

Innovative technologies for a cost-effective biogas upgrading in wastewater treatment plants

M. Rosario Rodero¹, Raquel Lebrero¹, David Marín¹, Enrique Lara², Zouhayr Arbib², Raul Muñoz¹

1- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain. 2- FCC Servicios Ciudadanos, Av. del Camino de Santiago, 40, edificio 3, 4ª planta, 28050 Madrid, Spain * Author for correspondence: mutora@iq.uva.es

INTRODUCTION

Based on its high CH₄ content (40-75%), biogas is considered a renewable energy source for the production of heat and power. H_2S removal is mandatory due to its toxicity and hazards associated with the corrosion of metals, while CO₂ removal increases the specific calorific value and reduces biogas costs of compression and transportation [1]. Light energy

Biogas upgrading in algal-bacterial photobioreactors constitutes a cost-effective and environmentally friendly alternative for the removal of both contaminants [2]. These processes are based on the CO₂ consumption by microalgae via

photosynthesis and the oxidation of H_2S to sulfate by sulfur-oxidizing bacteria using the oxygen photosynthetically produced

Microalgae [3]. In addition, domestic wastewater or anaerobic effluents can be used as nutrient source to support algal-bacterial growth.

B4 100 L/h

Figure 1. Schematic diagram (left) and photograph (right) of the continuous biogas upgrading experimental plant at Aqualia's facility in Chiclana

Sth Ce, onferen

highest CH₄ concentration was The 86.8±1.4 % at a L/G of 3.6 as a result of the high O_2 and N_2 content in the upgraded biogas.

Enhancements in CO₂ and H₂S removal

efficiencies (REs) were observed with the

increase in the liquid to biogas ratio (L/G).

A decrease in the pH of the recirculating cultivation broth from 7.95±0.08 to 6.69±0.30 was measured between the bottom and the top of the absorption column due to the acidic nature of CO_2 and $H_2S.$

Figure 4. Ammonium, total nitrogen, phosphate and COD removal efficiencies in the system.

Table 1. Effluent composition

COD (mg L ⁻¹)	99.4±31.3
N-NH ₄ ⁺ (mg-N L ⁻¹)	1.9±1.5
N-NO ₂ (mg-N L ⁻¹)	0.2±0.1
N-NO ₃ (mg-N L ⁻¹)	1.9±1.0
PO ₄ ³⁻ (mg L ⁻¹)	1.2±0.4
SO ₄ ²⁻ (mg L ⁻¹)	136.5±13.5
IC (mg L ⁻¹)	25.6±5.5

COD: Chemical Oxygen Demand

IC: Inorganic Carbon

CONCLUSIONS

- \checkmark The influence of L/G ratio on CO₂ and H₂S removal efficiencies was significant with the increase in CO_2 -RE and H_2S -RE at higher L/G ratios. However, an increase in the L/G ratio promoted a higher desorption of O_2 and N_2 contained in the recycling liquid, which negatively impacted on the CH_4 concentration in the upgraded biogas. \checkmark No significant effect of biogas flowrate on biomethane composition was observed. The effluent obtained complies with the EU Directive discharge requirements.
- \checkmark An increase in the pH or alkalinity of the cultivation broth could enhance CO₂ and H₂S absorption at lower L/G.

REFERENCES

- [1] Toledo-Cervantes A., Serejo M., Blanco S., Pérez R., Lebrero R., Muñoz R., (2016). Photosynthetic biogas upgrading to bio-methane: Boosting nutrient recovery via biomass productivity control. Algal Res. 17, 46-52.
- [2] Bahr M., Díaz I., Domínguez A., González A. and Muñoz R. (2013). Microalgal-Biotechnology as a platform for an integral biogás upgrading and nutrient removal from anaerobic effluents. Environ. Sci. Technol. 2014, 48, 573-581.
- [3] Posadas E., Serejo M.L., Blanco S., Pérez R., García-Encina P.A. and Muñoz R. * (2015). Minimization of biomethane oxygen concentration during biogas upgrading in algal-bacterial photobioreactors. Algal Res. 12: 221-229.

Acknowledgements:

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 689242.

