
tionships between variables. This method is widely used for solving prediction
problems, thus including many techniques for modeling and analyzing multiple
variables. The main target of regression is to investigate the relationships between
a dependent attribute, which is the target class, and many independent variables,
which are also known as predictors. More specifically, regression analysis aids
on the understanding of how the typical value of the dependent feature changes,
when there is a variance in one independent variable, while the rest independent
variables are kept with fixed values. Therefore regression analysis can be per-
formed over machine learning algorithms, due to the substantial overlap on their
research interest.

Considering our study, we employed four different machine learning approaches
for computing the regression correlations amongst the audio descriptors and the
bowing features, including Decision Trees (DTs), k-Nearest Neighbor (kNN),
Support Vector Machines (SVMs) and Multilayer Perceptron that are also known
as Neural Networks (NNs). These algorithms are briefly described as follows, in
terms of how they demonstrate along with their key parameters and their imple-
mentation details within Weka.
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Decision Trees

Decision Trees that are also known as Classification and Regression Trees (CART),
are methods for constructing prediction models from data. The models are com-
puted by recursively partitioning the data space and fitting a smaller prediction
model within each partition. Consequently, the partitioning process can be rep-
resented graphically as a decision tree that starts from the root class and moves
down to the attribute leaves until a prediction is achieved. The process of creating
a decision tree works by greedily selecting the best split-point in order to make
predictions and iterate until the tree reaches a fixed depth. More specifically, the
regression trees start from a dependent variables that take continuous or discrete
ordered values, while the prediction error is typically measured by the squared
difference between the observed and the predicted values. After the tree con-
struction, we can prune its leaves in order to improve and generalize the model’s
performance to new data.

For our study we selected to work with the M5Rules algorithm, that generates
a decision list for regression problems by using the divide-and-conquer approach.
This algorithm in each iteration builds a model tree and makes the “best” leaf into
a rule. Furthermore we applied this method by keeping the random parameter
values in addition to a 10-fold cross-validation for evaluating the model’s perfor-
mance.

k-Nearest Neighbor

The k-Nearest Neighbors algorithm works by storing the entire training dataset
and querying it to locate the k most similar training patterns when making a pre-
diction. Therefore, there is no model other than the raw training dataset and the
only computation that is performed is the querying of the training data whenever
a prediction is requested. It is a simple algorithm that under account only the dis-
tance between the data instances for providing meaningful predictions. As such,
it often achieves high performance with very good accuracy rates. In the case of
predicting regression problems, the kNN computes the mean of the k most similar
instances in the training dataset. Moreover, the size of the neighborhood is spec-
ified by the k parameter. For instance, when it set to 1, the predictions are made
using the single most similar training instance to a given new pattern for which a
prediction is requested. Common values for k are 3, 7, 11 and 21 with respect to
the dataset size.

In Weka the kNN technique is implemented with the IBk algorithm, which
stands for Instance Based k. This method can automatically discover a good value
for the k, by using cross-validation inside the algorithm as specified in the cross-
Validate parameter. Another important setting is the selected distance measure,
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which can be configured in the nearestNeighbourSearchAlgorithm field that fur-
ther controls the way in which the training data is stored and searched. The default
method is the LinearNNSearch. Furthermore, we can specify the distance function
that is used by the search algorithm in order to calculate the distance between the
data instances. By default, Weka uses the euclidean distance for computing this
measurement. In this sense, we employed the IBk algorithm with default settings
and selected 10-fold cross-vilidation for our training phase.

SVMs

The SVMs were initially developed for solving binary classification problems, al-
though extensions to the method have been made for supporting multi-class classi-
fication and regression problems. The adjustment of the SVM to regression analy-
sis is also known as Support Vector Regression (SVR). SVMs were implemented
for working with numerical input variables, while providing a normalization func-
tion in addition to a conversion mechanism that translates the nominal values to
numerical.

The basic idea behind SVM is to find a line that separates in the best pos-
sible way the training data into different classes, while SVR works by finding a
line of best fit that minimizes the error of the cost function. This is done by fol-
lowing an optimization procedure that only considers those data instances in the
training set that are closest to the line with the minimum cost. These instances
are called support vectors and give their name to the main technique. However,
in real problems it is difficult to draw a line that best fits the data. Therefore a
margin is added around the line in order to relax the constraint that further allows
some bad predictions to be tolerated. In this sense the generalization error of the
classifier is minimized while providing better overall results. Furthermore, few
datasets can be fit with just a straight line. Sometimes a line with curves or even
polygonal regions need to be marked out. This is achieved by projecting the data
into a higher dimensional space in order to draw the lines and make the appropri-
ate predictions, according to the flexibility of the employed kernel. In our study
we utilized the SMOreg algorithm as implemented in Weka, by keeping the ran-
dom parameter values in addition to a 10-fold cross-validation for evaluating the
model’s performance.

Multilayer Perceptron

The Multilayer Perceptron or Neural Network algorithm is a complex method for
predictive modeling due to its greate diversity of the configuration parameters that
can only be tuned effectively through intuition and many iterations. Moreover,
it is a method that was inspired by the model of biological neural networks in
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(a) Structure of a neuron. (b) Example of a neural network.

Figure 4.1: Illustrations of the neuron structure in addition to an examples of the
different layers involved in a neural network.

the brain, where small processing units called neurons are organized into layers
that if configured well are capable of approximating any prediction function. In
classification we are interested in approximating the underlying function that best
discriminates the various classes, while in regression problems we are interested
in approximating a function that best fits the real value output. In other words, a
neural network has the ability to learn the data representation from the training set
and how to best relate it to the output variable which is subjected for prediction.

As it is illustrated in Figure 4.1a, the building block of a neural network are the
artificial neurons or simply nodes. They are small computational units that receive
weighted input signals and produce an output signal according to an activation
function. Furthermore, the input weights are very much like the coefficients of a
regression equation, in addition to a bias which can be thought as an input that
always has the value 1. For instance, a neuron may have two inputs but it requires
three weights, one for each individual input and one for the bias. Typically, the
weights are randomly initialized with small values, between the range of 0 to 0.3,
however more complex initialization patterns can be used. On the other hand, by
applying large weights we increase the complexity and fragility of the network.
Hence, it is better to apply regularization techniques and keep weights within
a small range. After the weighting process, the neuron receives the inputs and
applies an activation function on their sum. This function is a simple mapping of
the sum of the weighted inputs to the output of the neuron. It is called an activation
function because it specifies a threshold at which the neuron is activated in order
to reinforce the output signal. A famous activation functions is the sigmoid which
outputs a value between 0 and 1 with an s-shaped distribution, in addition to the
hyperbolic tangent function that outputs the same distribution within the range -1
to +1.

However, the neural networks consist of multiple nodes which are arranged
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in rows that are called layers. The overall architecture of neurons in the network
is known as network topology, and consists of three types of layers including the
input, the hidden and the output layers, as it is depicted in Figure 4.1b. The first
layer that receives the input from the given dataset is the input or visible layer.
Typically, a neural network has a visible layer with one neuron per input value
or attribute of the dataset. However, these neurons do not match to the above
description, since they simply pass the incoming value to the hidden layer. They
are called hidden because they are not directly exposed to the user. The simplest
network structure contains a single neuron in the hidden layer that directly outputs
the value. The final hidden layer is called the output layer and it is responsible for
outputting a value or vector of values, according to the problem requirements.

Weka implements NNs with the MultilayerPerceptron algorithm that allows
the user to manually specify the structure of the employed neural network. How-
ever, by keeping the default settings, Weka will automatically design the network
and train it with a single hidden layer network. The nodes in this network are all
sigmoid, except in the case where the class is numeric and the output nodes be-
come unthresholded linear units. Additionally, it is equipped with a configurable
learning process by setting a learning rate that specifies the updating amount of
the weights. The learning process can be further tuned with a decay attribute,
which causes the learning rate to decrease over time. More specifically, it divides
the starting learning rate with the epoch number so as to determine what learn-
ing rate should be applied. Hence it performs more learning at the beginning of
training and less at the end. This method helps to stop the network from diverging
from the target output, as well as it improves the general performance. For the
evaluation task of our study we kept the random parameter values in addition to a
10-fold cross-validation training procedure.

4.2 Results
After applying the attribute selection process, we demonstrated the four machine
learning methods for investigating the regression correlations between the bow-
ing features, as computed from our video analysis algorithms, and the audio de-
scriptors, which were extracted from the built-in microphone recordings with the
Essentia algorithms. Since our study is focused on the analysis of the low-cost
system, we did not take under account the tracking information of the EMF sys-
tem and the recorded signal of the bridge pickup.

More specifically, we applied the same machine learning procedure for pre-
dicting the three video features, including the VelocityA, VelocityB and Inclina-
tion bowing parameters. Additionally, we researched the regression accuracies
over the complete dataset, in addition to its reduced version, as retrieved from the
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feature selection method with respect to the different target classes. The retrieved
accuracies are presented in Tables 4.1, 4.2 and 4.3.

Generally, we can observe that VelocityA provides the lowest accuracy rates,
even when it is compered with the accuracies of VelocityB. However this may
happen due to the smaller distance of the lower marker to the source of the bow
motion, which is the hand of the performer. Also, we can see that by selecting
all the audio features for estimating the regression correlations results to over-
fitting, with a clear example the performance of the IBk algorithm for predicting
the VelocityA. There the retrieved accuracy of the complete feature space is almost
double from the reduced one. Additionaly, the same regression method with pre-
diction class the VelocityB has 15% to 18%lower performance compered to the
other machine learning algorithms. Paradoxically, when the IBk was employed
for estimating the Bow Inclination feature, resulted to the best accuracies of 95%
and 97% (see Table 4.3). In particular, the Bow Inclination feature is highly corre-
lated with the audio descriptors, which is reasonable, since this feature is directly
related to the current sting played that further affects directly the values of the
low-level audio descriptors.

Velocity A
Machine Learning Algorithm All features Selected Attributes
M5 Rules 0.52 0.50
IBk 0.67 0.34
SMOreg 0.53 0.48
Multilayer Perceprton 0.43 0.52

Table 4.1: Table of regression accuracies of the various machine learning algo-
rithms for predicting the VelocityA bow feature.

Velocity B
Machine Learning Algorithm All features Selected Attributes
M5 Rules 0.62 0.60
IBk 0.45 0.42
SMOreg 0.62 0.57
Multilayer Perceprton 0.54 0.58

Table 4.2: Table of regression accuracies of the various machine learning algo-
rithms for predicting the VelocityB bow feature.
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Bow Inclination
Machine Learning Algorithm All features Selected Attributes
M5 Rules 0.94 0.93
IBk 0.97 0.95
SMOreg 0.79 0.79
Multilayer Perceprton 0.89 0.87

Table 4.3: Table of regression accuracies of the various machine learning algo-
rithms for predicting the Bow Inclination feature.
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Chapter 5

CONCLUSIONS AND
DISCUSSION

With this work we present a novel approach in capturing violin performance ges-
tures by employing both direct and indirect acquisition methods based on a low-
cost system. According to the bibliography, most of the available proposals fall
into the direct acquisition technique, which requires either to develop custom elec-
tronic devices or commercial MoCap systems that usually increase the overall
cost. Moreover, the freedom of movements is crucial for musical expression and
these systems invoke some kind of intrusiveness that may have an effect on the
overall performance abilities of the artist. However, there are studies that address
the acquisition problem by utilizing indirect methods for gestural estimation from
the audio signal, rather than the physical domain. Also, hybrid systems have been
developed, but still they entail complex set-ups.

Therefore, our goal was to develop a hybrid system over low-cost equipment
that is available with the modern personal devices. We employed the built-in
camera and microphone of a laptop for developing our system algorithms that
are based on video frame analysis, augmented reality and audio signal process-
ing methods. For the video analysis we employed color markers for recognizing
the bow, as well as an AR marker for estimating the violin pose with respect to
the camera coordinate system. Next we extracted the various tonal and low-level
spectral audio descriptors of the built-in microphone’s input signal. Then we uni-
fied the retrieved data from the two analysis processes in a single filtered dataset
in order to proceed with the evaluation. Following, we applied attribute selection
techniques and machine learning methods for regression in order to investigate
the possible relations amongst the audio features and the bowing controls, as they
were computed from our algorithms.

The results are promising, since they show high correlation between the Bow
Inclination parameter and the audio features, with maximum accuracy of 97%.
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Additionally, the video analysis algorithm performed well in different lighting
conditions, in addition to its ability to run in real-time. Furthermore, the utilization
of styrofoam color markers and a simple printed AR marker are almost transparent
to the player during a real violin performance without affecting his freedom of
movements. Finally we can say that we opened the door for further research in
the gesture recognition field of study, since we achieved intuitive direct acquisition
of complex 3D movements from a single camera perspective with simple tools and
methods.

5.1 Reproducibility
Throughout the designing, development and evaluation phases of this project,
we aimed on utilizing open source software and freewares in order to promote
the reproducibility aspect of our study. Additionally, we achieved to develop a
platform-independent application by taking advantage of the programming power
of the C++ language in conjunction with the cross-platform implementations of
the OpenCV and Essentia software libraries. Also, the code that we developed is
open to the public since it hosted on GitHub1 as an online repository with GNUv3
General Public license. The link to the repository is specified by the following
address:

https://github.com/kosmasK/ViolinBowTracking.git

5.2 Possible extensions
Due to the novelty of our system, there are many improvements that can be ad-
dressed as future work. Regarding the already implemented video analysis algo-
rithm, it can be enriched with extra computational formulas for estimating addi-
tional bowing parameters, such as the bow skewness and distance from bridge.
Furthermore, we plan to develop a GUI that would enable the user to intuitively
calibrate and configure the system, as well as monitoring his performance through
real-time visualizations. Considering the multimodal data that we recorded with
the EMF system and the bridge pickup, can be further used as ground truth with
which we can revaluate the overall performance of our system. Moreover, we plan
to share online the multimodal recordings over the RepoVizz2 web service, as a
reproducibility extension.

1https://github.com/
2http://repovizz.upf.edu/repo/Home
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